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ABSTRACT

This dissertation addresses the theories and applications of three important
surface analysis techniques: Auger electron diffraction (AED), x-ray photoelectron

diffraction (XPD), and Auger and photoelectron holography.

A full multiple-scattering scheme for the calculations of XPD, AED, and
Kikuchi electron diffraction pattern from a surface cluster is described. It is used
to simulate 64 eV My 3VV and 914 eV L3yVV AED patterns from Cu(001) surfaces,
in order to test assertions in the literature that they are explicable by a classical
“blocking” and channeling model. We find that this contention is not valid, and
that only a quantum mechanical multiple-scattering calculation is able to simulate

these patterns well.
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The same multiple-scattering simulation scheme is also used to investigate
the anomalous phenomena of peak shifts off the forward-scattering directions in
photoelectron diffraction patterns of Mg K LL (1180 eV) and O 1s (955 eV) from
MgO(001) surfaces. These shifts are explained by calculations assuming a short
electron mean free path. Similar simulations of XPD from a CoSiy(111) surface for

Co-3p and Si-2p normal emission agree well with experimental diffraction patterns.

A filtering process aimed at eliminating the self-interference effect in photo-
electron holography is developed. A better reconstructed image from Si-2p XPD
from a Si(001) [2x1] surface is seen at atomic resolution. A reconstruction algo-
rithm which corrects for the anisotropic emitter waves as well as the anisotropic
atomic scattering factors is used for holographic reconstruction from a Co-3p XPD
pattern from a CoSiy surface. This new algorithm considerably improves the re-

constructed image.

Finally, a new reconstruction algorithm called “atomic position recovery by
iterative optimization of reconstructed intensities” (APRIORI), which takes ac-
count of the self-interference terms omitted by the other holographic algorithms, is
developed. Tests on a Ni-C-O chain and Si(111)(v/3 x v/3)B surface suggest that
this new method may overcome the twin image problem in the traditional holo-
graphic methods, reduce the artifacts in real space, and even separately identify

the chemical species of the scatterers.

Dilano K. Saldin Date
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CHAPTER 1

Introduction

The investigation of a solid surface has been an important field of research
in science for the last two decades, and will become even more crucial in the
next century as the development of modern devices urge more detailed investi-
gations of the properties of solid surfaces when the devices become smaller and
smaller. The study of the growth of ultrathin epitaxial films on single-crystal
substrates under controlled conditions, the function of a catalyst in a chemical
reaction process and the interaction of adatoms with the substrate offer a great
challenge to surface science. Surface structure probes such as Low-Energy Elec-
tron Diffraction(LEED), Auger Electron Diffraction(AED), X-ray Photoelectron
Diffraction(XPD) and Scanning Tunneling Microscopy(STM) are powerful tools
to explore solid surfaces. For a surface chemical composition analysis, Auger Elec-
tron Spectroscopy(AES), X-ray Photoelectron Spectroscopy(XPS) and Secondary

Ton Mass Spectroscopy (SIMS) are sensitive analytical methods.

Surface sensitivity of electron spectroscopy techniques is based on two ex-
perimental facts: (1) electrons with kinetic energies in the range of 15 to 1000 eV
have a very short inelastic scattering length (< 104) in solid, and (2) the binding
energy of a core-level electron is a sensitive function of atomic identity. There-
fore, measurements of the kinetic energy of electrons emitted from a solid after the
excitation can provide surface specific elemental information. Surface sensitivity
of electrons can be illustrated best with a plot of inelastic scattering length of an
emitted electron versus its kinetic energy, which is called the “universal” curve
[49], as shown in Fig. 1.1 on page 3. A simple explanation of the “universal” curve

is for electrons in the energy range 15 to 1000 eV, the dominant electron energy



loss mechanism in solids is the excitation of valence band electrons. A general
empirical relation for such an inelastic scattering length of an electron in terms of

its kinetic energy in a solid can be expressed as:
A= AE?+ BE'? (1.1)

where A = 538, B = 0.210, E is in eV, and A is given in terms of monolayers [4].

X-ray photoelectron diffraction and Auger electron diffraction have been pow-
erful tools for exploring the surface structure information of single crystals and thin
films in the past few decades. The atom specificity make XPD and AED invaluable
resources in studies of multielement substances which will be amongst the future

generation of the new materials.

An x-ray photoemission process occurs when a core-level electron is excited
by a x-ray photon, to create a core-hole state and a free photoelectron. A schematic
diagram of a photoemission process is shown in Fig. 1.2(a) on page 5. An XPS
spectrum can be obtained by illuminating a sample with a monochromatic x-ray
flux, and then detecting the photoelectron ejected from the sample as a function
of the binding energy, E., of a core electron (or kinetic energy, E,j, of the pho-
toelectron). The photoemission process is considered to be elastic, and thus the
monochromatic x-ray will give rise to a series of photoelectron peaks in XPS which
reflect the discrete binding energies of the electrons present in a solid. But some
of the photoelectrons may suffer an energy loss which contribute to a higher back-
ground in a photoemission peak at high binding energy side. If the photon energy
is hv, and W is the work function of the sample, the kinetic energy of the emitted

electron corresponding to this photoemission process is

Ep=hv—E,— W.
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Figure 1.1: Universal curve of electron’s inelastic scattering length. A general
relation for such an inelastic scattering length of an electron in terms of its
kinetic energy in a solid is: A = AE~24 BE"'/? where A=538 and B=0.210.
A short inelastic scattering length is seen on the graph for the energy range
of 15 to 1000 eV which makes electron spectroscopy a surface sensitive tool

in this energy range.



It is obvious that in order to observe a particular photoemission line in the spec-
trum, the photon energy is required to satisfy hv > E.+ W. A typical photoemis-
sion transition rate is approximately 10~*° s, which is about the same amount of
time for an electron to escape out of the sample. A photoelectron spectrum gives

an accurate picture of electronic structure of the solid under investigation.

An Auger process can be realized by exciting a core-hole state in an atom
through either an x-ray photoemission or an electron induced process. This ionic
state is not stable, and the relaxation of the core-hole state can eject an Auger
electron. A schematic diagram of an Auger electron spectroscopy (AES) process
is shown in Fig. 1.2(b) on page 5. Specifically, a second electron with less binding
energy falls into the excited core-hole state, and transfers its energy, F,, and
angular momentum to a third electron of binding energy FEj3, and then this third

electron is emitted with a final kinetic energy of
Eaug:Ec_E2_E3_VVa

if we assume that there is no relaxation or hole-hole interaction. This process may
also create other core-hole states left by the second and the third electron, and
therefore other Auger processes would proceed until the atom is totally relaxed. It
can be seen that single Auger emission is a three-step process, i.e., (1) the creation
of a core-hole, (2) the excitation of a secondary electron via a radiationless process,
and (3) the ejection of an Auger electron. Unlike photoemission excitation, the
Auger emission can be caused by either an x-ray photon or an electron beam, and
the energy of the emitted electron does not depend on that of the primary beam
(x-ray or electron). Since an Auger transition involves atomic inner-shell processes
and the transition life-time is much longer than that of a photoemission process,

the Auger electron usually has no memory of the process that created the initial
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Figure 1.2: Schematic diagrams of photoemission and Auger emission processes.
(a) x-ray excited photoemission process, and (b) x-ray excited or electron

beam induced Auger emission process.



core-hole state. Therefore, Auger electron is considered to be emitted isotropically.

As an example, let’s look at experimental XPS spectra from a Ta surface,
shown in Fig. 1.3 on page 8, which were measured by the author in an assignment
in the “surface physics lab” course at the University of Wisconsin-Milwaukee. The
experiments were carried out in a VG ESCALAB MARK II system with a base
pressure of 9x1071° Torr. Al K, (1486.6 eV) or Mg K, (1253.6 eV) radiation
was used to excite the Ta sample, and the emitted electrons were collected as
a function of binding energy from 1100 eV to 0 eV to obtain the XPS spectra.
On Fig. 1.3, we can observe not only transition peaks from Ta, but also from
the surface contaminants, O and C. These surface impurities can be removed by
an Argon-ion sputtering process. The photoemission peaks observed from Ta are
mostly doublets due to non-s core-level transitions. O and C photoemission singlets
can also be identified clearly in the spectra. An O Auger KV'V transition appears
in both spectra. The non-s core-level photoelectrons are doublets and due to the
spin-orbit j-j coupling which reflects the “parallel” or “anti-parallel” nature of
the spin and orbital angular momentum vectors of the remaining electrons. The
relative peak intensities for the doublets are given by the ratio of their respective
degeneracies, 2j+1. Atom specificity is clearly shown up in these two XPS spectra,
and the core-level photoemission peaks are labeled by Ta-4s, Ta-4p%, Ta-4p 3 Ta-
4d%, Ta—4dg, Ta-4f, O-1s, and C-1s. Note that these photoemission peaks appear
at the same binding energy positions for both radiations. O-K'VV Auger transition
peaks are observed at 983 eV and 750 eV for the Al K, and Mg K, radiations,
respectively, while the kinetic energy of the Auger electrons for both radiations
are the same, i.e., 504 eV. This shows that the Auger transition is independent

of excitation source. Note that the ghost lines in the Fig. 1.3 curve (a), marked



by the arrows, are caused by the Mg K, source on the Al anode. These peaks
correspond to the transitions whose energies are shifted by exactly 233 eV to the

lower binding energy end of the same curve.

Better experiment can also distinguish the peaks originating from same atomic
ionic states but in different bonding environments. The significance of this is that
we can separate the components contributed by the surface atoms from that of the

bulk, and thus allowing the technique to become surface sensitive.

The x-ray photoelectron diffraction (XPD) and Auger electron diffraction
(AED) from a single crystal surface may provide information about the surface
atomic structure. A specific XPS or AES peak can be separated from the spec-
trum to extract maximum information about the local geometry around an emit-
ter. The emitted photoelectrons will undergo elastic and inelastic scattering by
the surrounding atoms. Fortunately, we can separate the elastically scattered pho-
toelectrons from the inelastically scattered ones. The area under a specific peak
in the spectrum (subtracting a background) represents the diffraction intensity of

photoelectrons that are elastically scattered in a solid.

Angle-resolved XPD and AED are techniques that measure the angular dis-
tribution of the emitted electrons associated with certain peaks in XPS and AES
spectra. Two modes are usually used in measuring photoelectron diffraction: (1)
measuring the diffraction intensity as a function of the polar and azimuthal angles
above the sample, tuning to a specific transition peak with a constant wavelength
of the incident x-ray radiation. (2) measuring the diffraction intensity of the same
transition peak as a function of electron kinetic energy by varying the incident x-ray
wavelength. At high electron kinetic energy, above about 500 eV, angle-resolved

photoelectron diffraction patterns show the forward-scattering peaks which can
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Figure 1.3: Experimental XPS spectra from a Ta surface exited by (a) Al K,
(1486.6 eV), and (b) Mg K, (1253.6 eV) radiations, and recorded with a
pass energy of 50 eV. The photoemission peaks of the same core-levels are
at the same binding energy for both radiations, while the same Auger lines
should differ by 233 eV on curve (a) and (b) corresponding to the same
kinetic energies. The arrows point at the ghost lines in (a) produced by
the Mg K, source on Al anode. These peaks correspond to the transitions
whose energies are shifted by exactly 233 eV to the lower binding energy

end of the same curve.



be simply interpreted as enhancements of scattering along the projections of the
atomic rows. However, those intensity peaks could become local minima at low
electron kinetic energy, below about 200 eV, depending on the character of emitter
source wave, and this might mislead one in the interpretation of photoelectron or
Auger electron diffraction patterns. Also, the forward-scattering analysis gives no
information about bond lengths in the surface structure. Therefore calculations
are needed to explore the surface structures by using the so-called “trial-and-error”
method, in which a model of the structure is first assumed, and then the calcula-
tion is carried out to compare with the experiment. The best-fit model is obtained
when the calculated pattern and the experimental one are found to have the small-
est discrepancy, or error. As the study of photoelectron diffraction has advanced,
it has become clear that theoretical calculations beyond single-scattering cluster
calculations are required. This become more important when the electron kinetic
energy is at the lower end of the “universal” curve, say 40 eV to 300 eV, where

full multiple-scattering calculations give much more convincing results.

However, theoretical modeling of photoelectron diffraction with the “trial-
and-error” approach results in lengthy computational times, and often it is impos-
sible to explore all surface models for comparison with experiment. This led to the
invention of holographic analysis, which allows for a three-dimensional determina-
tion of the atom cluster near an emitter at atomic resolution. This straightfor-
ward technique also constitutes a direct way of inverting photoelectron diffraction
patterns to obtain geometric parameters without prior knowledge of the crystal
structure. In recent years, the electron holography has gained much attention and
has become a hot topic for the potential of developing into a new powerful tool

for the study of a solid surface. The correct interpretation of holographic image



formation and reconstruction are crucial to the development of advanced inversion

algorithms of holographic analysis at the present time.

Since the use of the optical holography is more popular in science and tech-
nology than that of the electron holography, people are more familiar with the
former. There are many common features between the two forms of holography,
so one may draw an analogy between them. A schematic diagram of formation
and reconstruction in optical holography is shown on Fig. 1.4 on page 12. Optical
holography is performed mainly by the use of laser light, which provides a light
source with extremely long coherent length. Like Gabor’s original scheme [3], the
optical holography is also a two-step process. A coherent reference wave is incident
on a film, and its reflection by the object interferes with the reference wave, and the
interference modulation is recorded on the film. A light with the same frequency
shining on the developed film will result in a three-dimensional holographic image
appearing at the previous object position. If the reference wave is represented by
R, and the scattered wave by O, the intensity of the wave-field on this film can be
written as:

I=|R+0OP=|R?+|0?+RO+O0O'R

The holographic image can be reconstructed if a replica of the reference wave, R,
shone on the photographic film. Assuming that the wave-field after shining on
the film is proportional to the intensity of the interference fringes on the film, the

transmitted wave field A is
A=IR=|R*R+ |OR+ |R]*0 + O*R?

If the amplitude of the scattered object wave is assumed to be small compared



with that of the reference wave, i.e.,
O] < |RJ,

the square term of the object wave can be omitted, and the | R[>0 term is found to
form an image at the object position, O* R? term the object’s twin image, and |R|*R
the transmitted wave. The same principle is applied for the electron holography,
except that the reference wave might come from the field source (originating from

the object) as in the case of photoelectron diffraction.

In the electron holographic interpretation of photoelectron diffraction pat-
tern, electron reference waves are generated in the vicinity of source atoms, and
the object waves are produced by the scattering of this radiation by other atoms
close to the source atoms. Since the distance between the objects (the nearby
atoms and source atom) are small compared to the distance to the detector, the
resulting interference pattern could be regarded as a lensless Fraunhofer hologram.
Each of the emitting electrons from the source atoms has the same local envi-
ronment in a single crystal, but devoid of coherence amongst themselves. Thus
the interference pattern of each local source can superpose to reinforce the total
diffraction pattern. We may extract image information from such a diffraction
pattern by means of a the Helmholtz-Kirchoff integral. In many respects, how-
ever, an XPD hologram is quite unlike those of conventional optical holography.
Electrons are not merely amplitude-reflected from the objects (nearby atoms), but
the phases as well as the amplitude of the scattered waves are changed inhomo-
geneously during the scattering process, and are functions of the electron wave
vectors. An electron’s nonisotropic scattering factor, and anisotropic emitter wave
of a photoemission process are the major factors that determine the formation of

faithful XPD holographic reconstructions.
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Figure 1.4: Schematic diagram of the optical holographic principle. A coherent
laser beam (reference wave) is incident on a film, and the beam reflected
by the object interferes with the incident wave forming interference fringes
on the film. Light with the same frequency shining on the film will result
a three-dimensional holographic image.



In this dissertation, we will focus on the theories and applications of the
photoelectron diffraction, Auger electron diffraction, and photoelectron hologra-
phy. These studies, especially photoelectron holography, are in the frontier of the
fast-advancing subject of surface physics today. In chapter 2, the basic theory of
electron scattering in a solid is discussed, and a concentric-shell algorithm that
performs the full multiple-scattering cluster (MSC) calculations of photoelectron
and Auger electron diffraction is proposed. We will apply this MSC calculation
to various systems: Auger electron diffraction from a Cu(001) surface in chap-
ter 3, photoelectron diffraction from a MgO(001) surface in chapter 4, experiment-
configuration-dependent calculations for core-level photoemission diffraction from
a CoSiy(111) surface in chapter 5. We will discuss hologram formation and recon-
struction in photoelectron holography, and an application of holographic analysis
to angle-resolved photoelectron diffraction from a Si(001)-[2x1] and a CoSiy(111)
surface in chapter 6. Finally, in chapter 7, we will introduce a robust and new
photoelectron holographic algorithm called atomic position recovery by iterative
optimization (APRIORI), which makes use of the optimization schemes of linear

programming techniques.



CHAPTER 2

Electron Scattering Theory

2.1 Introduction

Over the past decade angle-resolved x-ray photoelectron diffraction (ARXPD)
and Auger electron diffraction (ARAED) have contributed much to the under-
standing of new surface and thin-film structures. These techniques are comple-
mentary in many respects. One of the main features in ARXPD and ARAED
is the atom specificity, which plays an important role in the study of the multi-
element materials. The atom specificity is the atomic identity of an atom giving
rise to identifiable Auger and photoelectron peaks on an x-ray photoelectron spec-
trum (XPS) or an electron-excited Auger electron spectrum (AES). Furthermore,
photoelectron spectra obtained at high energy resolution can be decomposed into
peaks originating from atoms in different bonding environments. When combined
with angular resolution, such spectral resolution can be used to determine the

structural environment of a given kind of atom in a specific chemical state.

Diffuse electron diffraction, such as XPD or AED, occurs when electrons are
emitted from atoms near the surface of a crystal through, e.g., a photoemission or
Auger emission process, and there is interference between the portion of an out-
going electron wave that passes directly to the detector, and those wave portions
that undergo elastic scattering by ion cores in the vicinity of the emitter. There is
no coherence between Auger or photoelectron waves emitted from different atoms
due to the fact that such emission processes constitute random events that are not
correlated in time. What such diffuse electron diffraction probes is the local atomic

environment of the excited atom which emits the electron wave. The individual



atomic species need not possess an environment with long-range order in order to
have intensity modulations. For instance, adsorbates at submonolayer coverages
will exhibit diffuse diffraction modulations that are characteristic of the adsorption
site, even though there is no long-range order in the adlayer. Also, inclusion of
foreign atoms at lattice sites in a given sublattice of a single-crystal specimen will
lead to strong Auger and photoelectron intensity modulations, even if the specimen
is, in effect, a random alloy. It is precisely the lack of coherence between Auger and
photoemission from different atoms that removes the requirement that long-range
order be present in order to observe diffraction effects. This is different from the
conventional LEED where coherent back-scattering is required in order to observe
the coherent diffraction of the elastically scattered electrons. The coherent back-
scattering is achieved mainly by the long-range order surface crystal structure of
the sample. In a diffuse diffraction pattern, if the kinetic energies of these elec-
trons lie in the high energy range (above 500 eV), forward scattering peaks along
the low-index crystallographic direction arise on these diffraction patterns. These
peaks provide “fingerprints” of the surface, such as the crystal structure and ori-
entation. However, subtle structural information, regarding tetragonal strain, etc.,
requires comparison of such diffraction patterns with simulations using a proposed
model. On the other hand diffuse electron diffraction patterns with a low electron
kinetic energies (below 300 eV) do not have a simple interpretation, and always
require comparison with the simulations as part of the data analysis. In general,
simulations at low energies require a sophisticated multiple-scattering theory, while
at high energies single-scattering can well explain most of the diffraction features,
but with some exceptions, such as forward defocusing features on the diffraction

patterns.



The advancement of these fields would be greatly aided by the development
of efficient methods for the simulation of electron diffraction patterns by computer.
Such simulations are useful in the following four aspects: (1) they provide compar-
isons with the experimental data, allowing the extraction of maximal information
from a given measurement, (2) they enable rapid testing of proposed models, some-
times even providing data which, although physically meaningful, are not available
in a real world experiment, (3) they can provide simulated data to determine what
level of experimental resolution is required before designing the experimental in-
strumentation, and (4) they will be used as models of “experimental data” to
test the various electron holographic algorithms developed for reconstructing three
dimensional images at atomic resolution. Usually a proposed new holographic al-
gorithm will be tested first using the simulated data of a simple surface model in
order to eliminate some experimental uncertainties and difficulties encountered at
present, of a complex structure on the surface. In recent years, the principles of
holography have been used to reconstruct three dimensional representations of the
relative positions of atoms near a surface from the information on a diffuse elec-
tron diffraction pattern. Many electron holography theories have demonstrated
the possibility of reconstructing the atom images at atomic resolution. In this
chapter, single atom scattering and cluster single scattering theories are discussed

first, and then a full multiple scattering theory is introduced in detail.
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tron wave is emitted from an emitter and scattered only once by the sur-
rounding atoms. The overall diffraction intensities are the sum of those

scattered waves (dotted lines) and direct emitted wave (solid line).



2.2 Single scattering cluster theory
2.2.1 Electron-atom elastic scattering

Let us first consider a spherical wave

Ji(kr)Yin (F)
is incident on an atom at the origin, where j;(kr) is the Ith order spherical Bessel
function, and Y}, a spherical harmonic function associated with angular momen-
tum quantum numbers [ and m. The scattered outgoing wave is generated and
takes the form

tih) (k) i (£)

where hl(l) (kr) the Ith order Hankel function of the first kind, and

t, = e¥sind,

where §; is the phase shift due to the scatterer (at the origin) with angular mo-

mentum quantum number [/, as shown in Fig. 2.1 (a) on page 17.

Let us then consider a simple scattering picture of an electron plane wave
¢, which is incident upon a scatterer atom j, when the scattered wave ¢; can be

written as:
eik'rj

(2.1)

where f;(6;) is the atomic scattering factor (a complex number), 6; is the scattering

9;(6;) = dof;(6;)—

Tj
angle if incident electron wave travels along 6;=0, k the electron wave number, and
r; the emitter-scatterer distance. In the plane-wave or a small-atom approximation,
the atomic scattering factor can be calculated using the partial wave method as

found in elementary quantum mechanics texts:

fi(05) = %Z(Zl + 1)616{ sind] Py(cosb,) (2.2)
!



where {67} is a set of phase shifts of the jth scatterer, and {P;(cos#;)} are Legendre
polynomial functions. The small-atom approximation is in general accurate for all

but nearest neighbors at distances of < 5 A from the emitter.

In the case where the small-atom approximation is not valid, i.e., when the
distance between the emitter and the scatterer is not large compared to the size of
the scatterer, or the wave number of the electron is small, the shape of an emitted
electron wave before scattering by an atom must be taken into account for greater
accuracy. Calculations of atomic scattering factors for spherical waves incident
over the dimensions of the scattering potential at distances of a few A from the
emitter have been performed by McKale et al. [5] and Rehr and co-workers [6,7,7].

A simple curved s-wave scattering factor can be expressed as:

f]( )(Qj, rj) = z > "(20 + 1)e™ sind] Py(cosb;) | 1 + %ell(lﬂ)/%r’ (2.3)
; r5)

It can be seen from Eq. 2.3 that the atomic scattering factor is also a function of
the scattering distance r;, and is significant when r; or £ is small. A large r; or &
in Eq. 2.3 will result in a plane-wave expression which is the same as Eq. 2.2. In
Fig. 2.2 on page 21 and Fig. 2.3 on page 22, the small-atom approximation (Eq. 2.2)
and more rigorous curved-wave expression of Eq. 2.3 are plotted in scattering
phases and amplitudes of the relevant scattering factors of a Cu atom at 914 and
64 eV. It can be seen that differences between the two calculations are observed for
the Cu scattering factor both at high and low energy, though more prominently for
the low energy curves. At high energy, there are few differences between the two
calculations for a high scattering angle, say above 60°, while substantial differences,
for both amplitude and phase, are observed at small scattering angles close to the
forward scattering direction on the plots. For the low energy calculations, the Cu

atomic scattering factor shows significant differences for the two calculations both



in amplitude and phase at all the scattering angles. This indicates the importance
of taking the initial state of the emitter wave into account for the diffraction
calculation at lower kinetic energies. For the high energy curves, the forward-
scattering amplitude 7(0°) versus the back-scattering amplitude 7(180°) is as large
as

1(0°)/1(180°) = 5.68/.0304 = 187

while for the low energy curves the radio becomes
I(0°)/1(180°) =1.37/.482 =2.84

Relatively speaking, the scattering amplitude for lower kinetic energy is more “uni-
formly” distributed compared to the forward peaked scattering amplitude at higher
energy. The high ratio of the forward to back-scattering amplitude at high kinetic
energy is one of the most important features in electron diffraction, and it gives
rise to the pronounced peaks in the angular distribution of the diffraction pattern,
from which the direction of major bond axes of the adsorbed molecules can be
obtained rather directly (“searchlight effect”). The low ratio of the forward to
back-scattering amplitude at low kinetic energy complicates the scattering pro-
cesses where the back-scattering events cannot be neglected, and therefore, a full

multiple scattering process must be considered in a dependable calculation.

When the emitted electron wave is other than a simple s wave, the atomic
scattering factor can be calculated using a novel high-energy approximation [6].
The atomic scattering factor for a more complicated incident spherical wave takes

the form:

fjl-’( ,15) = ¢y (krj) %Z 21+ 1)e’ lsmé’Pl(cosﬁ Ya(krj) (2.4)
I
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Figure 2.2: Atomic scattering factors of a Cu atom calculated using the plane
and spherical wave form. The phase shifts are evaluated at a kinetic energy
of 914 eV. The scattering amplitude and phase of a Cu atom are plotted by
solid lines and solid circles for the plane-wave calculation of Eq. 2.2 and by
dashed lines and open circles for the spherical wave calculation of Eq. 2.3

with an emitter-scatterer distance of 2.55 A.
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Figure 2.3: Atomic scattering factors of a Cu atom calculated using the plane
and spherical wave form. The phase shifts are evaluated at a kinetic energy
of 64 eV. The scattering amplitude and phase of a Cu atom are plotted by
solid lines and solid circles for the plane-wave calculation of Eq. 2.2 and by
dashed lines and open circles for the spherical wave calculation of Eq. 2.3

with an emitter-scatterer distance of 2.55 A.



where ¢;(kr;) is the polynomial coefficient of the Hankel function hl(l)(kr]-). Eq. 2.4
approaches to Egs. 2.3 and 2.2 at large kr;, as ¢/(krj) ~ 1. This indicates that
there would be little differences between s wave emitter diffraction and that with
a higher angular momentum emitter wave if the electron kinetic energy is higher

or the cluster considered is a single crystal with a large nearest-neighbor distance.

2.2.2 Single scattering scheme and formalism

Theoretical simulation of electron diffraction is necessary in order to max-
imize the information that can be obtained from XPD and AED data. Single
scattering cluster(SSC) theory [28,7,7,7,?] has been proved to be a simple and
fairly reliable means of interpreting angle-resolved diffuse electron diffraction at
high energy for all emission angles except those coinciding with chains of atoms

where at least double and triple scattering processes must be considered.

Consider an electron source, with an angular momentum L, at the origin.

The emitted wave field takes the form:
AphP (kr) Yy (k),

For a scatterer is at the position r;, the resulting wave-field at the far field in the

direction of k can be written as:

p(k) = Ay (ilYL(R) + Z Gy (krj)tl’eiik'erL’ (f{)) . (2.5)
LI
if we make use of the asymptotic expansion of:
AY ~ i’le— as Z— 00

! 12

In above expressions, Ay, is a complex amplitude, Y7 is a spherical harmonic func-

(1)

tion, h; ’ a Hankel function of the first kind, G, ;' the element of free-space prop-

agator in an angular momentum representation, k the wave vector of electrons, r



a position vector, and the atomic t-matrix element

tl = % (6%61 — 1)

where §; is the phase shift of a spherical wave of angular momentum [ on scattering
from the atom. The exact expression of the free propagator Green’s function can

be written as:

/dQ,

—m

GLL' (kl‘) — 47T2il_l’_l )m —-m' h(l kr Y,, _ /YmY;”m”YE”,

LII
If

kr > 1,

the Green’s function may be approximated by

, ikr

G, (kr) = 4mi’ (j/m«> Y7 (£)Y5(8).

This may be regarded as the lowest-order approximation to a “separable” Green’s
function as defined by Rehr et al [8]. Substituting above expression into Eq. 2.5,

we may write:
Tj

ei(krj—k-rj)
w&wah(mx>+ﬂkr»————4am0, (2.6

where the common factors i~ are dropped, and the atomic scattering factor takes

the “plane-wave” form of

~ 4
Fle-15) = 20 SV (#)Yy (R)
LI

and by making use of



we end up with

. 1 ' ~
flk-5) = 22 (20 + Dty By (k- 85).
l/

More accurate approximation of i(r) in Eq. 2.6 can be calculated using
higher-order separable Green’s functions [8], which results in more accurate atomic
scattering factors, such as the “spherical-wave” form [79,?] which has been already

discussed in Sec 2.2.1.

If the emitted electron wave takes a more complicated form, and can be
expanded in a linear combination of the spherical harmonic functions in the angular

momentum representation, e.g.,

=Y a(k, L)Yy (k)
L

where a(k, L) is a complex number and a function of k£ and L, and more than one
scatterer is involved in the scattering process, i.e., scatterers r; j =1, 2, 3,..., the
resulting wave field could be expressed as:

Pk +Z<kqj%:%@0. (2.7)

J

The first term in Eq. 2.7 is the reference wave of the emitter that directly goes to
the electron detector at the far field, the second summation term represents all the

scattered waves. We can then write the diffracted intensity, I(k), as:

2

(2.8)

z(krj—k-rj)
1) ‘ +z( )

J

A schematic diagram of the single-scattering scheme is shown in Fig. 2.1 (b) on
page 17 where the total kinematic diffraction amplitude is seen to be the sum of the
direct emitted wave and the waves ¢;(k) scattered once by each of the surrounding
atoms around the emitter. Note that in order to carry out the calculation correctly,

the summation should include all the important scatterers surrounding the emitter.



The attenuation of the electron wave traveling through a solid may suffer con-
siderable damping, and the inelastic scattering length, A, of the electron contributes
to the diffraction process through a damping factor of e /% for the scattered and

the direct waves.

Vibrational attenuation of interference effects is also potentially important,
and can be included in a standard way by multiplying each scattered wave by its

associated temperature-dependent Debye-Waller factor:

W;(T) = exp [~ Ak*UZ(T)

= exp [—2k2(1 — cosb;)UZ(T)
n*T ]

= exp [—2k2(1 - COSGj)W%kB

(2.9)

where Ak is the magnitude of the change in wave vector produced by the scatter-
ing, W the temperature-dependent one-dimensional mean-squared vibrational
displacement of atom j with respect to the emitter, ©; the Debye-Waller temper-
ature, i Planck’s constant, and kg Boltzmann’s constant. The physical meaning

of the quantity, m—Z;Tk—B, is the mean-square displacement of the scatterers, and a
T

typical value of this in a Cu single crystal is 0.0065 A% [29].

