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ABSTRACT

Since 1960’s Low Energy Electron Diffraction (LEED) has been one of the most
reliable methods for surface crystallography. It has solved hundreds of structures over
the past 20-25 years and continues to be a powerful tool in the hands of crystallographers.
Yet, the main disadvantage of the method is the fact that it is very time consuming. The
programs that do the multiple scattering calculations can run literally for days! The key
part of the method is the initial “guess” of a structure that will be close the one being
sought. A wrong guess would lead to huge amounts of wasted time and effort.

We suggest a direct method that can give us a pretty good idea of the structure under
determination. We call this method of ours: Holographic LEED (h-LEED) because
it is based on the ideas of Dennis Gabor, the inventor of holography. The 3D images
h-LEED reconstructs from LEED diffraction patterns can be reliably used to initialize
LEED thus reducing the annoying computation time as well as the effort required by

the crystallographer.
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We show that h-LEED produces good images for p(2 x 2) reconstruction of adsorbed
atoms by testing it on two adsorption systems: O/Ni(001) and K/Ni(001). The images
were reconstructed from both diffuse LEED patterns from disordered adsorbates and

superstructure Bragg spots from ordered adsorbates.
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Chapter 1

Introduction

The short inelastic scattering length of the low energy electrons makes them ideal tools
for surface crystallography. This important feature of them has made Low Energy
Electron Diffraction (LEED) one of the most commonly used methods for the exploration
of a surface. Although the dual behavior of the electrons, that was verified in the late
19th century, inspired experiments in which the electrons were used as probes of the
crystal structure, thus being the precursors of LEED experiments, yet only with the
design of Ultra High Vacuum pumps did LEED find its way to the world of surface
physics. The decades of 1960, 1970 and 1980 were the most productive ones since
during those years a large number of structures were solved succesfully bestowing LEED
the reputation of one of the most reliable surface methods. The development of the
new generation of fast supercomputers has partially solved the problem that people
working with LEED had been trying to cope with since the beginning; the computation

time. Figure 1 shows schematically the LEED cycle. The whole proccess is based upon
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Figure 1: The LEED cycle




a trial-and-error search scheme. One of the key parts in the LEED procedures is the
initialization of this cycle, that is, guessing a structure as close to the one being sought
(the real one) as possible. Years of experience and intuition are the basic characteristics
for some one who works with LEED while trying to guess a starting structure. Following
this is the multiple scattering calculations step. The time for those culculations depend
on the availabilty of fast computer systems. Let us try to get a rough idea of this time.
Suppose we need to determine the 3 Cartesian coordinates of N symmetry inequivalent
atoms, and for this purpose we consider models with 10 values of each coordinate. The
time required for an exhaustive search amongst these parameters is T = S x 103V,
where S is the time required to calculate the LEED spectra from each model. Taking
S = 1second and N = 3 we find 7" = 30 years. Just doubling the number of atoms to
N = 6 results in a time 7" of the order of the age of the universe. In the latter case,
increases in computer speeds by even a million-fold would only bring 7" down to a few
millenia! In the next steps we calculate the I-V curves which we compare with their
experimental sisters and finally we calculate a R factor. In the case that this factor
is less than some generally accepted value, we stop there having solved the structure.
But this scenario is rather rare. We will have to vary the initial parameters and thus
get a slightly different structure which will initialize the second iteration of the cycle.
The reader understands that this may continue for some time. Everything depends on
the original structure assumption. Obviously some alternative to an exhaustive trial-
and-error search is needed. So, on the one hand procedures applying a directed search

in the multidimensional parameter space were developed. In this context the testing of



simulated annealing-like and genetic algorithms[?] are certainly steps in a most promising
direction. Also, quasidirect methods were developed allowing a search-free optimization
of structural parameters once a model near the correct structure had been found or
guessed[?]. The other approach that has shown considerable promise for LEED in recent
years has been the holographic method[?]. This thesis describes exactly this approach.
The author shows how it was created, almost ten years ago, with partial but promising
success and how succesful it has become, chiefly from the work done by the groups of
K. Heinz at the University of Erlangen-Nuremberg, Germany and of D.K. Saldin at the
University of Wisconsin-Milwaukee in whose group the author did this research.

The thesis is divided into seven chapters.

1. Chapter 1 contains this introduction.

2. In the second chapter a general discussion of LEED theory and experiment is given
that helps the reader follow the rest of the thesis. This discussion is far from being
exhaustive and the interested reader should go to the two classical books on LEED,

of J.B. Pendry[?] and of M.A. van Hove et al.[?].

3. In the first part of chapter 3 the ideas of electron holography are discussed and their
application to surface crystallography, and especially to diffuse LEED (DLEED)
are explained. A reconstruction algorithm is developed in the second part and
reconstructed images of O/Ni(001) and K/Ni(001) from both experimental and

theoretically calculated DLEED patterns are shown.

4. Chapter 4 continues the discussion started in the previous chapter on DLEED



with further investigation the author did towards the improvement of the recon-
structed images, and an exploration of the limits of validity of the holographic

reconstruction algorithm.

5. A simple program that simulates a DLEED experiment is the theme of the fourth
chapter. The program was developed by the author and is schematically presented
in the chapter whereas its complete code can be found in the appendix B. This
program, which, exactly because of each simplicity, is fast, enabled the author to
do a speedy investigation of the reconstruction algorithm developed in chapters 3

and 4 towards its application to an ordered adsorption.

6. The success of the investigation in the previous chapter with the model program
gave the signal for the development of the initially proposed algorithm and its
application to both experimental and theoretically calculated LEED patterns. This
is the content of the sixth chapter. Reconstructed images from such patterns are

also shown to establish the reliability of the method.

7. A general summary is the content of the seventh chapter.



Chapter 2

Elements of LEED

2.1 Introduction

The story of LEED goes back to 1897 when J. J. Thomson measured the ratio of charge
to mass of the electron (e/m) thus establishing its particle nature. Then, in 1924, L.
de Broglie[?] in his PhD thesis proposed that the electron behaved as a wave as well,
with a wavelength given by h/p, where h is Planck’s constant and p its momentum.
Possessing this duality property, the electron can be diffracted following the diffraction
laws conventional waves do. Thus, an electron with a low kinetic energy (let us say
of the order of 100 eV) will have momentum p = (2mE)Y? = 5.59 x 10~**m kg/s and
wavelength A = h/p = 1.18 A. This short wavelength will enable it to diffract from
a crystal, since it (the crystal) is a grating with periodicity of the order of atomic
dimensions. And indeed, the first experiments performed by Davisson and Germer[?, ?,

?] in 1927 made use of a Ni(111) crystal surface. But all these were nothing more than



100
MFP(A)

10

1 | | |
1 10 100 1000
Energy(eV)

Figure 2: Universal curve of electron inelastic mean free path

Low Energy Electron Diffraction (LEED) experiments at their primitive stage. LEED
knew its peak development almost 40 years later when Ultra High Vacuum pumps were in
commercial usage. Only under these conditions of vacuum (of the order of 107 Torr)
can a LEED experiment give reliable results, since then we are sure that our sample
crystal is free from impurities during the course of the experiment.

1960’s and 1970’s were the two decades that saw LEED being developed to its max-
imum degree. Nowadays, Low Energy Electron Diffraction is a powerful tool for surface

exploration.

2.2 The LEED experiment

We would like to start this section by answering the question: Why use electrons to

do the scattering? Figure 2 shows the so-called universal curve of the electron inelastic



mean free path[?]. By looking at this curve we will make a very important observation;
that electrons with kinetic energy in the range 15 — 1000 eV have very short mean free
path (less than 10 A). If we consider that a typical crystal surface is not deeper that a
few layers, or about 10 A, then the answer is easy. This interesting trait of the electrons
makes them powerful probes for surface exploration. We see from figure 2 that in the
above energy range the electrons are an ideal tool for surface studies.

As we said in the introduction, LEED was greatly developed after UHV pumps
became commercially available. This is because the crystal sample will have to be as
free from impurities as possible at least during the course of the experiment which lasts
about an hour. To put it in other words, the rate of the arrival of the surrounding gas
molecules must be kept very low. To quantify that we can say that we do not want to
have more than a few per cent of an atomic layer of impurities to be attached to the
surface of the sample over the time that the experiment lasts. A rough calculation, using
the kinetic theory of gases justifies the use of UHV pumps which can keep a vacuum in
the order of 107 Torr.

Looking at the figure 3(a) we see that only the atoms or molecules that are contained
within the cylindrical volume shown will be arriving at the surface. The total number
of particles with speeds between v and v + dv at polar angles  and 6 + df incident on

the surface area A will be given by:

AvcosdQd

N v Ef(“)dv (1)

where, N is the total number of particles, Avcos/V is the fraction of all the particles

that are contained in the culinder, d2/4x is the fraction of the particles moving in
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Figure 3: Evaluation of molecule arrival rate

directions between 6 and 6 + df and f(v)dv is the probability that one particle has
speed between v and v + dv, f(v) being the Maxwell-Boltzmann distribution of the
speeds. Seeing from figure 3(b) that dQ = 27v? sin 0df/v? = 27 sin 0dh, makes (1):

A‘[/Avsmagosedé’f(v)dv @)

Defining R to be the number of molecules arriving at the unit area of the surface in the

unit time and integrating over all speeds and possible angles, we obtain:

o /2 NA sinfcos®
R = /U:O/a:o TR0 (v)du
NA r7/2 [
= W o sin20d0/v_0f(v)vdv
. N_A _c0s20 ™/2
7 2 |,
_ 1INA
T4y
1
= MW (3)

where, v, = [5° f(v)dv, the average speed, and n their density (n = N/V). The



Maxwell-Boltzmann distribution of the momenta (since p = muv) is given by:

f(p) = Cexp(—Ap?), (4)

where, C = n/(2mrmkpT)%? and A = 1/2mkgT, and m is the mass of the atom or
molecule, kg = 1.38 x 10723 JK~!, the Boltzmann constant. This distribution will give

an average velocity:

_ffmJ@X_@@T

v — _ 1/2
= Tdpi)  mr ) ©)

Now, since the pressure for ideal gases is given by:

we can substitute n and v, in (3) from (6) and (5) respectively to take the following

expression:

1
R=P[—— /2 7
[QWkBTm] ( )

If we express the pressure P in Torr (1 Torr = 133.416 Pa) and substitute the mass m
by the molecular weight M multiplied by the atomic mass unit amu = 1.66 x 10727 Kg,

we will get a convenient formula for the rate in units of molecules per em? per s, or

P
22
R =3.51 x 10 T (8)

Let us assume that we have nitrogen molecules (Ny) with molecular weight M = 28.
Then at room temperature 7' = 293 K and pressure 1 Torr the arrival rate at the surface

will be, using formula (8), 3.88 x 10?° molecules crn=2s~!.

If we assume that a typical
monolayer consists of about 10'® atoms per cm? and that all the molecules arriving at

the surface stick on it, then we see that at pressure 17orr one monolayer of impurities



needs about 3 x 107%s to be formed. For pressure 1076 7Torr it will take 3s. The
modern UHV pumps create a vacuum of the order of 10 ° T'orr which gives us a time
of 3 x 10* s or about 8 hours for a monolayer of impurities to be stuck on the surface.
From this rough estimation we conlclude that our sample’s surface remains completely

impurity-free over the period of the experiment.

2.2.1 Preparation of the sample

We discussed above the effectiveness of a UHV chamber in trying to keep our sample
impurity-free during the course of the experiment. Next we will go through the procedure
we follow to prepare our sample for the experiment. The first thing we need is to get
its surface cut along a desired orientation. Good materials for this kind of proccess
are those that cleave easily (like, oxides or alkali halides). A proccess of mechanical
polishing with carbide powders and chemical etching makes the surface smooth. In
order to render it as clean as possible we use the method of annealing. This causes
a desorpion of gases having adsorbed on it. Sputtering (usually bombardment of the
surface with ions of Ar) is another method that helps remove layers of impurities from
the surface. One undesired side effect of the bombardment is that it leaves the surface
heavily damaged with Ar atoms embedded. So we usually anneal it one more time to
remove those atoms and to re-crystalline the surface. Finally, we may wish to have
atoms or molecules adsorbed on the surface. To do that we will have to introduce gases
into the vacuum champer where the sample sits (in-situ procedure) at pressures of about

10~%Torr or less. Decomposition of the molecules produces atoms that get adsorbed



onto the surface. We can have two kinds of adsorption. If the atoms are held to the
surface only by van der Waals’ forces, the adsorption is called physisorption and creates
weak bonds with the surface atoms (of the order of 0.6eV per atom). This kind of
adsorbed atoms can be readily desorbed at temperatures around 200 K. On the other
hand, if the adsorption changes the electronic structure of the ad-atom, then it is called

chemisorption and produces strong bonds.

2.2.2 Performing the experiment

Figure 4 shows schematically the main parts of the apparatus for the LEED experiment.
As one can see, the apparatus consists of a hemispherical fluorescent screen along with
an array of four also hemispherical and concentric grids. All four grids and the display
screen have a central hole through which the electron gun is inserted. The electron gun
can shoot electrons with energy range between 30 eV and 1000 eV at the sample which
is mounted at the center of the system and which, along with the first grid, is grounded.
We do this in order to provide a field-free enviroment between them. The second and
third grids (suppressor grids) are charged negatively to make sure that only elastically
scattered electrons and only a fraction of them will reach the fluorescent screen. The
fourth grid is also grounded to reduce penetration of the field by the suppresor grids into
the region close to the screen which is charged positively with a potential of a few £V
in order to make the electrons visible. Thus, what essentially happens is that a cathode
supplies a steady current and heats up a tungsten filament, as seen in figure 5. The

electrons extracted by the filament make up a beam that has diameter of the order of
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Figure 4: The LEED experiment
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0.1¢m and carries a current of the order of 1 uA. The potential between the cathode
and the array of anodes controls the final kinetic energy of the electrons. This beam of
electrons is shot upon the specimen. The diffracted particles travel within the field-free
ambient towards the screen. If they are elastically scattered they make it through the
two suppressor grids and eventually end they trip on the fluorescent screen where they

can be traced by the spots they leave upon collision.

2.2.3 Coherence length

An ideal beam would be described by a simple plane wave of the form, A exp(zE -7,
with kinetic energy, E = fik?/2m and a well defined direction given by the wave vector
k. If that was the case a wave normally incident on a surface would have the same
phase everywhere on it. In general two points on the surface separated by a distance
£ that receive the incident wave would differ by a phase difference -k In reality

we have to deal not with one wave but with a set of them having slightly different



directions and, hence, kinetic energies. This means that the electron waves scattered by
two different points of the surface will not have phase difference always the same exactly
because of the uncertainty of k. This is very important when these waves are involved in
diffraction where the amplitudes are simply added to take the known diffraction patterns.
If two waves that interfere have different phases then this interference will give neither
a maximum nor a minimum. Fortunately, we can define a characteristic length on the
surface, within which these variations of k are not so important. Outside this length the
phase difference of the scattered waves are completely arbitrary. This length is called
coherence length. In order that we get an approximate idea of the size order of the
coherence length we should account for both perpendicular and parallel variations of the
wave vector. Change in k along its direction results in a change of the kinetic energy, as

follows:
2

B2 L o
AE = 20k -k (9)

Writting 72 /2m = E/k?, substituting in the expression above and squaring both sides

we will see:

(AE)?
E2

Kt = 4(k - Aky)? (10)

Taking the average of both parts we end up to:

L(AE)?  (Aky-k)?
4F2 /i? (11)

k

On the other hand, perpendicular variations in k result in an angular spread of the
beam. Figure 6(a) helps us evaluate that. A perpendicular change of k by Ak, results

in making the wave vector k+ Ak, Assuming that A# is the angle between k and
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Figure 6: Coherence length

k + A/;L we will have:
|k x (Aky + k)| = k|k + AE| sin(A0) (12)

But also:

k% (AkL+ k)| = |k x k+ Ak, x k| = |AkL x k| (13)
Equating the right hand side of (12) and (13) and squaring both sides, we get:
IAEL x k|? = K[k? + | Ak, |? + 2k - Ak, ]sin?(A6) (14)

Taking into account that Ak and A@ are infinitesimal quantities, we average both sides

and we finally have:

‘AEJ_ X E|2 N

= k2(A6)? (15)



From figure 6(b) we see that the phase difference of the wave scattered by the points A

and B separated by a distance ¢ in the surface, will be:

Ap = [-Ak
= Z (AEH-}-AEJ_)
= 0 (Aky) + - (Aky)

= {(Aky)cosa + L(Ak,)sina (16)

Squaring both sides of (16), taking the average, using (11) and (15) and thinking that

Ak and Ak, are small quantities, we find:

(Ag)* = (Aky)?cos® a+ £2(Ak,)?sin® o

I AE 2
(AB)*K*¢* sin® o + (AE) k*0* cos® o (17)

1
2 4F?

In defining the coherence length we argue that when the average phase change becomes

of the order of 7, then the two waves emanating from the two points will be completely

independent having no relation between them. Seting (A¢)? = 72 in (17) and solving

for ¢, we will have:
2|k~

b= [25in? a(AB)2 4 cos? a(AE/E)?2]1/2 (18)

For an estimation let us take Af = 0.0001 rad, AE ~ 0.2eV at F = 150eV and a = 45°.
Then, (18) gives, £, ~ 500 A. In other words, within 500 A or, to put it in another way,

within 100 surface atoms the scattered beams are coherent.



2.2.4 Data aquisition and interpretation

Before he actually tries to interpret the results of the experiment the experimentalist will
have to estimate the angle of incidence of the electron beam. A fairly simple method
to do this is the one developed by Cunningham and Weinberg[?]. What makes it so
simple is that we do not need any particular equipment. All we use is a camera to take
a picture of the LEED pattern and a computer to run a simple ForTran program|?]. We
will not enter into any details here but the interested reader should look for a detailed
description of the method in Low Energy Electron Diffraction book by M.A. van Hove
et at.[?].

The result of the LEED experiment is a circular region on the fluorescent screen
that contains spots; the traces left by the electrons scattered by the sample after their
collision with the surface of the screen. The job of the experimentalist is to take this
nicely ordered array of spots and attempt to decrypt it and find what kind of atom array
on the specimen surface would produce this design of spots.

Before we start our attempt to decipher such a pattern we should say a few things
about a clean surface. This should be characterized be two fundamental concepts: the
Bravais lattice and the basis. The former is a two-dimensional array of points that have
translational symmetry, meaning that we can use the combination of two fundamental
vectors, @ and b (figure 7(a)), like £G+mb, where £ and m are integers, and go to any point
of the lattice we choose. The two fundamental vectors @ and b make what we call, the unit
cell of the two-dimensional surface. In two dimensions we can have only five different

kinds of such lattices shown in figure 7: (b) Oblique, with |@ # |b], (¢c) Hexagonal,



(@)

a
] (b) ] ()
(d)

(€)

(f)



with |@| = |bl,y = 60°, (d) Square, with |@| = |b],y = 90°, (¢) Rectangular, with
@ # |bl,7 = 90° and (f) Centered Rectangular, with |@ # |b|, = 90°. The basis can
be atom or cluster of atoms with respect to the lattice points. Together the lattice and
the basis make up the structure.

After this short remind of the basic concepts of a clean two-dimensional surface we
will attempt to examine the scattering proccess of an electron by the surface. Since here
we have to deal with a periodic situation with period ¢a + ml_;, as we said previously, the
potential, V' (7), that the electrons face upon entering the surface must be a periodic one

having the same period, that is, it must satisfy the relation:

=,

V(7 + £d + mb) = V(7) (19)

Before we continue with our analysis it would be useful to mention that in theoretical
physics in general and in LEED particularly we use the so-called atomic units. For
convenience and to avoid typing quantities like A or the mass and the charge of the
electron we set them all equal to one, #* = m, = ¢> = 1. By doing that we take new
units for the energy, the so-called Hartrees, with 1H = 27.2¢eV, the length unit being
the Bohr radius, with la.u. = 0.5291 A.