At this level of approximation, U JQ (T') is assumed to be isotropic in space and
any correlations in the movements of near-neighbor atoms are neglected. How-
ever, the electron scattering is significant only when 6; is close to zero. Then
(1 — cosb;) factor in the argument of Eq. 2.9 suggests that W; is very close to
unity for all important scattered waves. So, vibrational effects are, to first order,
not very important in forward-scattering dominated XPD, although important to
the backscattered diffraction modes. Another alternate method of accounting for

vibrational effects is to assume some probability distribution of atom positions



due to vibration and then to sum separate weighted diffraction intensities for all

possible combinations of atom positions. This leads to
2

I(k) — efL/Q)\ + Z fj (ej’ Tj) W_eij/2)\eikrj(lfco.99j)
i :

(012
+z ‘f]( ];T])| (1 _W]2) e*Lj/)\' (210)
- T4
j j
Here the attenuation caused by the inelastic scattering length A is assumed to be

—L/2X where L is the distance that elec-

isotropic and approximated by the factor e
tron travels in a solid. In the first summation of Eq. 2.10, the interference between
scattered and unscattered wave portions is expressed in terms of a structure factor
kr;(1—cosb;). The second ), corrects the absolute squared term for the incorrect
inclusion of Debye-Waller attenuations in terms involving a product of a scattered
wave with itself [30,7]. That is, in expanding the absolute value squared, only prod-
ucts involving unlike waves as @,¢; or ¢;¢; (I # j) should include Debye-Waller
factors of W or W;W,, respectively. The (1 — W) factor in the second summation
is thus necessary to yield overall correct products of the form ¢;¢; without any
Wf factor. The second sum is termed the thermal diffuse scattering term and it

is usually quite small with respect to the overall XPD modulations due to the fact

that W is close to unity for strong scatterers.

Refraction at the surface needs to be considered when the detector is at
grazing angle. The correction for the refraction can only affect the polar angle of
the outgoing electron wave passing through the solid/vacuum interface, and the

corrected polar angle is
Vo

B, —
kTCOSH] : (2.11)

]
0 = acos
k

where V,, is the inner potential which equals to a potential step across the vacuum

and the solid. FEj is the electron kinetic energy outside the solid. It can be seen



that this correction can be negligible in the high kinetic energy range except at
grazing angle.

The simple concept and convenient computation formula of SSC theory makes
it very attractive for interpretation of diffuse electron diffraction data. However,
the limitations of the single scattering model must be kept in mind to avoid erro-
neous structural conclusions. As shown in Fig. 2.2 the relatively small phase shifts
in the high energy range at low scattering angles constitute an universally con-
structive interference along this scattering direction in which direction a forward
scattering peak can be formed. An overall reduction in diffraction intensity rela-
tive to what is predicted with single scattering theory along this direction would
be observed if more than two scatterers are found along this direction, and this
“forward defocusing” effect will cause a breakdown of the SSC theory. As shown
in Fig. 2.3 the low ratio of forward to back-scattering amplitude suggests that
multiply scattered waves arise and contribute much to the final diffraction mod-
ulations at low energy. This indicates that Eq. 2.10 is valid only for an electron
kinetic energy greater than 500 eV, and that multiple scattering must be con-
sidered as the kinetic energy drops significantly below 500 eV. For low energies,
the explicit inclusion of the differential photoelectron cross section and integration
over the photon electric field polarization vector becomes important for an accu-
rate description of the diffraction process [25]. Similarly, the use of bulk Debye
temperatures for surface atoms and neglect of correlated vibrations can become a
source of error for energies in the order of 100 eV [26]. Finally, the finite size of
the analyzer aperture must be considered in the calculations in order to achieve a
result similar to experiment. This task is performed by averaging the intensities

over the small solid angles subtended by the detector aperture. Simulations of this



sort also allow one to determine what level of angular resolution is desired in a

diffraction experiment.

2.3 Multiple scattering cluster theory
2.3.1 Multiple scattering scheme

The major reason for the breakdown of the single scattering cluster (SSC)
theory is the fact that the scattered waves could be scattered again by other atoms
in the cluster and that these scattered waves (scattered more than once) also
contribute to the final diffraction modulations. It has been shown that for high
kinetic energy, the principal failure of SSC theory is an overestimation of the
forward-scattering intensity along close-packed, low-index directions [27] where the
multiple scattering results in a considerable attenuation known as the “defocusing”
effect. A simple picture to explain this is that a secondary scattering site acts to
reduce the total scattered-wave amplitude along the chain via a weak Coulomb
interaction. This interaction occurs as the portion of the wave that is forward
scattered by the atom directly adjacent to the emitter passes through the potential
centered on the secondary scattering site. This phenomenon cannot be modeled
without using multiple scattering theory. In the low kinetic energy range, the back
scattered waves are relatively strong and contribute much to the overall diffraction
modulations, and multiple scattering theory is needed in this case also to correctly

explain the experimental data.

The history of multiple-scattering calculations for angle-resolved photoemis-
sion can be traced at least as far back as the work of Liebsch [9] in 1974. Pendry
[10] proposed a theory for angle-resolved valence-band photoemission and Tong

and co-workers [12,?,?] proposed a corresponding treatment for photoemission



from molecular orbitals and atomic core states. All these schemes rely on a com-
putational machinery of low-energy electron-diffraction (LEED) theory for evalu-
ating the multiple electron scattering in ordered atomic structures. Full multiple
scattering theory based on the short inelastic scattering length of low and medium
energy electrons in solids to restrict the multiple scattering of the Auger electron
or photoelectrons to a cluster of atoms localized around the emitter will be dis-
cussed in this Chapter. The advantage of this technique is the relaxation of the
requirement of translational symmetry in the layers of atoms parallel to the sur-
face. Such cluster techniques have been developed by Barton and co-workers [16,7],
Fritzsche [18], and Friedman and Fadley [19]. In these schemes all the interatom
propagation of the electrons is represented by Green’s functions which relate the
amplitudes of a spherical-wave expansion of the wave field about another point.
The evaluation of these Green’s function turns out to be major limiting factor in
the speed of such calculations. Therefore, fast approximate schemes such as the
Taylor-series magnetic quantum number expansion (TS-MQNE) [16], the reduced
angular momentum expansion (RAME) [18], and the separable Green’s functions

of Rehr and Albers [8,7] have been employed to speed up the calculations.

2.3.2 Multiple scattering formalism

The exact multiple-scattering cluster scheme of by Saldin, Harp, and Chen
[32] to calculate Auger, photoemission and Kikuchi diffraction patterns is intro-
duced here. This multiple-scattering cluster scheme is based on dividing a cluster
into a series of concentric shells, with an origin chosen at the source atom, as
shown in Fig. 2.4 on page 32. In this way, a convenient computational algorithm

for intra- and inter-shell processes can be applied to treat the multiple scattering



problem. Within each shell, atoms are located at approximately the same distance
from the emitter, i.e., atoms within the same shell have distances from the emitter
which differ by less than 1.00 a.u. An advantage of such a classification of the
cluster into a series of concentric sub-shells is the removal of the requirement of
translational symmetry of the atomic structure near the surface. This multiple-
scattering cluster scheme restricts consideration of the multiple-scattering of the
electrons (with a short inelastic-scattering length) to a cluster of atoms localized
around the emitter. This is a good approximation when the energy of the electrons

is in the range of 40 eV and up to about 1000 eV.

The basis for the scattering by the cluster is a set of spherical waves. A
set, of multiple scattering equations based on waves centered on each individual
atom in the cluster, is transformed to a single center expansion only at the end of
the calculation. As shown in Fig. 2.4, when an atom emits electrons by Auger or
photoemission processes, the resulting wave-field could be written as the following
linear combination, with amplitudes Ag)), of outgoing spherical waves:

S ADRD (kr) Yy (F) (2.12)
L
where (Im) = L are angular momentum quantum numbers, r is a position vector
with respect to an origin at the emitter, and k£ the wave-number of the emitted
electrons. The extent of the propagation of such a wave through a material will
depend on the fairly short inelastic scattering length, and hence be restricted to a

localized cluster of atoms surrounding the emitter.

For an isolated atom, it is known from dipole transition theory that when a

core-level photoelectron is emitted from this atom, the ejected photoelectron wave



Concentric-shell algorithm for photoel ectron diffraction
D.K.Sadin, G.R.Harp and X.Chen, Phys. Rev. B48, 8234(1993).
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Figure 2.4: An electron wave is emitted from an origin and is scattered by the
surrounding atoms. Multiple scattering processes arise when those scat-
tered waves are scattered again in the cluster and contribute to the final

diffraction pattern.



function, 1,(r), may be written:

- / dr' G (r,1'; E)A(C ) ,m, (r) (2.13)

! . .
where ), (r') is the core state wave function of angular momentum quantum

numbers, [, and m,, and, A(r') is the photon-electron interaction operator.

The Green’s function takes the form:

Gf(r,v'; E) = =ik Y Ri(r<, E)R (s, B)Yim (8) Yy () (2.14)

lm

where the s and r. are defined as:

. ! !
ifr>r thenrs =r,ro =1,

. ! !
ifr<r thenro=r,rv=r,

and Ry(r, E) and Rl(+) (r, E) are the regular and irregular solutions, respectively, of
the radial Schrodinger equation for the exciting atom such that R;(r, ) matches
onto

Ry(r, E) ~ ji(kr)cosé, — ny(kr)sind,
at the muffin-tin boundary, and Rl(+)(r, FE) matches onto
R (r, B) ~ h{" (kr)e®
at muffin-tin radius. Substituting Eq. 2.14 into Eq. 2.13 we obtain:
ZA O (k) Vi (7) (2.15)

where

A — zk/dr Ri(r, B)Y (B) A thym, (t) (2.16)

is essentially the matrix element for the core-level photoemission transition.



When the atom is in the environment of a cluster where many other atoms
are present, the wave field 9 (r), is modified by the multiple scattering by that

cluster.

For computational convenience we divide the cluster into a series of N con-
centric shells centered at the emitter. We also suppose that the total electron wave
field between the g-th and the (g+1)-th shells takes the same form as Eq. 2.12,
but with expansion coefficients A(LQ), which are collectively represented by the vec-
tor A@. Thus the task of determining the electron wave-field emerging to some
external detector after multiple scattering with all atoms of the cluster is effec-

(N)

tively one of evaluating the vector A\"Y/)| representing the corresponding expansion

coefficients of the wave-field propagating outwards from the N-th shell.

Consider a surface containing a lager number of atoms of the same species.
The photoemitted wave from one atom makes its way out of the surface after
scattering many times from its nearby atoms before it emerge from the surface.
Suppose that it is possible to combine the scattering matrices of the shells together
to construct an “out-out” scattering matrix of the whole cluster Sl(r]nv,)l’m" The wave
which finally emerge after all the multiple scattering can be written:

) =20 3 AS ey (k)Y (8)
Im '

where, as expected, there are more wave {'m  components than lm components
since the outer radius of the cluster is large. The amplitude A™ are those of the

outgoing spherical waves finally emerging from a cluster of N shell, and
N 0) (N
Al =3 ARs™,
U'm

or it can be written in a vector form, i.e., the elements of the vector AY) may be



computed from known values of A©® [20,7]:
AWM = AOg®) (2.17)

where the matrix S®¥) may be evaluated by the following pair of coupled recursion

relations:
St = 81— T IO T+T27) (2.18)
and
0 =T + @+ T I —-TILI) 1T+ T) (2.19)

where Jéo is the “in-out” reflection matrix of the cluster consisting of the central

atom plus the first ¢ shells. With the starting conditions
SO =1 (2.20)

and

Ji°=t, (2.21)

where t. is the t-matrix of the emitter atom. In the above expressions, the elements

of the scattering matrices TYC, TO!, T} and T,° of the g-th shell are given by

Toz =22 9. T00, gjL(;Lf (2.22)

tL; jLj
Toow =222 97T, L]gL Iz (2.23)

iL; jL;
TqLL' = ZZﬁfL L L; gL L' (2.24)

tL; jL;

and

Tyt = 2298, T, 9 (2.25)

iL; jL;

where g7, and g7, are propagators from atom ¢ of position vector r; to atom j

of position vector r; in the g-th shell defined in the Appendix. The superscript o



in the propagators represents the central emitter atom. A schematic diagram of
interpretations of scattering matrices S, JI0, T9? TO! TI! and T} are shown

in Fig. 2.5 on page 37.

The intra-shell multiple scattering is represented by the elements Tg 1, of the
matrix

T=H" (2.26)

where H is the real-space Korringa-Kohn-Rostocker (KKR) matrix also defined in

the Appendix.

With S®) calculated by this algorithm, making use of the asymptotic expan-

sion of the Hankel functions

lim A\ (2) = (—i)! Tz le? (2.27)

Z2—00

and neglecting some common constant factors, the angular distribution of the far-
field intensity of a photoelectron or Kikuchi diffraction pattern can be evaluated

from
2

L(k) = > AP Y S{p (=) Vi (k) (2.28)

L Iz
where Sg\L[? are the elements of the matrix S*). In the evaluation of I,(k) in
Eq. 2.28 we have allowed for the interference between the angular momentum
channels L of the emitted electron. The coefficients Ag)) can be evaluated from
the matrix elements of the atomic excitation process, be it photoexcitation (for
photoelectron diffraction) or quasi-elastic scattering of an incident plane wave (for

Kikuchi diffraction).

In the case of Auger emission the initial-state angular momentum channels

are mutually incoherent and the angular distribution of an Auger diffraction pat-
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Figure 2.5: Schematic diagram of interpretations of scattering matrices. S@,
J éo, quo’ Tfl)l , Tél and Téo are defined as cluster scattering, cluster “in-
out” reflection, “in-out”, “out-in”, “in-in” and “in-out” shell scattering

matrix, respectively.



tern should instead be evaluated from an expression of the form

Lik) = 3 |AD S S (=) Vi (k) 2 (2.29)

L

where the Ag)) are now related to the matrix elements for Auger transitions.

In the next two sections, we are going to perform tests on model atomic
clusters to check the convergence of our calculations with respect to various pa-
rameters, and to verify the justification of the approximations, such as, truncating
the angular momentum quantum number expansions, the forward-scattering ap-

proximation, the back-scattering approximation and single-scattering limitations.

Quantitative comparisons of diffraction patterns are made using a mean

square difference reliability R-factor defined as

Z | Pi(l) _ Pi(Q) |2
R= Z | P-(l) + P.(Z) |2 (2'30)

K3

Of the two diffraction patterns to be compared, the reference pattern, P(), is
chosen to be the one which is the better approximation. The summation is taken
over all the available data points on the patterns. Based on previous results [22],
we expect that R~0.1 is the minimum R-factor to be expected for the comparison
between calculations and experiment. We therefore assume that any approximation
which changes the calculated diffraction pattern such that the R-factor is less than
or equal to R= 0.001 is a more than adequate approximation. All the calculations
involve Cu atoms in a geometry corresponding to the face-centered-cubic (fcc)
(001) orientation. The electron kinetic energy is 914eV, which is the energy of the
Cu LVV Auger electron. The atomic scattering processes take into account angular
momentum quantum numbers up to ! = l,,,,, = 16. Note that this parameter was

checked for convergence via a calculation involving 13 Cu atoms. An R-factor



analysis comparing a calculation with [,,,, = 16 and l,,,,, = 20 resulted in R=0.02,
showing the computations to be converged to an degree much better than the
expected agreement between calculation and experiment. All calculations above
assume an inner potential with real and imaginary parts of —15eV and —4eV,
respectively. The zero temperature phase shifts are corrected by a Debye-Waller
factor [11] assuming a Debye temperature of 320K and a sample temperature of

300K.

2.3.3 Finite Angular Resolution

The number of partial waves needed to describe a cluster scattering is a
function of the radius, R (in atomic units), of the cluster, and electron kinetic

energy, E (in Hartree units):

lowt ~ RV2E

where [,,; is the maximum angular momentum quantum number that is used in a
cluster calculation. But at relatively high energy ranges for a large cluster calcu-
lation the [,,; can be as large as 160 for a cluster size of 10 A at 1000 eV. Such a
large l,,; in a cluster calculation can take a huge size of the computer memory and
long cpu time. For an actual cluster calculation the time scales approximately as

l4

out- Fortunately, a smaller [,,; can be used in a cluster calculation for a large size

of a cluster at high electron energy due to the experimental limitation of the finite

detector aperture.

In an actual apparatus, the electron detector integrates over some finite
solid angle when making an angle-resolved measurement. For the purposes of
our argument, and without loss of generality, we may choose a polar axis pass-

ing through the center of the detector with an aperture solid angle of A{2. Then



the experimentally-measured intensity, I.;,, would be related to the theoretical

intensity Ith(Q) by the equation

n n 21 Om
Leap(0,0) = /A In(@)d) = / | 1m0, 6) sinoagds (2.31)

where we have assumed that the analyzer aperture is circular with angular half-
width 6,,. From Eq. 2.28 it can be seen that a theoretical photoemission intensity

may be written

Lin (6, ¢) =| ZASV)(—z')lYL(e, ¢) |?
=35 AW A (=)' Y8, 0) Y (6, 6)

I L/I
7 1" ll+l” l
=33 AWAT (=) S < LML > Y (6, 9) (2.32)
Lo I=|l—1"| m=—1
where
Z AL' L’L
and
< I'|I'L >= / Y7, Yy Yy dQ, (2.33)

a Clebsch-Gordon coefficient. Substituting Eq. 2.32 into Eq. 2.31 and performing

the integrals over # and ¢, we find

Lnp(0,0) = 210 3" S (=) =" 3= AL, AV

/ ll/ ml
Lt 2l +1)2
Yoo <U'm/[I'm/;10> (—) Q) (2.34)
l:|l’—l”| 4’/T
where
cos Om
Q) = - / Py(cos ) d(cos 6). (2.35)

1

Noting that the Legendre function P;(z) may be represented by the hypergeometric

function F(—I,1+1,1;(1 — 2)/2),

P(z) =F(=,14+1,1;(1 - 2)/2)



(1) 2 T(n—DT(n+1+ 1) (=2L)n
INGINUEY ,;) I'(n+1) n!

Py(cost) =

substituting its series expansion into Eq. 2.35 and performing the integral over

cos 0 yields
i —)"T(l+n+1) &
= ()T (l—n+1)2" (n+1)

where Gamma function I'(n + 1) equals n!, and then

J(L+1) (€ —+ DI +1)(1+2) (€
QU =c+ 1' 22 (5) (21)222 <§> *
(D4 (- l+1)(l+2)---(l+n) gntl
+ (22 <n+1>+ (2.36)
where

£=1—cosby. (2.37)

The quantity Q(/) may be evaluated numerically from the series expansion
Eq. 2.36 for different aperture sizes as specified by 6,,. The results are shown on
Figure 2.6. It can be noted that Q(I) drops off with increasing I, and the more
sharply the larger the aperture size. In fact, for a typical experimental aperture
semi-angle of 6, = 2.5, Figure 2.6 indicates that the contributions of the terms in
Eq. 2.34 with values of [ greater than about 120 are likely to be negligible. Note
that the maximum value of [ in the sum in Eq. 2.34 is I' + 1" (= I, say). For
a given value of [,,, I’ can take values between 0 to [,,, while [” correspondingly
varies from [, to 0. However, since the lower limit of the sum over / in Eq. 2.34 is
|I' = 1"|, it is clear that the number of allowed terms in the sum over [ is greatest
when ' ~ [" ~ [, /2. That is, for the highest appreciable value of /,,, ~ 120,
the most significant contributions to I, will come from terms with I' ~ [" ~ 60.

For lower values of [,,, the dominant terms will have even lower values of I’ and [".
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Figure 2.6: Theoretical relative contributions, @(I/) of angular momenta to
an experimental photoelectron diffraction pattern for different half-angle
0.,=2.5, 5.0, 7.5, and 10.° of the detector aperture.



Thus, it may be concluded that an experimental diffraction pattern, measured by a
detector of aperture with a semi-angle of 2.5°, could be simulated with reasonable
accuracy by restricting the angular momentum quantum numbers of the single-

center expansions Eq. 2.28 and Eq. 2.29 to
U 1" < Lo ~ 60. (2.38)

It should also be noted, that a mere truncation of the angular momentum
expansion at ', " = [,,; is not sufficient to reproduce a finite experimental angular
resolution in a calculated diffraction pattern. The reason is found in the gradual
decrease of Q(I) with [, as seen on Figure 2.6. The corresponding gradual atten-
uation of the spherical-wave amplitudes A(LN) is not accounted for by just a sharp
cut-off at [ = [,,;. The theoretical diffraction patterns also need to be convolved

with an aperture function representing the detector.

Now let’s test the assertions about the adequacy of truncating the angular
momentum expansions of wave-fields for finite experimental detector apertures.
The results of two calculations for the case of a Cu atom emitter in the second
layer from the surface of a Cu(001) single crystal are shown in Fig. 2.7 on page 44.
In addition to the electron emitter, the atomic cluster contained 160 scattering
atoms, with the outermost atomic shell having a radius of 10.64. One calculation,
(a), was performed using /,,; = 60, a value large enough for a detector aperture of
semi-angle 2.5° according to the argument above. The other, (b), used l,,; = 82,
which should be large enough for a detector of perfect angular resolution shown in
Fig. 2.6. For the reasons explained above that both patterns were convolved with
a Gaussian of angular variance 0 = 2.5°, representing an experimental angular
resolution of 2.5°, FWHM. The diffraction patterns from these two calculations

displayed in Figure 2.7 are indistinguishable to the eye. An R-factor comparison
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Figure 2.7: Auger diffraction calculation at an electron kinetic energy of 914 eV
from a Cu emitter in the second layer of a Cu(001) surface using an angular
momentum quantum number up to (a) ly; = 60, and (b) [y, = 82 with a
detector aperture semi-angle of 2.5 °. These patterns are virtually identical
with an R-factor of 0.0006.
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Figure 2.8: Auger diffraction calculation at an electron kinetic energy of 914 eV
from a Cu emitter in the second layer of a Cu(001) surface using an angular
momentum quantum number up to (a) ly; = 60, and (b) [y, = 82 without
smoothing. Some difference can be observed between the two patterns
with the higher [,,; calculation (b) giving rise to more fine details in the

diffraction pattern.



of the two patterns results in R = 0.0006, which is within our criterion for a valid
approximation. Also shown on Fig.2.8 are the calculated diffraction patterns of
lows = 60 and [,,; = 82 but without smoothing process. It is shown that consid-
erable differences, are observed between the two patterns for the peak intensities
and some fine fringes. The [,,; = 82 pattern exhibits more fine details compared
to the one with [,,;=60. Those fine differences will be smoothed out if a finite

aperture is present in the calculation of even larger [,,; of 82.

2.3.4 The Forward-Scattering Approximation

For sub-surface emitters, a very convenient approximation to the full multiple-
scattering scheme of Section 2.3.2 may be found. This takes advantage of the
unique geometry of the concentric shells, yields calculated diffraction patterns
practically indistinguishable from those from a full multiple-scattering calculation,

and affords about an order of magnitude speed-up of the calculation.

The approximation is based on the fact that when a medium-energy electron
is incident upon an atom, it is most likely to be scattered with a small angle
close to the direction of its initial path, as is now well attested to in numerous
publications, e.g. [15]. It is possible to exploit this forward-scattering behavior in
the CSA in two ways: 1) by neglecting intra-shell multiple scattering, and 2) by
the successive transmission approximation to inter-shell multiple scattering. The
successive transmission approximation assumes that an outward traveling spherical
wave incident on an atomic shell has a negligible backward scattered (i.e. inward

traveling) component.

Intra-shell multiple scattering can be turned off by neglecting the intra-shell



propagators gZL]l L; in Eq. 8.7 above. This is equivalent to making the approximation:
Tlizjz:Lj ~ ti,Lidij(SLiLj' (239)

in Eq. 2.22-2.25.

The inclusion of only forward scattering in the inter-shell multiple scattering
is accomplished by setting the out-in scattering matrices, TqOI , equal to zero. Then

the scattering matrix of the entire cluster takes on the particularly simple form:
S ~ (14 TY) I+ TYO)--- (14 TYO). (2.40)

Note that both these simplifications, which together we term the forward-
scattering approximation, avoid the matrix inversion operations necessary for the
evaluation of full multiple scattering (see equations Eq. 2.18 Eq. 2.19, and Eq. 2.26
above), thus substantially reducing the computational time requirements. Never-
theless, the forward-scattering approximation includes all single-scattering events
and all significant multiple-scattering pathways, particularly those which do not

contain scattering angles greater than about 90°.

In order to test the validity of the forward-scattering approximation, two
calculations were performed, and the results are displayed in Figure 2.9. Both
computations were for the case where a Cu atom emitter in the fourth layer of a
Cu(001) single crystal. The calculations assumed an 1=0 angular momentum of
the initial emitted electron wave, and an electron energy of 914 eV. In Figure 2.9,
the diffraction pattern labeled (a) utilized the forward-scattering approximation
described above, and (b) the full multiple scattering algorithm of Section 2.3.2.
The results of the two calculations appear identical to the eye. The R-factor re-

lating the two diffraction patterns is as small as R=0.00025, demonstrating the
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Figure 2.9: Comparison of Auger electron diffraction cluster calculations at an
electron kinetic energy of 914 eV for a Cu emitter in the 4th layer of a
Cu(001) orientation. Pattern (a) is the result using the forward scatter-
ing approximation, and (b) is the result using the full multiple scattering.
These patterns are virtually identical, with an R-factor of 0.00025.



excellence of the forward-scattering approximation for such electron kinetic ener-
gies. A single scattering calculation was also conducted and compared with the full
multiple scattering result, as shown in Fig.2.10 on page 50, using a same cluster
and parameters as above. It is easily seen on Figure that pattern (a) and (b) are
significantly different, especially on the magnitude of the peak intensities between
the two patterns, and a poor R-factor value of 0.189 indicates the break down of

single scattering theory in this calculation.

2.3.5 Conclusions

We have described an algorithm for the calculation of the angular distribu-
tions of Auger, photoelectron, and Kikuchi diffraction patterns which is capable
of including ezactly the multiple scattering of the emitted electrons by a cluster
of atoms surrounding the emitter. The size of the cluster is chosen to include all
scattering paths which make a significant contribution to the diffraction pattern.
The central quantity calculated is the single-center transmission matrix S of the
cluster in an angular momentum basis. Once calculated, the angular variation of
the diffraction pattern may be computed on an arbitrarily fine angular grid, sim-
ulating real experimental conditions, such as, the geometry of the analyzer, the
x-ray incident beam and the sample position, the polarization of the x-ray photon,
etc., with very little extra expenditure of effort. The same is true for calculat-
ing the diffraction patterns from different emitted electron states, a feature which
we used to advantage recently [22] in determining the angular momentum state
of Auger electrons by using a reliability (R) factor to compare an experimental

diffraction pattern with simulated patterns due to various emitted electron states.

We have demonstrated that the maximum angular momentum quantum num-
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Figure 2.10: Comparison of Auger electron diffraction calculations at an elec-
tron kinetic energy of 914 eV for Cu emitter in the 4th layer of a Cu(001)
orientation. Pattern (a) is the result using the single scattering approxi-
mation, and (b) is the result using the full multiple scattering. Significant
differences are observed between the two patterns with a poor R-factor of
0.189.



ber that is needed to carry out the calculation is /,,;=60 for a high kinetic energy
of 914 eV for a Cu emitter at the forth layer in a Cu single crystal. Any calculation
of using more than [,,; > 60 will result in more fine fringes in the diffraction mod-
ulations, but the R-factor (between the pattern using l,,;=60 and that for l,,;=82)
will be very small ( 0.0006 ) after smoothing by a finite aperture semi-angle. The
forward-scattering approximation of our algorithm was also tested by neglecting
intra-shell multiple scattering and using the successive transmission approxima-
tion to the inter-shell multiple scattering. The R-factor for this approximation is
as small as 0.0025. The single scattering cluster calculation for the same Cu cluster
was carried out with the similar parameters, and a poor R-factor of 0.189 shows a

significant breakdown of SSC at this energy range.

Finally, the full multiple scattering calculation of Auger diffraction from a
Cu(001) surface is shown on Fig. 2.11 together with an experimental Auger K LL
diffraction pattern measured by G. R. Harp et al. [22]. The calculated diffraction
pattern contained contributions from Cu emitters in the first, second, third, fourth
and fifth layers of a Cu(001) single crystal, and an f-wave emitter (angular mo-
mentum quantum number of 3) was assumed for an f~wave dominated Cu Auger
KLL emission. It is demonstrated that the calculation agrees very well with the

experiment and reproduces all the forward scattering features of the experiment.
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Figure 2.11: Theoretical simulation and experiments of Auger K LL diffraction
from Cu(001) surface, (a) full multiple scattering calculation of f-wave emit-
ter, and (b) experiment of Auger K LL diffraction from a Cu(001) surface
measured by G. R. Harp.



CHAPTER 3

The Interpretation Of Angular Distribution Of
Auger Electrons From Cu(001) Surface

3.1 Introduction

Auger electron and photoelectron diffraction become widely accepted as pop-
ular techniques for determining surface structures, and have proved to be sensitive
tools for determination of an environment around an emitting atom. The correct
interpretation of the angular distribution of Auger electron and x-ray photoelectron
transitions is based on the quantum mechanical theory of electron wave scattering
and interference inside the solid. This picture was challenged by Frank et al.’s
classical “blocking” model [36] which emphasizes an electron’s classical particle
features in a solid. Many recent experiments and theoretical speculations raised
interesting discussions on what kind of features a diffraction pattern shows at the
projections of internuclear directions in the pattern. In Frank et al.’s experimental
work [1] shown on Fig. 3.1 on page 54, complete angular intensity distributions
of Auger electrons emitted from a Cu(001) surface both at the low energy 64 eV
(M3 V'V transition) and the high energy 914 eV (L3VV transition) were mea-
sured, and they showed totally different features in the patterns. It was found
that the intensity is a minimum along the [001] direction in the low energy pat-
tern, while the intensity reaches a maximum along the same direction in the high
energy diffraction. Along this direction there is an atom (the next-nearest neighbor
atom) directly above the emitter. In this chapter we will seek to examine the causes
of the great difference in the diffraction intensity distributions at low and high elec-

tron energies . This phenomenon of the intensity minimum at low energy seems
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Figure 3.1: Complete Auger angular distributions from Cu(001) surface at 64
eV My3VV and 914 eV L3V'V transition lines. Note the intensity shows
minimum along the [001] direction in the low energy pattern, while intensity

reaches a maximum along the same direction in high energy diffraction.



quite the contrary to the results for high electron kinetic energy where forward-
scattering theory can give a satisfactory explanation to many electron diffraction
experiments [22]. In order to solve this contradiction, Terminello and Barton [37]
compared the Auger electron diffraction pattern of the Moz MysM,y5 Auger transi-
tion with the photoelectron diffraction of Cu 3ps/, photoemission from a Cu(001)
surface for a similar energy of 56.6 eV. In their experiments, the Auger pattern
show an intensity minimum at the normal direction [001] while the photoelectron
diffraction shows a maximum along the same direction. This evidence strongly
suggests that the character of the emitter source waves plays an important role in
the resulting diffraction. A single-scattering model has been used to explain the
above phenomena [40,?] and preliminary results were obtained, but a full multiple

scattering theory is still needed in order to reach a convincing conclusion.