If ¢;(F) is the wavefunction of the incident electron with total energy E = k?/2 and
wavevector k; and 1,(7) the wavefunction of the scattered one and since the sum of the

two is the total wavefunction of the system, then the Schrodinger’s equation will be:

L) + )+ VORI + ) = Bl e (20)



Contemplating (19) we substitute for:
7= + 03+ mb (21)

Making use of the above substitution in (20), (19) and seeing that V? = V' we will

have:

VIQ
2

+ V() [ + €3+ mb) + (7' + € + mb)]

(37 + £ + mb) + b (7' + €d + mb)]

= B [¢u(# + 0@+ mb) + 1,(7* + @ + mb)| (22)

Comparing (20) and (22) we see that the total wavefunction of the system satisfies the
same equation at two points of the surface that differ by a lattice translation. The

wavefunction of the incident electron will be:
bi(F) = AetkiT (23)

Using (21), (23) can be written as:

=

Ui (F + 43 +mb) = Aeti giki-(¢a+mb)

— 1/)2 (f’)e“”;i'%’m’;i"; (24)

We do not know the analytical form of the wavefunction of the scattering electron but we
can see that if the wavefunction of the incident electron at two different points differing
by €@ + mb is given by equation (24) then in order that (22) reduces to (20) when we
go from point 7 + ¢d + mb to point 7 the wavefunction of the scattered electron must

satisfy the following relation:

a7 + £ + mb) = b, (7*) 'R T b (25)



where, because @ and b are vectors in the plane of the surface, we have used l_f’,-H to denote
the parallel to the surface components of the wave vector. Since () does not satisfy
an equation like (19), or in other words, does not have the periodicity of the crystal, we

see that if we write it as:
P (7) = eF Ty, (7) (26)

and substitute (26) into (25), we will have:

-,

Xs (7 + £ad + mb) = x5(7) (27)

meaning that the function y;(7) does have the periodicity of the crystal. So, all we will
have to do is to determine x,(7) and use (26) to get 15(7). By Fourier expanding x(7)

we will have:

-

Xs(7) = D ag(2)e'? (28)

To see what g represents we substitute (28) into (27) and we will get:

Z ag(z)e’57'7| ezg.(£a+m5) _ Z a/g(z)ezg‘-f‘” -
g g
ezg-(za+m5) - 1=
(G-G+mg-b = 2 x integer (29)

Eventually, g’s satisfy:

QL
Il

qg- 27 X integer (30)
g’-l_{ = 21 X integer (31)

These two equations can be satisfied by vectors of the form:

j=hA+kB (32)



where h and k are integers and,

A = (o)) = () (33)

agby — ayb,
2T

B o= (BoBy)= 0
Wy yUz

(—ay, az) (34)

Taking a glimpse at the dimensions of § we see that are inverse length and so are the
dimensions of A and B. What we have seen so far is that those two vectors, that have
only z and y components, are associated with @ and b through (33, 34) and that can
be combined as in (32) to create another Bravais lattice, akin to the one we started
with (created by the vectors @ and 5) This new lattice is what we have learned from
introductory Solid State Physics, the two-dimensional reciprocal space or reciprocal lat-
tice. Next we will try to show that this concept of the reciprocal lattice explains the
diffraction pattern observed in a LEED experiment.

To do this we will first have to determine ,(7), which means that we will have to
determine the Fourier coefficients a,(z) of (28). Let us substitute x,(7) from (28) into
(26):

Yo(7) = 3 ageTHE (35)
9
Substituting v;(7) and 14(7) from (23) and (35) respectively into (20) for the region
outside the surface (where the potential is zero), we get:
V2
—5 )+ ) = B + ()

LHS = RHS (36)

Let us start with the LHS and let us drop the subsript ¢ from Ei” for convenience. Let

us also write for the operator V? = V{ + V2, recalling that the z direction has been



chosen to be perpendicular to the surface.

LHS = —(1/2)V? [Aezk’" + Za Z<g+kn>Tu]
= —(1/2) lAeZkzszean T 4 Zag Z(9+’€||)T||
+ A V2etk=# 4 > Vﬁag(z)ez(“k”)'ﬂ
g
= —(1/2) [AeZk"z(—kﬁ)eZE”'FH + Zag(z — |G+ EyP)e’ (g+ky) -7
+ Aeki il ( —k2)et=7 4 Z @ a-" UG- Wll
g
= —(1/2) l—Ae”;'Tk Zag )| + Ky %e W+ )7
— AeRTR2 4 Z & ag( ) (9“+’“||)'F||]
= (1/2) l( + k2) Ak 4 Z (ag G+ &y ? — %) e1<g“+’5||>"*n]

2 7 -
— kZAezkr + = Z (a'g |g + ]f|||2 d §Q§Z)> €Z(§+kll)'7‘l|
2z
The RHS will have the form:

RHS = EAe*™ + E Z ay(z U T+

Combining the two sides of (36) we get:

1, P (1 LT ) Ld%ag(2)| gy
“p2 thT bt — E et Ttk Ty —
|5k~ B| 4c +§[ ST+ EiP = B) ay() - 525 0

2] ek 4 3 (R 28) e - £ o
g

dz?

The first term of (39) is by default zero. Thus at last we have:

2 n —
Z l(\ﬁ‘f— /f||\2 - QE) ag(z) — m] e gk =

2
7 dz

(38)

(39)



Multiplying (40) by exp[—z(l;H +¢') - 7] and integrating over all two-dimensional space,

we get:
- d2 = A4
Z/ [Og”r Bl* = 2E) ay(2) - ZZZSZ)] e dr = 0=
g
d*ay(z L
diZ( ) + (2E — |7+ k‘H‘Q) ag(z) = 0 (41)

Solving this simple differential equation we will get for the Fourier coefficients:
Lo p1l/2
ag(2) = byexp(—1 [2E — |7+ K ] z) (42)

where, b, is a constant and we have chosen the negative root in the solution since we
are dealing with the scattered electron waves traveling out of the surface. Substituting

(42) into (28) we will have:

) = Etgesp 1 (a2 +v0y — 2 28 - 5+ R ) (43)

Finally, substituting (43) into (26) we get:

L= 01l/2
by(7) = Zbgexpz(x(gw-i-kw)+y(9y+ky)_Z[2E_‘g+k|||2] )
9
_ ez_';.;‘ (44)

where,

L . R N o — 1/2
By = i(kio + g) + 9(kiy + 9) — 2 [2E — |5 + K]

(45)
and the minus sign indicates, as we said before, that the waves travel out of the surface.
The previous result is very important because, as we can see, the outgoing waves

depend on the kinetic energy of the incident electrons, their wavevectors components

parallel to the surface and the reciprocal lattice vector g. This means that these waves do



not travel arbitrarily towards every directions but rather selectively towards directions
that depend on ¢. But these electrons end up finishing their trip on the fluorescent screen,
leaving a spot to indicate their trace. For every g we get a different spot displayed on the
screen. So, we understand that the surface lattice, through this proccess of the scattering
of the electrons by its atoms, is mapped out on the screen. The electrons act as probes or
scouts (to use an anthropomorphic term) that carry with them the information they have
gotten by having come in contact, during the course of the scattering, with the atoms.
On the screen they “report” with their trace what they saw and learned! The truth is,
of course, (like in any military expedition) that we have losses. Not all ingoing electrons
do manage to get back to the fluorescent screen; only the elastically scattered that will
make it through the suppressor grids. But besides those two factors that ban electrons
from completing their trip there is one more, purely mathematical. If we take a look at
equation (45) we will see that K , depends on the energy of the incoming electrons only
through its z component. Looking at [2E — |5+ EII 2]'/2 we realize that for a given energy
E and wave vector E, the larger § becomes the smaller the expression in the brackets gets.
If g keeps growing, or in other words, if we look at the surface further and further away
from its center, there will come one moment that the expression will become very close
to zero. In that case the outgoing waves will travel parallel to the surface. In the case
that the expression becomes negative we will have the waves entering the surface again,
dying exponentially inside it, since the square root of the expression will be an imaginary
number. This schematically can be seen in figure 8. The characteristic reciprocal lattice

vector for which the beams travel parallel to the surface is called critical, g.. There is
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one more observation one can make. Looking at figure 9 we can see that for given wave
vector of the incident electrons and given reciprocal lattice vector, the larger the energy
the closer to the center of the fluorescent screen the electrons land. In other words, for
small energies the density of Bragg spots is lower than for higher ones.

From the previous treatment we have realized that the diffraction pattern we get by
performing a LEED experiment on a crystal surface is a map of the reciprocal lattice
of that surface. Our next task will be to try to “see” the cluster of the atoms that give
this icon as they are in real space. Theoretically, this is easy. As we said before, each
spot on the pattern is associated with a different reciprocal lattice vector ¢ or with two
integer numbers h and k through relation (32). The central spot, called the specular,
is the (00). The rest are numbered in a way similar to the one figure 10 shows. Thus,

through each spot we get the reciprocal vectors A and B, or A;, Ay, By, By. If we invert
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Figure 10: Numbering the beams



(33,34) and solve for the real lattice vecors ay, a,, by, by, we will have:
27
(axa CLy) - m(

2T
baca by) =515
( y) A, B, — A,B,

QL
|

By’ _Bw) (46)
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(=Ay; Aq) (47)

As we saw above, each diffracted beam is associated with two integer numbers A and
k that actually name it; we speak of the hk beam. But, beyond the integer numbered
beams there are cases that we find on the pattern fractional-order beams, i.e., beams
that are associated with non-integer numbers. We can have three different cases that
justify their appearances: (a) Reconstruction of the clean surface, (b) Adsorbed overlayer
of atoms, and (¢) Adsorbed overlayer of molecules.

At this point it would be useful to dedicate a few lines to the notation we use to
indicate an ordered overlayer. If the fundamendal vectors of the unit cell of the substrate
are: @ and b with Cartesian components S;;, and those of the unit cell of the overlayer
are @ and 5 with components O;; respectively, then these componets are related through
the following matrix equation:

M = 0OA™! (48)

If the elements M;; are all integers then there exists a simple relation between substrate
and overlayer unit cell and we call the latter simple. If the elements are rational numbers
then we say that we have a comensurate superlattice, whereas when M;; are irrational
numbers we have a incommensurate superlattice. We use two notations to describe the

overlayer|[?]:

The matriz notation In this case if K is the chemical composition of the substrate, (hkl)



the orientation of it, M the above matrix, A the chemical formula of the atomic

or molecular overlayer and 7 the number of ad-species per unit cell, then we have:

K(hkl) — M — pA (49)

The Wood notation In this case, if «/a and 3/b are the ratios of the magnitudes of the

two unit cell vectors and ¢ is the angle between @ and &, then we have:

K(hkl) — i (9 x %) Ré —nA (50)

a

with 7 being p (primitive) or ¢ (centered).

With the discussion we had had above we saw how we can get information about the
real lattice unit cell. We can find out if the surface underwent any reconstruction or we
can extract information about the unit cell of both the overlayer and the substrate if we
had adsorption on the surface. This is all the arrangement of the spots on a diffraction
pattern is able to give us. We cannot know the distances between the adsorbate and the
substrate atoms, or, we are not able to learn anything about the distances between the
different layers of the clean surface. Looking at figure 10 we will see that the different
spots have different sizes, and the different spots correspond to elastically scattered
electron beams with different intensities. This is the key observation to make, because
this difference in the intensities containes all the information we cannot get just by
looking at their arrangement. There are three kinds of information one can get out of

the intensities, depending on the manner of their measurement.

1-0 curves By measuring the intensities I as a function of the emergence angle of the

scattered beams, we can determine the so-called instrumental response function.
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Exactly because we use instruments for the experiment that they are not perfect
and because we deal with specimen surfaces that are not also perfect, rigid and
infinite, we need a tool to calculate how much we are off the perfect conditions.

This tool is the instrumental response function.

I-T curves Here the intensity of the beams is measured as a function of the temperature
of the sample. We make use of these diagrams (curves) in the case that we need

to measure the Debye temperature of the used crystal.

I-V curves These are the curves that contain all the information we described a few
lines above. They are the most important and can be seen in any LEED paper.
Here, we measure the intensity of the beams with respect to the energy of the inci-
dent electrons (actually, with respect to the accelerating voltage). Two examples
of theoretically calculated I-V curves can be seen in figure 11 where we see the
behavior of the specular (00) beam diffracted off a nickel sample with orientation
(001) and in figure 12 where we look at the same beam diffracted off the same

surface on which we had disordered adsorption of potasium.

2.3 Theory of LEED

Thus far we have seen how we perform a typical LEED experiment. We discussed
what kind of information the experimentalist can get out of the diffraction pattern,
that is, the kind of unit cell or whether reconstruction of the substrate atoms or of

the adsorbate atoms or molecules took place. We also emphasized on the fact that by



just the appearance of the pattern we are unable to find out about the distances of
the atoms in the different layers, or those between the substrate and overlayer atoms.
This information can be extracted out of the study of the scattered beams intensity as
a function of the kinetic energy of the incident electrons. Next we are going to examine
the theory of LEED. We need a model that will be able to predict the I-V curves
the experiment gives us. We will have to follow the path an incident electron takes
before and after its scattering with a surface atom. There are two approaches we will
explore. The so-called kinematic or single scattering approximation, according to which
an electron gets scattered by only one surface atom and then travels toward the detector
and the dynamical or multiple scattering approximation according to which the electron
undergoes more than one scattering from the surface atoms before it emerges from the
surface on its way to the fluorescent screen.

Before we immerse ourselves into examining those two approximations we will look

at an important approximation of conventional LEED theory; the muffin-tin potential.

2.3.1 The muffin-tin potential

On entering the surface region the electron feels the presense of the inner potential.
This is created by the core electrons and the nucleus of its surface atoms, as well as
the valence and the conduction electrons. Of course, this kind of combination should
result in an extremely complicated potential that should depend on the form of the unit
cell. It would have been inconvenient to employ such a complicated potential in the

Schrondiger equation. Thus we implement a simpler form of potential.  After years
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Figure 13: The muffin-tin potential (side view)

Figure 14: The muffin-tin potential (top view). a is the interatomic distance. The radius
of the sphere is a/2.



of testing, people have accepted that the potential seen in figure 13 is close to the real
one for many materials, especially, the close-packed metals. This potential is called,
the muffin-tin potential due to its shape. To get a physical realization of the muffin-tin
potential let us draw imaginary spheres around each individual surface atom in a manner
that they will not overlap with any neighboring spheres, as figure 14 clearly shows (this
construction determines the radius of the spheres, being equal to 1/2 of the interatomic
distance). Within the spheres the potential is spherically symmetric, but outside it is
considered constant. In LEED we measure all energies with respect to this constant

value of the inner potential.

2.3.2 The Kinematic Theory

As we said in the introduction of this section, in the kinematic or single scattering ap-
proximation we consider that each incident electron undergoes only one elastic scattering
with a surface atom and then travels towards the fluorescent screen. This would happen
if the absorption of the electrons by the crystal is so strong as to not allow them to be
multiply scattered. Then only a small percentage of them undergoes a second scatter-
ing. An electron, upon entering the crystal, finds itself immersed in the potential of the
conduction and valence electrons; this increases its kinetic energy. Then it finds itself
surrounded by the ion cores (or muffin-tin) potential. The flat part of the potential be-
tween the muffin-tin spheres can be represented by a constant V, which has a real part,
V.-, and an imaginary one, V,;, which is responsible for the dying out of the electron

wave as proceeds deeper into the crystal.
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Figure 15: Diffraction of electrons in one-dimension

We will try to calculate the amplitude of the diffracted wave in the one-dimension case

of figure 15, where we have used the Huyghens’ construction to visualize the diffraction

proccess.

Let the incident electron be represented by:

6(F) = Bk (1)

its energy being E = (1/2)k?. Coming across the inner potential, V,, it is partially

reflected by and partially transmitted through it. If the coefficient of reflection is R

then the reflected wave will be given by:

RBe*™ (2)

where, /ZS” = Ei||. The transmitted wave will have wave vector k with E — V, =
(1/2)k?. Tts surface parallel component will remain the same whereas the perpendic-

ular z-component will be complex due to the imaginary part of V,. Thus, if T is the
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Figure 16: Identifying an atom in a unit cell

transmission coefficient, the plus sign indicating the unchanged direction of traveling,
this is represented by:

T+ (k)Be™™ (3)
with EII = EiH and k, = ((2F — 2V, — ka) —12V,;)Y/2. Let the transmitted wave be
incident on the s atom of the jth unit cell of one of the layers that the sample is made
up. As it can be seen in figure 16, choosing an origin in this layer we can identify the
unit cell with the vector ﬁj and the atom within it with the position vector Rj ~+ 1. So,

the transmitted wave at the atom s will have the form:
T+ (k) Betk (Ri+is) (4)
which will be scattered by it resulting in:

T+ (kK)Be* Rit@)\[7 — (R, + )] (5)



where:

X(7) = Y (26 + 1) Py(cos ) sin(3e()e ™ "+ h{1 hr) ©)
14
and:
k-7
0=-—
COS kr (7)

To get (5) and (6) we have employed the theory for scattering from a spherical potential.
Summing over all the atoms and all the unit cells we will have for the scattering wave
off the layer:

¢sca.tt = Z T+B€Zk'(Rj+ﬁs)X(7?_ R'j - ﬂ"s) (8)

VE

Since what we observe on the fluorescent screen is beams of scattered electrons we will
have to express (8) in this kind of form. Thus, we write the scattering wave as a sum of

plane waves:
¢scatt = Z bkeZk.F (9)
k

with by to be coefficients that we will try to determine. Towards this task, let us multiply

ODscaty With exp(—zE’ -7) and integrate over the entire layer area; thus:

—k Py W(E—K)7 1=
/d’scatte dT‘H = /Zbke( ) d’l“”
k

- Zbkez(kz—ké)z/el(’cn*kh)'ﬁldﬁ‘ (10)
k

But:

L 0  ifk £EK
N?A if by = k|

as it can be easily seen, where N? is the number of unit cells and A is the area illuminated



by the incident beam. Thus, we obtain from (10):

]- ’L_""F —
b;c = NQA/¢scattek d7"|| (12)

Substituting (8) into (12) we get:

1 k(R +4 - 33 S\ gkl o
R Y Z/T+Bek(R’+ IX( = Ry — )¢’ T
js
"B ) i+ —ak’ (7 a
= = /Z BBy 00) ()= (74 By ) gt

"B (1 o(k—k')-E; Wk—Kk')-@ N B
= a1 | Z e i Z e s (/ x(m")e dT|) (13)
j

—

where we have used: 7 = 77— ﬁj —1i,. R;isa vector always parallel to the surface. Taking
account of this, using the fact that any vector identifying a unit cell can be written as
an combination of two unit vectors, namely, R}- = fd + mg, and having seen from the
previous section that the parallel components of the wavevectors differ by quanta of the

reciprocal vector, that is, IZH — E|’| = ng, the first sum becomes:

1 o(F—F')-; 1 oy R )R
_226 i = _226 (R
N2 < N2 <

1 g
- Z emq-(éa—i—mb)
N? ml
1 N-1

— m z 6m£q‘-d‘ NZ_I emm(j‘-g
=0 m=0
11— exp(mN(7-a@))1— exp(eN(ng- b))

=,

N2 1 —exp(:g-d) 1 — exp(¢q - b)
= S(q) (14)

Of course S(¢7= §) = 1. In the above calculation we used the identity:

e 1—exp(Na)
1 —exp(a)



The integral in (13) is calculated in the Pendry’s book on LEED[?] and we can take it

from there as:

L 2 kK
/X(f")e_”c T = k;;z > sin6,(s)e ) P, ( ) (16)
27

Eventually the coefficient b, take the form:
by = M(k,K"\T*B (17)

with,

AkE!

Z st

SN
MF, ) = S@ 2 (26 + 1) sin 6y(s)e 9 P, (k k ) F R4, (18)

The treatment so far has led us into finding the scattered electron wave from one of
the layers of the crystal. Next, we will try to calculate the overall scattering wave from
all layers. We will start for simplicity by considering that the crystal is made up of
equidistant layers, the distance between them being c. Then the incident wave on the

nth layer will have the form:

ean-€T+B€ZE-(F—né) (19)

Following the same procedure we did for the one layer case, we can infer that the

scattering wave from all layers will be:

Z Z M(E, El)ean-6T+BezE"(F—n5) — Z T+BM(E, El)ezlz’-i“ (Z em(E—k’)-E)

g n=0 Py n=0
= S T*BM(k, k)
Py
]_ .=
X ek T (20)

1 —exp(u(k — k') - 0

This scattered wave on its way out of the crystal is transmitted one more time through
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Figure 17: Cross section of incident and diffracted beams

the potential created by the valence/conduction electrons. The coefficient of this trans-
mission is T~ (l;’ ). This scattered wave along with the one reflected initially will be what

we will observe as a spot on the fluorescent screen; this wave will be:

FONT (B! kK !
%B {R5ET'E” + T (k)T (K) M (k, k') 1— eXp(z(E — E’) - C) } .

Equation (21) is the amplitude of the diffracted beam. In the experiment we measure
the flux of the electron beam which is propotional to square of the absolute value of
the amplitude. We are interested in the ratio of the fluxes for the incident and the
diffracted beam, that is: I;/I;. This is equal to the ratio of the square of the two

amplitudes, |Inc|?/|Scat|?, which, according to the figure 17 is equal to cos6;/ cos 6. In



other words:

L _ |Inc|? _ cosb; (22)
I, |Scat|? coséb;

=

Let us try to analyze equation (21). First off, k— k' = §is the momentum transfer in the
system of the atomic units we are using. Secondly, if ¢ were real then the third Bragg
condition to which the diffraction of the X-rays from a crystal obeys, that is, §-¢ = 2nm,
with n integer, would hold. But that would result in zeroing the denominator in the
fraction, and, concequently, in giving very sharp peaks. However, in reality this is not
the case, since ¢ is complex due to the partial absorption of the beams. Thus we do
not observe sharp diffraction beams but smoother ones. The denominator plays a very
important role in giving us structure information of the surface, because, although it
does not produce the delta-function-like peaks, nevertheless, the ones that we get are

still centered on the Bragg conditions. Let us explore this term further. We write:

1
D= —
[
B 1
= T ep0@ + @)D
1
_ 23
S R P (22)
and,
1 1/2
D| = 24
D {1+exp(—2cz--é>—2exp<—@-acos(@-a} (24)

where, § = ¢, + 1¢; and, since EII = Eﬁ and k, = —k! = (2E — 2V,)/2:
) ] 1/2
V7"
g = 22‘/E_V°’"{1+(E—V) +1 (25)
] 1/2
Ve \]"
i = 22,/E—vm{1+(E_V) 1 (26)
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Figure 18: Plot of |D| against energy E

In figure 18 we have plotted |D| as a function of the energy for V,, = —0.5a.u.,V,; =
—0.15a.u. and &= (0,0, 7) a.u., which, in a way, reminds us a primitive form of the I-V
curves of figures 11 and 12.

What we have seen from the discussion above is that in the kinematic theory we
should expect I-V curves similar to the ones we would have gotten for X-ray diffraction.
Some surfaces behave like that; example of such a case is the (111) surface of fcc xenon
crystal[?]. So, for those surfaces, the single scatterning theory suffies to identify them,

case that it is not obeyed by the vast majority of them.

2.3.3 The Dynamical Theory

In the previous section we examined the LEED under the light of the kinematic theory.
We saw that it is able to help us solve a small number of surface identification problems

but rather this is not the rule. The truth is that if we wish to have a thorough picture



of what actually happens during the electron scattering we should migrate into what is
called “dynamical or multiple scattering theory”. This picture is the realistic one since
it is most probable that an electron undergoes more than one scattering from the atoms
of the surface.

In this section we will attempt a brief description of this general theory of LEED
leaving the reader to look up the details on the two most specialized books of Pendry[?]

and van Hove et al.[?].

A general introduction

We will go at the simple one-dimensional problem we dealt with in the single scatter-
ing case. There we had ended up in a reflected applitude of the form (21). We had
emphasized there that in our calculation we would have to take into account a complex
inner potential in order to avoid infinite reflection amplitudes, which clearly violates the
conservation of the current. Another way to avoid infinite reflected amplitude would be
if the incident electron undergoes both a reflection and a transmission. The transmitted
electron upon reaching a second layer of atoms will be partially reflected and partially
transmitted. The reflected electron, in turn, will be partially transmitted and partially
reflected, and this procedure will continue until these byproducts die out. If we wish to
be realistic we should take into consideration all reflections in order that we calculate
the general reflected electron wave that enters into our detector. We can rewrite (21)

as:

r r
1 —t2exp(12ke) 1 — |t|2exp(s[2kc + arg(t)])

DW (27)



where r and ¢ are the reflection and transmission coefficients respectively and in (27)
we have taken into account that both of them are complex numbers with amplitudes
less than 1 and written for ¢, ¢t = |t|exp(zarg(t)). From (27) we see that in order that
we have Bragg scattering 2kc + 2arg(t) = 2nm, with n an integer, must hold. What
this relation tells us is that the electron’s amplitude after having scattered by an atom
has been shifted by a phase arg(¢). This is due to the inner potential as well as to
the multiple scattering of the electron within the atomic core. This phenomenon makes
the peaks in the I-V curves to reduce the intensity they would be expected in the
kinematic limit. A simple explanation for that goes as follows. The electron, entering
an attractive potential as that of the atom, is accelerated. This shortens its wavelength,
since E +V =1/2(1/)?). Thus the electron exits the atomic core ahead of its original
phase. In order that 2kc + 2arg(t) = 2nm keeps holding, its energy must decrease,
causing the shifting to the peaks.

Generalizing the above argument to the three dimensions, we can rewrite (27) as:
D = rgg[1 — tygtggexp (kg + kg2)c)] ™ (28)

where now c is the layer separation, g is the incident beam and g’ is the reflected one.

In order that we have Bragg scattering,
kgzc + arg(tﬁ) + kg/zc + arg(tgfgf) =2nmw (29)

must hold.
Before we move to a more detailed consideration of the theory we should emphasize

on the fact that the diffraction pattern that we get in LEED does not depend on the



way of scattering. No matter whether we use single or multiple scattering to describe
the path the electron beams follow, the pattern remains the same. What changes is the
intensity of each particular spot and not its position. This happens because the direction
of the scattered beams depend only on the relative phases of the reflected waves, which,

in turn, depend only on the two dimensional unit cell of the crystal.

The general theory

Before we immerse ourselves into the details of the general theory we should state the
steps one has to follow in order to understand the mechanisms involved. The first thing
we should do is to remember the way an electron is scattered by a single atom. In
this case we saw that the best way to represent the wavefunction of the electron is
through spherical waves, since we have assumed that the potential within any atomic
core follows spherical variation. After that we should try to describe the scattering
between cluster(s) of atoms. In that case the wave function will have the simple form
of a plane wave since we deal with the assumed constant potential in the space between
the atoms. The last part should include scattering between layers of atoms and stacks
of such layers perpendicular to the surface. There the Bloch wave representation is the
best mathematical tool to describe the electrons. Besides, this is the general solution to
the Schrodinger equation along with the Bloch condition for a periodic potential.

In LEED energies, forward scattering tends to be stronger than backscattering. So, a
consistent dynamical theory has to include as many as possible scatterings of the former

kind and a small number of the latter one.



As we said in the preamble of this section, we will start describing the scattering of
the electrons from the simplest case, that between two atoms, and continue entering into
the scene more complicated forms, like, scattering between the atoms of a plane, between
two planes, between a layer of planes and finally between a stack of layers, following the
KKR (Korringa-Kohn-Rostocker) [?, ?] method and its application to LEED.

Let us start with the simplest case which consists of two atoms. We will attempt
to calculate the amplitude of an emerging wave after having multiply scattered between
them. Until we specifically mention it we will be making use of the spherical waves.
Let us follow a wave, angular momentum L' = (¢,m') as is incident on the atom 1 at
position 7;. It is scattered towards the atom 2 at position 75 with respect to which it
acquires angular momentum L = (¢,m). The amplitude of this new wave will be given

by the following Green’s function:

2 .
Gy = —4m=gk 3 a(L, L', LK (kI — F)Yi, (7 — 7)e™ = (30)

Ly

where, L = (¢1,my) satisfy |[¢ — ¢'| < ¢; < £+ ¢ and m; = m + m’, whereas:
alL, L', L) = [ V(@)Y ()Y, (@) (31)

the Clebsch-Gordan coefficients and the integral in €2 is over all values of solid angle.
hg) are the Hankel functions of the first kind, Y;, are the spherical harmonics and
exp[—zl%n - (7 — 7 )] is the phase shift to the amplitude between the two positions. We
have seen that the scattering off an atom is characterized by the t-matrix and the product
of the Green’s function with it, G%},t},, expresses the fact that a wave, L', incident on

atom 1 is scatted off it and through the Green’s function to a wave L incident on atom
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Figure 19: Multiple scattering between two atoms (a) and two planes of atoms (b)

2. Likewise,G}2 17 expresses that fact that wave L incident on atom 2 is scattered by it
and is incident in atom 1 with angular momentum L"”. Thus, if we combine these two
mechanisms we can take into consideration all possible (infinite in number) scatterings
between the two atoms. For, example the combination: t?G?*t!G*?t2G?'t!, describes the
double scattering of figure 19(a). The reading of such an expression begins from the
right to the left where we have summed over all possible angula momenta thus dropping
the indices.

Next, let us consider all possible paths that terminate on atom 1 and all possible
paths that terminate on atom 2, and let us add them up, separately for each atom. The

result will be:

T = t'+ 'GP+ GPEGH ! + GGG . (32)

T? = 4+ 2G*"t + GG + 2GHH GGt - - (33)



or, as it can be easily seen if in each expression we keep the first and factorize out the

part t12G122! of the second term:
" = t'+t'GPT? (34)
T = 4+ £2G*T! (35)

This system can take the following form:

\

T! _ LG22 - 4! I _Aqt2 T! nl

—PGHT + 17 = ¢ —*G*" 1 T° t?
T! I —t'G"” t!

= (37)
T’ —*G* 1 t?

which can be solved easily with the help of a computer program. The dimensions of the
matrices involved, I, G, T and t, are ({pax + 1)2, where /£, is the maximum value of
the angular momentum according to the discussion in appendix A.

Following the above discussion for two atoms we can get a general formula for N

atoms. In that case the matrix equation to be solved will be similar to (37) and have

the form:
T -1 ¢!
T _thIZ _thl?; . _thlN
T2 t2
o I 2B ... 22N
T3 | = £ (38)
—tNGNl _tNGN2 _tNGN?) . I
TN tN

The solution of (38) will give us the quantities 7* that will be added together in order

to get the general scattering amplitude. If the incident wave had wave number Kin then



the multiple scattering of the N atoms will produce an outgoing wave of wave number

kous and amplitude:

N - - - .
TLL’ = Z el(kin_kout)'TiT£L, (39)
=1

So far we have not used the fact that we are dealing with a periodic plane of identical
atoms. By taking that into consideration we can simplify our formulae and calculations
as follows. Since the atoms are identical they will scatter identically. This means that
in the matrix equation produced previously, (38), t! = > = --- = t. If we add to the
identity feature of the atoms the periodicity of the Bravais (one atom per unit cell) plane
we can argue that the diffraction of a wave incident on one of the atoms is identical to
the diffraction of an identical wave incident on a different atom. This second argument
will lead us to write: 7' = T? = ... = 7. Attempting to write down expressions like

(32) or (33) for N atoms per plane and with the aforesaid properties we will get:

T=t+t<§me)r (40)

n

where n = 1,2,---,2 — 1,4+ 1,---, hence the prime on the summation symbol. The

Green’s function now takes the form:

i in 2m
LL' = ZI LL' == _47T7/?k
x S S fa(L, L, Lo)bl (k| P|) Y, (P)e ke (41)
L p

with P being the position of each atom with respect to an origin at P = 0 which we do
not include in the summation being reminded by the prime on the sum symbol. Thus,

the matrix equation (38) is reduced to:

T=1t(1-G")* (42)



the solution of which will give us the amplitude of the scattered wave 7, with angular
momentum L from all the atoms of the Bravais-lattice plane. Again, the matrices
involved have dimensions (£yax + 1)%

Working the same way we did in the simple case of the two atoms, we may consider
the scattering between two Bravais-lattice planes. And we can go one step further and
assume that the atoms of one of the planes are different in kind than those of the other
one. In that case we will have 7! and 72 scattering matrices for the two kinds of atoms.
Again, denoting by 7" the paths ending at an atom of plane 1 and 7 those teminating
at an atom of plane 2, we can write:

T = ' +7'Yy GPOT? (43)

(¥)
T° = P47y GO (44)

(i)
(43), for example, consists of all the multiple scatterings within plane 1 and all the paths
that terminate at any atom ¢ of plane 2 and then propagated to any atom of plane 1.
We can say something similar about (44); figure 19(b) illustrates schematically the two

paths. Then by having:
G2 — ) G120 ynd G2! — ) G210 (45)
(4) (4)

we can write down an expression similar to (37):

-1
Tt I —71G"? Tt

T? —72G% 1 T2



The above expression can be generalized for N planes to:

Tt -1 7t
I _7_1012 —TlG13 . _TlGlN
T2 7_2
_7_2G21 I _7_2G23 . —T2G2N
T3 = 7—3 (47)
_TNGNI —TNGN2 —TNGN3 T
TN TN

Now, the Green’s function takes on the form:

2m o 5 =
A thZZ'ZI a(L, L', L)) bSY (k|7 — 7 + P))
L, p
X Yy, (7 — 7 + P)e P (48)

Solving (47) we will get the T¢,,’s. Then using (39) we will get the amplitude of the
electron scattered, from N planes. The number N of the planes that we have to use in
our calculations is determined by following the rule: We will include all those planes the
last of which is not deeper than a few times the electron mean free path length.

Up until this point we have used spherical waves to calculate the different stages of
multiple scattering, from that between two atoms to the one between atoms of different
planes. As we mentioned before, the beam that reaches the fluorescent screen can be
represented by a simple plane wave. We also said that in the space between the atoms,
exactly because of the constant character of the potential, we can keep using plane wave
representation. Thus, one of our final tasks would be to tranform the amplitudes of the
spherical waves we have calculated so far to that for the plane waves. We have dealt with
this problem in the kinematic theory and here we will reproduce the results we found

then. So, a plane wave with wave number k;, and angular momentum L' is incident on



a sample and is scattered to a wave with wave number k,,; and angular monentum L

which has amplitude:

1672ma -
VTR 2 ZYL out)tr. Y7 (Kin) (49)

outin =~ Foudl?® 2
This relation is able to give us an exact solution for the amplitude of the diffracted
wave, but the calculations are very tedious even in the case that we use £, = 4 and
N = 5 number of planes rending the dimensions of the matrices to be N ({yax + 1)2, or
125. To improve the timing instead of considering a number of planes that will depend
on the electron mean free path length we use sets of any number of planes that we call
layers. This choice improves the calculation time dramatically. In the case of a layer
with one only atomic plane and considering any plane wave Ej incident on it, in order

to determine the matrix M ;f of any diffracted wave E;'E, we will have:

1627m>m
My = Ak+h2 ZYL o Ve (k) (50)

Lr
In the case of a layer with N planes and hence N atoms at position 7; (since each plane

is Bravais-lattice plane it will have one atom per unit cell), M ;f takes on the form:

1617r m
MEE = Yi(

N

z{d ) TLL,} 7 () (51)

i=1

X

All the formulae we have given above may be found slightly different in the bibliography,
but all of them are equivalent to each other.
Now we have reached the point we may say that we are able to attempt to solve the

general LEED problem. We will discuss in brief three methods or three approaches, that



i i+1 i+2
1:++

PP,
<\
=L
i } o Li 0

+

Figure 20: Bloch-wave method: Separation of the subsurface into layers

deal with the scattering between the layers of planes, the last step towards the general

solution.

Bloch-Wave method As we mentioned in the introduction of this section, we use

Bloch wave representation in the direction perpendicular to the surface for the
part of it that has well-defined periodicity. Let us divide the region below the
surface, the subsurface, into layers 1,2,...,2—1,4,4+1,..., as in figure 20. Then
the plane wave expansion of the Bloch wave will be given by:

g
where symbols are explained in the figure 20. Using the propagator p;t = exp(:l:zl_c';t-

é/2), we can have for the reflection and transmission coefficients:

—+ ottt
Ryt = pyMyip; (53)
s
Ry, = py M, p, (54)

T}y = pyMj v, (55)



Tyy = PyMyypy (56)

Looking at the figure we infer that:

bf., = T + R b, (57)

by = T b, +R b (58)

2

and if ¢ is the period of the layers, then from the Bloch condition ¢(7+ ¢) = ¢(7)

we can get:
bl = bfetre (59)
b, = be*s? (60)
where EB is the Bloch wave number that will be found as solution of the system

of the four equations (57, 58, 59, 60), which can be written in a readable matrix

equation as:

T+t R bt P bt
:el B-C
(T~ ‘R~*1t+ —(T~)'R*RT 4+ (T—)! by bt

Of all the values of g involved we will keep only one half, the ones corresponding to
the diffracted beams, the other half being accosiated with the transmitted waves.
The total reflected function will be a linear combination of Bloch waves in the

form of
> ndm (62)
m

This combination consists of waves traveling towards the surface (index (+)) and

waves moving away from the surface (index (—)). This combination of waves



has to be matched with the initial incident beam of electrons as well as with the
initially reflected electrons. We will give an example of how we work by assuming
a suddenly truncated surface with periodic bulk, period ¢. The incident part of
(62) will have to match the initial incident beam at the surface, that is, at ¥ = 0;

in other words:
Z a’mb;;geZEg.(F:O) — einn.(on) -
Zamb;g = 0,0 63)

Similarly, the part of the combination (62) moving away from the surface should

have to match with 3, ¢/ exp(zE - 7) at the surface giving:

Z Uy = €5 (64)

(63) will determine the by,’s and (64) the c;’s. Then we can use the simple relation

(22) to calculate the intensities we should expect to measure.

Layer-Stacking and Layer-Doubling method According to this method, we use
the results of the diffraction between layers of planes and calculate the scattered

wave between a stack of layers.

We start off by calculating the amplitude of the diffracted beam from the stack
of two layers, A and B, as in figure 21. Then the transmission and diffraction

coefficients will be given by:

R~ = b+t Porg T PY (I — v~ Porg P AT (65)

T = ¢5tPTI —r P rgtPH) " (66)



++

-

Figure 21: Layer-Stacking method
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Figure 22: Layer-Doubling method
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Figure 23: Renormalized-Forward-Scattering method

with P* = exp(:l:zl;g - Tpa) where 754 connects different points between the two
layers. Next we will have to generalize this method to more than two layers. To
do that we follow the so-called Layer-Doubling techique developed by Pendry|[?].
According to it we start with the two-layer diffraction and at every iteration we
double the thickness of the layers by combining two identical slabs of layers as
shown in the figure 22. The usage of this method has shown that a number of

about ten layer, or three iterations, suffies to make it converge.

Renormalized-Forward-Scattering (RFS) method This method which is ilustrated
in figure 23, is also developed by Pendry[?] and uses the fact that the probability

for forward scattering is greater than that for the backward scattering. We start by



following the incident beam in the plane wave representation as it forward-scatters
to the deepest layer, this being determined by inelastic scattering effects. Then,
at the deepest layer it undergoes its only reflection. The reflected beam forward-
scatters from layer to layer towards the outter surface and emerges out of it giving
rise to the first order of reflected beams. Next, we follow the beam emerging from
the previous iteration as it collects reflected beams from emerging ones and as
it reflects off the top layer all the way to the deepest layer and where undergoes
its third reflection. The emerging beam, having collected reflected waves from
penetrating beams consists the second order of the method. We keep doing that
until we run into convergence. Formalism of the method can be found in the given

bibliography.

Before we finish our brief tour to the dynamic theory, we should mention a very
important factor; the computation time. All those matrix inversions consume a lot of
time even when the programs are run by supercomputers. Thus, on choosing a method
to work with we will have to take into consideration how time consuming this method
will be. One can get an idea of the time spent by seeing that, for example, for the
matrix inversion method this time is proportional to N3(fp,, + 1)% whereas for the
reverse scattering perturbation method it is proportional to N?({y.c + 1)*. This last
method has been developed by Zimmer and Holland[?] and improved by Tong and van

Hove[?].



2.3.4 Influence of the temperature

Finishing this chapter we wish to dedicate a few lines to a very important factor which
always shows up and which is a phenomenon present whenever we have scattering; we
are talking about the effects the temperature, under which the experiment takes place,
has on the diffraction spots. One major disturbance has to do with the weakening of
their intensity. This is easy to be understood; as the temperature increases so does
the intensity of the scatterers vibrations. So, the scattered beams from two, say, atoms
will have arbitrary phases, giving neither constructive nor destructive interference but
something in between.

The temperature enters into our equations for the dynamic theory through the so-

called Debye-Waller factor, exp(—2M), which for isotropic vibrations is given by:

30%|q12T
M = - 67
e exp ( ;A (67)

where ¢ is the momentum transfered in the scattering of the electron from k to K ,
(7= K — E), ks the Boltzman constant, m the mass of the scattering atoms and 6p
the Debye temperature. All we will have to do is multiply the atomic scattering factor,
f(9), with exp(—M) to make the intensity proporional to |f(#)|? exp(—2M). The phase
shifts of the scattering do get influenced by the temperature and it is proved that this

dependence is given by:

—tem) (68)

The fact that the addition of the Debye-Waller factor makes the atomic scattering am-

plitude sharper with increasing temperature has as result the increase of the number of



phase shifts used.