In this chapter, we address some of the recent controversies regarding the
interpretation of Auger electron diffraction patterns by simulating those from the
64 eV My3VV and the 914 eV L3V'V lines from a Cu(001) surface. The lower-
energy Auger electron diffraction pattern, in particular, is found to be strongly
dependent on the angular momentum [ of the emitted Auger electrons, which
is in agreement with the observations of some other authors. However, it was
found that both peaks and dips are observed on the same diffraction pattern at the
projections of different atomic rows, indicating that the angular momentum of the
source wave cannot be the only determinant of these features. The distance of the
scatterer from the source, as well as overlap and interference effects from scatterers
in other atomic rows are equally important determining factors. On comparing our
simulations with the experimental diffraction patterns, it was found that, for an

| = 3 source wave (f-wave emitter), the simulations agree remarkably well with the



data from both Auger lines.

3.2 Interpretation of Auger angular distribution and Block-

ing model

Auger electron diffraction has proved to be a powerful and convenient tool for
the investigation of the structures of surfaces and thin films [33,7,2,?]. When the
electron ejected by the atomic emission process has an energy of the order of 500
eV or above, the diffraction pattern tends to be dominated by strong peaks at the
projections of atomic rows radiating from a source atom in a crystalline sample,
as a result of the strong forward-scattering nature of atomic scattering factors.
Thus, crystallographic information may be gleaned from such a diffraction pattern
even without the need for theoretical simulations of the patterns. In addition the
specificity of the diffraction patterns to the chemical species of the emitter enables

the structure around each different type of atom to be deduced independently.

When the ejected electrons are emitted at lower energies, the interpretation
of the diffraction patterns is much more complex. From their observations of low-
energy Auger diffraction patterns from Pt and Cu surfaces, Frank et al. [36,?]
have claimed that forward-scattering directions are dominated by dips of intensity
according to a classical “blocking” or “silhouette” model. They indicated in their
paper that the anisotropic Auger diffraction patterns from the surfaces have been
mistakenly attributed to anisotropic emission from individual atoms, to diffraction,
to multiple scattering or to a combination of these effects in previous works. They
claimed that the measured angular distribution of Auger electrons at 65 eV kinetic
energy emitted from a bare Pt(111) surface, as shown in Fig. 3.2 on page 57 [36],

contains the “silhouettes” of near-surface atoms “back lit ” by Auger emission



Figure 3.2: The experimental Auger electron angular distribution from a Pt(111)
surface at 65 eV measured by Frank et al. [36]. Theoretical simulation
contours based on “blocking” model show the “Y”-shaped region in the
center from which the authors claimed that Auger electrons behave like
classical particles in a solid.



originating from atoms deeper in the solid. They further proposed the “blocking”
model, a theory based upon isotropic Auger electron emission from atomic point-
emitters and scattering by spherical atomic scatterer of uniform cross section. All
the Pt atoms near the surface act as emitters and scatterers, or in other words,
the emitters were assumed to be located in the first, second, third layer, and so
on, and the atoms above the emitters were assumed to block the emitted Auger
electrons from reaching the detector, thereby causing the angular variations in
the diffraction pattern. Accordingly, the simulation multiplies the attenuation
due to each scatterer encountered along the path to the detector, and sums the
contributions from all layers of atoms. Theoretical simulation contours based on
the “blocking” model show the “Y”-shaped region in the center and agrees “well”
with the experiment on Fig. 3.2, and with this evidence the authors inferred a
considerable breakdown of the quantum mechanical theory in the solid for the
Auger electron, and that a classical picture of Auger electron can “well” explain
the experiment. The best agreement between experiment and their theory occurs
when the radii of the scatterers were taken to be 60 to 90 percent of their atomic

radii, and the scatterers 40 percent transparent.

In fact, as have been pointed out by others, there is no reason to doubt the
ability of a proper quantum mechanical theory to explain all the observed phenom-
ena at both high and low energies. An explanation of the forward-scattering dips
observed by Frank et al. [36,?] has been given by Barton and Terminello [37,?], in
terms of the extra angular momentum barrier at the emitting atom as seen by an
ejected electron of high angular momentum. Idzerda and Ramaker [39] and Greber
et al. [40] have simulated such diffraction patterns with single-scattering model.

However, low energy electrons are known to suffer strong multiple scattering, and



it is important to examine its effects on such diffraction patterns. We present here
the results of our full multiple-scattering simulations of the 64 eV My3V'V and
the 914 eV L3VV Auger diffraction pattern from a Cu(001) surface and compare
them with the experimental Auger angular distribution, measured by Frank et al.
[1] as shown on Fig 3.1 on page 54. The simulations in the following sections
are performed by the full multiple-scattering concentric-shell algorithm developed
recently by Saldin, Harp and Chen [32]. We compare our simulations with both
the experimental diffraction patterns of Frank et al. [1], and the simulations by
those authors of the same patterns, based on their “shadowing” or “blocking”
model. The implications of our calculations on the recent controversies regarding

the interpretation of Auger diffraction patterns in general will also be discussed.

3.3 Simulation of Auger electron diffraction patterns from

a Cu(001) surface

The concentric shell algorithm developed by Saldin, Harp and Chen [32],
employs a muffin-tin model of the internal potential of the solid. The phase shifts
were calculated by the MUFPOT program, from atomic potentials taken from the
book by Moruzzi, Janak and Williams [41]. The multiple scattering of an electron
emitted from each inequivalent atom near the surface was evaluated separately by
constructing a cluster of atoms around each emitter divided into a set of concentric
shells. Up to 16 atomic shells containing 396 scattering atoms were included in
our calculation. Emitters in layers deep within the solid contribute less to the
diffraction pattern, due to the small inelastic scattering length of the electrons.
For our simulations we took account of emitting atoms in the first five layers from

the surface.



In the case of a Cu(001) surface all atoms in any particular layer have identical
local surroundings and an electron emitted from any one of them would give rise
to the same diffraction pattern. Emitters in different layers generate different
patterns. The contribution to the final diffraction pattern from an atom in layer

J from the surface is taken as
(k) = 3 S AN ST SN () (=) Vi (K) 2 exp {—a(J) /A cos (0)}  (3.1)
I m U'm!

where the amplitudes, A of the emitted waves of different magnetic quantum

lm>
numbers m corresponding to a particular azimuthal quantum number [ are taken
to be equal, and represented by Al(o). Taking a pure f-wave emitter for the Auger
electron diffraction simulation, for example, the initial wave functions are composed

of 7 components, they are Yas, Yss, Y31, Y30, Y31, Y30, and Y33. We assigned each

wave component, Y3,,, equal weight, i.e.,

AR =AY = g,

Im

and the total intensity arising from those initial wave functions will be the intensity
summation of each component, i.e. added incoherently. This is consistent with the
usual assumption that in Auger emission, the final ejected electron has lost any
memory of the initial excitation process, and thus emerges from an atom with
an overall isotropic angular distribution. The emitted waves of angular momen-
tum components [, m are taken to be incoherent with respect to each other. The
quantities Sl%)l,m,(J ) are the elements of the transmission matrix of a cluster of
N concentric shells around an emitter in the J th layer from the surface, and Y},
is a spherical harmonic function. The exponential factor represents the inelastic
attenuation of an Auger electron emitted from an atom in the J th layer of depth

a(J) from the surface, A the electron’s inelastic scattering length, and 6 the angle



between k and the surface normal.

Angular wave functions of the emitted Auger electron, with the angular mo-
mentum quantum number of 1=0, 1, 2, and 3, and m=-1, ..., I, which represents
the s, p, d, and f orbitals, are listed on Table 3.1 on page 62, and the corresponding
electron density distributions in the x-z and y-z planes are shown in Fig. 3.3 on

page 63.
3.3.1 The 64 eV M,3VV Auger pattern

The quantities Agf,j (:Al(o)) in Eq. 3.1 are the matrix elements of the atomic
Auger process. We are unaware of any calculations of these quantities for the 64
eV Cu M3V V Auger line, and accordingly simulate several different model Auger
diffraction patterns taking the quantities A; individually equal to unity with all
the others zero. That is we used a full multiple-scattering theory to simulate
separately the Auger diffraction patterns arising from emitted electrons initially in
angular momentum states of [ = 0, 1, 2, 3, 4 or 5, corresponding to s, p, d, f, g and
h-wave emitters, respectively. The results of the simulations are shown on Fig. 3.4
on page 65. The upper panel on Fig. 3.1 on page 54 displays the corresponding
experimental diffraction pattern, measured by Frank et al., and reproduced from
their paper [1]. Comparison of the measured Auger angular distribution with
the simulations shows that none of the patterns agree well with the measured
data, except that for the f-wave emitter, which agrees extraordinarily well. It
is shown that the simulation with an f-wave emitter produces a major dip along
sample normal direction and dips along most low-index crystallographic directions,
except along <101> directions where peaks appear. It is also shown that different

source waves produce totally different diffraction patterns at low energy, and that



Table 3.1: Angular wave functions of s, p, d, and f orbitals in angular momentum

representation

L= | Orb. Spherical Harmonic
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Figure 3.3: Schematic diagrams of angular wave functions of s, p, d, and f orbitals

in Table 3.1, where the angular momentum quantum numbers are shown

within the parentheses.

intensity and shown along the x-z plane and the y-z plane.

Note the above wave function plots are of the




is why there is no direct correlation of electron diffraction pattern with the surface

structure as for the high energy diffraction patterns.

On the question of whether the diffraction pattern should manifest a peak or
a dip in the direction normal to the surface, our simulations clearly bear out the
conclusions of Barton and Terminello [37,?] that this is a function of the angular
momentum of the emitted electron, with the lower angular momenta (the s, p and
d) appearing to show a region of relatively high intensity in this direction, while
the f, g and h angular momenta clearly displaying significantly lower intensity in

these directions.

However, we find evidence that the angular momentum of the emitted wave
is not the only factor determining whether a peak or dip appears at the projection
of an atomic row radiating from the emitter. This is most clearly illustrated by
Fig. 3.5 on page 66, which depicts polar-angle profiles of the f-wave diffraction
pattern along the [100] and [110] azimuths. It reveals the intensity minimum at
the projection of the [001] surface normal and close to those of the [103], [112] and
[111] atomic rows, but a maximum close to the [101] projection. It should be noted
that the latter peak is also present on the corresponding experimental diffraction
pattern of Frank et al. [1], shown on Fig. 3.1, although not commented upon by

those authors.

From these observations, one may immediately draw several conclusions:
(1) that the 64 eV Cu(001) Auger diffraction patterns of Frank et al. [1] are
reproducible almost exactly by an elastic multiple-scattering theory, without the
need for the “shadowing” or “blocking” mechanism postulated by those authors.
(2) there does not seem to be a general rule about whether, in the direction of a

scatterer, one would expect an intensity peak or a dip.
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Figure 3.4: Full multiple-scattering simulations of the electron diffraction from
Cu(001) surface at 64 eV for emitted Auger electrons of angular momentum
=0, 1, 2, 3, 4, or 5 (corresponding to s-, p-, d-, f-, g-, or h-wave emitters,
respectively). Note the differences between the simulated patterns are pro-
nounced for the different emitter waves, and the 64 eV My3V'V experiment
measured by Frank et al. [1] as shown in the upper panel on Fig. 3.1, was

reproduce by f-wave simulation.
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Figure 3.5: Polar-angle profiles of the 64 eV f-wave simulation of Fig. 3.4 along
two major azimuths of [100] and [110] directions. Note that a large dip
is observed at [001] direction and some other intensity dips close to the
projections of most low index atomic rows, but a peak close to the [101]

projection which is along the emitter-nearest-neighbor-atom direction.



(3) in agreement with the conclusions of Barton and Terminello [37,?] we find
that a factor determining a peak or a dip is the angular momentum of the emitted
electron.

(4) but it appears that the latter is not the only determining factor, for a dip
appears on the diffraction pattern at the projection of the surface normal, but not

at that corresponding to nearest-neighbor vectors in the structure.

In trying to understand these rather complicated results, we first check
whether they are particularly a consequence of the fact that electrons of such
energies must be expected to suffer rather large amounts of multiple scattering.
Accordingly, we re-calculate the diffraction patterns of Fig. 3.4. with the same
computer programs, but with the multiple scattering switched off (i.e. diffraction
patterns which would be expected on the basis of kinematical, or single scattering
of the same Auger electrons). The results are shown on Fig. 3.6 on page 68. It
will be seen that although, as expected, there are noticeable differences between
the corresponding patterns of Figs. 3.4 and 3.6, the kinematic simulated pattern
is also a function of the angular momentum of the source wave, and the patterns
with higher angular momenta also show an intensity dip in sample normal direc-
tion. Thus, the general conclusions (1) to (4) above remain valid, even for the

single-scattering pattern.

3.3.2 The 914 €V Lo3VV pattern

The paper by Frank et al. [1] also contains measured diffraction patterns,
from a Cu(001) surface, of the 914 eV L, 3V V Auger line, as shown on the lower
panel of Fig. 3.1, together with the results of their simulations of these patterns on

a classical particle channeling model. As in the case of 64 eV M, 3V V diffraction
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Figure 3.6: Simulations of the electron diffraction from Cu(001) surface at 64

eV for emitted Auger electrons of angular momentum /=0, 1, 2, 3, 4, or
5 (corresponding to s-, p-, d-, f-, g-, or h-wave emitters, respectively), for
only single-scattering processes were allowed. They are quite different from

the full multiple-scattering simulations shown in Fig. 3.4.
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Figure 3.7: Full multiple-scattering simulations of the electron diffraction from a

Cu(001) surface at 914 eV for emitted Auger electrons of angular momen-
tum [=0, 1, 2, 3, 4, or 5 (s-, p-, d-, f-, g-, or h-wave emitters, respectively).
The differences between the simulated patterns are much less pronounced
than those of Fig. 3.4.
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Figure 3.8: Polar-angle profiles of the 914 eV f-wave diffraction simulation of
Fig. 3.7 along the two major azimuths of [100] and [110]. Intensity peaks
are seen close to the projections of all low-index rows which shows the main
feature of the electron forward-scattering theory.



pattern discussed above, we have performed multiple-scattering calculations for
Auger electron diffraction from the Cu(001) surface at 914 eV, as shown Fig. 3.7
on page 69, assuming six different choices of emitted electron angular momenta,
namely: [=0, 1, 2, 3, 4 and 5, corresponding to s, p, d, f, g and h-waves, respec-
tively. It will be seen that, unlike the low-energy Auger patterns of Fig. 3.4, all
the simulated diffraction patterns of Fig. 3.7 are dominated by the strong forward-
scattering of the atomic scattering factors at such energies, and the projections of
all the crystal atomic rows appear to be illuminated by spots of high intensity. This
is a feature also of the experimental Auger angular distribution from a Cu(001)
surface from 914 eV L, 3V'V Auger line also measured by Frank et al. This is clearly
illustrated by the plot of the intensity of the f-wave diffraction pattern along two
major azimuths [100] and [110], as shown on Fig. 3.8 on page 70. It is seen that the
diffraction intensity is peaked at along all the low-index crystallographic directions

in the sample.

Due to the dominance of the forward-scattering effect, however, the variations
between the different diffraction patterns of Fig. 3.7 are much less pronounced than
those of the low energy patterns of Fig. 3.4. In fact, the angular distribution of
the 914 eV L3V'V Auger transition from a Cu(001) surface has also been measured
by Tonner and co-workers [22], and we have compared their measured diffraction

pattern with our simulations by means of the reliability (R) factor

_ YilE = Si(D)]?
B > B}

where the E; represent the experimental data and S;(l) the simulated data for

R() (3.2)

the Auger emitter of angular momentum /. The summations were taken over all
available experimental data points 7. Fig. 3.9 on page 72, shows that a minimum

in the R-factor plot is found for the /=3 source angular momentum state.
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Figure 3.9: R-factor comparison of the experimental Auger LsVV electron
diffraction and the simulations for the different source waves of angular
momenta 1=0, 1, 2, 3, 4, and 5. The minimum (best fit) is seen for the

f-wave emitter (1=3).



3.4 Discussion

3.4.1 Comparison with experimental patterns and simulations of Frank

et al.

On Fig. 3.10 on page 75, we reproduce for a closer comparison, the experi-
mental Cu(001) 64 eV M, 3V'V Auger diffraction (upper panel) of Frank et al. [1],
their simulation of “blocking” model (lower right panel) of the same pattern, also
from the same paper, and our multiple-scattering simulation (lower left panel) for
the f-wave emitter at 64 eV. It is obvious that the multiple-scattering cluster model
agrees much better with the experimental data at this low energy. It should be
noted that in our 64 eV f-wave Auger electron diffraction simulation, pattern shows
mostly dips along the low-index crystallographic directions, except for a peak that
apears close to the [101] direction which joins the emitter and the nearest neighbor
atom direction. This intensity enhencement is also found on the measured experi-
mental pattern at low energy. On Fig. 3.11 on page 76 we show the corresponding
comparisons for the 914 eV L3VV Auger patterns with the experimental pattern
and “channeling” model simulation by Frank et al., and our multiple-scattering
simulation, shown on the upper panel, lower right, and lower left, respectively. In
our simulations of both energies, we used ezactly the same computer program for
the simulation of both Auger diffraction patterns. Thus the differences between
the two multiple-scattering simulated patterns are ascribable only to the different
energies of the Auger electrons in the two cases, while the “blocking” model has
to be supplemented by including a “channeling” effect to obtain the high energy

angular distribution pattern instead of the “back” lit effect at low energy.

From both Fig. 3.10 and Fig. 3.11, we can draw an obvious conclusion that



multiple-scattering simulations reproduce all the features of the experiments. For
the low energy Auger diffraction pattern, the correctly chosen source wave angular
momentum of the emitter is crucial, while for high energy Auger diffraction pattern
an s-wave emitter simulation could reproduce fairly well the experiment, but an f-
wave source simulation would result in a the smallest R-factor when compared with
the experiment. We can also see that although the “blocking” model simulation at
low energy could barely “reproduce” some features of the experiment, namely the
center dip, it failel to predict the <101> peaks at the projections of the emitter-
nearest-neighbor directions, in the low energy experiment. The “channeling” model
simulation at high energy totally fails to reproduce the experimental diffraction

pattern.

3.4.2 Dominance of the f~-wave channel for the two diffraction patterns

examined

As mentioned above, both the 64 eV M, 3V V and the 914 eV L3VV Auger
diffraction patterns appear to be best simulated by source waves of [ = 3 or f-wave
character. We point out that this is consistent with the earlier findings of several

different groups.

For example, Weissmann and Miiller [42,43] have drawn attention to the fact
that the angular momentum [/ of an Auger electron emitted from an atom is subject

to selection rules summarized by the relations
==l < 1 < Li+h+l (3.3)

and

lj +l; + 1l +1=even (34)

where [; represents the angular momentum quantum number of the initial core



f-wave
MSC Model Blocking Model

Figure 3.10: Comparison of the measured Cu(001) 64 eV MysLL Auger electron
angular distribution of Frank et al. [1](upper panel) with their blocking
model simulation(right pattern in lower panel), and our f-wave multiple-

scattering cluster simulation(left pattern in lower panel).
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Figure 3.11: Comparison of the measured Cu(001) 914 eV K3LL Auger electron
angular distribution of Frank et al. [1](upper panel) with their blocking
model simulation(right pattern in lower panel), and our f-wave multiple-

scattering cluster simulation(left pattern in lower panel).



hole, and [;, I represent those of the final-state holes, and [ that of the emitted
wave. In the cases of either an Ly 3V'V or an M, 3V'V Auger transition, the initial
core hole is a p-state, and corresponds to an [; = 1 state. In the case of both
transitions considered here, the final-state holes are primarily associated with the
transition-metal d states which tend to be localized on the atomic sites. Thus we
may take [; = [, = 2. On substituting these values into (3.3) and (3.4), some
simple arithmetic shows that the angular momentum of the ejected Auger electron

may take on only one of the following allowed values:

I=1, 3 or 5. (3.5)

In his comparisons of line profiles of measurements of the 64 eV My3VV
Cu(001) Auger diffraction pattern with his model calculations, Davis [44] also

found best fit for a source wave with [ = 3.

A theoretical calculation [39] using proper radial matrix elements and the
table given by Cherkendorff [45] shows that the f-wave source contributes over 95
% to the My3V'V line. Also the calculations by Aberdam et al. [46] of the Auger
matrix elements for the corresponding Ni M, 3V'V line indicate that the amplitudes
A:(;O) are overwhelmingly dominant over those of the other angular momentum

components.

3.4.3 Factors influencing the existence of peaks or dips at projections

of atomic rows

On Fig. 3.12 on page 79 we compare our optimum simulations of the 64
eV My 3V'V (upper panel) and the 914 eV L3V V (lower panel) Auger diffraction
patterns from a Cu(001) surface. Also shown on the simulated patterns are crosses

marking the positions of the projections of all atomic rows emanating from an



emitter.

Peaks are found close to all the crosses on the simulation of the high-energy
pattern, whereas there appears to be no general rule for the low-energy one. For
example, there is the now famous, and prominent, dip at the center of the pattern,
arising mainly from the scattering of a source wave from a second-nearest neighbor
along the [001] direction. In contrast, at the positions represented by the dark
crosses on the low-energy pattern (at the projections of the [101], [101], [011], and

[011] directions), peaks in intensity are seen.

Our simulations of the 64 eV M, 3V'V Auger diffraction pattern with source
waves of different angular momenta have lent support to the general conclusions of
Barton and Terminello [37,?] that the angular momentum of the source wave is an
important determinant of the appearance of a peak or a dip along the direction of a
particular atomic row on a low-energy Auger or photoelectron diffraction pattern.
However, the appearances of both dips and peaks along projections of different
atomic rows on the same diffraction pattern clearly indicates that this cannot be

the sole factor.

To test the contention of Barton and Terminello [37,7] that, on a simple
source-scatterer model, the angular momentum of the source wave is a determinant
of the form of extremum in the forward-scattering direction, we reproduce on
Fig. 3.13 on page 81 our calculated polar-angle plots of diffraction patterns formed
by Auger sources of s to h angular momentum character and a Cu atom scatterer
placed 2.55 A (corresponding to the first-nearest neighbor distance, such as exists
along the [101]-type rows in an f.c.c. structure) from the emitters. It will be seen
that, as suggested by Barton and Terminello [38], a maximum in the forward-

scattering direction from the s, p and d sources turns into a minimum for the f-,
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Figure 3.12: Auger electron diffraction patterns of f-wave simulations from
Cu(001) of 914 eV and 64 eV. The crosses mark the projections of the crys-
tal’s low-index atomic rows. Note that intensity peaks match the crosses
on the 914 eV pattern. On the 64 eV pattern most crosses are associated
with intensity dips, except the peaks at the projections of the <101> direc-
tions(dark crosses). Of particular interest is the fact that the latter peaks
are also found on the corresponding measured pattern of Frank et al. [1],

reproduced in Fig. 3.1.



g- and h-wave sources.

If the calculations were repeated for a Cu atom placed 3.61 A from the source,
corresponding to the next-nearest neighbor distance, which separates atoms along
e.g. the surface normal direction, a similar trend is seen (on Fig. 3.14 on page 82
): namely that a peak in the forward-scattering direction for the lower angular
momenta is replaced by a peak for the higher ones. However, a true minimum
in this direction is only seen for the source with very highest angular momentum
considered, namely the h-wave (although the central peak from the f-wave source

is clearly lower in intensity than the first high-intensity ring that surrounds it).

The distance dependence of the nature of the extremum in the forward-
scattering direction on the single-scatterer model is most clearly shown on Fig. 3.15
on page 84, in which similar polar-angle distributions are plotted for an f-wave
Auger source and a range of source-scatterer distances including that for the
nearest-neighbor (marked with the star) and the next-nearest neighbor one (marked
by the square). A true minimum is seen only for the nearest-neighbor distance,
but a global maximum in the forward-scattering direction is seen only for source-
scatterer distances in excess of about 4 A, which is beyond even the second-nearest
neighbor distance. Although this distance dependence was not explicitly com-
mented on by Barton and Terminello [38], it is consistent with their semi-classical
expression

(1+1/2? (1+1/2)7

¢ = kir = kr + = — 5 (3.6)

for the cumulative phase acquired by an emitted electron of angular momentum
[ at distance r from an atom. (In the above expression, k represents the elec-
tron’s wavelength at an infinite distance from the atomic potential). Thus the

angular-momentum dependent centrifugal potential contributes both a constant,
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Figure 3.13: Intensity variation on a 64 eV My3V'V Auger diffraction pattern due
to a single Cu atom scatterer, placed 2.55 A from electron emitters of s-, p-,
d-, f-, g-, and h-wave character, as a function of the polar angle, measured
from the emitter-scatterer axis. Observe the dips in the forward-scattering

direction (at zero polar angle) for the high angular momenta.
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Figure 3.14: Intensity variation on a 64 eV My3V'V Auger diffraction pattern due
to a single Cu atom scatterer, placed 3.61 A from electron emitters of s-, p-,
d-, f-, g-, and h-wave character, as a function of the polar angle, measured
from the emitter-scatterer axis. A pronounced forward-scattering dip is

seen to develop at rather higher angular momenta.



represented by the third term on the right-hand-side of Eq. 3.6, and also a distance-
dependent term (the second term). Since the diffraction pattern is determined by
the interference between the direct wave from the emitter and that after scattering
by the nearby atom, the third term cannot be a cause of the angular-momentum
dependence of the pattern. To put it another way, if the cumulative phase due to
the angular momentum barrier is the same for the direct and scattered waves there
will be no effect on the interference pattern between the two. The second term
in Eq. 3.6 above vanishes as r — oo and thus does not contribute to the far-field
phase of the direct wave. However, it makes a non-zero contribution to the phase
¢ at the position of the scatterer, and this is reflected in the far-field phase of
the scattered wave. It is this dependence of the latter phase on the distance of
the scatterer from the emitter which is responsible for the differences between the

polar-angle profiles of Fig. 3.15.

However, it is important to note that the results of these single-scatterer
calculations do not explain all the observations on either the 64 eV experimental
patterns of Frank et al. [1] or our f-wave simulation of it shown on Fig. 1 (which
is in very good agreement with the former). On these diffraction patterns a peak
is seen at the projections of the rows containing the nearest-neighbor distances
(the [101]-type directions at 45° to the surface normal), while a dip is seen at the
projection of the surface normal (containing the next-nearest neighbor distances),

which is contrary to the distance-dependent trend in Fig. 3.15.

Thus, the true explanation of the peaks and dips on the much-discussed 64 eV
M, 3VV Cu(001) Auger diffraction pattern must lie in the overlap and interference
of the diffraction from the simultaneous presence of many scatterers [47,?]. Note,

that the essential features of the peaks along the [101]-type directions and the dip
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Figure 3.15: Same polar angle plots as in Fig.3.13 and 3.14, except that here
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at the projection of the surface normal is present even in the single-scattering (but
with several scatterers and sources) diffraction pattern of Fig. 3, and that it is not

necessary to invoke multiple scattering for an explanation.

3.5 Conclusions

We have employed the full multiple-scattering concentric-shell algorithm of
Saldin et al. [32] to simulate the 64 eV M,3V'V and the 914 eV L3VV Auger
diffraction patterns from a Cu(001) surface, and have compared these patterns with
the published experimental data and computer simulations of Frank et al. [1] of the
same Auger patterns. Our simulations agree much better with the experimental
data of those authors than their own simulations, provided the Auger electrons are
assumed to be emitted from each atom into an [ = 3 angular momentum state.
These results are consistent with earlier work [37,7], which have also suggested that

Auger electrons from these particular transitions are emitted into f-wave channels.

However, we find that the angular momentum of the emitted electron is
not the sole factor determining the appearance of either a peak or a dip at the
projection of a particular atomic row in a crystal. On the contrary, we find that
other factors, such as the inter-atomic distances along a particular row, and the
existence of overlap and interference between diffraction from different, and not
necessarily collinear, atoms in a complex structure can have as important an effect.
By comparing our simulations with ones assuming only single-scattering we are
also able to demonstrate that multiple-scattering has a noticeable effect on the

diffraction patterns.

It is particularly gratifying to find that ezactly the same theory reproduces

the very different appearances of the high and low energy diffraction patterns. The



theory treats essentially elastic scattering of the emitted Auger electrons, with an
exponential attenuation of the elastic intensities with path length, due to the finite
inelastic scattering length, in the standard fashion of usual multiple-scattering

calculations.



CHAPTER 4

Anomalous Shifts Of Forward Scattering Peaks
In Photoelectron Diffraction Patterns From
MgO(001) Surface

4.1 Introduction

The structure of clean MgO(001) surface has been the subject of many inves-
tigations over the past two decades. The interest of studying MgO surfaces is due
to its technological use as a substrate for thin film growth and as an important
refactory material. The initial interest in this surface, however, was motivated by
predictions that the anions and cations undergo different relaxations due to their
differing polarizabilities. Theoretical predictions of the size and even existence of
such a differential relaxation and rumpling has been the subject of some debate for
a long time. Extensive experiments were conducted on MgO surfaces using surface
sensitive techniques, such as Low Electron Energy Diffraction (LEED), Reflection
High Energy Electron Diffraction (RHEED), Electron Energy Loss Spectroscopy
(EELS), Extended Energy Loss Fine Structure (EELFS), He™" diffraction, Impact
Collision Ion Scattering Spectroscopy (ICISS), Extended Fine Auger Structure
(EXFAS), Photoelectron Spectroscopy (XPS, UPS), and Angle-Resolved X-ray
Photoelectron or Auger Electron Diffraction (ARXPD, ARAED), to explore its
surface information in different aspects. Controversies over the amount of rum-
pling and relaxation for this surface still exist, and the reported values of the
rumpling vary between 1 and 8% [54,55], and relaxation values between -15% and

3% [54,55).

An early study of MgO(001) surfaces cleaved in the air was carried out by



Legg, Prutton and Kinniburgh [50] in 1974 using the LEED technique. It has been
shown that the relaxation of the top layer on the surface was very small, being
at most 3% of its bulk interlayer spacing. On the other hand, Welton-Cook and
Prutton [51] indicated that the MgO(001) surface should not be relaxed but might

be rumpled to a degree of 5% by a shell model calculation of the surface energy.