Chapter 3

Electron Holography as a tool for

surface exploration

Figure 24: Dennis Gabor (1900-1979)



3.1 Introduction

In 1947, the Hungarian engineer Dennis Gabor (figure 24) was working with the Thomson-
Houston Company in England trying to improve the resolution in images obtained with
an electron microscope. One year later he published in Nature the famous paper[?] that
gave him in 1971 the Nobel Prize on the wavefront reconstruction or holography as it is
known today. Two more publications followed in 1949[?] and in 1951[?]. The etymology
of the word has Greek origin and consists of the adjective 6Aog that means “whole” and
the verb ypdpw that means “to write” or “to record”, whereas hologram is the recording
on a photographic plate of the interference pattern of a wave emitted by a coherent
source and the part of it that has been scattered by an object; the former being called
“the reference wave” and the latter “the object wave”. By shining the hologram with the
same reference wave we obtain a three-dimensional feature that appears at the original
position of the object and possesses all the characteristics thereof, that is, depth and
parallax, but one; it is not touchable. Although holography as is broadly known today
uses visible light, nevertheless, in principle, we can repeat the method employing any
wave from the electromagnetic spectrum, as well as, any particle. In this thesis we make
use of the electron as a coherent wave to understand the geometrical structure of the

crystal surfaces.
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Figure 25: Reference and Object waves

3.2 A short review of holography

In this section we will attempt to discuss, in brief, the basic principles of holography, thus
setting the foundation of the electron holography as a method of surface exploration.
After the first excitement, holography was almost forgotten and abandoned since
people lacked the ability to produce coherent (monocromatic) light, the most important
prerequisite for the success of the method. With the invention of the LASER in 1961
this obstacle was eliminated and the usage skyrocketed with the today’s known results
where everybody thinks of holography as a stereoscopic photography. In conventional
photography we obtain the recording of the intensity of the light reflected by an object

and only that. On the other hand, what differentiates a hologram is that it, along



with the intensity of the light, includes the phase difference between the reference and
the object waves, the feature that contains all the three-dimensional information of the
object. Let us assume the R and O are the time independent complex amplitudes of
the electric field vectors for the reference and the object waves respectively, defined in
figure 25. If 7, 0, ¢, and ¢, are the real amplitudes and the phases then the two waves

can be written as:

]}
I

et (69)

Sy
I

et (70)

Their interference on the phographic plate will produce the standing wave R + O with

intensity:

I = |R+0P=(R+O0)(E+0
= (Fe"r 4 ge%°)(Fe™" + Ge™)
= 1?4 0>+ 70 d0) 4 G e o)

= I, +1,+ 27 dcos(¢dr — do) (71)

From the last equation we clearly see what we have said before, that is, along with
the intensities from both waves, I, and I,, we obtain their phase difference as well. Of
course, for mutually perpendicular polarized waves we obtain no hologram since in that
case the third term of (71) is nullified. The interference theory proves that the intensity
I will take maximum (constructive interference) and when we have ¢, — @, = 2nm, where

n =0,1,2,... and the distance d between these maxima will be given by the Bragg’s
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Figure 26: Interference and Reconstruction
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relation 2d sin § = A, where 0 is the angle between the normal to the plane wave and the
generated maximum intensity planes (figure 26).

Reconstructing the original object is equivalent to illuminating the thus created holo-
gram with the same reference wave, R. The maximum intensity planes will have con-
verted the photographic plate into a grating with constant d. The reference wave will
be diffracted by this artificial grating according to the Bragg’s law of diffraction, that is,
2dsin @ = A, where 0 is the angle between the wavefront normal and the intensity plane
(figure 26). In other words the wave that will come out of the hologram will have the
same direction as the object wave (j, the wave that contains the information about the
object.

Let us see now the formation of the hologram and the reconstruction process from

a different perspective. Let us rewrite the basic holographic equation in the following
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Figure 28: Reconstructing a real image

form:

I = |R+0]?=(R+O0)(R + 0"

= RB+0-0"+R-0*+0-R*

= L+I,+R-0*+0-R* (72)

which is equivalent to (71). For the reconstruction we will have to shine the hologram
with the original reference wave R or ﬁ*, the second being the so-called conjugate refer-
ence wave which differs from the original in the fact that has opposite direction, that is,
R =7 exp(—u¢,). Figures 27 and 28 show the kind of reconstructed image we obtain
according to what reference wave we use. Illuminating the hologram with the original
wave ﬁ, that is, shining from the front of the plate, is equivalent to multiplying I with

R which results to:

RI = R(I,+I,+R-0*+0-R)

Il
e}

(I, + I,) + R(R- O*) + R(O - R*)

= R(I,+1,) + (R)?0* + 1,0 (73)



If I, and I, are constants then the first term of (73) represents the original reference
wave, the third term gives the original object wave whereas the second term represents
the conjugate of the object wave which converges at the position of the object; this
is what an observer sitting behind the hologram will see, i.e., a virtual image. If we
illuminate the hologram with the conjugate reference wave, ﬁ*, that is, shining from the

back of the plate, the wave emerging from it will consist of:

— — — — —

RI = R(I,+I,+R-0"+0-RY)

= R*(I, +1,) + I,O* + (R*)*0 (74)

the conjugate reference and object waves as well as the object wave. In this case an
observer sitting in front of the plate will see a real image. In the case of electron
holography we make use of this reconstruction procedure. What is characteristic in
both cases is the fact that the emerging wave contains both the object wave and its
complex conjugate. This latter is called the twin image because it is reconstructed at
a position which, with respect to a coordinate system, is opposite to that of the real
image.

In the treatment above we have touched on the main principles of optical holography
and have seen, in brief, how one uses it in order to reconstruct in three-dimensional
space an object with all its characteristics. In the next section we will see how people

have used the above concepts to investigate the crystal surface.



3.3 Application of Gabor’s ideas to surface crysta-
lography

3.3.1 Introduction

As we mentioned in the previous section, one, theoretically, can apply the ideas of
holography using electromagnetic waves from the entire spectrum, as well as using the
waves associated with the particles according to de Broglie principle of duality. Thus,
the usage of electron waves as probes among the atoms of the crystal surfaces comes
naturally since they (the electrons), in the LEED energy range, have mean free path of
the order of the few atom layers consisting a typical surface (look also at figure 2).

One can think of an electron wave as being split into two parts; one part traveling
towards a remote detector while the second getting scattered by an atom (or a clus-
ter of atoms) and then going towards the same detector. The two waves interfere as
soon as they reach their target. This procedure is similar to what we described in the
previous section between the reference and the object light wave. In the new case the
electrons that go directly to the detector consist the reference wave whereas those that
are scattered first and then travel to the detector consist the object wave. The detector
is actually a photographic plate on which the interference of the two waves will create
the corresponding electron hologram. If one illuminates this pattern with the complex
conjugate (or time reverse) reference electron wave, that will diffract to a new wave part
of which will converge at the point where the scattering atom was.

Thus far we have not said anything new as far as the procedure is concerned. One



basic difference from the light holography is that in the former case the source of the
electrons are some atoms of the surface. Depending on the methods we employ to

generate the reference and the object waves, we distinguish:

Photoelectrons In this case the electrons are ejected from the atoms that absorb photons.

Auger electrons The Auger electrons are excited from an energy transition that takes

place in atomic cores.

Kikuchi electrons Inelastically scattered electrons on their way out of the crystal can be

elastically scattered and produce the so-called Kikuchi pattern.

DLEED electrons Diffuse LEED is the case of electrons being shot from an electron gun
(see figure 4) at the crystal surface which contains atoms disorderedly adsorbed
thus creating the so-called lattice-gas picture. These atoms behave as electron
beam splitters thus producing reference and object waves which interfere upon a
fluorescent screen giving rise to a diffuse pattern after which the method takes its

name.

Xiang Chen[?] in his doctorate thesis analyzed the photoelectron holography. We, on
the other hand, will attempt in this thesis, to see how one can use DLEED electrons
and Gabor’s ideas in order to enhance the big success that LEED has been having in

the surface investigations.



3.3.2 DLEED holography

A diffuse LEED experiment is not at all different from that of LEED we examined in the
first chapter. As always, before we start with the experiment we pay special attention
to the preparation of the sample. As we mentioned in the introduction, on the clean
surface of the sample we wish to have atoms (usually of a different kind than those of the
surface) disorderedly adsorbed. The preparation of the sample as well as a description
of the entire experiment is elaborately described in a paper by H. Wedler et at.[?]. In
that experiment a clean nickel (Ni) surface cut in an orientation (100) was covered with
potassium (K) up to a coverage of © = 0.25 M L. Usually, in order to obtain a diffuse
diffraction pattern we need to ascertain that the coverage will not surpass © = 0.25 L.
An external generator of electrons, that is, the electron gun, shoots electrons upon the
sample. Figure 29 shows their fate as soon as they reach their target. Some of them
(actually the majority) fall in regions of the surface empty of adsorbed atoms. There
they are scattered by the atoms of the clean surface (the substrate atoms) and detected
on the fluorescent screen where their trace is recorded according to what we described
in the first chapter (beams labeled “1” in figure 29). The pattern produced thus is
the LEED diffraction pattern with the Bragg spots indicating the sizes of the Brillouin
zones of the reciprocal lattice of the substrate. A small part of the incident electrons is
scattered by the adsorbate atoms. Here we discern two major categories of scattering.
In the first category belong all those paths that have as the last encounter an adsorbate
atom before they start their trip to the detector (beams labeled “2” in figure 29). In

the second category belong all paths that have as their last encounter a substrate atom
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Figure 29: Diagram illustrating the scattering paths on a crystal surface containing
disordered adsorbate atoms giving rise to (a) substrate Bragg spots (beams labeled “1”)
and (b) elastic diffuse intensities (beams labeled “2” and “3”)



and at least once have encountered an adsorbate atom (beams labeled “3” in figure 29).
A consequence of the short range order is that every neighborhood of an adsorbate is
identical to any other neighborhood and so is the scattering proccess within it. Thus,
an infinite clean surface with only one ad-atom to disturb its periodicity gives the same
diffraction pattern (apart from a scaling factor) as the actual surface and this kind of
ideal surface we study here. In the case of DLEED the source for the electrons is not
the electron gun (this just directs them upon the surface) but, as far as the holography
concepts are concerned, the adsorbed atom that acts as a beam splitter. The paths that
belong to the first category (beam labeled “2”) give rise to the reference wave whereas
those of the second category (beam labeled “3”) produce the object wave. These two
waves interfere on the fluorescent screen and, due to the lack of long-range order among
the adsorbates the result is the diffuse pattern between the Bragg spots which makes the
DLEED hologram. The Bragg spots do not concern us in DLEED because they carry
partial information about the adsorbate atoms and, in any case, information that is hard
to be extracted. This is the reason that after we perform the experiment we subtract
them from the total diffuse pattern (look at figure 46). Only the interference between
beams that have “seen” ad-atoms and substrate atoms contain information about the
phase change that the reference wave acquires upon encountering the substrate layer.
Under these conditions holographic diffuse LEED is a method for the determination of
the the local geometry in the vicinity of an adsorbate. Below we discuss the theoretical
approach of holographic DLEED based on the general equation of holography given in

the first section.



3.3.3 Theory of DLEED holography

We start out by considering the amplitude of the waves that reach for the first time an
adsorbate at position 7%, following Saldin and Chen[?]. These waves will include the
electron waves that are incident on the adsorbate coming from the electron gun and
the Bragg waves reflected from the surface. Thus, the total amplitude of the wave that

reaches the adsorbate will be:

— - — —

exp(tky - (ra — 7)) + Y Ry(ki™) exp(ik, - (ro — 7)) (75)

9
where the wave vectors /Z;t = (ﬂh‘m + .k, 1), § is a reciprocal lattice vector, ﬂhnc is the
component of the wave vector parallel to the surface and k;, = +[2(E-V,)— \/Zhnc-f— g|%?
with F being the total energy of the electrons and V, the inner potential which we defined
in the first chapter and 7, is the conventional origin for LEED calculations relative to
which Ry is defined. The superscripts (+) indicate directions from the vacuum towards

(+) and away (—) from the surface. This wave will be scattered off the adsorbate atom

and at position 7 with respect to it the total amplitude will be:

A(F) = exp(ik - (T — 7)) falkS - 7) + Y Ry(ki®) exp(k, - (Fu — 7)) falky - 7)  (76)

f(]%l . ];'2) = %2(26 + ].) sin 6g(l€1) exp(z&(kl))Pg(lAcl . ]:72) (77)

is the atomic scattering factor of an atom when a wave with direction k1 is scattered
to a direction EQ. d¢ is the phase shift with angular momentum quantum number ¢ and

Py(ky - k2/k1k>) are the Legendre polynomials. The amplitude A(#) belongs to the wave



labeled “2” in figure 29 and is the reference wave which has the form:

exp(ekr)

R(k) = A(k) ;

(78)

Actually on determining the reference wave we have made the assumption that all the
wave paths between the first and last encounter with the adsorbed atom are negligi-
ble since they contain backscatterings from its neighborhood that weaken the resulting
wave[?]. As we have said previously, part of this wave travels directly to the detector
and part of it is scattered by the substrate atoms of its vicinity, thus generating the

object wave which will be of the form:

ZA expzkr])fs( A)exp(zk|7" ;)

T |7 — 7]

(79)

at the same position 7 relative to the ad-atom. In the above formula f; is the atomic

scattering factor of the substrate atom. Since r; < r we can have:

F—7 = (4] =27 )
~ (12— )
~ p— 0
,
= r—7-7 (80)
and so k(|7 — 7| — 1) >~ —kr - 7; = —k - 7, since k has the direction of 7. Taking that

into consideration (79) becomes:

) (Z AOLIR) o4y — - m)) - (81)

T

These two waves will interfere on the fluorescent screen and the intensity of the



resultant wave will be (if we account for only the amplitudes of (78) and (81)):

H(k) = |R(k)+O()}
= |R(E)] + R(F)"O(F) + R(K)O(K)" + |O(K)”
= [AK)?

~

+ Al Y A e caer; — F- 7))

5K o ulhry — 7))

+ oK)’ (82)

The reference wave that travels towards the substrate atoms has already been weakened
having been split into as many waves as the number j of the surface atoms. It might
be argued that by being scattered by each one of them it will be further enfeebled in a
way that the object wave that travels to the detector will be negligible compared to the
reference one. Thus, the last term of (82) may be dropped without loss of important
information.

Our main goal here is to reconstruct the geometrical positions, (7;), of the substrate
atoms with respect to the adsorbed one. A look at (82) will reveal that only the second
and the third terms contain the positions of the substrate atoms explicitly. We are trying
to “invent” a mathematical formula such that at any point 7" # 7; of the real space it will
be negligible and only at 7= 7; will have significant values. The diffraction pattern is a
two-dimensional array that mirrors the reciprocal lattice of the sample. So, this formula
must contain an integral that will sweep the pattern, in other words, an integral with

respect to k vector. If the integration results in a -function of the form 8(7 — ;) we



will be convinced that indeed we get large values at the positions of the sub-atoms. Let
us try to put the above thinking into work. Looking at the two cross terms of (82) we
understand that only if the coefficient of the exponential somehow dissappears will we
end up having the exponential alone under the integral. In other words, if we multiply

the second term by:

-1

. exp(u(kr — k - 7) (83)

lA(l%)*A(f)M]

we will obtain for one substrate atom at 7= 7:

(j((lf))*> (A(f) fZ(f-l%)) (A(fj)w> exp(tk(r — ;) exp(—tk - (F— 7;)  (84)

If we integrate (84) over all k space we will see that at positions 7 = 7; and r = r;

the terms in the second and third parentheses cancel each other out and since the term
A(k)/A(k)* is independent of 7 we get two d-functions, §(7 — ;) and &(r — r;), for the
position and the magnitude of 7;. In the discussion above we have tacitly omitted the
fact that the suggested integration is over the three-dimensional k space whereas any
particular pattern is two-dimensional. In order to show that there is no discrepancy

present we may rewrite exp(s(kr — k - 7) as follows:

exp(z(kr — 1;” 7 — k12)) = exp(e(kr — kL2) exp(—zl;:'H - 7)) (85)
where EII is the wave vector parallel to the pattern, 7| represents the two-dimensional
real space lattice, k& = (2(E — V,))"/? and k, = (k* — |k + §/%)'/?, the component of &
normal to the pattern. Calling kernel K (E, 7), the term in front of the exponential in

(83), we can write:

(86)



Thus the suggested algorithm will have the form:

B(f) = / / / H(E)K (k,7) exp(a(kr — k. 2) exp(—aky - 7)) dk dF (87)

and one can see that (87) is a double integral over k, and k, and a single integral
over the energy through k,. The above procedure is similar to that suggested in optical
holography where we had to illuminate the hologram with the time reverse reference wave
in order to obtain the position of the original object. In this case B(7) will be the wave
emerging from the hologram and that will converge at the positions of the substrate
atoms. The plot of |B(7)|?, that is, of its intensity, against 7 will give, theoretically,
maximum values at the positions of the atoms, thus reconstructing their real-space
distribution.

So far in our discussion, we have not taken into consideration any long-range order
factor among the substrate atoms we spoke about in the introduction. Let us try to
see how this affects the intensities of the scattered waves. In general, the relationship
between the amplitude A, for the scattering from a single adsorbate, and that A from

an entire surface layer in LEED is:
A(R) = A, (R) S e E-F)7; (88)

where in the above expression k' is the wavevector of the electron beam incident on the
surface, k that of a detected electron, and 7; the position vector of the jth adsorbate

atom. The detected intensity will be:
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where § = k — k', the momentum transfer, HO(E) is the intensity from only one adsorbate
atom and 77, 7, are the position vectors of the adsorbate atoms j and n and are parallel
to the surface. Thus, ¢ (7; —7,) can be written as gj - (7; — 7). We call S(gj), a structure

factor, where:

N
S(@) = Ze"fl\'(ﬁ'*ﬁz) (90)
2
N - — —
= N+ el (91)
n#j

which depends only on ¢j; or EII and thus (89) can be written as:
H (k) = Ho(K)S(q) (92)

S(qj|) depends only on the order or disorder of the distribution of the ad-atoms on the

surface. We also define:
J H(E)dk,
[dky
J Ho(k)S(q))dk.
Jdk,
J Hy(k)dk
Jdk,

H. (k) =

5(4)) (93)

where S(gj|), since it depends only on the parallel to the surface component of E, can
get out of the integral. The idea behind this definition is to account for all the reference

waves that have the same EII component but not the same £, one, and to get an average



of this intensity. Besides, with this definition we isolate the structure factor. Eventually

accouting for (92) and (93) we introduce the x-function as follows:

X(E) _ (;I ( z)w(k)
_ Ho(R) — [ Ho(R)dk./ [ db.] 01
J Ho(k)dk, ] [ dk,

which is obviously independent from S. The sum in (91) can be zero if there is fully
disordered adsorption, since in that case 7; — 75, will have all the possible values, and
thus S will be equal to the number of the adsorbates, N. On the other hand if the
adsorption is fully ordered then from (90) we see that S is equal to N? since in that
case all gj’s will be reciprocal lattice vectors. In diffuse LEED this quantity is unknown
since we have neither full order nor full disorder. Thus, in the way we have defined the
x-function we eliminate this unknown factor that is present in the experiment. This is
one of the reasons we introduced y. Another is that in this way we enhance the contrast

of H(EH) with respect to the H (k).
From (82) we see that only the first term, |A(k)[2, does not depend on k.. Then, if

we approximately set Hav(l_c'H) equal to this term and substitute (82) into (94) we will

have:
- |A(k)|? + [A(/Aﬂ)* > A7) (fs(fj : ]%)/Tj) exp(u(krj — k- 7)) + c_c_] —A(R)[?
e A2
_ L]})* f‘-Mex sl — 7 e
= A ARy %:A( i) Tjj p((krj — k- 7)) + c.c.
A(fj')J[.s?2 ]22) '__.-F. e
; [A(fc) ;] exp(u(kr; — k- 7)) +c. ] (95)

In (95) c.c. means the complex conjugate of the expression in front of it.
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Figure 30: f; (kf -#;) (a) and f; (k; - #;) (b) for (97)

Following the same thinking we did when we previously discussed the construction

of the algorithm we end up obtaing a new kernel function with form:

K (ko ) = [%w] (96)

Using (76), A(#) and A(k) will be:

A(P) = exp(uky - 7o) fif (kf -7 +ZR ine) exp(1k, - 70)fa (ky <7)  (97)

A(k) = exp(uk) -7) fo (kT -k +ZR i) exp(1k, - 7o) fa (ky < k) (98)

In (96), (97), (98), we have used the atomic scattering factor notation for the substrate
and adsorbed atoms introduced by Wei and Tong[?] where the (4) sign superscript
indicates forward scattering (f < 90) and the (—) sign indicates backward scattering

(6@ > 90). Figures 30, 31 and 32 help us understand that better.
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Figure 31: f; (k) - k) (a) and f; (k, - k) (b) for (98)
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Figure 32: f; (7, - k) for (96)



Substituting (97) and (98) into (96) and factorizing out the coefficient exp(ik; - 7,)

from the numerator and denominator of the fraction A(7)/A(k), we obain:

-1

K(ky, ky;7) = l(f;(l% r)+C) %TT)] (99)

where
C = ZR ine) exp(u(k, — k) - 7a) fa (kg - 7) (100)
D = fo(kf-k) +2R eire) exp(a(k, — k1) - ) £ (ky - k) (101)

In the above expressions for C' and D we see that the position of the adsorbed atom
appears as a phase factor. Since we do not know 7, in advance we use the spirit of the

maximum entropy|[?] and approximately take for C' and D:

971/2
] (102)

971/2
] (103)

It is known that the atomic scattering factor in the energy range that LEED and DLEED

lnc l;.f f)

a 9

C

12

D

12

folky k) +

>° Ry(kjr) £ (ky - k)

g

experiments are performed varies greatly with the scattering angle from forward to back
scattering. This can be seen in figure 33 where we have plotted the magnitude | f| against
the scattering angle for the oxygen at an energy of 233 eV'. From the figure we see that
for # < 90 there is a fast variation of |f| whereas for § > 90 it remains almost constant.
Due to this property of f we can take f~ in equations (99), (102) and (103) constant.