A LEED study by T. Urano and T Kanaji [52] in 1983 showed that the
surface of MgO(001) prepared by (1) cleaving a MgO single crystal in the air,
(2) then heating to 300 °C, (3) heating under an oxygen environment to remove
surface carbon contamination. These experiments result in similar LEED -V
curves of the diffraction beams of (10), (11), and (20) spot. Theoretical modeling
has been conducted, allowing the first layer to be adjusted, the result shows that
theoretical curves with no relaxation or with the smallest relaxation of (2.5%) in

the calculation fit the above three experiments best.

A RHEED experiment for elastic diffraction of 10 keV electrons incident on
the MgO(001) surface along the [010] azimuth, was done by P. A. Maksym [53]
in 1985. It was concluded from this experiment that the most likely value of the
outermost layer spacing is close to the bulk layer spacing, and the upper limit of
any deviation from the bulk spacing was found to be an expansion of 3%. This is
consistent with the accepted LEED results of previous studies. It was also shown
that the RHEED intensities are insensitive to rumpling when the incident beam
azimuth lies in one of the [n10] directions with n being even, while they are very

sensitive to rumpling when it lies in other directions.

But a large inward relaxation of the topmost layer of 15% + 3% with respect
to the distance in the bulk and a small rumpling surface were observed by ICISS

technique conducted by H. Nakamatsu, A. Sudo, and S. Kawai [56,7] in 1988-1989.



The electronic structure of MgO surface was also studied by V. E. Henrich,
G. Dresselhaus, and H. J. Zeiger [60] using the EELS technique in the early 80’s. In
their experiment, the primary electron energy, E,, was varied in a range between
100 eV and 2000 eV, and it was possible to unambiguously separate bulk and
surface features in loss spectra. Both surface and bulk Mg intraionic and O-to-
Mg interionic transitions have been studied and found to be associated with the

excited-state spectra of free Mg?*.

The structure, the microtopography and the cleanliness of MgO(001) surfaces
were investigated by a combination of thermal helium scattering, surface decora-
tion and Auger spectroscopy [58]. It has been shown that the microstructure
depends strongly on the surface preparation technique. MgO surfaces obtained
by cleavage under UHV are clean, and present a high coefficient for coherent He™
reflection, while annealed MgO surfaces show a lower coefficient of coherent He*
reflection. An explanation of this might be that the cleaved surfaces have a low
number of defects while annealed surfaces present a high number of defects. The
large difference in number of defects on a clean and annealed surfaces was also
found by Varma et al. [59] using Angle-Resolved X-ray Photoelectron (ARXPD)
and Auger Electron Diffraction (ARAED) experiments, where the ARXPD and
ARAED data were from a cleaved MgO surface and a sputtered & annealed one.
Substantial differences in shape and intensity of the diffraction peaks are observed
for diffraction patterns from the cleaved sample and that from the sputtered &
annealed one. The Mg KLL ARAED pattern and the O 1s ARXPD one from
the cleaved sample show additional fine structures which are an indication of a
higher degree of order on the sample surface than that of sputtered & annealed

one. Theoretical simulations using a multiple scattering algorithm show that a de-



fect free surface model of MgO(001) can well reproduce the experimental electron
diffraction patterns taken from the cleaved sample, while simulations do not agree
very well with those from the sputtered & annealed surface. This also indicates

that there is a low density of defects on the cleaved surface.

ARXPD has been proved to be a very powerful surface technique in investi-
gating the atomic arrangements of metal surfaces and thin films with metal sub-
strates, while there have been few ARXPD studies of insulator surfaces. Anoma-
lous electron diffraction patterns were first observed from an ionic insulator surface
of MgO(001) by Varma et al [59] from the Mg K LL Auger line (1180 V) and the O
1s core-level photoemission line (955 eV). Two significant anomalies were observed.
Firstly, the intensity maxima of the electron diffraction data do not always match
the low-index crystallographic directions. This is contrary to the observations
for metal surfaces where, along the low index directions, there always exist the
forward-scattering peaks in the range of high electron kinetic energies. Secondly,
the diffraction patterns produced by Mg K LL Auger and O 1s photoemission do
not contain peaks at the projection of exactly the same directions even though they
occupy equivalent crystallographic sites in bulk MgO. Large relative peak shifts

are found between these two patterns.

In this chapter, a full multiple scattering method was used to calculate the
electron diffraction patterns of Mg K LL and O 1s emission from a flat and rumpled
MgO(001) surfaces. A detailed MgO(001) surface rumpling model was discussed
and used in the multiple scattering calculation of the electron diffraction. The
electron inelastic scattering length was found to play an important role in the
explanation of the peak shifts in the diffraction pattern, and it was shown that a

short inelastic scattering length could cause the shifting of Mg and O peaks off their



low index crystallographic directions. The magnitude and direction of the shifting
are in line with the observations from the experiments. Simulations were also done
on Mg s and d-wave emitters, and by comparing them with the experiment, it was

shown that the s-wave emitter is dominant in the Mg K LL Auger transition.

4.2 MgO surface model and electron diffraction experi-

ments

A MgO bulk crystal is a rocksalt-structured ionic crystal which takes a simple
cubic structure of Mg and O atoms occupying alternative lattice position and each
atom is surrounded by 6 nearest neighbor atoms with opposite species as shown in
Fig. 4.1 on page 93. Its lattice constant is 4.21 A with a Mg-O bonding length of
2.10 A. In a MgO compound, magnesium loses two electrons and becomes a Mg2*
cation, and oxygen gains two and becomes an O?~ anion. In the ionic structure
of MgO, the ionic radii of Mg?t and O?~ are 0.65 and 1.46 A respectively, very

different from the radii of neutral Mg and O of 1.72 and 0.65 A, respectively.

Fig. 4.2 on page 94, shows a bulk terminated MgO rocksalt (001) surface
viewed along [100] and [011] directions with smaller filled circles representing Mg
atoms and bigger open circles for O atoms. Some polar angles radiating from a
Mg atom along low-index crystallographic directions are marked in the figure, and
listed on Table 4.1. Due to an identical local environment, atomic rows radiate
from the O atom in the same directions. A rumpled MgO(001) surface model is
shown in Fig. 4.3 on page 95, in which surface cations (Mg atoms) and anions
(O atoms) undergo different relaxations, which anions moving into the vacuum
relative to the cations. The degree of rumpling of the surface depends on the

separation of the cations and anions in the outermost surface. A net inward or



Table 4.1: Low-index directions of a bulk terminated MgO(001) surface

[001] | [103] | [102] | [101] | [302] | [201] | [112] | [111] | [332]
0° | 18.4° | 26.6° | 45.0° | 56.3° | 63.4° | 35.3° | 54.7° | 64.8°

outward motion of the surface cations and anions will result in a relaxation of
the surface. A large rumpling on the surface may not necessarily mean a large
relaxation, and wise versa, a large relaxation does not necessarily indicate a large
rumpling on the surface. The low-index crystallographic directions in a bulk do not

necessarily pass the center of those surface cations or anions, as shown in Fig. 4.3.

Completed ARXPD patterns have been measured in the same scan from sput-
tered & annealed and cleaved MgO(001) surfaces for O 1s core-level photoemission
and Mg KL,Ls Auger emission by B. Tonner’s group [59]. Fig. 4.4 on page 96
shows the electron diffraction patterns from a sputtered & annealed MgO(001)
surface and that on Fig. 4.5 on page 97 from a cleaved surface. The experiments
were carried in a VG ESCALAB MARK II system using the Al K, (1486.6 eV)
radiation with a base pressure of 9x10~!' Torr. The x-rays are assumed to be
unpolarized. The angular resolution of the electron analyzer was less than 3°. The
diffraction intensity distributions were measured in a geometry with a fixed an-
gle of 75° between the incident x-ray source and the electron analyzer direction.
The polar angle § was scanned by rotating the sample normal direction relative to
the detector, and the changes in azimuthal angle ¢ were realized by rotating the

sample along its normal direction.

There are two significant anomalies observed in these experiments. The first
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Figure 4.1: MgO rocksalt surface model: (a) three dimensional view of the rock-
salt structure, and, (b) top view of (001) surface. The bulk interlayer
spacing d equals 2.10 A. Filled and empty circles represent Mg and O

atoms, respectively.
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Figure 4.2: MgO bulk terminated surface model, a side view along (a) the [100]
direction, and, (b) the [011] direction of the rocksalt (001) surface structure.
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Figure 4.3: MgO rumpled surface model, a side view along (a) the [100] direction,
and, (b) the [011] direction of the rocksalt (001) surface structure. In this
model, surface O atoms move towards the vacuum relative to the surface
Mg atoms, and the bulk interlayer spacing d and low-index crystallographic

directions are also marked as a reference.
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Figure 4.4: Angle-resolved diffraction patterns of (a) Mg Auger KLL (1180
eV), and, (b) O 1s photoemission (955 eV) from a sputtered & annealed
MgO(001) surface measured from the same scan by S. Varma et al [59]. The
patterns are plotted as a function of a uniform K grid with K;=0 (where
the subscript “||” indicates component parallel to the surface) at the cen-
ter of the patterns. The locations of the major low-index crystallographic

directions are marked by different symbols.
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Figure 4.5: Angle-resolved diffraction patterns of (a) Mg Auger KLL (1180 eV),
and, (b) O 1s photoemission (955 eV) from a cleaved MgO(001) surface
from the same scan as measured by S. Varma et al [59]. The locations of

the major low-index crystallographic directions are also shown.



is that some diffraction intensity peaks shift off the forward-scattering directions to
a lower polar angle, such as the O peak near the [201] direction. The polar angle of
this [201] direction is 63.4°, while the observed O peak in the electron diffraction
patterns is 60.0°. The second is that peak positions in the diffraction patterns
measured from the Mg KLL Auger and the O 1s core-level photoemission lines
are not matched, despite a similar local environment occupied by Mg and O. Some
O 1s peaks have a larger shift than that produced by the Mg Auger diffraction, e.
g. the Mg and O peaks near the projections of the [111], [112], and [201] directions
for both the cleaved and sputtered & annealed experiments. Above anomalies
have no simple explanation on the forward-scattering theory [72] that has been
successfully applied to metal surfaces. Thus those anomalous features must be

associated with some intrinsic feature of this insulator.

4.3 Full multiple scattering calculation of electron diffrac-

tion from MgO(001) surfaces
4.3.1 Theoretical modeling of the MgO structure

The theoretical calculation of electron diffraction from MgO(001) surface
was carried out by using a concentric shell cluster multiple scattering algorithm
developed by D. K. Saldin, G. R. Harp, and X. Chen [32] and described in detail in
Chapter 2 on page 14. The approach is basically based on the classification of the
cluster into a series of concentric shells centered at the origin (emitter position).
The shells contain atoms of approximately the same distance from the origin.
Intershell and Intrashell scattering matrix can be evaluated with the aid of a pair

of recursion relations developed by Saldin and Pendry [21].



Before carrying out any cluster calculation, the atomic and electronic struc-
ture of MgO(001) surface has to be examined carefully. The MgO(001) surface
clusters used in the calculation were the unrumpled MgO(001) surface shown in
Fig. 4.2 and rumpled surface structure shown in Fig. 4.3. From these two cluster
models, the atoms in the first five outermost surface layers (a total 250 scattering
atoms) are included in the multiple scattering calculations, the outermost atomic
shell being 11 A from the emitter. These clusters are big enough for a full con-
vergence of the scattering calculation, because the radius of the outermost shell

distance is larger than the electron inelastic length, which is in the order of 8 A.

Electron wave functions of Mg, Mg?*, O, and O?~ atoms were obtained by
a Hartree-Fock-Slater self-consistent program [61] and then used as an input in
the MUFPOT program developed by J. Pendry and co-workers [11] to calculate
the atomic potentials in an ionic Mg?*O?~ and a neutral MgO structure. In the
MUFPOT program, an averaged statistical exchange parameter o of 0.73680 was
assumed for both Mg?*O?~ and MgO system (exchange parameter « for free O and
Mg atoms were reported to be 0.74447 and 0.72913 respectively in reference [62]).
The phase shifts of ionic Mg?~ and O?~ atoms at kinetic energies of 1180 eV and
955 eV were then calculated by taking a muffin-tin radius of 0.65 A for Mgt
atom and 1.46 A for O?~ atom. Phase shifts of neutral Mg and O atoms were
also evaluated at 1180 eV and 955 eV with both neutral atoms having the same
muffin-tin radius of 1.06 A in the solid. The plots of the amplitude and phase of
the atomic scattering factors of Mg, Mg?*, O, and O?~ for a high electron energy
of 1180 eV are shown in Fig. 4.6 on page 101 and in Fig. 4.7 on page 102. Atomic

scattering factors of Mg?t and Mg atoms are calculated using a spherical wave



form [79]

22

f@,r) = % > (20 + 1)sind; e Py(cosh)c(kr) (4.1)
1=0

where §; is the phase shift, and P,(cosfl) a Legendre polynomial, and ¢;(kr) the
polynomial coefficient of Hankel function hl(l)(kr) [8], and r the distance between
the scatterer and emitter, and ¥ wave number of the electron. There is very little
difference between the scattering factor at energy 1180 eV and 955 eV due to the

very small energy dependence of the phase shifts at high energies.

A simple criterion

l=kR

can be used to estimate the angular momentum quantum number / that is needed
to fully describe a scattering process, where & is wave number and R the atomic
radius. It can be obtained from this criterion that, at 1180 eV, (=24 and 12 for
0O?~ and Mg?" respectively, and /=17 for both neutral O and Mg atoms; at 955
eV [=22 and 11 for O?>~ and Mg?" respectively, and /=16 for both neutral O and
Mg atoms. Despite the large differences in ionic radii, for high electron energies
the atomic scattering factors of Mg?* and O?~ were found to differ in amplitude
in the forward-scattering direction (0°) by 10%, and to have nearly the same half-
width of about 20°. This is also true for the atomic scattering factor of neutral
Mg and O atoms. It is shown in Fig. 4.6 and 4.7 that neutral atoms of Mg and O
have larger scattering strength than the ionic atoms, and that there are relatively
large changes in scattering phase between the neutral and ionic atoms of the same

species along forward-scattering direction.

In this calculation, the atomic scattering factors for Mg, Mg?*t, O and O?~
atoms sum over angular momenta up to [=22. However, there are only small

differences beyond [=16 for the Mg, Mg?*, O and O?~ scatterers. Due to the fact
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Figure 4.6: Atomic scattering factors of Mg?t and Mg atoms calculated using the
spherical wave form [79], where the phase shifts are evaluated by a MUF-
POT program at an energy of 1180 eV with input electron wave functions
obtained from a Herman-Skillman self-consistent program. The scattering-
factor amplitude and phase of an ionic Mg?* atom are plotted by curves
(a) and (b), respectively, and the scattering-factor amplitude and phase of
a neutral Mg atom are plotted by curves (c) and (d), respectively.
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that the MgO single crystal is a hard and rigid solid, we could infer that the atomic
structure of MgO is stable or that the bonding between Mg and O is strong, so the
Debye temperature, Tp, could be very high. Taking Tp=1600°K or above, and
the sample temperature T to be 300°K, for example, and comparing the atomic
scattering factor with that of the sample temperature at zero Kelvin, it was found
that the atomic scattering factors of the above two cases were almost identical.
This infers that phase shifts at a sample temperature of a zero Kelvin is the limit
of the phase shifts at very high Debye temperature. Therefore zero Kelvin sample

temperature was used for the calculation of phase shifts of Mg and O.

4.3.2 Simulation of electron diffraction from MgO(001) surface

The results of the multiple scattering simulations of Mg K LL Auger and
O 1s core-level photoemission lines will be discussed in this section for the flat
and rumpled MgO(001) surface models. First of all, the initial forms of the Mg
and O emitted waves should be determined. Due to the dipole selection rule,
the O 1s core-level (angular momentum quantum number 1=0) photoemission was
assumed to be emitted into an 1=1 state, whereas in the Mg K LL Auger transition,
an s-wave emitter was assumed first. This is generally a good approximation
when the kinetic energy of an electron is large (above 600 eV). Due to the Auger
transition selection rule [43], a possible Auger d-wave emitter could be involved
in this transition and it will generate a similar diffraction pattern to that of an s-
wave but with small differences [72] which will be discussed in Section 4.3.4. It was
assumed in all the calculations that a real part of inner potential energy is -11.4
eV inside the MgO solid, and an adjustable imaginary part of the inner potential

energy ranges from 0 eV to 16 eV. The later is associated with the electron inelastic



scattering length at the lower end of the universal curve [63] around 1000 eV.

The scattering matrix SV can be calculated by using the concentric shell
algorithm program described in Chapter 2. Once the scattering matrix S(V) is
obtained, it will then be used in the diffraction intensity calculation simulating

different experimental conditions.

The angular distribution of the far-field intensity with electron wave number
k due to the O 1s transition with an emitter located at the Jth layer below the

surface can be expressed in terms of S(V)

Ipp(k —|ZZSN>ALLC (=)' Yy (k) |? exp {—ds / Acost} (4.2)

where L represents (Im), [ angular momentum quantum number and m the mag-
netic quantum number, A(Logc is the transition amplitude from core-state L. to
the final emittering state L, K is the electron wave vector, and A is the inelastic
scattering length of an electron in a solid. The resulting wave-fields involve waves
that are mutually coherent if they originally come from the same core-level state
L., and mutually incoherent if they are emitted from different core-states. In the
case of O 1s photoemission, there is only one 1s core-state and the final emitting

state is a p-state.

The angular distribution of the far-field intensity for the Mg KLL Auger

transition lines can be expressed as:
I pp (k) Z | Z S(N A(O i)Yy (1A<)|2 exp {—d;/Acosf} (4.3)

where the matrix A(LO) represents the transition amplitude of a final Auger electron
in state L (=Im), and the amplitudes of the emitted waves of different magnetic

quantum number m corresponding to a particular azimuthal quantum number [



are taken to be equal, and A(LO) will be replaced by Al(o). This is consistent with
the usual assumption that in Auger emission, the final ejected electron has lost
any memory of the initial excitation process, and thus emerges from an atom
with an overall isotropic angular distribution. The emitted waves of angular mo-
mentum components [m are taken to be incoherent with respect to each other.
The exponential factor in both equations represents the inelastic attenuation of an
photoelectron or Auger electron emitted from an atom in the Jth layer of depth
dy from the surface, A is the electron’s inelastic scattering length, and € the angle

between k (pointing from sample to the detector direction) and the surface normal.

In the case of a MgO(001) surface all atoms of the same species in any
particular layer have identical local surroundings, and an electron emitted from any
one of them would give rise to the same diffraction pattern. Emitters in different
layers generate different patterns, and the final diffraction pattern will account for
the contributions from all layers. Due to time constraints, the diffraction intensities
from just the first five layers below the surface were calculated, and the total
intensity summation was carried out by putting more weight on the intensity of
the fifth layer. The reason for doing this is that diffraction intensities from deeper
layers result in a similar diffraction pattern due to a similar local environment as
the emitter goes deeper into the bulk, but with a different damping factor due
to the different path that electron travels through a solid to reach the detector.
In the MgO(001) simulations, only small changes in intensity profiles were found
between those from 4th layer and 5th layer emitters as shown in Fig. 4.11 on
page 116. With this evidence, therefore, we can make a further approximation
that the diffraction intensities from the emitters below the 5th layer have the same

intensity distributions as that of 5th layer, except for an extra attenuation factor.



A simple algorithm shows that the effective intensity contributed by the fifth layer

and all subsequent layers can be expressed as:
D=+ +I"+ P+
= I° + IPexp{—d/\cosO} + I°exp{—2d/\cosh)} + - - -

<o+ Pexp{—nd/Acosh} + - - -

Therefore,

I3 70 = I°(1 — exp{—d/Xcosf}) ' (4.4)

The expression of (1 — ezp{—d/)\cosf)})™" was taken as the weight factor, which
is a function of the polar angle 6, for a total diffraction intensity summing over
an infinite number of layers below the 5th layer. Eq. 4.4 is held for the x-ray ex-
cited electron diffraction circumstance where the photon penetration depth is much
larger than that of the electron inelastic scattering length in the solid. Therefore,
emitters in each layer have the same possibility to be excited, and contribute
equally to the diffraction intensity except to a damping factor due to the elec-

tron meam free path. However, for an electron excited Auger electron diffraction,

L
ext

the penetration depth, A_;, (along the sample normal direction), of the external
electron beam is usually shorter than or equivalent to that of the electron escape
length. The emitters in the deeper layers have less chances to be excited, therefore

the intensity contributed by the 5th layer and all subsequent layers should be:
D=+ +I"+ P+
= I° 4 IPexp{—d/Acosh — d/ )\ cos0} + IPexp{—2d/\cosh — 2d/\.,,cos0} + - - -

-« + Pexp{—nd/Acosh — nd/\L,cos0} + - - -

ext



Therefore,
If]?f"o = I°(1 — exp{—d/AcosO — d/\% ,cosf}) (4.5)

and we take (1 — exp{—d/\cosd —d/\L,cos0}) ! as the weigth factor here. Noted
that when adding the intensities of the 1st to 5th layer, the extra damping factor

of exp{—d;/\L,,cos0} due to the external electron beam should also be considered.

In the first calculation, the flat MgO(001) surface model of Fig. 4.2 on page 94
was used, and the diffraction patterns for the Mg emitter at the energy of 1180
eV and the O emitter at 955 eV shown on Fig. 4.8 (a) and (b) on page 109 were
obtained. The diffraction patterns of both Mg and O emitters reveal a similar
forward-scattering feature, different only in small details. In comparison with the
experimental diffraction patterns of Fig. 4.4 and Fig. 4.5, the calculated diffrac-
tion patterns from a flat MgO(001) surface are in much better agreement with the
cleaved MgO(001) electron diffraction experiments than the experimental diffrac-
tion patterns from the sputtered & annealed MgO(001) surface. In general, the
peak positions from the calculations match nicely with the experiments from both
cleaved and sputtered & annealed surfaces, however, the peak shapes and intensity
distributions of the cleaved MgO experiments are much closer to the simulations
for both Mg K LL and O 1s emitters. This suggests that the cleaved MgO(001) sur-
face is closer to a perfect surface or has a lower number of surface defects than that
of the sputtered & annealed surface. The high number of defects on a sputtered
MgO surface has also been discovered by Duriez et al in the He' ion scattering
experiments [58].

Some important features in the experimental diffraction patterns are repro-

duced by the calculated diffraction patterns, and they are: The extremum is ob-

served along [001] direction for the O 1s emitter from the cleaved and sputtered



& annealed MgO(001) surface, although is much more prominent in the multiple
scattering simulations; The “U” shaped features that appear near the [013], [013],
[103], and [103] directions of the Mg K LL pattern from the cleaved experiment;
Some of forward-scattering peaks are toward the lower polar angle for both Mg
KLL and O 1s emitters; Peak shifts between the Mg K LL and O 1s emitters are
found, e.g. the [111] peak of the O 1s shifts as much as 3.3° more than that of the
Mg KLL emitter; Other forward-scattering directions in the diffraction simula-
tions, such as [103], [101], and [001] of both Mg and O emitters, remain unchanged

along the low-index crystallographic directions.

In order to see if the relative peak shifts toward the low polar angle, as seen
in the experiments, could also be due to the rumpling on the MgO(001) surface,
in the second calculation, the rumpled MgO(001) surface model in Fig. 4.3 was
assumed and the corresponding calculated diffraction patterns are shown in Fig. 4.9
on page 110 for both the Mg K LL and the O 1s emissions. The rumpling model
used for the calculation assumes that the surface Mg atoms remain at their bulk
terminated positions and O atoms move into the vacuum by 0.2 A, that is a
rumpling of 10 % and relaxation of 5% at the surface. The Mg and O atoms below

the second layer remain at their positions as they were in the bulk.

It is shown that the calculated diffraction patterns from a rumpled MgO(001)
surface produce a similar diffraction patterns as those from a flat surface. Quanti-
tative evaluations on the diffraction patterns have been done to reveal the differ-
ences between those theoretical simulations from a flat and a rumpled surface, and
it was found that the peak shifts between those diffraction patterns are within 0.5°.
Actually, peak shifts of a rumpled surface are toward the center of the patterns,

although along the right direction, but much less than the measured values of 3 to



[110]

(@)

—» [100]

(b)

W .<001> §:<101> A <111> 4:<112> +:<103>

Figure 4.8: Calculated diffraction patterns due to (a) Mg KLL Auger (1180
eV) s-wave emitter, and, (b) O 1s photoemission (955 eV) from a flat
MgO(001) surface. The patterns are plotted as a function of a uniform k

grid with k;=0 (where the subscript indicates component parallel to the

“||”

surface) at the center of the patterns. The major low-index crystallographic

directions are indicated by different symbols.
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Figure 4.9: Calculated diffraction patterns of (a) Mg KLL Auger (1180 eV)
s-wave emitter, and, (b) O ls photoemission (955 eV) from a rumpled
MgO(001) surface. The major low-index crystallographic directions are
marked by different symbols.



5 ¢ shifts in the experiments. This indicates that the peak shifts in the diffraction
patterns may not be caused by the rumpling of the MgO(001) surface. The reason
for the insensitivity of electron diffraction to a rumpled MgO(001) surface is that
the diffraction pattern produced by the emitter close to the surface does depend
heavily on the rumpling model. The sensitivity to the rumpling decreases as the
emitter goes into the bulk where the local structure is essentially the same as that
from the flat surface. The overall intensities are made up of those from the surface
and the bulk, and the bulk to surface ratio of the electron diffraction intensity

derived from Eq. 4.4 is approximately:

exp{—d/\}
T enp (d ]~ 37 (4.6)

bulk to surface ratio ~

where d=2.1 A and A=8 A were taken. It is assumed that the pattern of the
first layer is featureless (which is not true for the intensity at large polar angle),
the second layer intensity is considered to be the surface component, and all the
intensity below the third layer constitutes the bulk component. Due to the large
ratio of bulk to surface diffraction intensity of the MgO(001) solid, such a large
rumpling of 10 % and relaxation of 5% at the surface cannot be easily detected by

electron diffraction experiments of this energy range.

Polar plots along the two major azimuths of [100] and [110] from the multi-
ple scattering simulations due to the Mg and O emitters from the flat MgO(001)
surface, and the electron diffraction experiments of the Mg K LL and O 1s pho-
toemission from the cleaved MgO(001) surface are shown in Fig. 4.10 on page 115.
Points of agreement between the simulations and the experimental patterns are (1)
both the O 1s and Mg K LL [112] peaks are shifted toward lower polar angle by 3
to 5%, and the sharp peak of the O pattern and the smooth peak of the Mg one are

reproduced, (2) the O 1s curve shows a dip at [001] direction, and Mg K LL curve



Table 4.2: Forward scattering directions of electron diffraction from MgO(001)

surface
Direction Line Bulk | Expt. (shifts) | Theory (shifts)

001] |MgKLL| 0 0 (0) 0 (0)
O 1s 0 0 (0) 0 (0)

[103] |MgKLL| 184 18.4 (0) 18.4 (0)
O 1s 18.4 18.4 (0) 18.4 (0)

[101] |MgKLL| 45.0 46.0 (-1) 46. (-1)
O1s | 45.0 46.0 (-1) 45. (0)

201] |MgKLL| 63.4 63 (0) 63. (0)
O1s | 634 60 (3) 60.5 (3)

[111] | Mg KLL | -54.7 -54.7(0) -55. (0)
O1ls | -54.7 | -51.0(3.7) _51.5 (3.3)

112] | Mg KLL | -35.3 -32.3(3) .33 (2.3)
Ols | -353 | -30.5(4.8) _31.8 (3.5)




doesn’t, (3) the [101] peak for the Mg emitter is broader and lower than that of
the O, and this Mg peak has a shoulder while the O peak doesn’t, (4) there are
two peaks in the Mg curve between [001] and [101] peaks, while there are three
peaks in the O curve at the same region, (5) the [111] O peak is asymmetric and
shifted to a lower polar angle by 5°, while the Mg peak remains along the [111]
direction. Forward scattering angles are listed in Table 4.2 for the experimental
and calculated electron diffraction patterns from the Mg K LL and O 1s emitters

together with the low-index crystallographic directions of the bulk MgO.

There are some small peaks that appear on the experimental patterns, such
as the one at 10° along [110] azimuth, but it can not be reproduced in the calculated
diffraction curve. This minor discrepancy could be due to the approximation that
emitters in only five layers are explicitly calculated (with the contributions from
the remaining layers approximated). Diffraction intensity differences between the
fiftth and deeper layer contributions might be the reason for the missing peaks. A
layer-by-layer decomposition of from the calculated electron diffraction intensities
are plotted along two major azimuths [100] and [110] in Fig. 4.11. Few differences
between the diffraction intensity curves of layers 4 and 5 have been observed, which
is the rationale behind the approximation described by Eq. 4.4 A very smooth
diffraction intensity distribution around the normal direction (0°) is seen on the
curve contributed by the first layer. As the emitter goes deeper into the bulk,
the number of minor peaks between [001] and [112] along [110] azimuth increases
and the shapes of the peaks are also changed. These low polar angle peaks are
mainly along the higher index crystallographic directions whose footprints show
up when the emitter locates deeper into the bulk, and a calculation of containing

more layers of atoms below the surface could simulate these missing peaks at low



polar angles.

4.3.3 The role of the inelastic scattering length in electron diffraction

There still remains a question to be answered: why the forward-scattering
peaks in the electron diffraction patterns of the MgO(001) surface do not always
correspond to the low-index crystallographic directions, even though our calculated
diffraction patterns reproduce the experimental results. It is well known that Mg
and O atoms in the rocksalt MgO solid have a similar local environments with just
different surrounding species. What then is the main reason that causes the shifting
between the forward-scattering peaks due to the Mg and O emitters? Fig. 4.8 and
Fig. 4.9 show that very small peak shifts (within 0.5 °) were observed between the
diffraction patterns from flat and rumpled MgO surfaces, which is much less than
the measured peak shifts of 3 to 5 °. This evidence strongly suggests that the shifts
of the peak positions in the Mg and O diffraction patterns are not sensitive to the
surface rumpling, and the observed peak shifts may not be due to the rumpling of

the MgO(001) surface.

It will be demonstrated in this section that a short electron inelastic scatter-
ing length could be the reason that causes the peak shifts in diffraction patterns.
In order to do this, a series of calculations of electron diffraction of Mg and O
emitters from flat and rumpled MgO(001) surfaces have been performed by taking
the imaginary part of the electron energy, E;, to be 0, 4, 8, 12, and 16 eV. It can

be easily shown that the electron inelastic scattering length is

V2E

A=
E;

in Hartree atomic units, so the corresponding inelastic scattering length of an

electron ranges from infinity to about 8 A.
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Figure 4.10: Multiple scattering calculations of electron diffraction are plotted
along two major azimuths of [110] and [100] and compared with the exper-
iments of Mg K LL and O 1s curves from a cleaved MgO(001) surface.
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Figure 4.11: Calculations of a layer-by-layer decomposition of the diffraction in-
tensities of the Mg and O emitters from a flat MgO(001) surface. The plots
are along two major azimuths of [110] and [100] of layers 1 to 5. Solid lines
represent the Mg emitter and the dashed line the O emitter.