Considering what we just said, kernel (99) takes the form:

—1

(f:(]%z—)'— ) T) + C] (104)

K (ky, kj;7) =
(ky, ky;7) [ Dr
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Figure 33: Variation of the magnitude of the atomic scattering factor of oxygen with
the scattering angle at 233 eV

where the constant for the backscattering factor has been absorbed into D.

The sum in (103) represents the forward scattering of all waves that have been
scattered off the substrate atoms (figure 31b) and each term of it takes maximum value
when f;" (l%g_ -k) is peaked at /Afg_ | k. Since the sum sweeps the diffraction pattern in its
entirety through the vectors Eg and since the first term is a constant due to our argument
in the previous paragraph, it will not be a bad approximation if we set the factor D

equal to a constant. Thus the final form of (104) and (87) to within a constant will be:

-1

K(ky, k) = (105)

r

[(fj(/};“-r)ﬂLC]

B(7) = ///X(/u, E||)K(E, 7)exp(u(kr — ki z) eXp(—zEH : ﬁ|)d/ﬁd/;|| (106)

Before we finish this chapter we would like to demonstrate the advantages one has,
employing the algorithm (106) in doing holographic DLEED. In particular (106) deals

successfully with three major problems, i.e., the anisotropy of the reference and object



waves, the twin image and effects of the multiple scattering.

The anisotropy of the reference and the object waves As we know the incident and scat-
tered electrons in the LEED experiments have energies of a few hundreds of electron
volts. We mentioned before that in these energies the atomic scattering factors
are highly forward peaked (figure 33). The reference and object waves can be
written as sums of spherical harmonics, >, Almhl(l)Y}m, where h,l(l) are the Hankel
functions of the first kind (corresponding to outgoing waves). It has been found
that an atom is best reconstructed from an intensity that comes from spherical
waves with [ = m = 0, that is, from isotropic waves. Thus the forward peaked
scattering factor is an obstacle to the clear reconstruction of the atom. By insert-
ing the kernel K (k,, EH; ), (105), as we discussed when we introduced its concept,
the anisotropies dissapear since what we get under the reconstruction algorithm

integral is a J-function that peaks at both the positions of the atom and its twin

image.

The twin image As we mentioned in the previous section, the twin image that always
appears at the reconstruction and is associated in holographic LEED with the
reconstruction of another atom at position 7 = —7; along with the position of the
real atom at 7 = 7. This is a serious drawback since there is no way to distinguish
between the two images! This obstacle can be eliminated by the use of a multi-
energy reconstruction algorithm. Here is what we mean. If By (7) is the wave

emerging from the hologram for one energy k then (106) without the kernel will



give:

,. lA(/a* g R
AT ™ ¢ rys =
e L g)] (107)

The ¢ functions make sure that both real and twin images are reconstructed at
7 =7; and 7 = —7; but we still do not know which is which. Yet if we take the

sum of (107) over more than one energy we will obtain:

B() = LB

~ / By (P)e~*rdk

AR
- ¥ [i((%): f—fa(ﬂ )3 + 1)
i) "
Now the second ¢ function suppresses the twin image since we cannot have r = —r;

(i.e., negative value of 7).

Effects of multiple scattering. It is now known that multiple scattering is not an obstacle

to the reconstruction of good images of the atoms around the reference wave sources



since the multi-energy reconstruction algorithm (106) is sensitive only to the single-
scattering parts of the multiple-scattering series used to express the diffracted
intensities. We will demonstrate that through a simple calculation. We are going to
account for the object wave from single, double and triple scattering, and attempt
to see whether the last two affect the reconstruction process. To this goal figure 34
will be a visual guide. Equation (79) without the sum gives the form of the
object wave when only single scattering from substrate atom j has been taken into
consideration (figure 34a), that is:

OJ(_S) _ A(fj)Mfs(fj k) exp(—1k - ) (109)

Tj
In the case of the double scattering the reference wave is scattered first from atom

[ and then from atom j (figure 34b):

_.exp(ekr . .exp(ekp
oY = A(n)—pgl l)fs(rl-plj)ip;,””)
j

X folpis - k) exp(—k - 7) (110)

The triple scattering term will contain scattering off atom m, then off atom [ and

finally off j (figure 34c):

. exp(tkry, R . exp(ikpp,
O = Al 2T g . ) XK Pmt)
T'm Pmi
. . exp(ekp;
X fs(pml'plj)M
Pij
X fulpis - k) exp(—ik - 7) (111)

Then the object wave will be given by the summation of all three terms:

0;=0" + 0 + 0l (112)

mlj



s @

s @

=V
xV

mI

3‘

— @ —-— 0 ()
| J

jI

Figure 34: Multiple scattering



and the y-function will have the form:

- > (R*O; + ROY) O;. O
k) = J J Jl A )
x(k) RR- XJ: R TR
O(s O(s)* O(d O(d)* O(t) O(t)*
=z(;{ )+z("”+ R SR
J mlj

A(F) (exp(ukry) /1) f(F5 - ) exp(=ik - 75)

= X

i A(k)
i A(fj)* (exp(— zkrj)/rj)fs(rj )exp(zk TJ)
A(k)

A(#2) (exp(ukr) r0) fy(71 - fiy) (exp (k) pig) f(dis - k) exp(=2k - 75)

A

p>

; A0
L A (exp(=thr) /) fur- i) (exp(=kpy)/py) fulgis - B)* exp(ak - 75)
A(k)*
+ 3 [(AGn) (X0 0kTm) /1) flim o) exp(abm) ) JAH)

X fs(prat - pig) (exp(thpyy) [ pis) fo(pis - k) exp(—ak - 75)
+ (A(fm)* (exp(—=1kTm)/Tm) fs(Fm - pra)™ (exD(—2kprnt) / Prmt) /A(/;’*))
X folomi - £y)" (exp(—tkpyy) [ piy) folpis - k)" exp(—ik - 75)] (113)

Substituting (113) into (105) we will obtain:

A(T.-’) — Z[ (T])f (k TJ)/e—zk-(r—krj)dk/ezk(r—krj)dk

j A(7)r;
+ A(T:\J)*fs(k ) f])* /e—zl-c‘-(F—'F'j)d]%/ezk(r—'rj)dk
A(f)*?“j
-y lA(fl)fs(ﬁzj'fl)fs(ﬁlj'k) /esz-(FH"j)d]%/ezk(r+m+91j)dk
1j A(P)ripu
L A F oy - 70 filpy - k) /e—zz-(f—md/}/elk(r—m—pu)dk
A(f)*rlplj
+ z [A(fm)fs(ﬁml ) fm)fs(ﬁml ) ﬁmj)fs(ﬁmj ) k)
mlj A(f)rmpmlpmj

y / o~ R ) g / R+ mt Pt +pmi) JJo



A(fm)*fs(laml i fm)*fs(:aml . ﬁmj)*fs(ﬁmj j ]%)*
A(f)*rmpmlpmj
X /67ZE'(F7FJ')di{:/eZk("'*rm*pml*pmjdk (114)

_+_

Each of the terms above in (114) has two integrals. Only the second of these
terms gives d-function from the angular and the energy integrals that peak at the
same position. This serves to filter out the twin image and the effect of multiple

scattering in the resulting image.

This result renders the consideration of multiple scattering in the DLEED holo-

graphic analysis unimportant.

At this point we have completed our brief survey of the theory of holographic diffuse
LEED. In the next chapter we will discuss the way we tried to expand it in order that

we study real systems.



Chapter 4

Holographic DLEED

4.1 Introduction

In the previous chapter we introduced the ideas of Dennis Gabor on holography and
explained how one can combine them with the diffuse LEED method. We also presented
the step-by-step development of a mathematical algorithm that is theoretically capable
of taking as input the intensities of a DLEED experiment and outputting in real space
the geometrical recontruction of the sample surface that produced these intensities.

In this chapter we will see how succesful our algorithm is by looking at image recon-
structions of two systems: O/Ni(001) and K/Ni(001). We will also attempt to explore
its flexibility by considering more realistic structures. But first let us get the insight of

it thereby completing the discussion started in the previous chapter.



4.2 The CORRECT algorithm

Equation (106) is the analytical form of our algorithm which for convenience we repro-

duce here.

B(r) = ///X(/ﬂ, k) K (k, 7) exp(—1(kr + k1 2)) exp(—iky - 7)) dk LdE (106)

where,

Kk, ) = | YD EC) (105)

and

(94)
By looking at (106) we can make a few observations:

1. It contains a three dimensional integral with respect to the Cartesian coordinates
of the reciprocal space vector k= (kg, ky, k,). Comparing with a typical Fourier-

transform integral:

1

fla) = ()" [ Fla)eda (115)

we will see that (106) is a Fourier-like (since the kernel K depends on both & and

7) integral that transforms from the reciprocal to the three dimensional real space.

2. The kernel function K (k, ), defined in (105), represents an approximation to the
amplitude of the reference wave at position 7. The numerator contains the two
most important parts of this wave, namely the wave scattered by the adsorbed

atom, represented by the atomic scattering factor f,, and the wave that is first
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Figure 35: The Kernel function



Figure 36: The constant C in kernel function

scattered off the substrate and then travels toward the adsorbate, represented by
the constant C' thus compensating for its anisotropy. A better visualization of
these two terms can be seen in figure 35 (a) and (b) respectively. Figure (36) helps
us understand the reason for choosing a constant to represent that part of the
reference wave scattered by the substrate layer. In the above we have taken into
consideration figure 33, i.e., that the atomic scattering factor has stronger magni-
tude in the forward than the backscattering direction, and that the backscattered
wave has a more isotropic angular distribution. Of course the denominator in (105)

is the familiar 1/r factor of every spherical wave.

. The x-function, (94), has been extensively discussed in section 2.3 but here we

would like to show one more of its traits. Looking at figure 37 we see that the
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Figure 37: Use of x-function

integration over the third coordinate, k,, could be thought of as being over the
energy k since k, = (k> — k)'/> = (2mE — k} — k;)'/>. The Bragg-spots for
different incident energies are found in rods normal to the surface. The way we
have defined the y-function enables us to avoid running into these rods and thus
considering Bragg-spots intensities as well (that, as we know, carry only partial

information of the position of the adsorbate relative to the substrate).

. Multiple scattering is a process that is always present. Although in the previous
chapter we proved that it does not play any important role in our reconstruction
algorithm (since the usage of more than one energies negates its effects) neverthe-
less its omnipresence is proved very usefull in making the object waves that reach

the fluoresent screen more isotropic|[?]. Figure 38 illustrates that idea.



Fluorescent screen

Figure 38: Schematic diagram illustrating the role of multiple scattering into making
the object waves more isotropic



Accounting for all the above we suggested the name CORRECT (or Compensated
Object- and Reference-wave Reconstruction by an Energy dependent Cartesian Trans-
form) for our algorithm, thus expressing our belief in its capability to correctly (pun

intended) perform the holographic reconstruction|[?].

4.3 Testing the algorithm

After this analytical presentation of the CORRECT algorithm we will now try to see
how successful (or unsuccessful) this has been. We will attempt to holographically
reconstruct two systems: O/Ni(001) and K/Ni(001). Both of these have been thoroughly
investigated and analyzed with the help of simple LEED and thus they can play the role
of a guide that will show us how trustworthy our method is towards the investigation of
unknown surface structures.

In each structure, atoms (oxygen or potassium) have been adsorbed on hollow sites
of the nickel substrate that has been cut parallel to the (001) plane. This can been
seen in figure 39 where the sphere labeled “A” is the adsorbate, spheres labeled “B”,
“C”7, “D” and “E” represent the first layer of the substrate Ni, whereas the sphere
labeled “F” belongs to the second layer of substrate atoms. Figure 40 shows a schematic
diagram of the three possible adsorption sites (top, bridge and hollow) of an atom on a
fcc (001) surface and a better view of figure 39. We set up a coordinate system at the
origin of which is located the adsorbed atom. Then we determine the positions of the
substrate atoms with respect to it. Table 4.3 shows the coordinates of A, B, C, D, E

and F atoms (figure 39) for both structures which have been determined by conventional



Figure 39: Hollow site adsorption along the (001) orientation

O/Ni(001) K/Ni(001)

z(A) | y(A) | 2(A) | =(A) | y(A) | 2(A)
0.00 | 0.00 | 0.00| 0.00 | 0.00| 0.00
1.25 ] 1.25| -0.9| 1.25| 1.25| -2.7
1.25-1.25| -0.9] 1.25|-1.25| -2.7
-1.25 | -1.25 | -0.9|-1.25|-1.26 | -2.7
-1.25 | 1.25 | -09|-1.26| 1.26| -2.7
0.00 | 0.00| 27| 0.00| 0.00| -4.4

MmO QW =

Table 1: Positions of atoms A, B, C, D, E and F for the hollow site adsorption of figure 39
for O/Ni(001) and K/Ni(001)
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Figure 40: Top,



LEED calculations[?, ?].

When one wants to see how successful a theory is the first thing he usually does is to
compare the results it produces with those produced by the experiment. Our method is
based on the trial-and-error technique, that is, our algorithm inputs a diffraction pattern
(actually more than one) and outputs, in real space, the structure that is responsible
for this. We compare the reconstructed image to the accepted one and then re-do
the calculations having slightly changed the parameters the algorithm depends upon.
(An example of such a parameter is the C constant in the definition of the kernel K,
(105). Choosing a very large C for the reconstruction is equivalent to not correcting
for the anisotropic reference wave. The corresponding images will consequently contain
only the atoms in the area just below the adsorbate atom (searchlight effect). When
reducing the absolute value of C, the images exhibit also atoms in other regions of the
local geometry. This is because a smaller C' gives more weight to the anisotropic direct
illumination and hence corrects more strongly for the reference wave. Finally, for too low
a value of C, only atoms outside the forward-lobe directions will be visible, for now the
reference wave anisotropy is overcompensated.) We keep on doing that until we obtain
the optimum reconstructed image. Of course someone might argue that re-investigating
a known structure is redundant. The answer to such an argument is that testing the
method with known structures helps us improve the algorithm. When we are confident
that it works with a number of different structures (in this thesis we prove that it gives
fine results with two of them) then we can put it to the test with unknown ones. The

advantage of our method is that it is faster compared to the traditional LEED and that it



can give three-dimensional results the way humans perceive “three dimensions”. Going
back to our initial argument we should add that one has to find a practical way to have
experimental results to compare with without actually doing the experiment; in other
words, he has to simulate the experiment. This is exactly what we have been doing
in our case. In 1986 Saldin and Pendry wrote a program[?] that simulates a DLEED
experiment. All that the program needs as input are the positions of the atoms of
the cluster and the phase shifts for the different kinds of atoms at different energies and
angular momenta. It outputs a two-dimensional array (usually 81 x 81 or 8 x 8 pixels per
surface Brillouin zone) of intensities in the reciprocal space. Figure 41 shows three thus
calculated diffraction patterns for the case of O/Ni(001) and for three different incident
energies, 9, 10 and 11 Hartrees (245, 272 and 299 eV') respectively. These patterns are
the inputs of a ForTran program containing the algorithm, originally written by Dr.
Xiang Chen and modified by the author and Dr. Dilano Saldin. What it follows are two
sets of reconstructed images in three dimensions and in real space. Each set contains
the same structure seen from different angles in order to give the viewer the perception
of the third dimension. The adsorbed atom (O in figure 42 or K in figure 43) is not
shown but is supposed to be at the origin of the coordinate system. The distance scales
are specified by the ticks of the axes, at 1-A intervals (l—A corresponds to 5 pixels). The
intensities of the reconstructed images are represented by small spheres whose radii are
proportional to the intensity at that voxel (or volume picture element). Depending on
the energy range, we employed 30 patterns for energy range 113-235¢eV or 37 patterns

for 70-435eV. The phrase “Reconstruction using the y-function” seen in the captions



9H or 245¢eV

10H or 272V

11 H or 299eV

Figure 41: Theoretically calculated diffraction patterns for O atoms adsorbed as a dis-
ordered lattice gas on a Ni(001) surface. The three patterns correspond to energies of
9,10 and 11 Hartrees
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O/Ni(001)

Figure 42: Reconstruction of O/Ni(001) structure from theoretically calculated DLEED
diffraction patterns. Energy range: 113-235eV, C = 1.0 a.u. and usage of x-function
was made.



K /Ni(001)
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Figure 43: Reconstruction of K/Ni(001) structure from theoretically calculated DLEED
diffraction patterns with energy range: 70-435eV, C' = 1.5 a.u. and usage of y-function.



Figure 44: Reconstruction of O/Ni(001) structure from experimental DLEED diffraction
patterns

of them and the following figures refers to the known y-function we spoke about in the
beginning of the chapter when we presented the CORRECT algorithm. The meaning
of that phrase will become obvious in chapter 5. In each figure the reader will find the
value of the constant C' of (105) used for the particular reconstruction[?, ?]. Figures 44
and 45 show the corresponding results we obtained by doing reconstruction of the two

structures using the same algorithm but experimental diffraction patterns.



R

L = P Y TR

L L
T et
48

Figure 45: Reconstruction of K/Ni(001) structure from experimental DLEED diffraction
patterns



4.4 Further investigation

The diffraction patterns we take from a DLEED experiment do not look quite like those
in figure 41. First of all, they are not completely symmetrical. Besides the dark shadow
of the electron gun projected onto the pattern, what dominates them are the bright
spots left by the electrons scattered by the substrate atoms, the Bragg spots. As we
have explained earlier these spots carry only partial information as far as the position
of the adsorbates is concerned, which rather distorts the reconstructed images. Thus
they have to be removed from the patterns. The reason we keep repeating that the
Bragg spots carry only partial information about the position of the adsorbates is that
their presence cover a significant portion of diffuse intensity, the very one that actually
holds the above mentioned information. The procedure of Bragg spot removal and
symmetrization of the experimental diffraction patterns is depicted in figure 46. As one
can see, the process of the Bragg spot removal consists in cutting out a considerably
large area around each spot. By doing this we remove some diffuse data as well that
possess exactly the information we are seeking out. Our goal is to find out how much
damage we do to the pattern, or in other words, how many diffuse spots we are allowed
to remove and still obtain a good, acceptable reconstructed image from the rest of the
pattern. One more issue that one has to account for is the number of data he has to use
in his investigation. The logic behind that is for one to use as little data as possible, and
thus, reduce the amount of time needed for their collection and study. Towards those
two goals we conducted some theoretical investigations making use of our algorithm and

reconstruction program.



Figure 46: Bragg spots removal and symmetrization of an experimental diffraction pat-
tern. a— b : Subtraction of LEED pattern before adsorption. b— ¢ : Removal of the
substrate Bragg spots. c— d : Four-fold symmetrization of the diffraction pattern.



Looking first at the second case, that is, the issue of the amount of data, we under-
stand from figure 46 that we will have to decide on the number of pixels of diffuse data
between the bright Bragg spots we wish to include. We started by collecting a diffuse
LEED array sampled on an 8 x 8 grid of points per surface Brillouin zone. We have
already seen the results of such a reconstruction in the previous figures 42 and 43 for
the two structures respectively. We were satisfied with such an output and we decided
to collect now diffuse data within a 4 x 4 array per surface Brillouin zone.  These
new results can be seen in figure 47 and 48. It is obvious from the figures that one can
observe no deterioration in the reconstruction of the images for both structures. Thus,
from this point forward and for the investigation of the removal of the Bragg spots,
we decided to use only 4 x 4 data sampling for one more reason; our reconstruction
program needs only a few seconds of real computer time to run (at least for the CPU
R10000 processor of Silicon Graphics Indigo? (IRIX 6.2)), which made our job a lot eas-
ier. We started by removing only the area that the Bragg spots would occupy on the
experimental diffraction patterns (we should understand that the calculated diffraction
patterns do not contain Bragg spots) as can be seen in figure 49. Then we proceeded in
cutting out a circle the center of which was the Bragg spot and its radius equal to 1/8 g,
where ¢ is the reciprocal lattice vector, figure 50. Next we removed a circular area with
radius 1/4¢. After each such removal we followed the reconstruction procedure from
the remained patterns. The outcome for both O/Ni(001) and K/Ni(001) structures are
seen in figures 51, 52 and 53, respecively. From these figures we can conclude that one

can safely remove a circular area of radius 0.125 g for the O/Ni(001) surface and only



O/Ni(001)

Figure 47: Reconstruction of O/Ni(001) structure from theoretically calculated DLEED
diffraction patterns with 4 x 4 data sampling. Energy range: 113-235eV, C' = 1.0 a.u.
and usage of y-function was made.



|
I

8

&
gl

#:

K /Ni(001)

|
J
i

Figure 48: Reconstruction of K/Ni(001) structure from theoretically calculated DLEED
diffraction patterns with 4 x 4 data sampling and removal of the Bragg spots. Energy
range: 70-435eV, C' = 2.5 a.u. and usage of y-function was made.
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Figure 49: 4 x4 data sampling per surface Brillouin zone; removal of circle radius R =0 ¢

around Bragg spots
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Figure 50: 4 x 4 data sampling per surface Brillouin zone; removal of circle radius

R = 0.125 g around Bragg spots



Figure 51: Reconstruction of O/Ni(001) structure from theoretically calculated DLEED
diffraction patterns with 4 x 4 data sampling and removal of the Bragg spots. Energy
range: 113-235eV, C' = 2.5 a.u. and usage of y-function was made.



O/Ni(001)

Figure 52: Reconstruction of O/Ni(001) structure from theoretically calculated DLEED
diffraction patterns with 4 x 4 data sampling and removal of a circular area radius
0.125 g around the Bragg spots. Energy range: 113-235eV, C' = 2.5 eV and usage of the
x-function.
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Figure 53: Reconstruction of K/Ni(001) structure from theoretically calculated DLEED
diffraction patterns with 4 x 4 data sampling and removal of the Bragg spots. Energy
range: 70-435eV, C = 2.5 a.u. and usage of x-function was made.



the Bragg spot for the K/Ni(001) one.

So far we have studied and successfully reconstructed two structures utilizing diffrac-
tion patterns obtained by performing diffuse LEED experiments. By now, the reader
will have already realized that we have not said anything about investigating surfaces
containing ordered adsorbates. In attempting to employ as little data as possible we,
previously, moved from the 8 x 8 sampling of diffraction intensity per surface Brillouin
zone to the 4 x 4. Unfortunately, a p(4 x 4) overlayer of O/Ni(001) or K/Ni(001) is
not an often encountered phenomenon in nature. On the other hand, p(2 x 2) layers
are very common structures. The upper panel of figure 54 shows the real space mesh
of such a layer on a (1 x 1) clean surface (top site adsorption), whereas the lower panel
shows the reciprocal space mesh. The above discussion sets out our next goal; that is, to
successfully perform a reconstruction of the above same two systems which will now have
coverage p(2 x 2). Actually, when in the beginning we spoke about the two structures
as having been investigated by traditional LEED methods that was the sort of coverage
we had in mind. We employed for one more time our reconstruction algorithm on a
2 x 2 grid of data points per substrate surface Brillouin zone. Figures 55 and 56 present
the results we came up with. They are pretty discouraging. Although we still get blobs
at almost the right atomic positions what is most disappointing is the heavily artifacted
images. Were we studing a completely unknown surface we would not be able to tell
which of those blobs are the atoms and which the artifacts.

We will have to look upon our algorithm one more time and determine the cause of

this anomaly. In chapter 5 we present our argumentation towards solving this problem.
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Figure 54: A p(2 x 2) surface mesh (upper panel) with the corresponding reciprocal
space LEED pattern (lower panel)
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Figure 55: Reconstruction of O/Ni(001) structure from theoretically calculated DLEED
diffraction patterns with 2 x 2 data sampling with energy range 113-235eV, C' = 2.5 a.u.
and usage of the y-function.
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Figure 56: Reconstruction of K/Ni(001) structure from theoretically calculated DLEED
diffraction patterns with 2 x 2 data sampling and energy range: 70-435eV. Value of
C = 1.5a.u.. x-function usage was made.



In the meantime we needed a model simulation program that would guide us towards

the right direction of our research. In the chapter that follows we present just that.



Chapter 5

The model DLEED program

5.1 Presentation of the program

In 1986 Saldin and Pendry wrote a sophisticated ForTran program|?] to calculate the
diffuse intensity distribution produced by low-energy electrons scattered from adsorbates
randomly adsorbed on locally identical sites on a clean surface. This program needs as
input data concerning the local geometry of the adsorption, phase shifts of both the
adsorbate and the substrate atoms, as well as, the energy of the incident electrons.
Since we need intensity patterns for more than one energy the user has to edit the input
file and run the program again and repeat this procedure for all the needed energies. The
run-time depends on the particular computer used but is approximately 10 minutes for
the low energies and about 60-70 minutes for the high ones for the CPU R10000 processor
Unix system of the Silicon Graphics Indigo? (IRIX 6.2). This, of course can be done

within the course of a day, but in the case that the user wants to change another feature



he will have to go through this again for another day! In calculating the intensities the
DLEED program takes account of all the possible scatterings of the electrons, which is
what a reliable simulation of an experiment is supposed to do. On the other hand the
researcher who liked to do a faster exploration of the simulated experiment would use a
program, maybe a bit less reliable than the DLEED one, yet flexible and supple.

That was the main reason we decided to write a simple model program that does
almost what the Saldin and Pendry’s does with some simplifications. One of them is that
ours takes into consideration only the most important scattering paths of the electrons.
In order to decide what part is more and what is less important we took, in our opinion,
the most logical step, that is, we considered paths that contain up to two back scatterings
per electron, assuming the more complicated ones weak enough to be left out. Thus we

ended up using the following four terms:

1. The reference wave term. This contains the scattering of the incident electron off

the adsorbed atoms.

2. The object wave term. This contains the scattering of the electron that, having

been scattered off the adsorbate, is scattered by the substrate atom.

3. The reference-primed term. In this case the electron first is scattered by the

substrate and then by the adsorbate.

4. The object-primed term. Here we consider the path followed by the electron that
first gets scattered by the substrate, then by the adsorbate and finally by the

substrate again.



The first two are the basic terms used to do holography; we always need a reference and
an object wave. With the last two terms we take one short step towards the multiple
scattering. This is a way to actually explore the degree of influence multiple scattering
has. In all four cases, the electron, after finishing its scattering, travels towards the
detector. All four paths are clearly shown in figure 57.

The reader can find the code of our program in appendix B but here we will attempt
a short presentation of it analyzing its basic subroutines. The language used is For'Tran
77 and basicaly is portable but it should be taken into consideration that some ForTran
compilers are more selective than others. The program has been tested on three Unix
machines, so far (IRIX 6.2, OSF1 and SunOS 4.2.1), and it has been noticed that the
IRIX and SunOS compilers prefer that the subroutine arguments be declared both inside

the subroutines and in the main program, whereas the OSF1 had no complaint.

subroutine ATOSFAC This subroutine is the basis of the program. It calculates the
atomic scattering factor for the given energy based on the “spherical wave” form

of this quantity[?], that is:

>"(2¢ + 1)e" sin 6, (k) Py(cos 0) o (k) (116)
V4

??‘I»—\

where, ¢,(kr) is the polynomial coefficient of the Hankel function of the first kind,

hﬁl). It can be determined from the recurrence formula:

20+1
cor1(kr) = co 1 (kr) + o (117)
and Py(cosf) are the Legendre polynomials with recurrence formula:
20+ 1)P, P, — (P,
P = ZH AR e (115)

+1
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Figure 57: The simple model program
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Figure 58: The four subroutines: (a) REFERENCE, (b) REFERENCE_PRIMEj;,
(c) OBJECT], (d) OBJECT_PRIMEj;



subroutine REFERENCE For simplicity we assume that the incident electron wave
has unit amplitude. Then the scattering of the adsorbated atom will produce
a wave amplitude equal to the scattering factor of the adsorbate, fu(6.) (fig-
ure 58(a)). If k, and k are the wave vectors of the incident and the scattered

waves respectively then the angle between them will be given by:

kmokm + kyoky + kzokz
k2

cos O, = (119)

Calling subroutine atosfac we calculate f,q that is returned to the main program.
To indicate that the detector is comparatively in a much larger distance than the

atomic distances we give an arbitrary large number for argument 7 (10000.0, say).

subroutine REFERENCE PRIMEj According to figure 58(b), we have defined as
second kind of reference wave the one that comes about from the scattering of
the incident off a substrate atom, (j), and then off the adsorbate. The scattering
off the substrate atom will change the direction of the incident wave vector by an

angle:

mjkaw + yjkyo + zjkzo
k"f’j

cos fs = (120)

giving rise to a wave with amplitude fs,(0;) calculated from atosfac, where r; is
the distance between the the adsorbate and j-substrate atom. This wave, at the

position of the adsorbate will have the form:

fsbM (121)

Ty



(121) will reach the detector in the form:

fad lfsb englkrj)] e ki (122)

J

where exp(—zE - 7;) is the phase difference between the original incident and the

thus scattered wave.

subroutine OBJECT]j Figure 58(c) shows the scattering procedure; the incident wave
is scattered off the adsorbate and then off the substrate atom j. Calling atosfac
twice will calculate the scattering factors of the ad- and the sub-atoms for angles

of deflections:

xjk;co + yjkyo + ijzo

cosf, = e (123)
cos By Tilia ¥ Yilty T 2 (124)
ij
The wave that travels to the detector has the form:
exp(2kr e
fad lfsb ( ])] ek J (125)
s

with exp(uk - 7;) being the phase difference between the incident and the scattered

wave that reach the detector.

subroutine OBJECT PRIMEj In this case (see figure 58(d)), first we have scatter-
ing off the substrate atom j. The scattered wave travels towards the adsorbate

where it is scattered as:

exp(1kr;)

~horT) 126
— (126)

.fsj

and travels towards the substrate atom 7 where it takes the form:

exp(1kr oo exp(2kr;
fu | £, SRURTS) ik, | XDtkT:) (127)

kr; T



Finally this wave will be scattered one more time by the 7 atom and it will reach

the detector with form:

Ji (fa [fsj eXp(lij) 6_“—5“'?7"| LCP(ZkTi) ) e_ZE'Fi (128)

k?”j T
Again, exp(—uk, - 7;) and exp(—uk - 7;) are the phase shifts between the incident

and the total scattered wave.

5.2 Testing the model program

Now it is about time to test our program. Before we even start our exploration towards
solving the anomalous results we observed in the previous chapter we would like to see
whether or not we can reproduce the images reconstructed from DLEED simulations by
the Saldin—Pendry program. In the following pages the reader will find a set of figures
showing reconstructed images of O/Ni(001) and K/Ni(001) using the theoretical diffracr-
tion patterns calculated with our simple program. Of course for the reconstruction we
employed the Chen—Saldin—Vamvakas program. A comparison with the similar images
of the previous pages (figures 42, 47, 43 and 48) renders our model program trustworthy
to continue with our research. (The differences in the C' value between these figures
and those taken from the Saldin—Pendry program are due to the simplicity of the model
program).

Before we finish with this chapter we should test our simplified model with the 2 x 2
sampling. We saw in chapter 3 that our algorithm, at its current form, fails to reconstruct

reliable images from this kind of data distribution. The model calculation should predict
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Figure 59: Reconstruction of O/Ni(001) structure from theoretically calculated diffrac-
tion patterns using the model program and 8 x 8 data sampling with energy range
113-235 eV, usage of x-function and C' = 0.4 a.u.
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Figure 60: Reconstruction of O/Ni(001) structure from theoretically calculated diffrac-
tion patterns using the model program and 4 x 4 data sampling with energy range
113-235 €V, usage of x-function and C' = 0.4 a.u.
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Figure 61: Reconstruction of K/Ni(001) structure from theoretically calculated diffrac-
tion patterns using the model program and 8 x 8 data sampling with energy range
70-235 eV, usage of x-function and C' = 3.5 a.u.
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Figure 62: Reconstruction of K/Ni(001) structure from theoretically calculated diffrac-
tion patterns using the model program and 4 x 4 data sampling with energy range
70-235 eV, usage of x-function and C' = 3.5 a.u.
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Figure 63: Reconstruction of O/Ni(001) structure from theoretically calculated diffrac-
tion patterns using the model program and 2 x 2 data sampling with energy range
113-235 €V, usage of x-function and C' = 0.4 a.u.
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Figure 64: Reconstruction of K/Ni(001) structure from theoretically calculated diffrac-
tion patterns using the model program and 2 x 2 data sampling with energy range
70-235 eV, usage of yx-function and C' = 1.5 a.u.



something similar. Figures 63 and 64 show heavily artifacted reconstructed images which

shows the validity of our model program.



Chapter 6

Holographic reconstruction from

superstructure Bragg spots

6.1 Introduction

In the last chapter of this thesis we show the reader that electron holography can even
be applied to conventional LEED to reconstruct three-dimensional images of atomic
adsorption sites even when they form ordered overlayers with surface unit cells as small
as p(2 x 2).

We will start with a section dedicated to the research we have done during our effort
to improve our reconstructed algorithm. We will discuss the reason the algorithm we
have seen so far fails to provide us with reasonable images of the local adsorption sites of
p(2 x 2) adsorbed overlayers and report on how we approached and solved the problem.

We will also discuss the handling of other factors that may allow the reconstruction of



less distorted images.
Finally, we will show the reader reconstructed 3-dimensional images of the two sys-
tems we have been considering in the previous chapters using a version of the CORRECT

algorithm.

6.2 The story of an algorithm

The holographic reconstruction algorithm, the one we have been employing thus far and
whose final form we are discussing in this chapter, had its origins in the work of John
Barton[?, ?] ten years ago. As we saw in the previous chapters, Dennis Gabor was
the inventor of holography. In its optical form this is nowadays much applied in the
stereoscopic photography. Yet, it was A. Szoke[?] and chiefly J. Barton[?] who first tried
to apply Gabor’s method with photoelectrons and introduced the idea of photoelectron
holography. In that case a photoelectron diffraction pattern may be regarded as arising
from the interference between the wavefunction of an electron emerging directly from a
photoemitter and those arising from subsequent scattering by other atoms close to the
photoemitter. Then, if the former wavefunction is identified with the reference wave and
the latter with the object waves, a diffraction pattern created this way may be regarded
as a hologram. Szoke suggested that a computer algorithm can be employed to recover
the positions of the near-neighbor scattering atoms relative to the photoemitter. Barton

employed the Helmholtz-Kirchoff[?] integral theorem to suggest the following algorithm:

U() = 27:? [ [y exp [ih=(1 = B2 = k)] exp [uh(wh, + yk)] dhsdk, — (129)



where (k) represents the intensities of the diffraction pattern, k, and /;/‘y are the Carte-
sian components of a unit reciprocal space vector and U(7) gives the amplitudes as a
function of the real vector 7. According to Barton, photoelectron diffraction produces
a two-dimensional pattern as a function of reciprocal space vectors lAfw and l;:y. His algo-
rithm is nothing more than a double fast Fourier transform between the two-dimensional
reciprocal space to the two-dimensional real space with unit vectors  and 3. In order
that we have the notion of the third dimension the z-component appears in (129) as the
parameter z. Giving different values to z we get x-y slices of the three-dimensional real
reconstructed image.

The source of electrons in the Szoke-Barton algorithm was the atoms themselves.
Saldin and de Andrés[?] suggested another application of electron holography. They
considered low energy electrons, electrons whose the source is external of the scattering
surface, and suggested that a LEED pattern could be holographically interpreted. As
we have explained in detail in chapter 2, these patterns result from the diffraction of an
electron that has been scattered by an adsorbed atom (the reference wave) and those that
first scattered off the adsorbate and then by the substrate ones. The initial focus was
lattice-gas adsorption, that is, the one that is similar to the early stages of the adsorption
of gas atoms on a clean surface. Each adsorbate “sees” the same local environment of
substrate atoms but interacts very weakly with its neighbor adsorbates. This allows us
to tackle the problem as if we had only one atom adsorbed on the entire clean surface.
This lone atom acts as a beam splitter that is responsible for the reference and the object

waves that interfere. Due to the lack of long-range order amongst the adsorbate atoms,



these two waves do not necessarily interfere destructively between the Bragg spots of the
typical LEED diffraction pattern, but give rise to diffuse intensity that is spread amongst
the bright Bragg spots. The pattern received after the subtraction of the Bragg spots
is called the DLEED diffraction pattern. Making again use of the Helmholtz-Kirchoff

theorem, they suggested a similar to (129) algorithm for the LEED electrons:
U(r) = //I(k, k) exp [—zkz(i . — 25)1/2] exp(—1k(zky + yk,)dk,dk, (130)

Like (129), (130) gives the real space amplitudes on the z-y plane at distance z from the
origin of the coordinate system where the adsorbates is located.
In 1992 Wei and Tong[?] suggested an energy-dependent form of the algorithm in

analogy with earlier work in photoelectron holography[?, ?, 7, ?]:

kmax bad
UF) =3 / x(k, k;)e ®r—FN g (131)
» kmin
i
where EZ is the wavevector of the incident electron and k., and k.. are the minimum

and maximum values of k of the detected electron. x in this case is not simply the

diffraction intensities in the reciprocal space but a function given by:

H'(k;, k)

x(k, ki) = (132)

where H'(k;, I;) is a smooth background function fitted separately to each of the lines
in k-space radiating from the origin. The new feature in (131) is the usage of the x-
function defined in (132) instead of the intensities themselves. Using this algorithm,
Wei and Tong were able to reconstruct well atoms that were close to the directions of
forward scattering of incident electrons from adsorbate atoms on the surface, (the so-

called searchlight effect), but not those in other directions. Consequently, in order to



reconstruct an image of full three dimensional structure of atoms around the adsorbate
it was necessary, in general, to collect diffraction patterns for a range of directions of
the incident electrons, k; and a range of electron energies.

Finally, Saldin et al.[?], suggested the compensated object- and reference-wave recon-

struction by an energy-dependent Cartesian transform (CORRECT) algorithm:

Z ZK F)X —(2kr—k 2) GZE”'W (133)

ky LkL
which produces reliable three-dimensional images. The three most salient points to note
about this algorithm are that (1) it operates not directly on the measured intensities H,

but on a contrast-enhancing and normalizing function:

H(_’) - I_{’a,v(lzﬂ)
H,y (k)

x(k) = (134)

where HaV(EH) is the average value of H for a given Ellv (2) the data are provided on a

Cartesian grid in reciprocal space, and (3) a kernel K:

K(k,7) = IM]_

. (135)

compensates for the amplitude of the reference wave at the position of a scatterer. The
reason this algorithm works even in the presence of partial ordering of an adsorbate is
that x has been constructed such that it contains information on the short-range order
around the adsorbate via H, but that the long-range order term S is cancelled out in

the process of evaluating the quotient in (134).



6.3 DLEED to LEED transition

After this short review of the different forms algorithm (133) has assumed over the
years and the different approaches researchers have taken, we need to point out the
main differences between DLEED and LEED intensities in order that we take the reader
through a smooth transition from the former to the latter.

A question that has to be answered is, since we have proven and shown in the previ-
ous chapters that DLEED intensities can provide enough input for our algorithm to do
a successful reconstruction, why bother with LEED? Why do we have to modify it in
order that it works for LEED intensities too? The answer can be imagined effortlessly
if we remember that the vast majority of structures under investigation or already in-
vestigated manifest long-range order in the plane parallel to the surface. As we have
pointed out earlier in this thesis and will again in the next section, diffuse LEED inten-
sities are the result of low energy electron scattering from disorderedly adsorbed atoms.
We will see later that long-range order amongst the adsorbates results in destructive
interference between the waves originating from different adsorbate-surface clusters ex-
tinguishing thus all diffraction intensities but those concentrating in the newly formed
sharp superstructure spots. The reader can compare figure 41 that shows samples from
DLEED diffraction patterns and figure 65 showing a LEED one. In the latter case all the
diffuse intensity of the former has been concentrated on the newly born superstructure
Bragg spots. It has been proven[?, ?] that if the basic presupposition in both DLEED
and LEED scattering applies, that is, if the scattering between different adsorbates can

be neglected (and it has been shown[?] that this holds even for dense superstructures



Figure 65: Experimental LEED pattern from a O/Ni(001)-p(2x2) surface for an electron
energy of 100 eV. The inset shows the I-V curve of the (1/2 0) beam.



provided we have normal incidence of the electrons), then the newly born bright spots of
LEED patterns contain the same crystallographic information on the local enviroment
of the adsorbate as the corresponding diffuse intensity of DLEED pattern, or to put
it in different words, the diffuse intensity from an adsorbate and its local surroundings
corresponding to a particular value of EII (EII being the parallel component to the surface
of the wave vector k of the scattered electron) has the same energy dependence as the
superstructure spot intensity from an ordered array of such adsorbates in an equivalent
local adsorption geometry and of a surface reciprocal lattice vector equal to the same
value of EH. After this discussion one can understand that the only difference between a
LEED and a DLEED pattern is just that the former has a lot less intensities to be con-
sidered and measured. Here we want to emphasize on a fact that a theoretician does not
have to deal with. It is the difference in the degree of difficulty the intensity of a diffuse
tiny, dim spot can be measured compared to the superstructure large, bright spot which
completes the answer to the question we asked in the beginning of the section. One
other profit that somebody gets from this reduction in data resolution is the increase in
the available energy range; the upper limit can go as high as 400 eV. That in DLEED
experiments would end up in disturbing effects from the much brighter Bragg spots
and thermal diffuse scattering (this last one is a phenomenon present in both DLEED
and LEED where the diffraction patterns are filled up with diffuse intensity from the
scattering of the electrons off the surface atoms that vibrate. In the case of DLEED
this diffuse intensity is added to the elastically scattered one resulting in a complete

distortion of the data and the reconstructed images. On the other hand, in the case of



LEED the Bragg spots are much more brighter and distinguishable than the thermal
diffuse intensity and render its existence unimportant for the holography methods. This
is the reason that DLEED experiments take place in temperetures around 90 K whereas
for LEED the room temperature is just fine).