Calculations of the diffraction intensity along two major azimuths of [110]
and [100] are shown in Fig. 4.13 on page 121 for the Mg emitter, and Fig. 4.14
on page 122 for the O emitter for the different inelastic scattering lengths. The
experimental results for both emitters are also shown on the top panel of the plot
for a closer comparison. It can be seen on the diffraction curves for the Mg emit-
ter in Fig. 4.13 that as the imaginary part of energy is increased from curve (a)
to curve (e) (or the inelastic scattering length of the electron is decreased), most
of the diffraction intensity peaks gradually change in shape and position, such as
the peaks at [101] and [103] for both flat and rumpled surfaces, but the peak at
[111] changes dramatically from a narrow peak and off the [111] direction by -4°
(at a larger polar angle position) to a broader one and peaked at the [111] crys-
tallographic direction. By comparing with the experimental electron diffraction
from the Mg K LL line, one can find that the curve (e) with an inelastic scatter-
ing amplitude of 8 A fits the experimental result best. Similar trends can also
be observed in Fig. 4.14, of an O 1s emitter, that the shape of [111] peak changes
dramatically to an asymmetric shape and only curve (e) in Fig. 4.14 is a close fit to
the O 1s experimental curve. This is also true for the [101] peak for both Mg and
O emitters. In general, the calculated diffraction patterns of Mg and O emitters
from flat and rumpled surfaces are a little different in the shapes and positions
of the diffraction intensity profiles for long inelastic scattering lengths, whereas
differences become distinctive as the inelastic scattering length decreases. This
is consistent with the general knowledge that a shorter inelastic scattering length
of an electron makes an electron diffraction pattern more sensitive to the surface.
Further measurements of electron diffraction due to Mg and O emitters at lower

energies, a region of a shorter inelastic scattering length, should be conducted to



check the flat and rumpled MgO surface models. From the above conclusions one
could infer that the anomalous differences between the Mg K LL Auger and the
O 1s core-level photoelectron diffraction are due much more to the short inelastic
scattering length in the insulating MgO material, and that the forward-scattering
feature in the electron diffraction is only valid for the case of metals where the

inelastic scattering length is relatively large.

A very simple intuitive picture, as shown in Fig. 4.12 on page 120, could
explain part of the shifting of the forward-scattering peaks off their low-index
crystallographic directions, and toward lower polar angles. At an infinite or long
electron inelastic scattering length, for example, and under an assumption that
there is a scattered atom or row of atoms at a large polar angle position corre-
sponding to an emitter at the origin, the forward-scattering peak will be formed
along the chain connecting by the emitter and scatterer(s) if diffraction interfer-
ences from other atoms in the cluster are weak. However for a short inelastic
scattering length, the forward-scattering peak will become asymmetric due to the
path difference that electron travels in the solid. The path length at lower polar
angle side of this low-index crystallographic direction is shorter than that at the
higher angle side of this direction, and it will experience a smaller damping than
that at the higher angle, and therefore, the forward-scattering peaks will be moved
to a lower polar angle as has been observed by both experiments and theoretical
calculations. While in a large cluster, the interference from other atoms could be
strong, and the scattering peak might be off the forward-scattering direction due
to the multiple scattering diffraction from atoms along other rows and planes, so
the changes in the position of the peaks are very difficult to predict just by using

this simple picture. This could be the reason that some forward-scattering peaks



are not altered and remain at same forward-scattering directions when the elastic
scattering length is changed in Fig. 4.13 and 4.14. Calculations for electron ener-
gies of 1180 eV and 955 eV are consistent and suggest that the electron inelastic
scattering length in a MgO crystal is short and at the lower end of the universal

curve for this energy range.

4.3.4 Electron diffraction of s and d-wave emitters from a MgO surface

In the previous section, an s-wave was used in the calculation of electron
diffraction from a MgO(001) surface. It is often assumed [65] that an emitted Auger
electron an s-wave due to the isotropy of Auger emission. However, considerable
differences on the diffraction patterns could still be observed if the initial emitter

wave was changed to one of high angular momentum, such as the case of electron

diffraction of the Cu L3V'V Auger line from Cu(001) surface [72].

In a review paper [43] of the calculations of Auger transition matrix ele-
ments, Weissmann and Muller have shown that the possible values of the angular
momentum [ of the ejected Auger electron wave are determined by the selection
rules|64]:

=l =Ll < U< L+ 1+
L+ 1;+1; + 1 = even (4.7)
where [; represents the angular momentum quantum number of core hole, and
l; and [; represent those of the final state holes. For the Mg KL,L3 transition,

1;=0, l;=1, and [;=1, and the final possible angular momenta of the ejected Auger

electron waves are (=0 or 2 corresponding to an Auger s or d-wave emitter.

As pointed out before in reference [72] Auger or photoelectron diffraction
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Figure 4.12: Scheme of forward-scattering peak shift. For a short inelastic scat-
tering length, the forward-scattering peak will become asymmetric due to
the path difference that electron travels in the solid. The path length at
lower polar angle side of this low-index crystallographic direction is shorter
than that at the higher angle side of this direction, and it will experience

a smaller damping than that at the higher angle.
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Figure 4.13: Multiple scattering calculations of Mg Auger K LL diffraction from
flat and rumpled MgO(001) surfaces with an imaginary part of the electron
energy of (a) 0 eV, (b) 4 eV, (c) 8 eV, (d) 12 eV, and (e) 16 eV. The exper-
imental result for the Mg Auger K LL line is also plotted on the top panel
for a closer comparison. Curves drawn in solid lines are the calculations
from a flat MgO(001) surface, and in dashed lines the calculations from a

rumpled surface.
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Figure 4.14: Multiple scattering calculations of O 1s photoemission diffraction
from flat and rumpled MgO(001) surfaces with an imaginary part of elec-
tron energy of (a) 0 eV, (b) 4 eV, (c) 8 eV, (d) 12 eV, and (e) 16 eV. The
experimental result of O 1s photoemission is plotted on the top panel for a
closer comparison. Curves drawn in solid lines are the calculations from a
flat MgO(001) surface, and in dashed lines the calculations from a rumpled

surface.



patterns from metal surfaces of high electron kinetic energy will form forward-
scattering peaks along low-index crystallographic directions, but diffraction pat-
terns of different angular momenta of the Auger emitter wave will result in detailed
differences in the diffraction patterns. This is especially true when the kinetic en-
ergy of the free Auger electron is in the low energy range, but not so obvious at
high energy [72]. Our primary goal here is to calculate the electron diffraction

patterns of s and d-wave emitters, and to compare them with experiments.

The results of the calculations of Auger diffraction patterns for a d-wave
emitter from a flat and a rumpled MgO(001) surface are shown in Fig. 4.15 on
page 125. Very similar diffraction patterns are produced from both flat and rum-
pled surfaces, and they are also close to those calculated patterns in Fig. 4.8 (a)
and Fig. 4.9 (a) for the s-wave emitter. This result is not unexpected for the high
electron kinetic energy range, as firstly, it is known that the electron diffraction at
this energy range is not sensitive to the rumpling of a MgO surface, and secondly,
the diffraction patterns calculated for either an s or a d-wave emitter will result in

a similar forward-scattering pattern as pointed out before.

In order to have a closer comparison, electron diffraction patterns calculated
using an Auger s and d-wave emitter are plotted together in Fig. 4.16 on page 126,
along with the experimental electron diffraction of the Mg KLL line. All the
forward-scattering peaks from both simulations in Fiig. 4.16 match the experimental
pattern nicely, but the shapes and positions of the forward-scattering peak in the s-
wave simulation agrees better with the experiment than that of the simulation from
the d-wave emitter. The major result is that along the [013] direction (also [013],
[103], and [013] directions) the “U5” shaped forward-scattering peak in the s-wave

simulation (b) matches a similar “0” shaped peak on the experimental pattern



(a), while the simulation of the d-wave emitter (c) shows a “=" shaped peak along
this direction. The arrows on the electron diffraction patterns on Fig. 4.16 are
pointed at the [013] peaks. From selection rules Eq. 4.7, one can see that the Mg
K LL transition could produce either s or d-wave emitters, and that the final Auger
electron wave could be a mixed state of s and d-wave. However, the evidence of
Fig. 4.16 strongly suggests that this Auger transition is dominated by the s-wave

emitter.

4.3.5 Conclusions

Auger and photoelectron diffraction angular distribution profiles from MgO(001)
surfaces have been studied. In general, there is coincidence between the low-index
crystallographic directions and the forward-scattering maxima on a diffraction pat-
tern. However, anomalous phenomena of the peak shifts off the forward-scattering
direction have been observed in the diffraction patterns of Mg K LL Auger and
O 1s photoemission lines from a sputtered & annealed and a cleaved MgO(001)
surface. This is in contradiction to the previous expectation that for high elec-
tron kinetic energies forward-scattering peaks on the electron diffraction patterns

should be found at the projections of the low-index crystallographic directions.

Theoretical calculations of electron diffraction have been performed on flat
and rumpled MgO(001) surfaces, and the results show that diffraction patterns do
not differ very much between flat or rumpled MgO surfaces, even when a highly
rumpled surface structure of 10 % rumpling and 5 % relaxation has been used
in the calculations. A simple calculation shows that the bulk to surface ratio of
diffraction intensities in a MgO solid is about 3.5, which means that the diffraction

patterns contain more structural information about the bulk than that about the
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Figure 4.15: Calculated diffraction patterns of the Mg K LL Auger (1180 eV)
d-wave emitter from (a) a flat, and, (b) a rumpled MgO(001) surface.
The major low-index crystallographic directions are indicated by different

symbols.



Figure 4.16: Comparison between the experimental electron diffraction pattern
from a cleaved MgO(001) surface and the calculations using s and d-wave
emitters at 1180 eV from a flat MgO(001) surface model. (a) Experimental
diffraction pattern of the Mg K LL line, (b) Simulation of an s-wave emitter,
(c) Simulation of a d-wave emitter. The arrows are pointed at peaks along
the [013] direction. The simulation due to the s-wave emitter in pattern
(b) reproduces the “0” shaped peak in the experimental pattern (a), while

w__»

the simulation of the d-wave emitter in pattern (c) shows a shaped

peak along this direction.



surface structure. This also indicates that the peak shifts toward lower polar angles

are not necessarily caused by the rumpled surface structure of MgO(001).

Good agreement between the experimental electron diffraction patterns of
the Mg K LL and the O 1s lines from a cleaved MgO(001) surface and calculated
diffraction patterns due to a Mg s-wave emitter and an O final p state have been
obtained. Those points of agreement include: (a) that some of the diffraction
peaks are shifted toward a lower polar angle by 3 to 5° compared to their forward-
scattering directions, with O 1s peaks moving much more than those of Mg Auger
KLL, e.g. the peaks at [111] and [112]. (b) that some of the diffraction peaks
of both the Mg and O emitters move by the same amounts toward lower angles,
e.g. the peaks at [101]. (c) that some of the peaks remain along their low-index
crystallographic directions, e.g. the Mg and O peaks at [101] and [103]. (d) that

the diffraction pattern of O 1s shows a central dip at its origin.

It was found that a short electron inelastic scattering length of about 8 A at
1000 eV in the MgO crystal is one of the major factors that causes the shifts of the
forward-scattering peaks in diffraction pattern, and this short inelastic length is at
the lower end of the universal curve. A series of calculations show that a smaller
inelastic scattering length can move those peaks off their forward-scattering direc-
tions to lower polar angles, and give a good overall intensities fit to the experimental
intensities at both energies of 1180 eV and 955 eV. It is also shown that a short
inelastic scattering length in the electron diffraction from a MgO surface can well
reproduce those peak shifts accurately, and that the forward-scattering model will
not be too accurate in the case where the solid has a short electron inelastic scat-
tering length, such as an insulator like single crystal MgO. Observed differences

in shape and position between Mg KLL and O 1s peaks are partly due to the



differences between the different atomic scattering factors of Mg and O atoms.

Diffraction profiles were also studied from the two differently-prepared sur-
faces of MgO. Although similar in crystallography, there are substantial differences
in the detailed shape and intensity of the forward-scattering peaks between the
two experimental patterns. It is shown that the electron diffraction experiment
performed on the cleaved MgO surface is in much better agreement with the cal-
culations of a defect free MgO surface model, while the diffraction experiment on
the sputtered & annealed surface are less accurately reproduced by the theoretical
calculations. This fact suggests that the cleaved MgO surface has a fewer number
of defects than that of the sputtered & annealed surface, and that this is consistent

with the He™ scattering experiments [58].

Since the Auger transition rule shows that the final ejected Auger electron
wave could be an s, d or in a mixed state of s and d waves, a possible d-wave
emitter cannot be excluded in the calculations. Theoretical calculations have been
conducted on electron diffraction for the Mg d-wave emitter, and compared with
the s-wave simulation and the experimental electron diffraction of Mg K LL Auger
line. It was found that s-wave simulation agrees better with the experiment than
that of d-wave although the patterns are quite similar. We conclude that in the Mg

K LL Auger transition, a final electron wave of angular momentum /=0 dominates.

Calculations were also done on electron diffraction from a MgO(001) surface,
assuming that neutral Mg and O atoms exist in a MgO solid. The radii of neutral
Mg and O were assumed to be 1.06 A, and their atomic scattering factors were
plotted in Fig. 4.6 and Fig. 4.7. Little difference was found between the diffraction
patterns calculated using ionic Mg?* and O?~ atoms and results of neutral Mg

and O atoms. The similarity of the calculated electron diffraction patterns from



both ionic and neutral atoms were mainly due to the similar scattering strength
in their atomic scattering factors, as there are only about 10% different in the
forward-scattering direction, and they are almost the same at angles larger than

70°.



CHAPTER 5

The Simulation Of Experimental Photoelectron
Diffraction From A CoSi;(111) Surface

In this chapter we discuss the practical details of performing a photoelectron
diffraction calculation to simulate a real experimental diffraction pattern. Such
considerations include calculating the transition probability from the atomic core-
state of an emitter atom, which is assumed to be excited by a polarized x-ray
photon, the angular momenta of the emitter waves, and the interference among
those waves in a multiple scattering process. The dipole selection rule for core-
level photoexcitation shows that the final free states of the photoelectrons are s
and d waves for the Co-3p and Si-2p core-state, and from quantum mechanical
principles, some of the emitted waves will be mutually coherent and some will
be incoherent amongst themselves in the resulting diffraction. The coherent or
incoherent superpositions of those emitted waves are subject to the conditions that
they come from the same angular momentum quantum core-state. In this chapter,
simulations of XPD from a CoSiy(111) surface at both high and low energies are
performed, and the results prove the importance of considerating of final state
interference as well as the details of the experimental setup in the calculation of
the diffraction patterns. It will be seen that experimental configuration-dependent
simulations give much more convincing results than a calculation using only an
s-wave emitter, and this is most clearly the case when the photoelectron energy is

low.



5.1 Introduction

Because of its quite perfect and sharp interface with a Si crystal and many fa-
vorable features for the fabrication of hetero-epitaxial systems, metallic di-silicides
are considered important both in experimental and theoretical work. In this field,
CoSiy has attracted more attention in recent decades due to its structural com-
patibility with a Si and relatively high electric conductivity. Numerous studies
[66,7,?] have been concerned with the quality of the epitaxial-growth kinetics of
CoSiy ultrathin films on a Si surface, especially the CoSiy/Si(111) interface mor-
phology and the characterization of the CoSiy(111) surface crystallography. The
small mismatch with Si crystal tends to make a CoSi, ultrathin film grow easily on
Si surface, and has wide applications in microelectronic devices such as Schottky

junctions, and hetero-junction or double hetero-junctions with Si.

Electron diffractions, such as x-ray photoelectron diffraction (XPD) and
Auger electron diffraction (AED), are useful tools for the understanding of crystal
geometries. Recent controversies regarding the interpretation of the Auger elec-
tron diffraction pattern measured by Frank et al. [72], have contributed much
to the understanding of the importance of the electron source waves. We have
already shown, in Chapter 3, that in full multiple scattering simulations of AED
from a Cu(001) surface at high and low energies, the source wave of the Auger
electron emitter plays an important role in the resulting diffraction patterns at
low energy. For the high energy electron diffraction, the patterns are dominated
by forward-scattering peaks, but they are not very sensitive to the character of the
source waves. In this chapter, diffraction patterns of angle-resolved Co-3p XPD
at higher energy and Si-2p normal emission at low energies from a CoSiy(111)

surface are calculated using a full multiple scattering scheme by taking account of



experimental conditions under which the XPD data were measured. In the Co-3p
or Si-2p photoemission process, the resulting emitted wave-fields would be mainly
composed of s and d waves due to the dipole transition selection rule. Different
emitted wave angular momenta will affect features in the diffraction patterns, as
will the orientations of the x-ray polarization directions in an actual experimental

setup.

5.2 Multiple scattering of the core-level photoelectron diffrac-
tion
5.2.1 Multiple scattering theory for photoelectron diffraction

We will briefly recount, here, the forms of a source wave and subsequent
scattered waves in a photoemission process. Initially an electron is emitted from a
core-level by a photoemission process, and a component of resulting wave-field in

an angular momentum basis could be expressed by:
ALY by (k)Y (K) (5.1)

where Ag)zc is the initial amplitude of the emitting wave originating from bound
core-state |n, L.) to final free state |¢,L), where n is the principal quantum number
of the core-states and e is the kinetic energy of the free electron, L = (Im), [ is
the angular momentum quantum number and m the magnetic quantum number,
r is a position vector with respect to the emitter at the origin, hl(l) the Hankel
function of order [, Y7 (k) a spherical harmonic function and k the wave-number

of the emitted electrons.

It has already been shown [21] that the final components of the outgoing



wave can be expressed as:

AW — g(N) A 0) (5.2)

where the matrix A®) represents the corresponding expansion coefficients of the
wave-field propagating outwards from the N-th shell with matrix element of AS:ZPC
The scattering matrix S?V) can be calculated by using our concentric shell algo-

rithm program. With S(™) evaluated by this algorithm, a component of wave-field

outgoing from the N-shell cluster can be evaluated from:

AT RO (k)Y (k) = 3 SAD h (k)Y (k) (5.3)

L' L,
L

where SS\L],) are the elements of the scattering matrix S"). The angular distribution
of the far-field intensity could be expressed in the form:

Ixen(K) = |3 8,040, (=) Vi (k)P (54)

Le L

The summation over L. is due to the quantum mechanical principle that the result-
ing wave-fields would involve waves that are mutually coherent if they originally
come from the same core-state, and mutually incoherent if they are emitted from
different core-states. The A(LO%C would be the dipole transition matrix element for
an atomic photoexcitation process if the wavelength of the x-ray is considerably
larger than the radius of the emitter. The detailed calculation of A(Logc are discussed

in Sec. 5.2.2.

5.2.2 Dipole transition in Sample Reference Frame and Laboratory

Reference Frame

In order to transform spherical harmonics from a reference frame labeled by

!

a'=(z',y,7) to another specified by a=(x,y,z). One can define a rotation matrix



[18]:

DY (a,a’) = ¢mrHimagl) (g) (5.5)

m,m

where «, 8 and v are the Eulerian angles, and are defined by the following relations.
cosf = sinbysinbcos(pa — ¢1) + cosbycosh;

sinasinf = sinfysin(¢s — ¢1)
cosasinf = sinfaycoshicos(pa — @) — cosbysinby

sinysinf = —sinbysin(pe — ¢1)
cosysinf = —cosbysinficos(py — ¢1) + sinbacosb;

The dfi),,m(,b’) are determined by

m, —ml : 1/2 !
080 = () (cos(pry

(sin(8/2)™ ™ B 7 (cosp) (5.6)

where P™"(x) are the Jacobi polynomials. The dsl), (B) obey the symmetry

relations

) (8)=d" (B

d® (8= (= d? . (8)

and can be calculated for m' > 0 and | m |< m’ by using the following recurrence

relations:
(1+1) _ ! 0
bi1,mbyy 1 g dm,’m(ﬂ) = (2l + 1)(({ + 1)cosB — mm /l)dm,,m(ﬁ)

—((+ 1)/ Dbrmby 2 (8)



where by, = v/[2 — m?, and the initial values are:

/ 1/2 , ,
(m + 7%7(2: - m)!> (cos(B/2))" ™ (sin(B/2))" ™

) @ =2" (

and

, " 2 )
4™ +1)(5) — (( (2m +1) 1)> ((m +1)cosf — m)dggf,gn(ﬁ)

m,m m +m+1)(m —m+

By combining above equations, one end up with,

I+ m')!(l — m’)!) 2 (cos(f/2))m™ +m P(m'—m,m'+m)
!

0 __ ,—im
D (0,¢)=e ¢ ( )= m) (sin(62) 7 (cosh)

(5.7)

where the Eulerian angle o, § and ~ are set to be 6, ¢ and zero respectively.

Since Eq. 5.4 is expanded in an angular momentum representation, 7. e., the
bases are a set of spherical harmonic functions of Im, it will be useful to define
a matrix, D(6, ¢), whose elements are given by Eq. 5.7. In an actual simulation
process, we first calculate scattering matrix S, then store it for later use in the
simulations under different experiment configurations. With this rotation matrix,
D(6, ¢), one can easily transform a transition matrix A’L(%)c in a coordinate system

(z',y,2) to another matrix A(,%C in a reference (zyz) by using:
AD =D, $)A'® (5.8)

With the aid of the above equation, we can include the experimental configuration
in the calculations by connecting the laboratory reference frame (defined by the x-
ray polarization) with sample reference (defined by crystal geometry). The modes
of conducting the angle-resolved electron diffraction (ARED) experiments, such as

(1) with fixed x-ray incident beam, moving the electron analyzer in a plane which



passes through the sample normal to scan the polar angles, and rotating the sample
about its normal to obtain the azimuthal scan ¢, (2) with a fixed angle between
x-ray beam and electron analyzer, and rotating the sample to scan the polar and
azimuthal angles, and (3) with fixed relative positions of the x-ray incident beam
and the sample, moving the electron analyzer to scan the whole hemisphere, etc.,
could also be used in the calculations of the intensity of Eq. 5.4 along any direction
k. The procedure to conduct the experimental configuration-dependent simulation
is to calculate and store the cluster scattering matrix S first. One may choose the
photon polarization direction as the z-axis, defining laboratory reference frame,
and calculate the transition matrix A’, and then use Eq. 5.8 to convert matrix A’
to matrix A in a sample-oriented reference frame. Finally one may use Eq. 5.4 to

calculate the intensity at a given k direction.

5.3 Co-3p angle-resolved XPD from a CoSi;(111) surface

5.3.1 CoSiy(111) bulk and surface geometry

The structure of CoSi, is of CaFy structure type with a lattice constant
of 5.367 A, and the unit cell of a bulk crystal of CoSi,, is shown in Fig. 5.1
on page 137. The Si atoms form a simple-cubic (sc) lattice, while Co atoms sit
on a face-centered-cubic (fcc) structure with twice the lattice constant of the Si
lattice. The geometric structure of CoSiz(111) consists of an alternate sequence of
one Co layer for every two Si layers along the [111] direction, while its surface is
terminated with only one Si layer on the top of the outermost surface Co layer,
as shown in Fig. 5.2 on page 138. A wide variety of experimental techniques and
extensive theoretical calculations [70,?,?] have been used to determine the surface

structure of this material. A recent low energy electron diffraction (LEED) analysis
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Figure 5.1: Diagram of a unit cell of CoSi, single crystal. In this cell, the Si atoms
form a simple-cubic (sc) lattice, and Co atoms sit on a face-centered-cubic

(fce) structure with twice the lattice constant of Si lattice.



Outermost
Si layer

0.68

Co layer
0.79
Si layer [111]
1.53 [110]
[112]
Q\ m Si layer
0.77
Co layer
0.77
Q Si layer
1.55
Si layer Q -Si
0.77
‘ - Co layer ‘ Co
(A)

Figure 5.2: Perspective view of the stacking of the surface layers, of CoSip(111).
An alternate sequence of one Co layer for every two Si layers is seen. The
surface is terminated with one Si layer on the top of the outermost Co

layer. The interlayer spacings for this surface model comes from reference
[68].



[68] shows that the interlayer spacing of the first few surface layers are different
from the bulk. Compared with the bulk structure, the first interlayer spacing is
contracted by 12%(—0.094), the second one expanded by 2.6%(+0.024) and the
third one contracted by 1.3%(—0.02A4), respectively, and the atoms in deeper layers
remain at their bulk positions. In our simulations of the photoelectron diffraction
from CoSip(111) surface, we make use of this surface model to carry out a cluster

calculation of the scattering matrix S.

5.3.2 Angle-resolved Co-3p XPD experiment

In the angle-resolved Co-3p XPD experiment, the configuration of the ex-
periment is a fixed x-ray incident beam and sample position, with the electron
analyzer rotated to scan the whole hemisphere to vary the # and ¢. The x-ray
beam is incident on the (111) surface of the CoSiy sample along the [110] azimuth
at a fixed angle of 67.5° from the surface normal, as shown in Fig. 5.3 one page 140.
The polarized photon energy is 750eV, and the polarization direction is along [110]
azimuth and off the surface normal by 22.5°. If we choose a sample reference frame
with the [110] direction the x-axis, [112] the y-axis and [111] (surface normal) the
z-axis, the photon polarization vector &€ would be along the § = 22.5° and ¢ = 0.0°
direction in this coordinate system. The CoSi, sample has the size of 1.5x7x11
mm?, and x-ray Laue diffraction shows that the surface is aligned perpendicular
to the (111) direction to an accuracy of 0.8°. In this experiment, the analyzer was
tuned to collect the Co-3p transition peak in the XPS spectrum with photoelec-
tron kinetic energy of 695 eV. Angle-resolved electron diffraction intensities were
recorded by moving the analyzer through only one-sixth of the whole collection

hemisphere over the sample surface. The resulting electron diffraction pattern is
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Figure 5.3: Schematic diagram of Co-3p XPD experimental setup. Sample orien-
tation coordinates are defined as x, y, and z, along the [110], [112] and [111]
directions, respectively. The x-ray incidence angle and sample position are
fixed, and the angle-resolved electron diffraction pattern is obtained by

moving the analyzer through the collection hemisphere above the surface.



shown on Fig. 5.4 on page 142, where the polar angles are plotted ranging from
zero at the centers to 90° at the pattern’s edge, and projected on the equatorial
plane with the center at (K, K,) = (0,0) and uniform AK, and AK,, where K,
and K, are the wave vector of the photoelectron along x and y-axis. The actual
angle-resolved diffraction were measured from only one-sixth of hemisphere above
the sample surface, and the entire pattern was then generated by symmetry opera-
tions of reflection and rotation to cover the whole hemisphere. It is shown that the
diffraction pattern is dominated with forward-scattering peaks which is a typical
features of high energy electron diffraction. It is known that a Si atom sits directly
above Co emitters in the cluster model of CoSiy(111), and the center peak on the
diffraction pattern is caused by forward-scattering by this atom. It was found that
the center peak has a local minimum, which is the characteristic feature of a Si
atom at high electron energy. We will show later that the symmetry operations to
obtain the whole pattern throughout the hemisphere might not be correct for this
configuration of the experimental setup, although the single crystal sample has a

three-fold symmetry.

5.3.3 Calculation of Co-3p transition matrices

In a central field approximation, the electron spin-orbital wave function can
be characterized by four quantum numbers n, [, m and m,, where m; is the spin
quantum number. For a simple dipole transition theory, we can usually omit
the quantum number m,. As defined in Sec. 5.2, A(Logc represents the transition
amplitude from core-state |n, L.) to final free state |¢, L) (e=695eV). From a dipole

approximation, transition matrix element Agc is proportional to [69],

< s Al >



Co-3p ARXPD pattern from
CoSi9(111) surface at 695 eV

Figure 5.4: Experimental pattern of Angle-resolved Co-3p XPD with photoelec-
tron kinetic energy of 695 eV from CoSiy(111) surface. The actual mea-
surements were performed over only one-sixth of whole hemisphere above
the sample surface normal, and the pattern was obtained by symmetry

operations of reflection and rotation to cover the whole hemisphere.



as defined in Eq. 2.16 on page 33, where ¢, and vy are the core-state and final
state of the photoelectrons respectively, and A is the photon-electron interaction

operator, and can be written in the momentum, potential and position form of

and

respectively, where m is the mass of a free electron, e the unit charge of an electron,
c speed of the light in the vacuum, A electromagnetic radiation vector potential,
V the gradient vector operator, and r position vector operator. If we choose a
laboratory reference frame defined by z', ' and z', where the z'-axis is along the
polarization vector & of the incident x-ray beam, as shown in Fig. 5.3, we could

choose the position form of photon-electron interaction as:

! ! ! !

Axé-r oz =rcos(d)

if we omit a constant here, we can define:
AL = (Llcos(0)| L) (R(r', €, 1)|1' | Ras (1) )e™ (5.9)

where the core-state radial wave function of R (r') is a solution of the radial
Schrédinger equation of a cobalt atom. R(r', €, 1) is a solution of the radial Schrédinger
equation within the muffin-tin sphere for an energy of ¢, and matching on to the
function j;(kr')cos(8;) —ny(kr')sin(d;) at the muffin-tin radius, where j; and n,; are
spherical Bessel and Hankel functions respectively, the wave number k equals v/2e,

and ¢; is a phase shift. Now we can evaluate the angular and radial part of the



transition matrix separately. Note that the initial states are bound states whereas
the final emitting states are unbound states, with electron kinetic energy of € and

angular momentum quantum number of L.

Initially, the |3L, > core-state is assumed to equally populate the cobalt
1311 >, |310 > and |311 > core-states, so the angular matrix element, (L|cos(6)|L.),

can be calculated analytically by using the following relations [73],
COS(Q)nm = al,in—H,m + a/l—l,myi—l,ma

. i
sinfe ¢Ylm = blfl,fmflyifl,m—kl - bl,mYZ+1,m+1,

and
sinfe " *Y,,, = —bi—1m-1Y1—1,m-1 + b, —m Y4 1,m—1,
where
(I+1)2—m?
Ay =
b (20 +1)(20 + 3)
and

— (l+m+1)(+m+2)
bm = 20+ 1)(20 + 3)

respectively. Therefore, we obtain

cos(0)Y1o = \/4/15Y5 + 1/1/3Y00,
cos(0)Y11 = 4/1/5Y5,

and
cos(0)Y11 = 4/1/5Ya1.
The non-zero elements of the matrix (L|cos(theta )|L.) give that the angular mo-

menta of the emitted states of [ = 0 and 2, which corresponds to s and d wave

emitters respectively. The radial matrix element, (R(r',€,1)|r'|Rs:(r')), can be



evaluated numerically by the MUFPOT program, and the results of the radial

matrix elements for s and d emitting waves are:
(R(r',e,1)|7 | Raa (') = 2.502

and

<R(T’a € ld)|rl |R31 (7',)> = 7.050

Some common factors are dropped in the above two expressions. Combining the
angular and radial parts of the transition matrix elements, we end up with only
four non-zero elements:

A0 = 315362,

Ado = 1.444¢,

Ao = 3.641¢2,
and

A = 3.153¢"2
By using Eq. 5.8, we can calculate the matrix element Ag)%c which is transition
amplitude represented in the sample reference frame, for any tilt of the polarization
direction of the x-ray photon. In order to simulate the diffraction pattern of Fig. 5.4

with experimental setup of Fig. 5.3, # and ¢ are chosen to be 22.5° and 0.0°

respectively in Eq. 5.7.