This small amount of data converts the ensemble from continuous to discrete. So,
the first change that the algorithm has to undergo is the replacement of the integral
over EII in (130) to a sum. One might think that since now we have reduced the number
of data used in the algorithm we should investigate its reliability for small and large
surface unit cells and set its limits. In this thesis we try to set its lower limit to p(2 x 2)
reconstructions whereas Reuter at al. in a recently published paper[?] proved that it
works well for p(3 x 3) unit cell of SiC(111). Of course the larger the new surface
period, the more spots and hence the more data left for the algorithm and the more
similar the situation becomes to the DLEED case. We should also mention the fact that
the LEED pattern contains bright Bragg spots resulting from the scattering from the
substrate atoms, the so-called integral order beams and less bright spots the result from
the scattering between adsorbate and substrate atoms and are called fractional order
beams (figure 74).

Before we finish with this section we should mention that in order to use our holo-
graphic method all we need is a beam-splitter atom that will provide us with a reference
and an object wave, provided that any substrate reconstruction contributes relatively
little to the DLEED pattern or superstructure spots. This has to be the only atom

per superstructure unit cell that breaks the periodicity of the substrate lattice in order



to prevent intermixing of images centered on several such holographic reference wave
sources. It is completely irrelevant whether these beam splitters are adsorbed atoms or

atoms of the clean surface that have undergone reconstruction.

6.4 Elimination of the y-function

The reader will have noticed by now that all the captions of the figures we presented in
chapters 4 and 5 had the indication: “Reconstruction using the y-function”. In chapters
3 and 4 we had explained the reason that led us to suggest this function. We saw there
that by inserting such a function into our algorithm we managed to rid of an important
drawback; the structure factor, S(qj), of the adsorbed atoms which for the case of diffuse
LEED is an unknown quantity due to the lack of long-range order among the adsorbed
atoms. The fact that the data is collected on a Cartesian reciprocal space grid allows
the avoidance of the Bragg spots that carry only partial information about the positions
of the adsorbates relative to the substrates. We have for the structure factor of the

adsorbates.

N
S(qh) = Z e"j]l'(@—f‘n) (90)

n,j=1

where, 7; and 7, are the position vectors of the adsorbed atoms j and n respectively.
These vectors are parallel to the clean surface. ¢ = k— kK , is the momentum transfer
due to the scattering and we keep only the component which is parallel to the surface
due to the dot product in the exponential of (90). Looking at (90) we can distinguish

between three cases:
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Figure 66: Random adsorption



1. When we have fully random adsorption on the clean surface, as figure 66 shows,

the structure factor is equal to N. A simple calculation can show that:

N
S(q@) = Z i (Tn—75)

n,j=1
N N
= Y i (fn=75) 3 il (Tn—=T5)
n=j n#j=1,
= N+0=N (136)

the second sum being zero due to the all possible combinations of the 7, — 7
vectors. Due to this factor the resulting DLEED patterns are just more intense

versions of that from a single adsorbate.

2. In the case that we have partial order of the distribution of the adsorbates on
the clean surface then the structure factor is a quantity which is difficult to be
determined and it does not have a constant value. This unknown and varied value
of S results in altering the diffuse diffraction intensities (but not uniformly as in
the first case of the complete disorder) thus introducing extra structure to the
DLEED pattern. We have shown in chapter 3 that if H, is the DLEED intensity
from only one adsorbate then that from all the adsorbates will be H = H,S. In
(134) S is function only of EH- This enables it, as clearly can be seen in (93), to be
common factor in both the numerator and the denominator and be canceled out,
making x structure factor-free, thus eliminating the unwanted aforesaid problems.
We also discussed, in chapter 3, that the way we have constructed the y-function

enables us to avoid running into Bragg rods (look also at figure 37).

3. The third case is when we have fully ordered adsorption, as figure 67 shows. A
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large number of surface structures belong to this category, like the ¢(2 x 2) or
the p(2 x 2) reconstruction of the clean surface or of adsorbates on it, the two
structures we have been studying (O/Ni(001) and K/Ni(001)) belonging to the

latter category.

Let us take a closer look at that third category. As figure 67 shows, all vectors 7; — 7,
indicate the position of an adsorbed atom. On the other hand ¢ is a reciprocal lattice
vector and we know that the dot product of it with a vector like 7; — 7/, results into
multiples of 27, that is:

gy - (5 — ) = 27 x integer (137)

With this in mind the sum in (90) can be calculated analytically, resulting in:

N
S(@) = > exp(2ur x integer)

Jn=1

= ni (Z exp(2im x integer))

n=1 \j=1

= N x N = N? (138)

From the above simple calculation we see that the structure factor is no longer such
a quantity to take special precautions of, and automatically all the theory that gave
birth to the y-function can be ignored. It can be argued that we may not need to
eliminate the structure factor any longer since it is a constant, but the enhancement of

the interference terms between the reference and object waves in H by subtracting off



the H,, term might worsen the image reconstruction. This can be seen by the following
thinking: The term H,, is a rough approximation of the self-interference terms R*R,
as the reader can recall from chapter 3. This term no longer contains any information
about the phase of the reference wave and depends only on the atomic scattering factor
which varies slowly over the backscattering hemisphere[?] (see also figure 33). Of course
the O*O terms have been ignored due to their very small value compared to |R|*. The
only terms that contain information about the substrate atoms relative to the adsorbate
one are the two interference ones, that is, R*O and RO*. Since in our reconstruction
algorithm we enter the diffraction intensities indirectly through the y-function and since,
as we said, H,, is only a crude approximation of the self-interference terms, it is clear
that this way we cause a degradation of the input data. This may be a reasonable
approximation for large data set, as it is with the DLEED diffraction patterns, where
these deleterious effects are averaged out by the abundance of data. Yet, this is not as
reasonable approximation for limited data, as it is with the p(2 x 2) patterns. Therefore

we suggest that the modified form of the CORRECT algorithm (106) be:

Z Z K F)H (Zk"'—kJ_Z) eZEu-'f"n (139)

ky LkL

where the kernel K is defined in (105). But we still have to cope with the lack of
information the self-interference terms carry and have to find a way to eliminate them.
If one thinks, as we mentioned a few lines ago, that the these terms vary slowly they
would be expected to cause distortions mainly in the part of the reconstructed image
near its origin|[?]. But near the origin we do not expect to find nothing else but the

adsorbate atom. We therefore suggest that we ignore reconstructed intensities within a



small radius sphere around the origin (= 0.5 A).

6.5 The effect of the sampling interval in reciprocal

space

The center of the CORRECT algorithm is a two-dimensional sum over EII which is an
approximate double Fourier transform between the two-dimensional reciprocal and real
space. It contains the summation over discrete values that are associated with the
discrete intensity spots left by the constructive interference of the scattered electrons.
From the mathematical point of view, this recording of the discrete values is called
sampling. The spots that sample the diffraction pattern are located at evenly spaced
intervals from each other. Taking into consideration the aforesaid features (that is, the
discretely sampling and the evenly spaced intervals where this sampling takes place),
we realize that we are coping with a mathematical phenomenon known as aliasing,
associated with the sampling theorem[?]. To be more specific; let us assume that a
continuous function is sampled at equal intervals A. The sampling theorem states that
if this function, sampled at that interval, happens to be bandwidth limited to frequencies
smaller in magnitude that a critical frequency f,., i.e., if its Fourier transform is zero
outside the interval (— f, f.), then the function is completely determined by its samples.

This critical frequency is called Nyquist critical frequency and is defined as:

fo = sx (140)

or
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Figure 68: The sampling theorem and the aliasing phenomenon. (a) h(t) is a function
sampled at equal intervals A. (b) Its true and aliased Fourier tranform, H ().
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fo = ox (141)

depending whether the exponential in the Fourier integrand contains the coefficient 27 or
not. One consequence of this theorem is that if a function is not bandwidth limited to less
that the Nyquist frequency, its Fourier transform within the interval (—f,, f.) contains
information that belongs to frequencies outside the limit that the critical frequency sets.
What actually happens is that all the power spectral density that lies outside of the range
—fe < f < f. is spuriously moved into the range. This phenomenon is what we called
earlier “aliasing” and a visualization of what happens can be seen in figure 68. In panel
(b) of this figure the reader can see both the true and the false Fourier transform of the

function of panel (a) which is sampled at equal intervals A. If the Fourier transformed



function was defined completely with the interval (—1/2A,1/2A) then the true and false
transforms would have been coincided. However, in the case that this does not happen
the transformed function within the critical frequency contains information from both
within and without it. It looks as if the information outside has been folded over or
aliased in the (—f, f.) space. Extrapolating what we have said above to our case,
we understand that our algorithm, due to the aliasing phenomenon, will give rise to
distorted reconstructed images. But, let us attempt to quantify the previous discussion.

In a LEED pattern from a p(2 x 2) superstructure, the reciprocal-lattice rows that
include integer-order Bragg spots sample fractional-order spots at intervals of g, the
magnitude of a substrate reciprocal lattice vector (rows labeled 0, £1,+2, +3 and +4 of
figure 74). The rows that lie between them sample the fractional-order spots at spacings
of g/2 (rows £1/2,4+3/2,+£5/2 and £7/2 in figure 74). Since only the fractional-order
spots are included in the sum over EH in (139), we may assume an effective A of somewhat
between these values. Taking A = g = 27/a (where a is the length of a surface unit
vector of the substrate lattice) and substituting into (140) or (141) we propose that the
safe range of lateral validity of a the reconstructed image is somewhere between +a and
+a/2 from the adsorbate in directions of the real-space lattice vectors[?]. Fortunately,
this limited region of validity does not prevent the recovery of the local environment of
the prominent adatom or adsorbate on the surface in almost any imaginable case. Thus
we suggest that the reduced sampling of diffraction data necessitated by the replacement
of a continuous DLEED pattern by an array of superstructure spots does not lead to a

breakdown of the algorithm (139), but merely limits the lateral range of the image.



6.6 Final results

In this section we are presenting the final results we are getting using the modified

holographic algorithm (139) for both simulated and experimental LEED intensities.

6.6.1 DLEED 2 x 2 sampling

We will start from the point we had left off at the end of chapters 4 and 5. The
reader should recall that there we had tried to reconstruct images using diffuse LEED
diffraction patterns with a sampling of 2 x 2. Our attempt was disappointing, as one can
recall by looking at figures 55, and 56, where the images were either heavily artifacted
or unrecognizable. We repeated our calculations using diffraction patterns produced by
our model program (see appendix B) with the same disappointing results (figure 63 and
64). At that point we had concluded that the algorithm were not working appropriately
and needed modification.

In what it follows we present our new reconstructed images that came about after we
had used the new modified CORRECT algorithm. We started off with our model pro-
gram and continued on with the DLEED program of Pendry and Saldin[?]. Figures 69,

70, 71 and 72 show the reader the fine images we obtained.

6.6.2 Simulated LEED data from ordered adsorbates

Next we attempted to reconstruct images from realistic LEED data. First we tried to
apply our method to simulated data. To do this we ran the van Hove-Tong LEED pro-

gram that simulates a conventional LEED experiment for different structures|[?]. We



O/Ni(001)

Figure 69: Reconstruction of O/Ni(001) structure from theoretically calculated DLEED
diffraction patterns using the model program. Energy range: 113-235¢eV, C = 5.0 a.u..
No usage of the y-function was made.
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Figure 70: Reconstruction of K/Ni(001) structure from theoretically calculated DLEED
diffraction patterns using the model program. Energy range: 70-435eV, C' = 25.5 a.u..
No usage of the y-function was made.
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Figure 71: Reconstruction of O/Ni(001) structure from theoretically calculated DLEED

diffraction patterns. Energy range: 113-235eV, C' = 1.0 a.u.. No usage of the x-function
was made.



Figure 72: Reconstruction of K/Ni(001) structure from theoretically calculated DLEED

diffraction patterns. Energy range: 70-435eV, C' = 1.1 a.u.. No usage of the y-function
was made.
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Figure 73: Geometry of a p(2 x 2) overlayer in hollow site on an fcc (001) surface. a is
the surface lattice constant.

considered the fcc (001) substrate with a p(2 x 2) overlayer and we limited ourselves to
hollow adsorption site (figure 73) and to normal electron incidence. We repeated our
calculations for O/Ni(001)-p(2 x 2) and the artificial K/Ni(001)-p(2x 2) (since the potas-
sium over the clean surface of the nickel really reconstructs as p(4 x2)). We produced 25
diffraction patterns with energy range from 120.0 eV (4.41 a.u.) to 360.0eV(13.24 a.u.)
for both adsorbates. Each diffraction pattern contains 249 beams (69 integral-order and
180 fractional-order), as figure 74 shows. In order that the simulation was as close to the
experiment as possible we limited our data used within a 50° polar semi-angle, which
corresponds to the standard angular range of conventional electron detectors[?] and ad-
ditionally had been shown to be the most appropriate in earlier holographic DLEED

investigations [?].
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Figure 74: Reciprocal space pattern: Open circles represent integral-order beams, filled
circles represent fractional-order beams



0/Ni(001)-p(2 x 2)

Figure 75 clearly identifies the four-fold adsorption site of the oxygen on the clean surface
of nickel. The oxygen is weak scatterer compared to the strong nickel. Thus one would
expect distorted images since the beam splitter (O) in this case would not produce strong
reference waves. The above figure proves that our algorithm works even in this case very
well. The optimum C' constant was found equal to C' = 1.05 a.u.(0.56 A). The atoms of
the first layer appear displaced inwards. This is due to the simplicity of the kernel K at
its present stage which is only a 0*" approximation to the backscattering properties of

the system|?].

K /Ni(001)-p(2 x 2)

Although the potassium does not reconstruct as a p(2 x 2) but as p(4 x 2), nevertheless
we wanted to test the validity of our method with this too[?]. We positioned K at the
four-fold hollow site, 2.56 A above the surface of nickel. Figure 76 does not leave us with

any doubt about the reliability of the CORRECT algorithm.

6.6.3 Experimental data

As a last step we try to invert experimental data of the O/Ni(001)-p(2x2) system.
After standard crystal preparation, the Ni substrate was subjected to an exposure
2x1078 mbar of O for 60 sec at 90 K. Subsequent annealing at 500 K led to the formation
of a sharp p(2x2) superstructure pattern. The measurement was performed using the

standard Video-LEED system developed by the group of Klaus Heinz [?, ?] and included



O/Ni(001)

Figure 75: Reconstruction of O/Ni(001)-p(2 x 2) structure from 25 theoretically calcu-
lated LEED patterns (120.0 eV (4.41 a.u.) to 360.0 eV (13.24 a.u.)).
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Figure 76: Reconstruction of K/Ni(001)-p(2 x 2) structure from 25 theoretically calcu-
lated LEED patterns (120.0 eV (4.41 a.u.) to 360.0 eV (13.24 a.u.)).



4-fold symmetry averaging according to the expected rotational symmetry of the diffrac-
tion pattern. The full data set comprises the 8 symmetry inequivalent fractional-order
beams closest to specular reflection in the energy range 90 — 344 eV. Good agreement
of this enlarged data set was found with the three fractional-order spot I-V curves used
in the earlier quantitative LEED study [?]. Figure 77 shows the reconstructed local
adsorption geometry. Although the experimental data set is smaller with respect to the
total energy range and the total number of fractional-order beams, we nevertheless find
essentially the same stability, accuracy and unambiguity of the image as described for
the other data sets. Even on reducing the number of beams used to the 5 nearest to the
(00) beam in the diffraction patterns, the image continued to reliably show the 4-fold
hollow adsorption site with an only slightly degraded overall image quality.

This final result shows, that no particularly large data set needs to be measured
to ensure a proper working of the reconstruction algorithm. Rather, it is the same I-
V curves that are measured for a quantitative LEED analysis, that also provide the
input to the holographic inversion. Ultimately, it is only this similarity of required data
that can make holographic LEED a practically useful complement to the established

quantitative LEED analysis at the present time.
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Figure 77: Reconstruction of O/Ni(001)-p(2 x 2) structure from 25 experimental LEED
patterns (120.0 eV (4.41 a.u.) to 360.0 eV (13.24 a.u.)).



Chapter 7

Conclusions

Our main goal was to develop a method that will act as a guide to analytical LEED
calculations. It is made clear from the first chapter that these calculations are time
consuming and employ a trial-and-error scheme that mostly depends on the experience
of the scientist and the power of computation equipment he has at his disposal. We
remind ourselves what the LEED cycle is by looking at figure 1 of the introduction.
The LEED pattern analyzer will have to start his investigation of the structure that is
hidden behind it by assuming a tentative structure. This part of the investigation is
extremely important and can dramatically affect the time that the search will take. It
is understandable that if the choice of the trial structure is a poor one the whole cycle
will start off on the wrong foot resulting in disappointing failures. Of course LEED is
a method that so far has solved many simple and complicated surface structures and
the people working on it are experts in picking the right trial structure. However, if

we had a way to really visualize the object of our investigation and use that to kick



off the LEED cycle as shown in figure 1 we would be able to save enormous amounts
of both computational and human time. It is exactly this aim that holographic LEED
(h-LEED) promises to fill, at least with a certain common class of surface structures.
The development of this method was the main subject of this thesis. We did not try
to solve any really unknown structure; the two systems we worked on, O/Ni(001) and
K/Ni(001), have been solved years ago using conventional LEED methods [?, 7, ?, ?,
?,?2,7,7, 7, ?]. But the idea behind this effort was consistent with the route any new
surface method follows; that is, we test its ability to do real investigation by analyzing
well known systems. Only when we exhaust it on as many such known systems as we
can and see that it correctly produces the same results as other traditional methods do,
are we then ready to look upon it closer and try to test it with an unknown system.
Recently a paper by K. Reuter at al. published[?] in the Physical Review Letters, the
first one where the solution of the (3 x 3) reconstruction of SiC(111) using h-LEED was
announced. After this success we feel that the time has come to announce that h-LEED
is a reliable surface method and it can be used in connection with conventional LEED and
other methods for surface investigation. We saw the historical course the CORRECT
algorithm followed before it reached the current form. As we have mentioned so many
times and the reader will have surely realized by now, this algorithm is just the zeroth
approximation of the method. It is subject to and will undergo changes. One basic
reformation that ought to take place has to do with the kernel function (K (k,7)). The
numerator comprises of two terms. The second of them, which represents the scattering

off the substrate atoms, at this point has been set equal to a constant, following the
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Figure 78: The future of h-LEED




argumentation in chapter 3. This obviously is not quite right. It is most likely that the
scattering by the substrate atoms is under the influence of the energy of the incident
electrons, fact that, in this initial stage of the algorithm, has been ignored. On the other
hand, it is obvious from the two systems we have studied (O/Ni(001) and K/Ni(001)),
that the value of this term depends on the structure. This observation has not been
exploited as much. One other feature that we kept mentioning in this dissertation
is the removal of the Bragg spots from the experimental diffraction patterns or their
omission during the simulation of the experiment. These spots carry two different kinds
of information. The first kind has to do with the substarte atoms that is not used from
h-LEED. The other kind has to do with the adsorbates relative to the substrates, since
some reference and object beams interfere constructively at exactly the positions of the
Bragg spots. Unfortunately, at this moment we do not have a mechanism, a method
that will isolate the former and release the useful for holography latter information.
That is the reason we omit them completely. A future research, maybe another PhD
thesis, will try to take the method one or more steps further by attempting to address
both approximations we cited above. After such an investigation and development the
CORRECT algorithm may be tested to more structurally complicated surfaces.

In one of the original papers, when DLEED holography was still in its baby cradle,
Dr. Saldin was wondering: “Atomic-Resolution Electron Holography—A realization of
Gabor’s Dream?”[?]. Now we believe that the answer is more positive than ever before.
We do not know when exactly it will happen but we feel that a day when a LEED pattern

will be fed in a “black box” (figure 78) which will be able to output a 3D holographic



Figure 79: The h-LEED group, from right to left: Karsten Reuter, Dilano K. Saldin,
John A. Vamvakas

image of the structure that produced the pattern is not too far away.
The three persons worked so that h-LEED becomes a reliable method are shown in

figure 79.