5.3.4 Simulations of Co-3p ARXPD from CoSiy(111) surface

The cluster scattering matrix S(™) is calculated using a cluster surface model,
as shown in Fig. 5.1 and Fig. 5.2, centered at a Co emitter, where twelve shells
(N = 12) of 430 atoms (with a cluster of radius 12 A) are included. With transition

matrix A0 evaluated by the method of Sec. 5.3.3, we could obtain an experimental



configuration-dependent simulation of CoSiy(111) Co-3p ARXPD by using Eq. 5.4.
Due to the limited inelastic length of an electron in a solid, we could include only
the contributions of Co emitters in the first few layers. In Fig. 5.5 on page 147, the
electron diffraction patterns contributed by 2nd, 5th, and 8th layer emitters are
shown on the upper, middle, and lower panels respectively. In these simulations,
the polar angles are plotted ranging from zero at the centers to 90° at the edges,
and projected on the equatorial plane with center at (K, K;,) = (0,0) and uniform
AK, and AK,, where K, and K, are the components of the wave vector of the

photoelectron along the x and y axes.

Considering that the x-ray penetration depth in a sample is very large, the
chances for the excitation of Co atoms are almost same through out the sample.
The major damping factor for an electron wave reaching the detector is due to
the limited electron mean free path that confines the electrons emitted by the Co
atoms located at the deeper layers. It is assumed here that electrons emanating
from much deeper layers would have a small effect on the final diffraction pattern.
This is seen to be justified by estimating that the escape length of the next Co
emitter layer (11th layer from the surface) is much larger than the average electron
inelastic scattering length in the solid. Also the comparison of the pattern produced
by the emitter at the 5th layer and that of the 8th layer, in Fig. 5.5 (middle and
lower panels), shows that the major features on the patterns will remain the same
if the calculation continues on for deeper layer emitters.

It can be seen from Fig. 5.5 that the diffraction features from 2nd layer is quite
different from that produced by the emitters in the 5th and 8th layer which have Si
scatterer(s) directly above the emitters. It is interesting to see that our simulations

for the 5th and 8th layer emitters show a strong center peak with a crater on top,
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Figure 5.5: The simulations of Co-3p XPD from a CoSiy(111) surface assuming
that the Co emitter is at the 2nd, 5th and 8th layer respectively. Note that
the simulated patterns are not three fold symmetric due to the photon

polarization direction pointing in the (6, ¢)=(22.5°, 0.0°) direction.



and this feature was reproduced by the Co-3p XPD experiment. One of the impor-
tant result of these simulations is that an experimental configuration-dependent
calculation gives an overall asymmetric angle-resolved diffraction pattern, although
a three-fold symmetric cluster was used in the calculation. This asymmetry of the
photoelectron diffraction pattern is different from the Auger electron diffraction
pattern where the Auger electron emission is isotropic due to its loss of memory
of its initial core-hole state. The simulations indicate the presence of a smoothly-
varying envelope which is peaked at the (6, $)=(22.5°, 0.0°) direction, that of the
photon polarization vector €. This asymmetrical intensity distribution is the di-
rect result of the dipole transition, where the final free electron states tend to
peak along the photon polarization direction. The simulations for the 2nd, 5th,
and 8th layer emitter in Fig. 5.5 clearly show this feature. The conclusion can be
easily drawn: for this experimental configuration, a three-fold symmetry operation
cannot be used to expand a part of the photoelectron diffraction pattern to whole

one, even though the sample surface is three-fold symmetric.

The final pattern, shown on the lower panel of Fig. 5.6 on page 149, is the
sum of the diffraction intensities contributed by the Co emitters located at the 2nd,
5th and 8th layer below the surface with a proper damping factor. The weight of
diffraction intensity from the 8th layer is enhanced to account for the contributions
from Co emitters below the 8th layer, as has been discussed in Chapter 4. For
a direct comparison with the simulation, we also show the measured diffraction
pattern of the angle-resolved Co-3p XPD pattern from a CoSiy(111) surface on
the upper panel of Fig. 5.6. The experiment was conducted for only one-sixth
of the whole hemisphere, and then “three-fold” symmetry operations was used to

expand to the whole pattern. The comparison shows that the simulated pattern is
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Figure 5.6: The experiment and simulation of the angle-resolved Co-3p XPD
from CoSiz(111) surface. Upper panel pattern is the experimental diffrac-
tion pattern with only one-sixth of the pattern measured, and then ex-
panded by the symmetry operations. The simulated pattern is not three-
fold symmetric, and this infers that this symmetry operation is not appro-

priate for the above experimental pattern.



in general close to the experimental one and reproduces almost all the diffraction
structures well, including some fine features. In the center of both experimental and
simulated patterns, the patterns show a local minimum, although in the CoSiy(111)
cluster model there is a Si atom directly above Co emitter. Again, it is seen that
although the simulation in Fig. 5.6 shows the forward-scattering peaks in a “three
fold” symmetry pattern, an envelope peaked at the (8, ¢)= (22.5°, 0.0°) direction

can be seen.

5.4 Si-2p normal emission diffraction from CoSi, (111) sur-

face
5.4.1 Si-2p normal emission experiment

The experiment on the surface Si-2p normal emission diffraction from CoSi,(111)
was carried out in a similar configuration to that described for the angle-resolved
Co-3p XPD experiment, but with a fixed detector at normal direction and a tun-
able x-ray source to vary the kinetic energy, €, of the photoelectron to get the
I-e curve. This mode is similar to a LEED I-V curve measurement, except that
the electron sources are the surface Si emitters and only the normal diffraction
component is measured. As shown in Fig. 5.7, the x-ray beam is incident along
the [110] azimuth at a fixed angle of 67.5° from the surface normal, the photon
polarization direction is along [110] azimuth and off the surface normal by 22.5°.
In the experiment, the photon energy was changed from 125 eV to 216 eV, the
analyzer was fixed along the sample normal direction and tuned to collect photo-
electrons within surface component of Si doublets (2p;/, and 2ps/, peaks) in the

XPS spectrum. In the Si-2p XPS spectrum, the peaks are composed of surface
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Figure 5.7: Schematic diagram of the Si-2p normal emission experimental setup.
The sample orientation coordinates are defined as x, y, and z are along
the [110], [112] and [111] directions, respectively. The mode of collecting
the I-e curve is by fixing the incident x-ray beam and sample position and
analyzer at the sample normal direction, and changing the x-ray wavelength

and tuning the analyzer to the Si-2p peaks.



and bulk components. Four peaks related to Si-2p photoemission were observed
in the spectrum. Being careful and able to distinguish and separate them would
result in a maximum extraction of surface information from the experiment. One
way to do so is to make use of the theoretical result to eliminate some uncertainty
in the experiment. Due to the principle of the spin-orbit interaction, the possible
states are those with total angular momentum J = i% for the 2p,/, state, and
J = i%,% for the 2p3/, state. Hence, the probability of a p electron in the 2p;
state is half of that in the 2ps/, state. By considering these theoretical results,
the separation of the surface and bulk components could be done by fitting two
Gaussian doublets with branching ratio chosen to be 0.5 for both surface and bulk
components, the separation of the peaks for the doublets set to be 0.62 ¢V for the
bulk component, and no constraint for the surface component. It is assumed here
that there is much more freedom on the orbitals of the atoms at the surface than

those in the bulk. The result of the Si-2p normal emission experiment is shown in

Fig. 5.8 on page 153.

5.4.2 Calculation of Si-2p transition matrices

In a laboratory reference frame, the transition matrix A'()(¢) with matrix
element of (L|cos(8)|Lc)(R(r', €,1)|7' | Ry1 (r'))e may be evaluated in a similar way
of using the MUFPOT program described in Sec. 5.3.3. The non-zero elements of
the angular matrix will result in final emitted waves of [y = 0 (s-wave emitter) and
lg = 2 (d-wave emitter), and the radial matrix element, (R(r, ¢, 1)|r |Ro1(r')), will
be a function of the energy, ¢, and should be calculated for each energy. Typical

values of radial matrix elements around € = 60 eV are calculated to be:

(R(r', €, 1) |7 | Ry (') = 1.742
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Figure 5.8: Experimental I-e curve of Si-2p photoemission from CoSiy(111) sur-
face with electron kinetic energy of ranging from 20 to 130 eV. The I-€ curve
is obtained by fixing the incident x-ray beam and sample position, and an-
alyzer at the sample normal direction, and changing the x-ray wavelength
and tuning the analyzer to the Si-2p peaks.



and

(R(r',€,1g)|r' |Ras (1)) = 6.378

where Ry (r') is a bound solution of the radial Schrédinger equation of a silicon
atom, and some common constant factors are dropped in the above expressions.
We can evaluate the quantity u(e), which is defined as the ratio between the final

s-wave and d-wave in the photoemission process by

(R(r', €, 1s) ' | Raa (1))

M) = R e ) [P TR (7))

In Fig. 5.9 on page 155, a plot u(e) versus kinetic energy of the photoelectron e
is given, which shows that p(e) does not change very much in this energy range
(20 eV to 130 eV). For a simple approximation, p(e) can be taken as a constant
number, and chosen as u(60 eV) for this energy range. The physical meaning of
this is the assumption of a constant transition rate ratio between s and d wave

emitters in this kinetic energy range.

5.4.3 Simulations of Si-2p normal emission

For a full multiple scattering calculation, a cluster centered at the surface Si
emitter was used to obtain the scattering matrix SV)(¢) at energy e, where five
shells (N = 5) of 33 atoms were included in the cluster. The maximum radius of
this cluster was 7 A which is larger than the electron inelastic scattering length,
6 A, in this energy range. This ensured a convergence of the calculations. The
transition matrix A% (¢,) in a sample reference frame was evaluated in the same
way in Sec. 5.3.3 where the 6 and ¢ were chosen to be 22.5 and 0 ° respectively.

An experimental configuration-dependent diffraction intensity along CoSiy(111)
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Figure 5.9: Ratio of transition amplitude of an s- to d-wave emitter in Si-2p
photoemission. The ratio, u(e), is that of the radial matrix element of
(R(r', e, 15)|7 | Ra1 (r")) verses (R(r', €,1q) |7 | Ro1 ({r")), where [, = 0 and I =
2.



surface normal can be obtained by using the expression:

Ixep(e) = 32|32 3 S (AL, () (<)Y (0,0 (5.10)

L. L

Note that the intensity in Eq. 5.10 is a function of the electron kinetic energy. In
the simulations, we first calculated accurately with Eq. 5.10 the electron diffraction
intensities in the sample normal direction which accounts for the contribution from
both s- and d-wave emitters of the Si-2p transition where the transition matrix
element, A(LO,)LC (€,), include electron waves of angular momentum quantum numbers
of 0 and 2. We then repeated the simulation except with a pure s-wave emitter and
compared it with the more complicated simulation of mixed s- and d-wave emitters
to see the impact of a simplified s-wave emitter in this energy range. In Fig. 5.10
on page 157, the simulations of Si-2p normal emission from a CoSiy(111) surface
with contributions only from the Si-2p surface components in the XPS spectrum is
shown as a function of the kinetic energy of the photoelectron. The mixed s- and
d-wave emitter simulation is drawn as a solid line, the s-wave emitter simulation
is shown as a dashed line, and the experimental results for surface component of

Si-2p normal emission is plotted with the long-dashed line.

Excellent agreement between the experiment and the simulation using mixed
s and d wave-fields in the range of 20 eV and up to 90 eV is achieved, and no
good agreement was found between the experiment and the simulation using only
a pure s wave-field. These results show that the photoelectron final state plays an
important role in this low energy diffraction. In the higher energy range (above
90 eV), the Si Auger L3 M, Moz and L3 Moz Moz transitions appear in the spectrum
and are mixed with the Si-2p’s doublets, and hence it is difficult to separate them
in the experiment. The resulting intensities will be increased sharply due to the

presence of Si Auger emission. This explains the fact that at higher energies (above
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Figure 5.10: Simulations of I-e curve of Si-2p photoemission from a CoSip(111)
surface with electron kinetic energy of ranging from 20 to 130 eV. There are
Si Auger L3Mi; M3 and L3 My3Mss transitions appearing in the spectrum
above 90 eV, it will increase the intensity in the experiment due to greater
numbers of Auger electrons involved in the diffraction. In this case the sim-
ulation and the experimental curve differ by a constant of proportionality

for a good approximation.



90 eV) the intensity in the experimental curve increases sharply relative to that
of the simulation. Also Co Auger emission around 50 eV could not be separated
from the Si-2p peaks in that region, and gives rise to the extra small peak at 48
eV in the experimental curve on Fig. 5.10. Multiple scattering simulation with a
simple s-wave emitter shows different features in this diffraction curve, and does

not explain the results of the experiment.

5.5 Conclusions and summary

We have applied the concentric shell algorithm [32] for a core-level photoelec-
tron diffraction calculations. One of the main quantities of the cluster calculation
is the cluster scattering matrix S(*)(¢), which was stored and used later for diffrac-
tion intensity calculations under different experimental configurations. Different
modes for the angle-resolved photoelectron diffraction include:

(1) a fixed x-ray incident beam, moving the electron analyzer in a plane which
passes through the sample normal to scan the polar angles, and rotating the sam-
ple about its normal to obtain the azimuthal scan ¢,

(2) a fixed angle between x-ray and electron analyzer, rotating the sample to ob-
tain the polar and azimuthal angle scans,

(3) a fixed x-ray incident beam and sample position, moving the electron analyzer
to scan the whole hemisphere, etc..

Other modes, such as Si-2p normal emission experiment, are also discussed and
the simulations were done to compare with the experimental results.

At higher energies(e = 695 eV), photoelectron has a longer inelastic-scattering
length, and a larger size of cluster (430 atoms surrounding the emitter) was needed

to achieve a convergent condition, while at low energies (20eV to 130eV in Si-2p



normal emission) only a few shells of atoms were included in the cluster calculation

to satisfy the convergence requirement.

A transition matrix A(); where matrix element Ag)zc is transition ampli-
tude for the transition from a bound core-state |n, L.) to a final free state |e, L)
is discussed. If the energy of the x-ray is high enough, selection rules for a dipole
approximation will be invalid. Therefore higher order terms, such as quadrupole
transition, must be considered. A roughly estimate of the ratio of transition am-

plitude for electric quadrupole A9 and dipole A9 radiation is [69]:

gpole dpole
0
Agp)ole ~ i(%y
0 ~
A((ip)ole 40 ¢

where w is the angular frequency of the photon, ¢ the velocity of the light, and a,
the radius of the emitter. In the Co-3p and Si-2p XPD experiments these ratios
are about 0.015 and 0.00015, respectively, so the dipole transition theory is still
a good approximation for those transitions. The above estimate indicates that in
a higher x-ray energy range, the quadrupole transition may not be negligible and
the quadrupole transition matrix should be included in the calculations. Then the
final states of the photoelectron emitted from a p core-state will result in s, p, d,

and even f wave-fields.

A formula for the rotation matrix in Eq. 5.7 is introduced to transform
a spherical harmonic function between the sample and the laboratory reference
frames. The relation between the transition matrix A(®) in a sample reference
frame and the transition matrix A'® in a laboratory reference frame is given by
Eq. 5.8. Dipole transition matrices show that emitted waves of s and d-states are
involved in the core-level Co-3p or Si-2p x-ray photoexcitation process, and some

of those emitted wave-fields are in mutually coherent channels if they originated



from the same core-state, and some are in mutually incoherent channels if they are

emitted from different states, such as the |11 >, [10 >, and |11 > core-level states.

Experimental angle-resolved Co-3p XPD from a CoSiy(111) surface is com-
pared with the experimental configuration-dependent simulation. The result shows
that the simulations reproduce most of the features of the experiment well, espe-
cially the central dip which is mainly contributed from a d-wave source. The Si-2p
normal emission diffraction from a CoSiy(111) surface is also simulated, based on
the fact that the scattering matrices are functions of kinetic energy of the pho-
toelectron, and the transition matrices vary slightly with the energies. Excellent
agreement has been found between the experimental curve and the simulated one
using a multiple scattering algorithm with s and d wave emitters as the initial
emitting wave-fields. It is very convincing to see that the simplified assumption of
a final s wave in a low energy diffraction calculation fails to describe the results
of the XPD experiments in this Si-2p normal emission diffraction and other low

energy diffraction experiments|72].



CHAPTER 6

Photoelectron Holography

Holography was first proposed by Gabor in 1948 as a means of overcoming
the barrier encounted by electron microscopy in the electro-optical lens’ spherical
aberrations which prevented the achievement of the atomic resolution images. He
realized that if an unknown wave is made to interfere with a known wave, the
resulting interference intensity pattern, a “hologram”, contains most of the infor-
mation needed to reproduce the unknown wave. He proposed a two-step hologram
formation and reconstruction procedure, as shown on Fig. 6.1 on page 162. Firstly,
a known spherical wave, called the “reference” wave, interferes with a wave scat-
tered by the object, called “object” wave, and the interference modulations are
recorded on a film. Secondly, the image reconstruction is done by shining an ap-
propriate reference wave on the film to generate a three-dimensional holographic
image of the object. Gabor’s original idea was to use a diverging coherent electron
source of low-energy spread to illuminate a sample. The scattered electron wave
interferes with the reference wave from the electron source forming a hologram of
the sample. This idea was later to lead to the large field of optical holography,
which is now much better known in current science and technology than Gabor’s

original goal.

It was not until 1986, that Szoke [75], intrigued by x-ray flourescence “holo-
grams” [74], suggested that a photoelectron and Auger electron diffraction pattern
from a single crystal surface also have a holographic interpretation. In 1988 Barton
proposed a computer algorithm [17], based on the Helmholtz-Kirchoff principle of
optics, to reconstruct a three-dimensional image of the surface structure surround-

ing the emitter from such a diffraction. One of the important points demonstrated



Interference maxima

Primary wavefront

Point focus

\

i Viewing
i Lens

Object

Second wavefront
Emaitted by object

o
1]
o
o

Phase coincidences

Photographic plate

Gabor’s holographic principle

Figure 6.1: Schematic diagram of Gabor’s holographic principle. The known
wave, the “reference” wave, is made to interfere with an unknown wave, or
“object” wave. The resulting interference intensity pattern, a “ hologram”

contains most of the information needed to reproduce the unknown wave.



by this work is that the holographic reconstruction may not be hindered by the

presence of strong electron multiple-scattering.

In 1990, Saldin and De Andres [76] proposed a direct method of reconstruct-
ing a similar three-dimensional image from a diffuse low-energy electron diffraction
pattern. They pointed out that an external electron beam may generate effectively
local reference waves, appropriate for atomic-resolution holography, by scattering
from a disordered array of adsorbate atoms on a crystal surface. In this scheme the
adsorbate was regarded as acting as its own beam splitter. Because of the disorder
inherent in the lattice gas, electrons scattered by the adsorbate are spread out over
the whole diffraction pattern and are not only directed into the LEED intensity
spots of the crystalline substrate. The resulting diffuse electron diffraction pattern
was given a holographic interpretation. Saldin and DeAndres also pointed out
that the image can be improved by averaging several holographic images taken at

different electron kinetic energies.

The first successful experimental result was achieved by Harp, Saldin, and
Tonner [77] for the holographic analysis of experimental Kikuchi diffraction pattern
from a Cu(001) surface. A Kikuchi pattern may be obtained by sending in an
external electron beam into a sample, which may suffer substantial quasi-elastic
scattering due to phonon creation and annihilation of the vibrating atoms with
sufficiently high temperature on a surface. Electrons suffering such scattering
appear as incoherent electrons from atomically-localized sources. Each of these
atomically-localized sources may scatter elastically from its nearby atoms, and

produce a holographic interference pattern.

Some other holographic algorithms, such as, the scattered-wave included

Fourier transform (SWIFT) [79,?], referenced and scattered-wave included Fourier



transform (RSWIFT) [79,?,?], small-window energy-extension process (SWEEP)
[80], are aimed at correcting for the image shifts caused by the anisotropic emitting

source wave and anisotropic scattered wave, as well as by multiple scattering.

In this chapter, we will describe the theory of hologram formation and re-
construction in Auger and photoelectron diffraction. The basic holographic recon-
struction algorithm, Barton’s Helmholtz-Kirchoff one, will be discussed together
with several other algorithms that improve the reconstructed images. We will also
demonstrate some examples of applying the holographic technique to solve the

surface structures of Ni(001)-O, Si and CoSiy(111).

6.1 Theory of photoelectron and related holographies
6.1.1 Diffraction intensity formed by a local source

Consider an electron wave, with an angular momentum L, emitted at the
origin:

Aph{Y (kr) Yz (k).
If a scatterer is assumed at the position r;, the resulting wave-field at the far field
in the direction of k is, as demonstrated in chapter 2, given by:

V(k) = A, ( Uy (k) + S Gy (kry)tp e Y, (12)) , (6.1)

L

where the exact expression for the free propagator Green’s function may be written
as:
G,y (kr) = 47rzil—l - (=ym -m h (kr) Yy /YmYE”m"Y;",fmldQ‘
LH
The electron wavelength should be significantly smaller than the distances be-

tween the emitter and scatterers in order to resolve the atomic structures, and this



requires:

kr > 1.

Under such circumstances the Green’s function may be approximated by

ikr

G (i) =i () V2 O30

This may be regarded as the lowest-order approximation to a “separable” Green’s

function as defined by Rehr et al [8]. Thus, we obtain from Eq. 6.1,

ei(krjfk-rj)
b(k) = Ay (n( )+ £(k- rj)—mfj)), (62)

Tj

—Us

where the common factors of :7"’s are dropped, and the atomic scattering factor

takes the “plane-wave” form of:
-1 Y/ (£ (k).
f ] Zk 2

More accurate approximations of ¥(r) in Eq. 6.2 may be calculated using
higher-order separable Green’s functions [8], which result in more accurate atomic
scattering factors, such as the “spherical-wave” form [79,?] of f(k,r) as already

discussed in Chapter 2.
If the emitted electron source takes a more complicated form, and is expanded

as a linear combination of spherical harmonic functions in the angular momentum

representation,

ZakLYL
L

where a(k, L) is a complex function of k£ and L, and if several scatterers at position

r; are involved in the scattering, the resulting wave field may be expressed as

Pk )+ Z ( (k,r;) @qﬁ(rj)) : (6.3)

J



The first term is the reference wave of emitter that goes directly to the electron
detector in the far field, and the summation term represents the scattered waves,
or the object waves. In an experiment, only electron intensity modulations may

be measured with an electron analyzer. This may be written as:

2

(6.4)

J

ei(krj—k-rj)
109 = ‘qs(k) + 3 (10 0) 0ty

Although the phase information is not recorded directly, such information is con-
tained in the angular distribution of the diffraction intensity modulation through-
out the hemisphere of measurement, and could be recovered by an appropriate

algorithm.
6.1.2 Barton’s Helmholtz-Kirchoff transform

Barton [17] suggested that one may use a Fourier transform formula to con-

vert, the intensity modulation into an image function, A(r),

Ar) = / / I(k)e™ " dk,, (6.5)

where k = (kg, ky, k.) is a wave vector, k| = (kg, k) its component parallel to the

surface, and k, may be written as

k. = \/k? — k2 — k2.

Substituting Eq. 6.4 into Eq. 6.5, one obtains

Aw) = [ [ dkadye ™ oK)

~ /

Direc:cr term

e—i(krj—k-rj) i
¢*(r;)

/

Tj

+ / / dkqdkye ™ T p(k) Y (f*(k, r;)

J

Imagg term
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Electron hologram formation and reconstruction

Figure 6.2: Schematic diagram of electron hologram formation and reconstruc-
tion with an atomic electron source. A reference wave, R, interferes with
a scattered wave, O, and the resulting diffraction pattern is recorded on
a film. An image may be reconstructed by shining a time-reversed wave,
R*, on the developed film. The O* R|? term forms the atom image near
the scatterer, R*20 term froms its twin image, |R|*R* converges at the

emitter position, and squared term of the object wave, |O|?R*, is negligible
if O < R.
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Self-interference term
A schematic diagram of electron hologram formation and reconstruction with
an atomic source is shown in Fig. 6.2 on page 167. If we assume that the first term
in Eq. 6.6, | ¢(k) |?, does not vary very much with k, i.e., that the emitter is quite
isotropic, that the scattering factor f(k,r) is a smooth function of k, and that the
fourth term is negligible, it may be seen that the image function of Eq. 6.6 will

peak at the position of the scatterer r;:

due to the second term which is called the image term, and also peaks at
r = —I'j

due to the third term which is called twin image term. The latter term peaks
at positions which are related to the atom positions by an inversion operation
through the center of the emitter. The fourth term (the self-interference term) in
Eq. 6.6 is similar to the Patterson function of x-ray diffraction, which represents
the effects of the interference between the scattered waves. In the case of the
backscattering geometry, this term is negligible, but will pose a serious problem in

the forward-scattering geometry.

From the above strict conditions, it can be seen that Barton’s transform

would be expected to break down for an anisotropic emitter wave, a highly forward



peaked atomic scattering factor at high electron kinetic energy and in the forward-
scattering geometry hologram, etc. Generally speaking, due to the extra phase
contributed from the atomic scattering factor, emitter wave function and the square
term, the images are often shifted, spurious and dominated by an artifact near the
origin. Therefore other image reconstruction algorithms were developed for dealing

with such problems.

6.1.3 Other algorithms for the scattered and reference wave corrections

and the multiple energy integral

The scattered-wave included Fourier transform (SWIFT) [22,?7] was an al-
gorithm developed to overcome the effects of anisotropic scattered and reference
waves by introducing a kernel function that does not require any prior knowledge
of the crystal structure. By looking at Eq. 6.6, it is easily seen that if one defines
a kernel function

F(k,r) = f*(k,1)¢"(r)¢(k),

and modified Eq. 6.5 to

Ik) _;
am=[| i gl .
(r) Flk, I')e dky, (6.7)
the second term of Eq. 6.6 will become a d(r — r;) like function after the integral,

and sharply peak at

I':I'j.

This image-correction technique compensates for the angular dependence of
the scattered and emitter waves, and preserves the direct-inversion principle of
holographic transforms, while not requiring a prior knowledge of atomic positions.
However, it still does not solve the problem caused by the cross term of the inter-

ferences of the scattered waves amongst themselves, or the fourth term in Eq. 6.6.



The effect of this term is to give rise to satellite peaks lying between atom posi-
tions, and artifacts near the origin. The effect of this term is that each scattering
atom acts somewhat like an independent emitter, and the final holographic image
is composed of the environment of each scatterer superimposed on the image at

the origin.

As first suggested by Saldin and De Andres [76] a simple average of the
reconstructed image function can improve the fidelity of the image. Since the
spurious images are generally energy dependent, it is possible to average them out,
leaving only the atomic features which are energy independent, and the formula is

as simple as:

A = [ A a (6:8)

where the k.., and k,,;, are the maximum and minimum wave vector ranges.
Similar multiple energy integrating algorithms put forward by, e.g., Barton
[85],

kmaﬁ .
dk / dk, / dkey x (k) eitkr=Kr) (6.9)

min

Ar) = /
0=
and by Tong et al. [86]:

Ay = [ i [ b, [ ko)) (6.10)

were intended to eliminate the cross term and multiple scattering effects in the
electron hologram, where (k) is the anisotropy of the diffraction intensity, and
g(k) is a window function which ensures that x(k) begins and ends at nodal points.
The distance r in the phase factor is measured from the electron emitter to the
image point currently being calculated, instead of the distance to any particular
scatterer’s positions. Thus, the essence of the direct measurement of holography

is still preserved.



6.2 Holographic image of Auger emission from O on Ni(001)

surface

For adsorbate emitters, striking reconstructed images have been demon-
strated from computer-simulated diffraction patterns by, e.g., Barton [17] and
Saldin et al. [76], and the effectiveness of this technique in such configurations is
now well established. Therefore, in what follows we reconstruct holographic images
from our diffraction patterns, partly to confirm the correctness of our simulation
of the diffraction pattern, but also to examine and comment on a much-debated

topic, namely the effect of multiple-scattering on the holographic process.

As an example of an application of Barton’s Helmholtz-Kirchoff algorithm,
Auger electrons emitted by an O atom adsorbed on the four-fold hollow site on a
Ni(001) surface is considered in the simulation. For simplicity, an s-wave emitter is
assumed here. In this special case, a backscattering geometry satisfies the condition
that the object wave is smaller than the reference wave. The energy of the emitted

electrons was taken to be 504 eV, corresponding to a prominent O Auger line.

Fig. 6.3 (a) shows the resulting back-scattered diffraction pattern calculated
by the full multiple-scattering version of concentric-shell algorithm [32] for polar
angles ranging from zero at the center of the pattern to 70° at the edges. For
the purposes of our discussion of the effect of multiple-scattering on holographic
reconstruction from such a pattern, we show on Fig. 6.3 (b) the corresponding

diffraction pattern calculated in the single-scattering (kinematic) limit.

The latter pattern is achieved by neglecting the the back-scattering matrix
product T(?LJ(IIO as in the forward-scattering approximation of Sec. 2, but now

additionally only the terms up to first order in the forward-scattering matrices



(a)

(b)

Figure 6.3: Calculated electron diffraction patterns for KVV Auger emission
from an O adatom adsorbed on the fourfold hollow site of a Ni(001) sur-
face, using (a) full multiple-scattering calculation (MSC), and (b) single-
scattering calculation (SSC). Note that there are differences between these
two patterns, indicating the necessity of including full multiple scattering

from atoms in this geometry.



O on Ni1(001) surface

Figure 6.4: Model of the atomic geometry of O/Ni(001). The dark sphere, A,
represents an O atom adsorbed on a fourfold hollow site of Ni(001) surface.
The light spheres represent the Ni atoms.



T? in Eq. 2.18 on page 35 are retained. Then S®) may be further approximated
by

SM ~ T+ T +T9° 4.+ TSP, (6.11)
The two diffraction patterns of Fig. 6.3 show differences, demonstrating the impor-
tance of multiple scattering in calculations of backscattered diffraction patterns.

We then perform the holographic reconstruction by means of Barton’s algo-

rithm [17]

Az, y, 2) = / T(ky, ky) oxp [—iy/(k2 — k2 — 2) 2] emCer k) dh ke, (6.12)

which relates the amplitude of a reconstructed “image” at a real-space position with
Cartesian coordinates (z,y, z) relative to the electron emitter, to the intensities
I(ky, ky) of a diffraction pattern, where k, and k, are the Cartesian components
of the local wave-vector k of the detected electrons. The corresponding real-space
intensity is taken to be L..(z,y,2) = |A(z,y, 2)|*.