Figure 80: The PhD commitee; From left to right and from upper to lower: Marija
Gajdardziska-Josifovska, Brian P. Tonner, Jun Nogami, Richard S. Sorbello, Dilano K.
Saldin
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Appendix A

Calculation of the maximum value

of angular momentum, /.«

Figure 81: The classical trajectory of an electron approaches the ion-core no closer than
a distance Ry determined by the angular momentum. If R, is greater than the muffin-tin
radius, R, the classical particle does not penetrate the potential

Following the elementary treatment from L.I. Schiff’s “Quantum Mechanics”[?], we
can think as follows: All the potential is confined in a sphere of radius R. Suppose there

is a classical particle of angular momentum ¢ about the center of the ion core, and linear



momentum p. Then, at a distance R, from the center of the potential sphere its angular

momentum will be given by:

pRz =/(h (142)

According to classical Physics, if R, > R the particle will never see the potential as
figure 81 shows. On the other hand, if the particle is treated quantum mechanically it
will be able to penetrate into the classically forbidden region. But the more the classical
laws are violated by this penetration the less probability there is of this happening. This
means that when R, &~ R the electron will see only the outermost parts of the ion-core
where the potential is weakest. Substituting in (142) a typical electron energy, 50 eV,
say, which corresponds to a momentum of 3.95 x 10~2¢mKg/s and a typical muffin-tin

radius of 1.25 A, we will find a maximum value for the angular momentum:
pR
Z1'nax = Te

3.95 x 10724 x 1.25710
1.05 x 1034

12

[
W

(143)



Appendix B

The model program and its

accesories

B.1 The Simple DLeeD Program

The program Simple DLeeD (see B.2) calculates the diffuse LEED diffraction pattern
for one energy at a time defined in line 11 as parameter engy. Actually this energy is
fed into the program from a simple C-shell script (see B.6). When the pattern has been
calculated for one energy (energyl, say) the script feeds the program with the next one
(energy2) until all engy energies have been used up. The parameter NN in line 12
indicates which energy is calculated each time and takes values from 1 to num. Line 13
defines the number of the atoms used, NATO, the total number of energies, num, and
the maximum value of the angular momentum, /,,,x. The pattern calculated is a square

matrix dimension nkx x nky in the reciprocal space with resolution dk, defined in line



15. theta and phi in line 16 indicate the incident angle.

After the declaration part (lines 19 through 26) the program starts reading in the
data files (lines 30-61). It begins with the positions of the cluster atoms. File cluster,
(B.3), contains that information. Following are the phase shifts of both the adsorbate
and the substrate atoms contained in the files ps.ads and ps.sub. (B.4) shows a sample
of the contents of a phase shift file. We need the phase shifts up to a maximum angular
momentum /... S0, each energy is followed by the phase shifts in radians corresponded
to 0,1,...,lhax angular momenta.

Lines 71 through 132 contain the main program. The two-dimensional reciprocal
space is tiled up in a nkxr x nky array. At each point of the array it calculates the
instensity of four beams interfering there. These four beams are: (a) The first kind
reference wave (calculated by the reference subroutine in line 86), (b) the second kind
reference wave (calculated by the subroutine reference_ primej in line 93), (c) the first
kind and (d) the second kind object waves (calculated by subroutines objectj and o0b-
ject_primeji in lines 97 and 106 respectively). The algorithm followed by the program

has the form:

FOR ALL POINTS IN THE RECIPROCAL SPACE
CALCULATE THE REFERENCE WAVE (REF)
FOR EACH ATOM j OF THE CLUSTER

CALCULATE THE SECOND REFERENCE WAVE (REFP)

CALCULATE THE OBJECT WAVE (0OBJ)

CALCULATE THE SECOND OBJECT WAVE (OBPJ)



ADD THEM ALL UP (P = REF + REFP + 0BJ + 0BPJ)
CALCULATE THE INTENSITY

END

In line 117 the program determines the maximum value the calculated intensity has and

uses it in line 123 to normalize the entire pattern.

A sample of the typical output is given in (B.5).

B.2 The code

1 cccccccceecececececeeeeeeeeceeececcctttccCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
2 PROGRAM Simple DLeeD

KN dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd o

4 c Author: John A. Vamvakas

5 ¢ Author started writting it on: Thurday, August 22, 1996
6 c Last modification: Tuesday, November 26, 1996

7T c NOTE: Dr. Xiang Chen helped the author with a number
8 ¢ of useful observations. His contribution is

9 ¢ greatly appreciated.

10 ccceeccecececececeececececeececcccccCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee

11 parameter (engy=0.0000)
12 parameter (NN=0)
13 parameter (NAT0=5,num=30, 1max=9)

14 parameter (nkx=81,nky=81,dk=0.16698)



15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

parameter (pi=3.1415926535897931)
parameter (theta=3.*pi/4.,fi=0.0)

parameter (ik=8,1j=0)

character*70 dummy

complex ci,p,ref,refp,refpj,ob,obj,obp,obpji
complex del_ad(num,0:lmax+1),del_sb(num,0:1lmax+1)
real ps_r(0:1max+1) ,hankl(0:1max),1lgn_pl(0:1lmax+1)
real kx,ky,k,kO0x,kOy,k0z,k_prll

real pinte(nkx,nky),cluster(300,100)

ci=(0.0,1.0)

¢ Reads in cluster data from channel 4 (file: "cluster")

open(4,file="cluster",status="0ld")
doi=1,11

read(4,3)dummy
enddo
read(4,1)or_id,or_x,or_y,or_z
do i=1,NATO

read(4,2) (cluster(i,j),j=1,7)

enddo



38

39

40

41

42

43

44

45

46

46

48

49

50

51

52

53

54

55

56

57

58

59

60

close(4)

c Reads in phase shifts for substrate (atom type 2 in file

¢ "cluster") from channel 8 (file: "ps.sub")

open(8,file="ps.sub",status="o0ld")

read(8,*)im

c Reads in phase shifts for adsorbate (atom type 1 in file

¢ "cluster") from channel 9 (file: "ps.ads")

open(9,file="ps.ads",status="01d")

read(9,*)im

do n = 1,num
read(9,15)energy_ads, (ps_r(i) ,i=0,1lmax)

do i=0,1lmax

del_ad(n,i)=ps_r(i)+ci*0.0
enddo
read(8,15)energy_sub, (ps_r(i),i=0,1lmax)
do i=0,1max

del_sb(n,i)=ps_r(i)+ci*0.0

enddo



61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

enddo
1 format(i5,f14.5,f10.5,f10.5)
2 format(i5,f14.5,f10.5,f10.5,f8.3,f6.1,1i5)
3 format (a61)

15 format(6e12.5)
close(9)

close(8)

pmax=0.0

k = sqrt(2.*engy)

kOx = k*sin(theta)*cos(fi)
kOy = k*sin(theta)*sin(fi)
k0z = sqrt(k**2-k0x**2-k0y**2)

do iky = 1,nky
ky = dk*(iky-(nky-1)/2-1)
do ikx = 1,nkx
kx = dk*(ikx-(nkx-1)/2-1)
k_prll = sqrt(kx**2+ky**2)
ref = (0.0,0.0)
refp = (0.0,0.0)

ob = (0.0,0.0)



84

85

86

87

88

89

90

91

92

93

94

95

96

o7

98

99

100

101

102

103

104

105

106

obp = (0.

0,0.0)

if (k_prll.le.k) then

call reference(lmax,engy,num,NN,del_ad,ref,

& k,
do j =
Xj =
yi =
zj =
rj =
call
&
&
refp
call
&
&
ob =

kx,ky,k0x,k0y,k0z,1gn_pl,hankl)

1,NATO

cluster(j,2)

cluster(j,3)

-cluster(j,4)

cluster(j,5)

reference_primej(lmax,engy,num,NN,del_ad,

del_sb,refpj,xj,yj,zj,rj,k,kx,ky,k0x,k0y,

k0z,1lgn_pl,hankl)

= refp + refpj

objectj(lmax,engy,num,NN,del_ad,del_sb,
obj,xj,yj,zj,rj,k,kx,ky,k0x,k0y,k0z,

lgn_pl,hankl)

ob + obj

do i = 1,NATO

xi
yi
zi

ri

= cluster(i,?2)
= cluster(i,3)
= -cluster(i,b4)

= cluster(i,5)

call object_primeji(lmax,engy,num,NN,del_ad,del_sb,



107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

100

101

102

103

obpji,xj,xi,yj,yi,zj,zi,rj,ri,k,kx,ky,kOx,
kOy,k0z,1gn_pl,hankl)
obp = obp + obpji
enddo
enddo
endif

p = ref + refp + ob + obp

p = ref + refp + ob

P ref + ob
pinte(ikx,iky) = (cabs(p))**2
if (pinte(ikx,iky).ge.pmax) pmax = pinte(ikx,iky)
enddo
enddo
write(100,100)engy,theta,fi
write(100,101)ik,ij
do iky=1,nky
write(100,102) (pinte (ikx,iky)*990./pmax,ikx=1,nkx)
enddo
write(100,103)pmax
format (3£7.4)
format (2i3)

format (10£8.3)

format(e13.6)



130

131 STOP

132 END ! PROGRAM Simple DLeeD

KRN dddddddddddddddddddddddddddddddddddddddddddddddddddddddd o f STl
134 ¢ SUBROUTINES c

135 ¢€CCcCceeeeeeeeeeeeecceCCCCCCCCCCCCCCCCCCCCCCCCCecccececceecceecececee

136 subroutine reference(lmax,engy,num,NN,del_ad,ref,
137 & k,kx,ky,k0x,k0y,k0z,1gn_pl,hankl)
138

139 c¢ ‘‘reference’’ calculates the wave scattered off the adsorbate
140 c atom (Oxygen) in the form of spherical one. This information
141 c is borne by the atomic scattering factor ‘‘f_ad’’ calculated
142 ¢ by the ‘‘atosfac’’ subroutine. ¢‘10000.’’ represents the

143 c distance of the sample from the detector and is arbitrary.
144 ¢ The author chose this number to indicate that the distance
145 ¢ between the sample and the detector compared to the

146 ¢ interatomic ones within therein is infinate.

147

148 real engy,k,kx,ky,kz,k_prll,k0x,k0y,k0z,1gn_pl(0:1lmax+1)
149 complex ci,del_ad(num,0:1lmax+1)

150 complex ref,f_ad,hankl(0:1max)

151

152 ci=cmplx(0.0,1.0)
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168
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175

k_prll = sqrt(kx**2+ky**2)

kz = sqrt (k**2-k_prll**2)

costh = (kx*kOx+ky*kOy+kz*k0z)/ (k**2)

call atosfac(costh,del_ad,engy,num,NN,f_ad,10000.,
& lgn_pl,hankl,lmax)

ref = f_ad

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCecce

subroutine reference_primej(lmax,engy,num,NN,del_ad,
& del_sb,refpj,xj,yj,zj,rj,k,kx,ky,k0x,k0y,k0z,

& lgn_pl,hankl)

c ‘‘reference_primej’’ subroutine calculates the wave that has
c undergone one scattering off a substrate atom (Nickel) and

c another one off the adsorbate (Oxygen). These two

c scatterings appear through the ‘‘f_sb’’ and ‘‘f_ad’’.

¢ The term ‘‘e_ikOrj’’ contains the information about the

¢ phase difference between the wave traveling to the

¢ detector having been scattered off the adsorbate atom

¢ (the so-called reference wave) and this one.



176 real engy,k,kx,ky,kz,k0x,k0y,k0z,k_prll,kdotr,kOdotr

177 real 1lgn_pl(0:1lmax+1)

178 complex hankl(0:1lmax)

179 complex ci,del_ad(num,0:1lmax+1),del_sb(num,0:1lmax+1)
180 complex refpj,f_ad,f_sb,e_ikrj,e_ikOrj

181

182 ci=cmplx(0.0,1.0)

183

184 k_prll = sqrt (kx**2+ky**2)

185 kz = sqrt (k**2-k_prllx*2)

186 kdotr = xj*kx+yj*ky+zj*kz

187 kOdotr = xj*kOx+yj*kOy+zj*k0z

188 e_ikrj = cexp(ci¥k*rj)

189 e_ikOrj = cexp(cixkOdotr)

190 costh_s = kOdotr/(k*rj)

191 costh_a = kdotr/ (k*rj)

192 call atosfac(costh_a,del_ad,engy,num,NN,f_ad,rj,
193 & lgn_pl,hankl,lmax)

194 call atosfac(costh_s,del_sb,engy,num,NN,f_sb,rj,
195 & lgn_pl,hankl,lmax)

196 refpj = f_ad*f_sbx(e_ikrj/rj)*e_ikOrj

197 return

198 end
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(¢]

subroutine objectj(lmax,engy,num,NN,del_ad,del_sb,obj,

& xj,yj,2j,rj,k,kx,ky,k0x,k0y,k0z,1gn_pl,hankl)

‘‘objectj’’ calculates the wave that (having been scattered off
the adsorbate atom first) scatters off the substrate atom.
The ‘‘e_ikr’’ is the phase difference between the refernce wave

and this ome.

real engy,k,k_prll, kx,ky,kz,k0x,k0y,k0z,kdotr

real 1gn_pl(0:1lmax+1)

complex hankl(0:1lmax)

complex ci,del_ad(num,0:1lmax+1) ,del_sb(num,0:1lmax+1)

complex obj,f_ad,f_sb,e_ikOrj,e_ikdotr

ci=cmplx(0.0,1.0)

k_prll = sqrt(kx**2+ky**2)
kz = sqrt (k**2-k_prll*x2)
kdotr = xj*kx+yj*ky+zj*kz
e_ikOrj = cexp(cixk#*rj)

e_ikdotr = cexp(-ci*kdotr)

costh_s = kdotr/(k*rj)



222 costh_a = (xj*kOx+yj*kOy+zj*k0z)/(k*rj)

223 call atosfac(costh_a,del_ad,engy,num,NN,f_ad,rj,
224 & lgn_pl,hankl,lmax)

225 call atosfac(costh_s,del_sb,engy,num,NN,f_sb,rj,
226 & lgn_pl,hankl,lmax)

227 obj = f_ad*f_sb*(e_ikOrj/rj)*e_ikdotr

228 return

229 end

230 cceeeeeeeceeeececcccCccCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCececce

231 subroutine object_primeji(lmax,engy,num,NN,del_ad,del_sb,
232 & obpji,xj,xi,yj,yi,zj,zi,rj,ri,k,kx,ky,
233 & kOx,k0y,k0z,1gn_pl,hankl)

234

235 real engy,k,kx,ky,kz,k0x,k0y,k0z,k_prll

236 real kdotri,kOdotrj

237 real 1gn_pl(0:1lmax+1)

238 complex hankl (0:1lmax)

239 complex ci,del_ad(num,0:lmax+1),del_sb(num,0:1lmax+1)
240 complex obpji,f_ad,f_si,f_sj,e_ikrj,e_ikOrj,e_ikri
241 complex e_ikOdotrj,e_ikdotri

242

243 ci=cmplx(0.0,1.0)

244



245 k_prll = sqrt(kx**2+ky**2)

246 kz = sqrt (k**2-k_prll**2)

247 kOdotrj = kOx*xj+kOy*yj+k0z*zj

248 kdotri = kx*xit+ky*yit+kz*zi

249 ridotrj = xi*xj+yixyj+zi*zj

250 costh_sj = kOdotrj/(k*rj)

251 costh_si = kdotri/(k*ri)

252 costh_a = ridotrj/(ri*rj)

253 e_ikrj = exp(cixk*rj)

254 e_ikri = exp(cixk*ri)

255 e_ikOdotrj = exp(cixkOdotrj)

256 e_ikdotri = exp(-cixkdotri)

257 call atosfac(costh_a,del_ad,engy,num,NN,f_ad,ri,
258 & lgn_pl,hankl,lmax)

259 call atosfac(costh_sj,del_sb,engy,num,NN,f_sj,rj,
260 & lgn_pl,hankl,lmax)

261 call atosfac(costh_si,del_sb,engy,num,NN,f_si,ri,
262 & lgn_pl,hankl,lmax)

263 obpji = f_ad*f_sixf_sj*(e_ikrj/rj)*(e_ikri/ri)=*
264 & e_ikOdotrj*e_ikdotri

265 return

266 end

267 C€CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeccece
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subroutine atosfac(costh,del,engy,num,NN,f,r,

& lgn_pl,hankl,lmax)

c ‘‘atosfac’’ calculates the

c atomic scattering factors. ‘‘lgn_pl’’ and ‘‘hankl’’ stand
¢ for Legandre Polynomials and coefficient Hankel Functions
c respectively. ‘‘costh’’ is the cosine of the angle of

c scattering. ‘‘del’’ is the phase shift.

c ‘‘engy’’ is the energy of the incident electron.

c ‘“f?’ is the scattering factor given out by the subroutine.
¢ ‘‘r’’ is the distance the electron travels before its next

c scattering or before it reaches the detector.

real engy,lgn_pl(0:lmax+1) .,k

complex ci,f,del(num,0:1lmax+1),hankl (0:1lmax)

ci=cmplx(0.0,1.0)

¢ Calculate the Legendre polynomials

lgn_pl(0)=1.0

lgn_pl(1)=costh

do 1=1,1max-1
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pp=(2.0*float(1)+1.0)*1gn_pl(1)*1lgn_pl(1)
qq=float (1)*1gn_pl(1l-1)
lgn_pl(1+1)=(pp-qq)/(float(1)+1.0)

enddo

¢ Atomic scattering factor with coefficient of the Hankel

¢ function

hank1(0)=(1.0,0.0)
k=sqrt(2.*engy)
hankl (1)=1.+ci/ (k*r)
do 1=1,1max-1
hankl (1+1)=hankl (1-1)+float (2%1+1)*ci/ (k*r)
& xhank1 (1)

enddo

c Atomic scattering factor

£=(0.0,0.0)
do 1=0,1max

f=f+(2x1+1) *cexp(ci*del (NN,1))*sin(del (NN,1))
& *1gn_pl(1)*hankl (1)

enddo



314 f=f/k
315 return

316 end

B.3 The atoms coordinates input file

2 I.D; 1-Adsorbate, 2-Substrate

3 r(au) = sqrt(x**2 + y**2 +x**2)

4 r(A) = r(au) * 0.529

5 theta = (from topview) the angle between the +x axis and

6 the line connecting the atom type 1 and atom

7 type 2. Atom type 1 sits at the center of the

8 coordinate system.

9 ===
10 I.D x(au) y(au) z(au) r(au) r(A) theta
11

12 1 0.00000 0.00000 0.00000

13 2 2.35177 2.35177 1.54958 3.669 1.9 45
14 2 -2.35177 -2.35177 1.54958 3.669 1.9 225
15 2 -2.35177 2.35177 1.54958 3.669 1.9 135

16 2 2.35177 -2.35177 1.54958 3.669 1.9 315



B.4 Phase shifts input file sample

Each set of phase shifts comprises two lines. The first number of the first line in-

dicates the energy in Hartrees. The rest are the phase shifts for angular momenta

(=0,1,2,---,10.

.73500E+00 0.11172E+01 0.14147E+01 0.13700E-01 0.40000E-03 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
.91880E+00 0.10080E+01 0.15840E+01 0.23000E-01 0.80000E-03 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
.11025E+01 0.91540E+00 0.16643E+01 0.34800E-01 0.15000E-02 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
.12863E+01 0.83460E+00 0.17018E+01 0.49200E-01 0.24000E-02 0.10000E-03
.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
.14700E+01 0.76280E+00 0.17174E+01 0.66100E-01 0.37000E-02 0.20000E-03
.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
.16538E+01 0.69800E+00 0.17212E+01 0.85100E-01 0.53000E-02 0.30000E-03
.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
.18376E+01 0.63910E+00 0.17184E+01 0.10620E+00 0.73000E-02 0.40000E-03
.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
.20213E+01 0.58500E+00 0.17118E+01 0.12910E+00 0.98000E-02 0.60000E-03
.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
.22051E+01 0.53510E+00 0.17030E+01 0.15340E+00 0.12600E-01 0.90000E-03
.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00



0.23888E+01 0.48870E+00 0.16932E+01 0.17890E+00 0.16000E-01 0.12000E-02

B.5 Sample of a typical output

The first line contains information about the energy in Hartrees (first number) and the
angles of incidence (6 and ¢). The next line idicates the usage of 8 x 8 grid of data
per Brillouin zone. The body of the output contains the intensities that are written
out as arrays of 81 x 81 (81 groups of 81 intensities per group). The last line gives the

maximum intensity.

2.5726 2.3562 0.0000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 491.468 437.913 328.743 236.230 186.085 173.245 178.377
182.626 178.377 173.245 186.085 236.230 328.743 437.913 491.469 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000



0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 668.060 832.539 712.252 489.275 293.272 192.238 196.470 269.379 350.169
384.326 350.169 269.379 196.470 192.238 293.272 489.275 712.252 832.539 668.060
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000

0.479733E+00

B.6 The C-shell script

This script has been developed to automatize the feeding of the main program with

energies.

1 #!/usr/bin/csh

2 #

3 set old_eng = 0.0000

4 @ old_indx =0

5 @ indx =1

6 foreach energy (energyl energy2 ... energyeng 0.0000)

7 ex - dld2.f << EOF



10

11

12

13

14

15

16

17

18

19

20

21

22

12s/$0ld_eng/$energy

13s/$01d_indx/$indx

EQOF

set old_eng = "$energy"

£77 dld2.

a.out

/usr/bin/mv fort.100 fort.$indx

f

@ old_indx

Q@ indx++

if ($indx > 37) then

Q@ indx

endif

end

0

$indx
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