Fig. 6.4 shows a model of the atomic geometry assumed in the cluster cal-
culations of the electron diffraction pattern. An O atom (dark sphere) is assumed
to be adsorbed on a four-fold hollow site of a Ni(001) surface. The light spheres
represent the Ni atoms. Fig. 6.5 displays the variation I ..(z,y,2z = —0.82;1) of
the reconstructed intensity in the plane of the uppermost layer of Ni atoms on
our surface. Part (a) of this Figure shows the reconstructed image from the full
multiple scattering diffraction pattern of Fig. 6.3 (a), while part (b) shows that
from the single scattering pattern of Fig. 6.3(b). Bright spots are seen very close
to the positions of the substrate atoms B, C, D, and E of our model, and on
both parts of the Figure. Fig. 6.6 (a) and (b) depict the corresponding intensities

Le.(r = 0,y,2) in a plane perpendicular to the surface and passing through two



of the nearest-neighbor Ni atoms. Bright intensity streaks, perpendicular to the
surface, are seen passing through the positions of the atoms C and E, as well as
through their “twin-image” positions, C' and E', respectively, on the images re-
constructed from the multiple scattering (a) and single scattering (b) diffraction

patterns, as well the position of atom F in the second Ni layer, and its twin image

!

F.

It has been shown by Fig. 6.5 and Fig. 6.6 that there is relatively little degra-
dation of the reconstructed image due to multiple scattering, despite the notice-
able differences between the multiple and single scattering patterns on Fig. 6.3 (a)

and (b), respectively.

6.3 Holographic image of ARXPD from Si(001)-[2x1] sur-

face

Many recent results have shown that diffraction patterns produced by lo-
calized electron sources, such as those from Auger electron [89], photoelectron
[90], and Kikuchi electron [77] diffraction patterns, can be interpreted as holo-
grams. However, in the reconstruction of the holographic image from a diffraction
pattern, one has first to measure a high quality hologram with fine interference
fringes, which can be achieved by requiring a high angular resolution of the diffrac-
tion pattern. This restriction could be relaxed if several single-energy diffraction

patterns were used for energy integrated holographic reconstruction.
6.3.1 The holographic and non-holographic features in an ARXPD

There are many factors that can affect the quality of a reconstructed image:

some of these are due to the restrictions of the experiments, and some are due to



[110]

Figure 6.5: Holographic images obtained from the holograms of Fig. 6.3. The
images are shown at z = —0.82A4 plane, which passes through the outermost
Ni surface layer. Image (a) was reconstructed from the MSC hologram, and
(b) was from the SSC hologram. Both images show the bright spots near

the positions of substrate Ni atoms.



[100]

[100]

SSC

Figure 6.6: Holographic images obtained from the holograms of Fig. 6.3. The
images are shown at = = 0.0A4 plane, which passes vertically through emit-
ter and two of the nearest-neighbor Ni atoms. Image (a) was reconstructed
from the MSC hologram, and (b) from the SSC hologram. The prime’s

letters represent the twin images.



the reconstruction algorithm. The experimental limitations include the selectivity
and quality of the transition peak in the XPS spectrum, the detector’s spatial and
energy resolution, the signal to noise ratio, the angular range of the diffraction pat-
tern, the sample’s condition including surface roughness (steps and defects on the
surface). Given otherwise ideal experimental circumstances, the fundamental limit
to spatial resolution using holographic inversion techniques is mainly determined
by the electron energy, or wave vector k, and angular range (maximum collected

angle #) of the diffraction pattern. The spatial resolution parallel to the surface is

0
A —
"l ksind
and that for the vertical component is
2
Ar)y = —— .
= k(1 — cosf)

Given an electron kinetic energy of 1000 eV, and full range of diffraction pattern,
¢ = 90 °, the spatial resolution of Arj and Ar, are equal to 0.8 A and 1.6 A, re-
spectively. Although, the improvement of the experimental conditions can provide
a better quality diffraction pattern, an advanced holographic inversion algorithm is
still needed for ARXPD. Such an algorithm should include corrections for the the
electron wave that emitted from the photoemission process, which may be highly
anisotropic in nature, the scattered electron wave, which is also highly forward
peaked at high electron kinetic energy, and multiple-scattering processes, which

also add some difficulties to the interpretation of the holographic image.

The intensity I, of an experimental Si-2s core-level ARXPD diffraction pat-
tern from a Si(001)-[2x1] surface, at an electron kinetic energy of 1337 eV, mea-
sured by B. P. Tonner and co-workers, is plotted versus the wave vectors parallel

to the surface, k; and k,, as shown in Fig. 6.7 on page 180. The maximum polar



angle of the diffraction pattern is 70 ¢ and with the center of the pattern pointing
along the sample normal, i.e., the [001] direction. The ARXPD was done in such a
way that the incident x-ray beam and the direction of the outgoing photoelectron
lie in a plane containing the sample normal. The sample normal is rotated in this
plane to scan the polar angle . Rotation of the sample about its normal direction
varies the azimuthal angle ¢. Elastic scattered electrons from the Si-2s transition
were recorded by separating the peak intensity with the background signals in an

XPS spectrum.

We will use here the two-dimensional Fourier transform algorithm of Barton
to reconstruct the holographic image. The third dimension, k,, of this transform

is determined by

k. = k2 — K2 — k2.

The reconstruction algorithm can be written as:
kﬂ?mam k mazx . . -
A= [ aky [ ak, {Io(kz, ky)e—“x/kz—k%—k%e—wkw—wky} . (6.13)
kmmin k?lmin

where the k k and k k are the minimum and maximum electron

ZTmin? "YTmax Ymin? "VYmax

wave vectors in the z and y directions respectively, parallel to the surface. The
diffraction pattern was digitized on a grid of 128 x 128 pixels with uniform steps
of Ak,, and Ak, as the input to a two-dimensional fast Fourier transform (FFT)
program [106]. With a fixed z, value, the inversion routine returns an output array
in a real space with the same size (in two dimension), but with a different order
in the array. It, then, needs to be reordered in order to construct a single image
plane A(z,y, z,). Continuing this process by changing the z, value to cover a cubic

volume will generate the reconstructed image function A(z,y, 2).

Consider the local geometry of a Si emitter in a Si(001) surface, as shown in



Si-2s ARXPD pattern from
Si(001) surface at 1337 eV

Figure 6.7: The experimental diffraction pattern from Si-2s core-level of a
Si(001)-[2x 1] surface with kinetic energy of 1337 eV as measured by B.

P. Tonner and co-workers.
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Local geometry of Siemitters

Figure 6.8: Local geometry of Si emitters in a Si(001) surface. Two orientations
of Si emitter local geometries, tetrahedral structures, are shown by (a) and
(b). Cluster (a) rotated about [001] by 90° would generate cluster (b). The
Si diamond lattice constant is 5.43 A with the Si-Si bond length 2.406 A.



Fig. 6.8 on page 181. If we ignore the surface reconstruction on the grounds that
the top layer atoms contribute little to the holographic fringes on the diffraction
pattern, we need consider only the two orientations of tetrahedral structures in the
crystal, one rotated by 90° with respect to the other. The Si emitters in those two
clusters produce two diffraction patterns, and rotating one pattern by 90° about

[001] direction would reproduce that generated by the other cluster.

A straightforward Fourier integral of diffraction pattern I,(k, k,) with Eq. 6.13
results in a three-dimensional intensity distribution, A(r), which is shown in Fig. 6.9
on page 183. The sides of the cubic volume that can be seen on this figure are the
planes of z = 2.554, y = 2.55A4, and z = 2.554 where atoms should be located
(assuming an emitter at the origin), the expected atom positions are in near the
corners of this cube. No clear indication of atom images are observed on those
planes on Fig. 6.9. Strong artifact images are observed at the top of the cube,
where no atom is located. The poor image function obtained by direct inverting
the diffraction pattern of the Si-2s ARXPD pattern is due to the fact that there
are many strong artifacts, which dominate the reconstructed image, appearing near

the center of each face of the cube.

However, one may notice that Fig. 6.7 is dominated by the so-called forward-
scattering peaks along the low-index Miller directions. Due to the strong forward-
scattering feature of the electron scattering factor, the self-interference term in
Eq. 6.6 cannot be neglected in this situation. Some other unknown features, such
as the intensity background, might also contribute to the artifacts formed in the
real space close to the origin. We know that the holographic information lies
in the interference fringes which are spread over a large area of the diffraction

pattern, it is obvious that some other features, such as the anisotropy of the source
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Reconstructed image from
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Figure 6.9: Reconstructed image of unfiltered Si-2s core-level ARXPD pattern
from Si(001)-[2x1] surface. The sides of the cubic volume were formed by
cutting through the planes of z = 2.554, y = 2.554, and z = 2.55A, where
the true atom positions are located. No clear indication of atomic images

are seemn.



wave from the atomic transition, can also greatly affect the quality of the inverted
holographic image even when good experimental conditions have been maintained.
So we first try to eliminate those non-holographic features in the diffraction pattern
by subtracting a smooth background from the hologram, and then carry out the

holographic reconstruction.

6.3.2 Filtering process

In can be seen that by convolving the original diffraction anisotropy, x(kj),
with Gaussian of sufficient large angular width, one may remove all the (fine)
holographic fringes. If this smooth function, which is a non-holographic pattern, is
removed from the original pattern, one is left only with the holographic information

to be inverted into a holographic image.

In principle, a “local average” function may be subtracted with the formula:

fAkw fAky I(kh)d(k'n - kII)
fAkm fAky d(kh - kII) ,

where the Ak,, Ak, are the width of the local area for the average.

x(ky) = I(k)) -

Our aim is to find a smooth function which can be used to suppress the
background of the diffraction pattern consisting of forward-scattering peaks and
other unknown non-holographic features. One way of finding the smooth function

is by defining a function, F,(ky, k), by
Fyo(ky, ky) = Ai(kg, ky)k2 + As(ky, ky)kok,, + As(ky, ky) K+

Au(kg, ky)ky + As ko, ky)ky, + Ag(kg, ky) (6.14)

where k; and k;/ are the z and y components of the detected electron wave vectors
over a limited region of the diffraction pattern, and the A’s are real functions of &,

and k,, determined by a best fit of the Fi,(k,, k,) to the experimental data I, (&, k),



Filtered Si1-2s ARXPD
from Si(001) surface

Figure 6.10: The filtered Si-2p core-level ARXPD from Si(001)-[2x1] surface.
Note that after the filtering process, the fine fringes of the holographic in-
terference are enhanced throughout the pattern, and the forward-scattering

peaks are reduced.
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Figure 6.11: The filtered (dashed line) and unfiltered (solid line) diffraction in-
tensity of Si-2p core-level ARXPD from a Si(001)-[2x1] surface along the
Note that the filtered curve emphasizes the

small fringes throughout the pattern while suppressing the strong forward-
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scattering peaks along the low-index directions.




in a small region centered at k, and k,. In this way, a smoothed background
through the whole pattern may be determined. The “filtered” holographic data is,
then, taken to be this smooth background function subtracted from the measured

data, namely:

F kg, ky) = I (ky, ky) — Fy(ka, ky)-

This process is justified by the argument that the fine holographic interfer-
ence fringes are spread all over the diffraction pattern and will not be removed
by subtracting such a smooth function. The overall signal to noise ratio is also

improved by this procedure.

The “filtered” diffraction pattern is shown in Fig. 6.10 on page 185. We also
plot the “filtered” hologram intensity in two major azimuths [010] and [110], along
with “unfiltered” data for comparison, in Fig. 6.11 on page 186. It is clearly seen
on Fig. 6.11 that the “filtered” curve emphasizes the small fringes throughout the
pattern while suppressing the strong forward-scattering peaks along the low-index
directions. Then, replacing I,(k,, k) in Eq. 6.13 by F(k,,k,), we obtained the
reconstructed image function, A(r), which is shown in Fig. 6.12 on page 188. The
faces of the cubic volume are taken to be the same as those of Fig. 6.9. It is
very clearly seen that image function in Fig. 6.12 has been improved dramatically
compared with the unfiltered reconstructed image. The nearest neighbor Si atom
images clearly show up in the planes of © = 2.554, y = 2.554, and z = 2.554,
with small artifacts near the center of each face of the cube. The atom images on
Fig. 6.12 are shifted by only several tenths of an Angstrom. These shifts could be
due to the angular anisotropy of the waves scattered by the near neighbors of the

emitter atom [91].



Reconstructed image from
the filtered Si-2s ARXPD

Figure 6.12: Holographic reconstruction from the filtered Si-2s core-level
ARXPD pattern from a Si(001)-[2x1] surface. The dashed circles rep-
resent the atom images from cluster (a), and solid circles for images from
cluster (b) of Fig. 6.8.



6.4 Holographic image of Co-3p ARXPD from a CoSiy(111)

surface

In this section, we will discuss the use of the direct inversion method of photo-
electron holography for the study of the Co-3p ARXPD from a CoSiy(111) surface.
A photoelectron diffraction pattern from a CoSiz(111) surface was recorded on the
Argonne-Minnesota beam-line at Synchrotron Radiation Center, Madison, Wiscon-
sin. A higher kinetic energy will result in a higher spatial resolution in directions
both parallel and perpendicular to the surface, but on the other hand, atomic
scattering factors tend to be more anisotropic at higher kinetic energy. Therefore,
a photon energy of 750 eV and electron kinetic energy of 695 eV from Co-3p core-
level photoemission was chosen as a compromise. Another reason that the Co-3p
photoemission peak was measured was to make the XPD diffraction pattern more
surface sensitive, as the Co emitters are located at the second, fifth, and eighth
layers etc. Due to the limited electron mean free path, only the Co emitters in the
second and fifth layer would contribute significantly to the diffraction intensity in
far field. A detailed surface model showing the local geometry of the Co emitters
at the second and fifth layers is shown on Fig. 6.13 on page 190. In a LEED study
[68], surface reconstruction was not observed. However, the first interlayer spacing
of the CoSiy(111) surface is contracted by 12%, the second expanded by 2.5%, and

the third contracted by 1.2%.

6.4.1 Reference and Scattered-Wave Included Fourier Transform

Due to the complexity of the Co emitter source wave as determined by the
dipole selection rules, and the anisotropic atomic scattering factor, a number of

factors should be taken into account before performing the holographic recon-
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Figure 6.13: Perspective diagram of local geometry of the Co emitters in a
CoSip(111) surface. The Co emitter in the fifth layer will produce a re-
constructed image of the nearest-neighbor atoms, as well as those of the

next-nearest-neighbor atoms.



struction, including background subtraction, correction for the anisotropic emitted
wave, correction for the anisotropic atomic scattering factor, and eliminating the
self-interference of the object waves which cause the forward-scattering peaks on

the diffraction pattern.

Firstly, we applied the Barton’s Helmholtz-Kirchoff algorithm to the diffrac-
tion pattern of Fig. 5.4. No clear indication in the reconstructed image function
was found of the true atom positions in the CoSip(111) surface structure. As we
have described in Sec. 6.3.2, this is because a smooth background function hampers
the reconstruction process due to the self-interference terms along the low Miller-
index directions and contributes to the artifact near the origin. These background
artifacts may be removed through the filtering process introduced in Sec. 6.3.2. A
“local average” intensity, which can be calculated using Eq. 6.14, was subtracted
from the original intensity. The anisotropy function, x(k), is shown on Fig. 6.14
on page 192 along the [112] azimuth, together with diffraction intensity before the
filtering for comparison. It may be seen in Fig. 6.14 that the filtering suppressed

the forward-scattering peaks and enhanced the fine fringes in the pattern.

Now we introduce a reference and scattered-wave included Fourier transform
algorithm to correct for bo e anisotropic electron emitter source
RSWIFT lg ithm t t for both th isot ic elect itt

and the anisotropic atomic scattering factor. In the SWIFT algorithm

am=[| Kl((li)r)e‘ik'rdk” (6.15)

the kernel function was defined to account of the contribution of the anisotropic
emitted electron wave of Co-3p photoemission and the forward atomic scattering

factor. In this specific experimental geometry, we employ the (inverse) kernel

e—ikr

K(k, I‘) = ZZZ,MLLcMz’LCYL(R)YE’(f)f*(k'r) ] (6'16)

Lo L r




unfiltered data
filtered data

-
eo="

Arb. Units

[112]

[112]

Wave vector k )/

Figure 6.14: Filtered and unfiltered intensity from Co-3p core emission from a
CoSiy(111) surface. The plot is along the [112] direction. The “local aver-
age” of 27x27 points was used to subtract a smooth function which sup-

pressed the self-interference terms caused by the forward-scattering peaks.



where L, specifies the initial core state, L and L' are the angular momenta of
the emitted free electron states, and the M’s are the allowed transition matrix

elements, defined by
MS)L)C =< Llcos(0)|L, >< R(r,€,1)|r|Rs1 (1) > €™

where the polarization direction of the photon is taken along the z axis, and the
core-state radial wave function of R3;(r) is the solution of the radial Schrodinger
equation of a cobalt atom for principal quantum number, n = 3, and angular mo-
mentum quantum number, | = 1. R(r,¢,[) is a solution of the radial Schrodinger
equation within the muffin-tin sphere for an energy of ¢, matching on to the func-
tion j;(kr)cos(0;) - ny(kr)sin(d;) at the muffin-tin radius, where j, and n; are the
spherical Bessel and Hankel functions respectively, and ¢; is a phase shift of a Si
atom. As have been calculated in chapter 5, the emitted states of a photoelectron

in Co-3p photoemission are s and d states, and the non-zero transition amplitudes

are:
My, = 3.153¢
Mo = 1.444¢i%
M, = 3.641¢™
and

M, = 3.153¢"

Eq. 6.15 can cause a serious problem as the reconstructed intensities for
negative z in real space tend to be much higher than those for positive z. This
could add difficulties in interpreting the image function obtained from Eq. 6.15.

Since the phase part of the kernel function, K (k,r), is the major correction for



the image shifting in the SWIFT algorithm, we can modify Eq. 6.15 for including

only the phase part of the kernel function (6.16), thus

// |K k r) e~k gk (6.17)

Therefore, image function obtained by Eq. 6.17 will be quite “uniformly” dis-

tributed at both positive and negative z.

6.4.2 Reconstructed image

The image function, A(r), was obtained by performing the reference and
scattered-wave corrected Fourier transform of Eq. 6.17 with the kernel function of

Eq. 6.16.

Fig. 6.15 on page 195 shows the reconstructed image function, A(r), in the z
= 0.0 A plane, where two Si atoms (atoms (2) and (4) as indicated in Fig. 6.13),
a Co atom (atom (6)), and their twin images are seen. The solid circles represent
the true atom positions, dashed circle that of the emitter, and dotted circles those
of the twin images in this plane. Fig. 6.16 on page 196 shows the plane y = -0.93
A, where two Si atoms ((1) and (3)) and two Co atoms ((5) and (7)) are indicated
by solid circles representing the true atom positions. Fig. 6.17 on page 197 shows
the plane z = -0.57 A, where three nearest-neighbor Si atom ((1), (2), and (3))
are seen. In this plane the background intensity is seen to be very low and the
signal-to-noise ratio is relatively higher than that of the x and y plane cuts. The
advantage of using a CoSi, crystal as a sample is that the emitter and the nearest
scatterers are of different chemical species, which ensures that the photoelectrons of
the same energy are not emitted by both the reference wave source and its nearest-
neighbor scatterers. The high Debye temperature of a CoSi; sample provides a

rigid lattice for the study. The layer spacing between the emitter and its nearest
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Figure 6.15: Plane cut at z = 0A for holographic reconstruction from Co-3p
ARXPD. Atom (2) is due to the second and fifth layer of Co emitters.
Atoms (4) and (6) are due to the Co emitters in the fifth layer. The dashed
circle is at the emitter position, and dotted circles represent the twin images
of atoms (2), (4), and (6).
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Figure 6.16: Plane cut at y = 0.93A for holographic reconstruction from Co-3p
ARXPD. Atoms (1) and (3) are due to Co emitters in the second and fifth
layers. Atoms (5) and (7) are due to Co emitters in the fifth layer.
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Figure 6.17: Plane cut at z = 0.57A for holographic reconstruction from Co-3p
ARXPD. Bright spots represent the near-neighbor Si atoms (1), (2) and
(3) as shown in Fig. 6.13.



neighbors is 0.57 A along [111] direction, and this is smaller than the value of
0.68 A obtained by a LEED dynamical analysis [68]. However, the Si atom (4)
direct above the Co emitter at fifth layer is shown up at the expected position in
Fig. 6.15. Furthermore, in the lateral direction, the Si images are moved closer to
the emitter. The distance between the emitter and the nearest neighbor Si atoms
is measured to be 2.00 A which is reduced by about 0.29 A from the corresponding
LEED result. The estimated spatial resolutions parallel and perpendicular to the

surface are 0.28 A and 0.70 A, respectively.

Most previous work in photoelectron holography has reported image recon-
struction of mainly the nearest neighbors to an emitter. Encouragingly, in this
study we are able to detect the next-nearest neighbors as well, although the qual-
ity of their images appear to be somewhat reduced. From Figs. 6.15 and 6.16, we
are able to see images produced by the Co emitter located in the fifth layer. The
image of atom (6) in the z-cut of Fig. 6.15 is produced by the Co emitter in the
fifth layer, and is the next-nearest neighbor atom to this emitter. The images of
atoms (5) and (7) shown in the y-cut of Fig. 6.16 are also the next-nearest neighbor
atoms of the Co emitter in the fifth layer. Their measured vertical distance from
the emitter is 2.94 A, contracted towards the emitter by about 0.15 A compared
with the LEED result.

In order to display the significance of the RSWIFT algorithm, we compare
our reconstructed image with the results obtained from on Barton’s Helmholtz-
Kirchoff transform, the SWIFT algorithm, x-ray crystallography, and dynamical
LEED. The comparison of the results of the measured distance from the Co emitter
to its nearest-neighbor Si atom are shown on Fig. 6.18 on page 200. From the

Helmholtz-Kirchoff algorithm, the bond length is longer in vertical direction and



shorter in the lateral direction. The SWIFT algorithm, without a reference-wave
correction, drives the image even further away from its true atom position than that
for the Helmholtz-Kirchoff inversion, although the vertical position of the image is
at the right place. This is consistent with the observation of Saldin et al. [22] in
the case of Auger electron holography. It will be seen, however, that the RSWIF'T
algorithm does move the holographic image much closer to the true atom positions,
as measured by LEED and x-ray crystallography. The atom position obtained
from the image function has been improved by approximately a factor of three in
the RSWIFT result compared with that obtained by the Helmholtz-Kirchoff and
SWIFT algorithms. The vertical distance from the emitter to the reconstructed
image position of the nearest and next-nearest neighbor atoms are very close to
the actual value, as shown in Figs. 6.15 and 6.16. However, the lateral distances
between the emitter and the near-neighbor scatterers was about 12 % shorter
than expected. The reason could be the assumption made in our reconstruction
procedure that the electric field vector of the incident x-ray is normal to the sample
surface, which is not exactly true, as explained in chapter 5. Another reason could
be that only one-sixth of the diffraction pattern from the CoSiy(111) surface was
measured with the rest of the pattern obtained by the symmetry operations. These
symmetry operations were not entirely appropriate as we have already discussed

in chapter 5.
6.4.3 Conclusions

In summary, we have discussed the practice of reconstructing a holographic
image from a photoelectron diffraction pattern. Such an inversion procedure may

be done easily by applying a Fourier transform integral to a system in a backscat-
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Figure 6.18: Comparison of the measured distance from Co emitter to its nearest-
neighbor Si atom by using different methods. Symbols of diamond, trian-
gle, square, cross, and circle represent the results for Helmholtz-Kirchoff
algorithm (HK), SWIFT, RSWIFT, x-ray crystallography and LEED, re-

spectively.



tered geometry, such as an O adsorbate (emitter) on a Ni(001) surface. In a
forward-scattering geometry, the use of the Fourier transform integral as a re-
construction algorithm may fail to recover the actual crystal structure. Such a
failure is due primarily to the appearance of the non-holographic features, such as
self-interference terms of the forward-scattering intensity peaks, in the diffraction
pattern. Those slowly oscillatory parts in a diffraction pattern might seriously
hamper the reconstructed image, and need to be removed before holographic in-

version.

We show that most of the above non-holographic features, especially those
features that cause the artifacts around the origin, could be greatly reduced by a
filtering process, and by this means better holographic images may be obtained
with atomic resolution. Specifically, these non-holographic features may be mod-
eled by a smooth background function of &k, and k,, and then removed from the
original diffraction pattern. The true holographic interference fringes, rapidly os-
cillating fine fringes in the diffraction pattern, are not affected by this procedure.
Taking the “filtered” pattern as a “purer” hologram, and then carring out the
Fourier transform inversion procedure, the quality of the holographic image may
be greatly improved to yield atomic resolution. In other wards, most of the non-
holographic features are the lower frequency parts of the diffraction pattern, and
could be separated from the holographic interference fringes which correspond to
the higher frequencies parts. After the filtering, the ratio of the holographic signal
to noise will be increased significantly. By this means we have been able to recon-
struct a much better holographic image from the ARXPD diffraction pattern from

a Si(001)-[2x1] surface.

We have also demonstrated experimentally that a photoelectron diffraction



pattern of an excited Co-3p electron from a CoSip(111) surface may be inverted
to form a holographic image without any prior knowledge of the crystal structure.
An algorithm which corrects for both the reference wave and the anisotropy of the
scattered wave was introduced and applied to the above diffraction pattern. In this
algorithm, dipole transition theory is used to calculate the emitter reference wave,
and the kernel function includes the source wave and the atomic scattering factor of
the scattered atom at general position r. Although some of the information, such
as, the Co-3p photoemission matrix elements and the chemical identity of the scat-
tered atoms, are known beforehand, the algorithm is still a direct method, which
requires no prior knowledge of the crystal structure. A clear holographic image
was obtained with reconstructed atom positions close to true atom position. Var-
ious holographic reconstruction algorithms have also been discussed, and used to
reconstruct a holographic image from this photoelectron diffraction pattern. It was
seen that the reference and scattered-wave included Fourier transform (RSWIFT)
algorithm moves the reconstructed atom images much closer to the scatterer po-
sitions in the crystal, determined by standard LEED and x-ray crystallography
methods. The remainly discrepancies could be due to the incorrect assumption
that the x-ray photon polarization direction was along the surface normal in the

experiment in question.



CHAPTER 7

Atomic Position Recovery by Iterative
Optimization of Reconstructed Intensities

(APRIORI)

7.1 Introduction to linear programming
7.1.1 Optimization

The basic concept of optimization is a principle underlying the analysis of
many complex decision or allocation problems. It offers a certain degree of philo-
sophical elegance, and often offers an indispensable degree of operational simplicity.
By using this optimization philosophy, one may approach a complex decision by
focusing attention on an objective function designed to quantify performance and
measure the quality of the decision. This objective function is maximized or min-
imized subject to the constraints that may limit the selection of variables. If a
suitable single aspect of a problem can be isolated and characterized by an ob-
jective function, e.g., profit or loss in a business setting, speed or distance in a
physical problem, or searching for a set of variables to minimize an error function,

optimization may provide a suitable framework for analysis.

Prior to the 1940’s, optimization theories were mainly associated with dif-
ferential calculus. These techniques, as we know, had been successfully applied to
problems in economics, engineering, and pure sciences including physics for over
200 years. However, these methods were found to be inadequate for solving certain
types of problems, such as linear programming problems (LP) as we will discuss in
this section. It was during World War II that a systematic research program led

by George B. Dantzig focussed on developing the theory of linear programming.



The specific solution developed by Dantzig is called the simplex algorithm [92].
It is a step-by-step procedure for solving all linear programming problems in a
finite number of arithmetic operations. Since Dantzig’s initial work in 1951, the
development and application of linear programming has advanced very rapidly.
Much work has been done to improve the computational efficiency of the sim-
plex algorithm, thus enabling the solution of larger and larger problems with less
effort and greater speed. Although many variants of the simplex algorithm for
special uses have been developed, none of these new procedures has replaced the

straightforward approach of the simplex algorithm.

A linear programming problem is characterized by linear functions of the
variables; the objective function is linear in the variables, and the constraints
are linear equalities or linear inequalities. Many problems found in practice are
formulated as constrained problems. This is because in most instances a complex
problem such as the detailed production policy of a corporation, the planning
of a large government agency, or even the design of a complex device, cannot
be treated directly in its entirety accounting for all possible choices, but instead
must be decomposed into separate sub-problems, i.e, each sub-problem having
constraints that are imposed to restrict its scope. Thus, in planning problems,
budget constraints are commonly imposed in order to decouple that one problem

from a more global one.

One obvious measure of the complexity of a programming problem is its size,
measured in terms of the number of unknown parameters or the number of con-
straints. As might be expected, the size of problems that can be effectively solved
has been increasing with advancing computing technology and with advancing the-

ory. It is divided into three classes of problems: small-scale problems having about



five or fewer unknowns and constraints; intermediate-scale problems having from
about five to a hundred variables; and large-scale problems having more than a
hundred and perhaps over thousands of variables and constraints. This classifica-
tion is not entirely rigid, but it reflects at least roughly not only size but the basic
differences in approach that accompany different size problems. As a rough rule, a
small-scale problem can be solved by hand or on a small computer. Intermediate-
scale problems can be solved on a main-frame computer. Large-scale problems
require sophisticated codes that exploit special structure and usually require large

main-frame computers.

Most algorithms designed to solve large optimization problems are iterative
in nature in order to exploit the basic and important characteristic of high-speed
digital computer, i.e., its ability to perform repetitive operations efficiently. Typ-
ically, in seeking a vector that solves the programming problem, an initial vector
Xo is selected and the algorithm generates an improved vector x;. The process
is repeated and a still better solution x5 is then found. Continuing this fashion,
a sequence of ever-improving points Xg X; ... X ..., are found that approach a
solution point x*. For linear programming problems, the generated sequence is of
finite length, reaching the solution point exactly after a finite (although initially

unspecified) number of steps.

7.1.2 The fundamental theorem of linear programming

A linear programming problem is a mathematical program in which the ob-
jective function is linear in the unknown parameters and the constraints consist of
linear equalities or inequalities. As shown below, any linear programming problem

can be transformed into the following standard form:



Minimize an objective function of the form:
C1T1 + Coxo + 323 + - - - 4+ Ccpxy,
subject to the constraints
bl1 <apz + apre + -+ a1, T, < b7

le < an®y + a0y + -+ - + 2Ty < by

bin < 11 + GmaZo + - F ATy, < by

and

!
m
where the bl’s, b¥’s, zl’s, ¥’s, ¢;’s, and a;;’s are the fixed constants and real num-

bers, and the z; are the real numbers to be determined, or named as variables. In

more compact vector notation, this standard problem becomes that of

minimizing

f(x) = c'x
subject to

b' < Ax < b*
and

xl < x < x" (7.1)



where the variable array, x, is an n-dimensional column vector, the objective func-

T is an n-dimensional row vector, A is an m by n matrix, b’ and

tion array, c
b* are m-dimensional vectors of the lower and upper boundary constraints arrays,

and x' and x* are m-dimensional vectors of the lower and upper variable arrays.

Given an LP, the feasible set for this LP is a set of vectors (equivalently
points) in the appropriate n-dimensional space R™ which satisfy the constraints
for the given LP. Let K denote the feasible set for the LP. The basic properties of
a feasible set for an LP can be summarized as follows:

1. The feasible set K is convex.

2. K has a finite number of corners.

3. Finite minimums and maximums of the objective function for the LP occur at
corners of K.

Definition of a Convex Set:

A subset K of R" is convex if whenever x and y belong to K, and u and ¢ are
non-negative numbers with v +¢ = 1, then ux + ¢y belongs to K.

Definition of a Corner:

A point x of a convex set K in R" is not a corner point of K if there are two points
y and z in K and two positive numbers ¢ and u, such that (1) t + v = 1 and (2)
x =ty + uz. Corner points are also called extreme points.

A graphic example of convex set, non convex set and corner points are shown
in Fig. 7.1 on page 7.1. Geometric intuition should suffice to identify the convex
set, non-convex set, and corner points of the feasible sets in a system where only
a small number of variables are presented as in the case of Fig. 7.1.

A solution x to the LP should be a point in the feasible set K at which the

objective function attains its minimum value on K, and it is called an optimal



solution. Thus a solution x of Ax = b is a feasible solution to the LP if and only
if x > 0. A solution x of Ax = b is called a basic solution if the columns of the
A matrix corresponding to the nonzero entries in x are linearly independent. A

basic feasible solution (BFS) is a solution that is basic and feasible.

Fundamental Theorem of Linear Programming

Given a linear program in standard form of Eq. 7.1 where A is an m by n matrix
of rank m,
1) if there is a feasible solution, there is a basic feasible solution;

2)if there is an optimal feasible solution, there is an optimal basic feasible solution.

The proof of the above fundamental theorem can be found in most elementary

linear programming text books, e.g. [93].

The simplex algorithm is essentially a method of systematically examining
the feasible solutions of a standard-form linear programming for optimality, i.e.,
select an initial extremum point which is a basic feasible solution(BFS), move alge-
braically from one BFS to another while trying to decrease the objective function
each time. The final objective function obtained by the optimized basic feasible

solution is called the optimized objective function.

7.1.3 Formulating a linear programming problem

Many problems in nature are not explicitly written in a linear programming
format of (7.1). In most cases, the variables, constraints, and objective function

are needed to be sorted out and identified. Formulating a linear program to model






a situation involves three basic steps:

1. Specify the unknown variables.
2. Specify the constraints.

3. Specify the objective function.

In the case of the APRIORI problem, a set of experimental data points,
{I;*}, is given. Suppose that a set of formulated equations, which are a set of
linear functions of a set of variables, {X;}, can be used to represent {I;"}. We
may write:

Nx
Iiewp:ZMinj’ and :=1,2,...,Ng (7.2)
7j=1

where M;; is a matrix element of M and a real number. Noted that the number
of equations, Nk, could differ from the number of unknown parameters, Nx. The
variable set, {X;}, is confined between the lower boundary set of {X}} and upper

boundary set of {X}'}, where
i < J < i

We now define the error function, or optimization function, to be

Ng

p=3

=1

(NZX Mii X — If”) ‘ (7.3)

j=1
A feasible set of solution, {X,}, is defined as an optimal feasible solution

when the error function is at the minimum.

Now we focus our attention on reformulating the problem of minimizing the
error function (7.3) into the standard linear programming format of (7.1) so that it
can be solved by the simplex algorithm of linear programming for which computer

routines are widely available.



7.1.3.1 1. Specification of the unknown variables

The variable set of {X;} can be defined as a column vector

X

X

Xn

X

In order to minimize Eq. 7.3, the number of variables in the set of {X,} is not

sufficient to construct a linear programming model. Now we will introduce the

positive error Et) and negative error E(t) as following:

For a given feasible solution {Xj},
if (Z;v:ﬁ M;; X; — Iimp) > 0, define
B = (SN My X, — IT™)
BT =0
if (Z;V:)ﬂ M;; X; — Ipr) < 0, then define

E® =

B = — ()% My X; — I£)
Hence

ED + g9 =

Nx
S My X; — IE
j=1

where EZ~(+) >0, Ei(_) >0, for i = 1,2,..., Nk, The absolute signs can be then

removed according to the above definition of EZ-(“L) and Ei(_):

@ oo [
7j=1



Since the values of Ei(+) and Ei(_) are the positive and need to be determined, so

they are the new variables. The number of unknown variables becomes Nx +2Ng.

We, therefore, define the total linear variable column vector x to be:

(7.5)

where 7 goes from 1 to Ny, j from 1 to Nk, k from 1 to Ng, and 0 < EZ-H), EZ-(_) <

Q.

The lower and the upper boundary of the variable sets are:

Xl

0

7.1.3.2 2. Specification of the constraints

X = 0 and x =

Xu

Eq. 7.4 can be written in the more compact vector form,

EY — EC) = MX — 1¢%P

or

MX — E®) + EC) = 162p




where the column vector

P
Ieacp
TP — 2
erp
Iy:
and matrix
My, M, Miny,
My My, Myny
M =
My Mo -+ Mpenyg
It can also be written in the form:
X

(M, -1, 1)| g® |=I

where I is a unit matrix of rank Ng. Or we may write:

Ax = I
where the constraint matrix A is:
My My -+ My, -1 0 -~ 0 10
My My -+ Myy, 0 -1 --- 0 01

Myt Mo -+ My, 0 0 -+~ —1 00

1




Now the constraint Eq. 7.8 fits the standard format of a linear programming model,

Eq. 7.1.
7.1.3.3 3. Specification of the objective function

Our goal is to minimizing the error function (Eq. 7.3), so we define our
objective function as the error, F, of Eq. 7.3. If we take the objective array as a

row vector c’:

or

X4

Nk B Ng Nx
=Y (B +E7) =3 | (Z M X — fpr) =E
i=1

i=1 j=1



which is exactly the form of Eq. 7.3. Minimizing the objective function f(x) in a
linear programming procedure will result in a minimum error for Eq. 7.3 which is

our goal.
7.1.3.4 Summary

We have constructed a set of variables, a series of linear equations, and an
objective function in order to convert the problem of minimizing the error function

of Eq. 7.3 into the standard linear programming model of Eq. 7.1.

We seek to minimize the objective function

fx) = c"x
subject to the constraints
b! < Ax < b
and
xl < x < x* (7.10)

where vector ¢ is defined by Eq. 7.9,

variable vector x by Eq. 7.5,




matrix A by Eq. 7.8,

My, My -+ My, -1 0 -~ 0 10 -0

My, Moy --+ Moy, o -1 .- 0 01 ---0
A =

My Myeo -+ Myene, 0 0O --- =1 0 0 --- 1

the lower and upper boundary constraints are specified by

exp
I

exp
I,

bl — bt — Texp

exrp

and the lower and upper boundary for the variables by

X! XU
x! = 0 and x" = 00
0 o0

7.2 Atomic Position Recovery by Iterative Optimization of

Reconstructed Intensities

In the last section, we have introduced the linear programming concepts
and formulated the variables, linear equations, constraints, and objective function
of Eq. 7.10 on page 215 to convert a physics optimization problem into a stan-
dard linear programming format. In this section, we will apply these equations
to attempt to overcome some of the previous limitations of electron holographic

crystallography.



7.2.1 Overcoming Limitations of Holographic Crystallography

A by-product of the proposal [75] to reconstruct structural data from a
diffraction pattern by computer holography has been the stimulation of new thought
about direct methods [94] in crystallography. The earliest [17] of the holographic
reconstruction algorithms used in practice was based entirely on analogy with ideas
current in optics, and which stem from the seminal work of Gabor [3]. More reli-
able algorithms for holographic crystallography [76,7,7,7,?,7] have been developed
subsequently including corrections for the anisotropies of atomic scattering factors

[87,7,2,?7], and that of the reference wave [79,7].

A problem which was recognized earlier [87,?] was the fact that the object
waves are not always much smaller in magnitude than the reference wave, giving
rise to artifacts on reconstructed “images” [99,?]. Taking a Cu atomic scattering
factor, as an example, the forward-scattering amplitude could be as high as 3.0 A
(estimated from Fig. 2.2) for an electron energy of 914 eV. This amplitude is even
greater than that of the reference wave if a scatterer Cu atom is located at 2.55
A, the nearest-neighbor distance from an emitter in a Cu crystal. In other words,
if the reference wave amplitude were assumed to be 1, the amplitude of the object
wave is:

Ok, 1)

o=
.

which is around 3.0/2.55 = 1.18 in the forward-scattering direction. So omitting
the quadratic terms, i.e., the squares of object waves, in a traditional electron
holographic reconstruction algorithm would result in poor image reconstruction

when the forward-scattering peaks dominate the diffraction pattern (hologram).

Algorithms which combine data from diffraction patterns due to electrons



of several different energies have been proposed [101,7,?,?] in part to overcome
the problem of holographic twin-images [17]. However, with present technology,
collection of photoelectron diffraction data over a large solid angle range at several
regularly-spaced energies is a rather laborious task (and may be impossible with

Auger electron diffraction).

We present in this Section a robust new reconstruction algorithm, which offers
the prospect of overcoming all the above difficulties. It is a rapid iterative scheme
for accurately reconstructing the relative positions of source and scatterers directly
from the data of a mono-energetic point-source diffraction pattern. It makes use
of the squared object-wave terms neglected in traditional holographic algorithms
to reconstruct the holographic images. It also does not suffer from a twin-image

problem, and even identifies the chemical species of the scattering atoms.

7.2.2 Photoelectron diffraction from a Ni-C-O linear chain model

We begin by drawing attention to some of the limitations of prior schemes
[17,7,2,2,7.?], for the reconstruction of the positions of atomic scatterers of different
chemical species, from a single diffraction pattern, when the scatterers lie on both
sides of an emitter atom. We illustrate our point by considering a Ni-C-O linear
chain model of a CO molecule adsorbed on the atop site of a Ni surface, as shown
in Fig. 7.2 on page 219. If the carbon atom is excited through a photo-emission or
electron-induced Auger process, the electron emitted by source atom C will produce
a diffraction pattern at far-field. For simplicity, we assume that the emitted wave
takes an isotropic form of an s-wave emitter. The interference between the s-
wave electron emitted from the C atom (forming a reference wave Ref.) and that

scattered from the nearby O and Ni atoms (the object waves Obj.) gives rise to a



Obyj.

X-ray or
electron
beam

Ref.

?
()

Ni-C-0O linear atomic chain

Figure 7.2: Ni-C-O atomic linear chain model. The Ni-C and C-O distances were
taken to be 1.80 and 1.15 A. The carbon atom is assumed to be excited by
an x-ray photon or an electron, emitting an electron wave from the carbon

atom, and forming a photoelectron diffraction in far-field.
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Figure 7.3: Polar angle variation of the diffraction intensity from the Ni-C-O
linear chain, shown in Fig. 7.2, calculated by an exact multiple-scattering
scheme [32], with the C atom emitting an isotropic electron wave, e.g. s-
wave emitter, at kinetic energy of 504 eV. The polar axis is defined to lie
in the direction from the C to the O atom.



far-field diffraction pattern which will have an azimuthal symmetry about a polar
axis directed from the C atom towards the O atom. In Fig 7.3 on page 220 we
show the polar-angle variation, (), of the intensity of this diffraction pattern, for
500 eV electrons, and @ lying in the range from 0 to 70°, as calculated by an exact

full multiple-scattering cluster scheme [32].

Firstly, we use Barton’s Helmholtz-Kirchoff algorithm [17] to reconstruct
from the diffraction data of Fig. 7.3 real-space amplitudes in the region close to
the emitter. In Barton’s Helmholtz-Kirchoff algorithm the image function, A(r),
is calculated from:

Ar) = / / I(k)e ™ dk, (7.11)
where the k is the wave vector, k| the component that parallel to the surface. A
radial image function (RIF) may be obtained by reconstring the image intensities
along a line passing through the three atoms in the chain model. The resulting
radial image function is shown on Fig. 7.4(a). The vertical dotted line on the
positive side of the abscissa denotes the position of the O scatterer relative to the
emitter (the C atom, at the origin), while that on the negative side represents the
position of the Ni atom. Note the symmetry of the RIF about the origin as a
consequence of the holographic twin problem. No particular indication of the O

or Ni atoms is present on the RIFs.

We next utilize a scattered-wave included Fourier transform (SWIFT) [91,7,7,?
to calculate the corresponding RIF's, using the spherical-wave scattering factors
(7.16) of O and Ni separately in the scattered-wave kernel. This image function is

calculated from:
_ I(k) —ikr

where the scattering factor f(k,r) of O or Niis the s(inverse) scattered-wave kernel.



The radial image is along the same direction as that of Fig. 7.4(a). The profiles
on the positive side of the abscissa are multiplied by the scale factor shown in
Fig. 7.4 to compensate for an inverse kernel containing large forward-scattering
factors. The resulting RIFs are shown on Fig. 7.4(b) and 7.4(c), respectively. On
Fig. 7.4(b) a peak is indeed seen close to the position of the O atom, but a quite
spurious one is also seen on the opposite side of the emitter, where no O atom
is present. The latter feature is either due to the incomplete removal of the twin
image of the O, or else the incomplete filtering out of the image of the Ni atom.
The profile shown on Fig. 7.4(c) shows a peak close to the Ni atom, but also an

unwanted artifact on the other side of the scatterer.

Szoke [104] has recently pointed out that many of the spurious features on
holographically reconstructed images, like those on Fig. 7.4(a)-(c) are a conse-
quence of the use of the back-propagation algorithms, with their attendant diffrac-
tion limits and problems of wave interference. Since the aim of holographic crys-
tallography is the determination of the positions of scatterers rather than their
scattered wave-fields, he suggested introducing into the theory the idea of a spatial
distribution function to be determined from the experimental data and a knowl-
edge of the forms of the reference and scattered waves. We propose here a novel
algorithm for determining such a function, which we term as Atomic Position Re-

covery by Iterative Optimization of Reconstructed Intensities (APRIORI) [88].

7.2.3 Iterative optimization of reconstruction

Consider first the kinematic expression for the amplitude of an electron wave

of detected wave-vector k, emitted at the origin of a coordinate system, and scat-
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Figure 7.4: Radial image functions (RIFs) along the atom chain as reconstructed
from the diffraction intensities of Fig. 7.3 by various methods. (a) Bar-
ton’s Helmholtz-Kirchoff integral. (b) A scattered-wave-included Fourier
transform (SWIFT) algorithm with a scattered-wave kernel containing a
spherical-wave electron scattering factor of an O atom. (c) Same as (b)
except using a scattered-wave kernel of Ni. (d) The distribution p(04) for O,
as calculated by the APRIORI algorithm after 4 iterations. (e) The corre-
sponding distribution p%g for Ni, found by the same optimization process.

The vertical dashed lines represent the positions of the Ni and O scatterers.



tered by atoms of chemical species X at positions specified by the vectors r;:
A(k) = R(k) + > _px(r;)Ox(k,1;), (7.13)
X,i
where the (real) functions px(r;) [104] represent the spatial distribution of atoms
of chemical species X. We take the emitted wave-function as the reference wave

R of angular momentum quantum numbers Im, i.e.

R(k) = Vim(k), (7.14)
and
O v
O (1, 1:) = Vi ) AT iricrcny (7.15)
T

as the object waves scattered by nearby atoms. Eq. 7.14 and 7.15 represent am-
plitudes measured on a distant spherical detector approximately centered on the
emitter, so we have dropped some unimportant common factors. The atomic scat-
tering factors in Eq. 7.15 take the spherical-wave form: [79]

O (1, 1;) = %cl(kri) S + Dt ey (ki) Po(k - 1) (7.16)

v

where ¢ is an atomic t-matrix element of angular momentum quantum number !’
for the chemical species X, Py a Legendre polynomial and ¢;(kr;) the polynomial
coefficient of the Hankel function h,l(l)(kr,-) [8]. Inelastic damping is taken into
account in equations (7.14)-(7.16) by allowing the wavenumbers % to be complex.
Using equations (7.13)-(7.15) we see that the intensity, I(k)(= |A(k)|?), of the

diffraction pattern, regarded as a function of the wave-vector k of the detected

electron, can be written as

I(k) = \R(k)\2+;PX(I‘i) {[R* (k)Ox(k,1;) + c.c.] + Ox (k, 1y ;pZ(rj)Oz(ka r;)
’ (7.17)



where c.c. denotes complex conjugation, and Z is another dummy index specifying

a chemical element and r; the cooordinate of chemical species Z.

We take as our task the determination of the spatial distributions px(r;)
(and pz(r;)). We describe below an iterative process for determining these quan-
tities from experimental measurements of I(k) and calculated values of R(k) and
Ox(k,r;) (and Ogz(k,r;)). If we allow the position vectors r; and r; to take a set
of values on an uniform grid of points [104] in a space large enough to include all
expected positions of the scattering atoms, we may obtain an n-th order estimate

pg?) of the distributions px, by the following method.

We define the error £ (k) in our n-th order estimate of the experimentally
measured intensity 7°*?(k) at the position on the diffraction pattern specified by

the detected wave-vector k as
E™(k) = |R(k)[? +Zp (&, 1;) — pl (k) (7.18)
where p is a constant of proportionality to be determined, and we take

M (k1) = [R*(K)Ox (k, 1) + c.c.] + O% (k1) S p5 "V (x,)04(k, 1), (7.19)

Z,j
as suggested by the terms within the curly brackets of (7.17). Note that M)((")
(n

contains the distributions p; b (r;) determined by the previous iteration.

For any particular iteration n > 1, we propose finding the best fit to 7°*7(k)

by minimizing an “objective function” [105] defined by

> EM(K) | (7.20)

subject to the constraints that

>0, (7.21)



1> pg?) (r;) >0, for all X and r; (7.22)

and that

S P () =Nx  forall X, (7.23)

where Nx is the number of scattering atoms of type X. The problem has now been

cast in a form from which it may be solved directly by e.g. an iterative application

of the simplex algorithm [106]. By this means, we find the values of the constant

w and of the distributions pg?) (r;) which minimize the errors of Eq. 7.20 of our fit

to the data points 1¢*?(k), using the values of the distributions p‘(Zn_l)(ri) from the
(n) (n—1

previous iteration. The iterations are halted when py’(r;) ~ p¥ )(r,-), i.e. when

the distributions have converged to self-consistency.

As a test of our algorithm, we simulated an “experimental” angular distribu-
tion of intensities 1" (k) equating these to a set of values of I(#) from Fig. 7.3 at
64 equally-spaced polar angles # in a measurable range from 0° to 70°, where the
direction, k, is specified by the polar and azimuthal angles # and ¢. The spatial
grid of test positions, r;, of the atoms were taken to be a uniform grid of 128 points
in the range of + 5 A from the C atom along the polar axis (making a grid spacing
of a little less than 0.08 A). Since we have described a self-consistency cycle, the
final distributions pg?) should be quite independent of the initial values of p(ZO) used

in (7.19) to start the process. However, in our test case, we have found that taking

P (5) = 07,x0e, x, (7.24)

gave rise to the most rapid convergence. This includes the square moduli of the
object waves from the same atom, but excludes the corresponding cross terms from

different atoms in the initial estimates of Mx (k,r;) in (7.19).

The distributions pg?) were converged after just four iterations of the above



algorithm, after which the constant of proportionality x also converged to within
a few percent of the correct value relating the “experimental” intensities, 1°"?(k),
in the arbitrary units of Fig. 7.3, to the theoretical expression for I(k) in Eq. 7.17.
The resulting distributions pgl) and pgéz for the O and Ni scatterers respectively,
are shown on Fig. 7.4(d) and 2(e). The largest spikes on these histograms are
at the pixels closest to the positions of the O and Ni atoms respectively. The
much smaller spikes are presumably due to the multiple-scattering neglected in
the reconstruction algorithm. Nevertheless, the accuracy with which the positions
of the scatterers are located relative to the C emitter appear in dramatic contrast
to that from the panels (a)-(c) on the same Figure. Also notable is the complete
absence of twin images on panels (d) or (e). This has been achieved without the
need for multiple-energy diffraction data [101,?,?,?]. Perhaps most striking feature
is the clear identification for the first time of the different chemical species. The
computer time required for the reconstruction of profiles 7.4(d) and 7.4(e) by the

new algorithm was comparable with those required for Fig. 7.4(b) and 7.4(c), from

the SWIFT scheme.

7.2.4 Testing for the stability of the reconstruction images

Since the reconstruction of holographic images could fail due to the poor
quality of the diffraction pattern data, we test the effects of perturbing the diffrac-
tion intensities of Fig. 7.3 by adding random Gaussian noise, Al, with a standard
deviation of o= 0.5%, 4%, and 8%, as shown on Fig. 7.5 on page 228. The RIF’s
for the O and Ni reconstructions using the APRIORI algorithm for these curves
are shown on Fig. 7.6 on page 229. Curves (a) and (b) of Fig. 7.6 show the distri-

bution pg’) and p§$2 for the O and Ni respectively, as calculated by the APRIORI
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Figure 7.5: Polar angle variation of the diffraction intensity from Ni-C-O lin-
ear chain model, as shown in Fig. 7.2, calculated by an exact multiple-
scattering scheme, and perturbed by adding Gaussian noise of 0.5%, 4%
and 8 % standard deviation, respectively, with emitter of carbon atom
emits an isotropical electron wave, s-wave emitter, at kinetic energy of 504
eV. The polar axis is defined to lie in the direction from the C to the O

atom.
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Figure 7.6: Radial image functions (RIDs) along the atom chain as reconstructed
from the perturbed diffraction intensities of Fig. 7.3 as shown on Fig. 7.5.
The distribution curve (a) for O and distribution curve (b) for Ni in the
same optimization process for a Gaussian noise of 0=0.5%. (c) and (d)
curves are the same RIFs for the noise of 0=4%. (e) and (f) curves are for

the noise of 0=8%.



algorithm after five iterations for diffraction intensity with random Gaussian noise
of 0 = 0.5%, as shown by upper panel curve on Fig. 7.5. Curves (c) and (d) on the
one hand , and (e) and (f) on the other, are the results for the reconstruction from
diffraction patterns of Gaussian noise of o= 4% and 8% respectively, shown on
the middle and lower curves on Fig. 7.5. It is seen that all the reconstructed RIFs
are fairly clear and peaked at the right positions, and also that the species of the
reconstructed images of the atoms are clearly distinguished on the RIFs, although

more artifacts tend to appear on the RIFs from the data with greater noise.

On these RIF’s, we found no perceptible shifts of the reconstructed peak
positions for errors, A, of ¢ of up to 4% of the mean intensity of the diffraction
pattern, as shown on Fig. 7.6 by curves (a), (b), (c), and (d). On the reconstruction
from the diffraction pattern of Fig. 7.5 with the 8% noise, we see that the RIF’s
on panels (e) and (f) on Fig. 7.6 are peaked at the right positions, but some spikes
at larger distances from the emitter than the true atom position start to appear
and increase in intensity as the noise becomes worse. For Al of up to as high as
about 12%, we have found that the Ni atom peak was reproduced at the correct
position, with the O atom shifted just three points of the spatial grid (i.e about
0.2 A). This is an encouraging indication of the stability of this technique even in

the presence of fairly noisy experimental data.

7.3 Three-dimensional image reconstruction from Si(111)-
B surface model
In the previous Section we have reconstructed one-dimensional real-space

images from the diffraction pattern from the Ni-C-O chain model. In this way,

we could reconstruct the images along a fixed direction in order to reduce the



real space grid points to speed up the program. In this Section we try to remove
the constraints of fixing the reconstruction directions, and of course, as may be
imagined, that this will increase the number of grid points in the image space.
This will require more data points from the diffraction pattern to give a reliable

result, and hence will need a longer computational time and larger memory size.
7.3.1 Si(111)-B surface model

The model used to test a three-dimensional APRIORI algorithm is a model
of the Si(111) (v/3xv/3)B surface. A v/3x1/3 surface reconstruction on the Si(111)
surface may be obtained when boron atoms diffuse from the bulk to the surface
in heavily doped Si samples [109,7]. The structure has been studied by scanning
tunneling microscopy(STM) [108,?], LEED [112], x-ray diffraction [110], photoe-
mission [111], and a model of the surface by electron holography [87]. In this model
a boron atom (termed B-S;5) is at a subsurface substitutional site in the second
layer, directly underneath a Si adatom, as shown in Fig. 7.7 on page 233. There are
five nearest neighbors of Si atoms around the emitter and four of them, termed as
Si(1), Si(2), Si(3), and Si(4), are in forward scattering positions from the B emit-
ter. The bond lengths of B-Si(1,2,3) and B-Si(4) are 2.15 and 2.32 A respectively,
with the bond angles between B-Si(1,2,3) and B-Si(4) being 63 °. The system
also has a three fold rotation symmetry along [111]. A photoelectron diffraction
pattern from such a cluster was calculated with a full multiple scattering program
[32] for an electron kinetic energy of 500 eV with the boron atom considered as the
emitter. The result is shown in Fig. 7.8 on page 234 with the center of the pattern
at the projection of the [111] direction and the edge at a polar angle of 70°. For

simplicity, the emitted wave is assumed as an isotropic s wave. In this energy range



the diffraction pattern is dominated by the forward scattering features which are

the intensity enhancements along the B-Si directions.
7.3.2 APRIORI image reconstruction formalism

Because the boron atom is in the second layer, and the back-scattering con-
tributions are less important in this energy range, multiple scattering effects are
relatively small for this Si(111)-B system. The kinematic scattering formalism is
considered for reconstructing the scatterer’s positions around the B emitter. Let’s
start with the resulting wave-field of an electron source wave emitting at the origin:

A(k) = R(k) + >_ Ox(k,r;), (7.25)
X,i
where the emitting wave, R(k), serves as the reference wave, and the scattered
wave, Ox(k,r;), as the object wave of holography. The intensity of the far field
diffraction pattern is

I(k) =| A(k) |*. (7.26)

As has been proposed in the previous section since our purpose is to determine
the positions of the scatterers rather than their scattered wave fields, we attempt
to determine the spatial distribution of the scatterers as a three-dimensional image
function. If the possible positions of the scatterers are represented by a grid of
points in a cubic volume, a three dimensional function px(r;) can be defined as

the spatial image function of the scatterers of species X.

As it has been discussed before, the diffraction intensity may be written
as Eq. 7.17 on page 224. In Eq. 7.17, the squares of the object waves are very
important to the correct reconstruction of the positions of forward scattering atoms

and cannot be omitted in the case where forward-scattering peaks are dominant



Figure 7.7: Schematic diagram of Si(111)(v/3xv/3)B surface model. A boron
atom at Sy site is in a subsurface substitutional position in the second

layer, directly underneath Si(4) adatom.



Photoelectron diffraction from
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Figure 7.8: Multiple scattering calculation of the photoelectron diffraction from
a Si(111)(v/3x+/3)B surface at kinetic energy of 500 eV with a boron emitter
at S5 site.



in a diffraction pattern. In such cases, the amplitudes of the object waves are

comparable with or even greater than that of the reference waves.

The error function, F(k), is defined in Eq. errorfunction on page 225 for
the estimation of the difference between the calculated I(k) from Eq. 7.17 and
the experimentally measured intensity I.,,(k). In Eq. 7.18, u is a constant of
proportionality and needs to be determined, and the matrix element Mx (k,r;)
takes the form of Eq. 7.19 on page 225, which is also a function of the spatial
image function px(r;) and needs to be determined. Therefore an iteration process
is introduced in which M )((” b (k, r;) is calculated using the results pg?_l)(ri) of the

previous iteration.

For any particular iteration n > 1, the problem of minimizing the sum of the

absolute errors can be formulated as a linear programming problem as following:

We seek to minimize

> (B k) + B (k) (7.27)

subject to the constraints:

| R(k) [P+ 3 0@ () ME V(1) — pleap(k) = B (k) — BT (k) (7.28)

X,i
EM k), E™ (k) >0 , for all k (7.29)
0<pP(r) <1 (7.30)
Zpg?)(ri) = Nx , for all X and r; (7.31)

and

1> 0, (7.32)



where Ny is the number of scattering atoms of type X, and E” (k) and E™ (k)
are the positive and negative errors. Constraint (7.30) makes sure that the re-
constructed distribution function has a positive value at all grid points. Con-
straint (7.31) ensures the sum of pg?) (r;) equals to the total number of atoms in
the reconstructing cube, however, this constraint can be removed if one does not
know the exact number of atoms in the cube. The distribution function pg?) (r;)
can then be solved directly by an iterative application of a simplex algorithm.
Note that the matrix My in constraint (7.28) contains the function pg?_l)

from the previous iteration. In the first iteration, we include the important con-

tributions from the squared object wave terms by:
D(r;) = 67x6 7.33
bz (r]) — YZ,XVrj,ri» ( : )

and the initial value of M(® matrix becomes:

M (k,r;) = [R*(k)Ox (k,r;) + c.c]+ | Ox(k,r;) | . (7.34)
Thus the spatial image function pg? (r;) may be obtained by minimizing the
“objective function” (7.27) subject to the constraints of (7.28), (7.29), (7.30), (7.31)
and (7.32), and then used to calculate the matrices M), M® . up to M®~V

recursively, using Eq. 7.19 and the simplex algorithm. This iterative procedure is

continued until the image function is self-consistent, 7.e.,

n n—1
P (o) = P (). (7.35)
7.3.3 Three dimensional holographic images of Si(111)-B surface

The reconstructed image function for Si, pg;(r;), is calculated on an uniform

spatial grid of 33x33x33 points along the x, y and z directions in a 10x10x10



A3 cube with its center at the origin (the emitter position). This will make a
grid spacing of 0.313 A which is at an atomic resolution scale. Since the simplex
algorithm computer routine that we used was limited by the size of the M matrix,
the number of the constraints have to be cut down in order not to sacrifice the
resolution in real space. Thus, 64 points of the “experimental” diffraction intensity
I(k) in k space were taken as the input for the constraint (7.28), and the spatial
image function, pg;(r;), was determined, then another set of 64 points data from
I(k) were used to obtain another image function, etc., and finally the resulting

image functions were averaged for all the available I (k).

The total number of points in k space on the Si(111)(y/3xv/3)B electron
diffraction pattern is 128x128, and the average image function pg;(r;) after four
iterations is shown in Fig. 7.9 on page 238. The upper panel shows a cut through
the y =0 plane on which the Si(1) and Si(4) atoms are expected to be, and the
lower panel a cut through the z =0.98 plane where the Si(1), Si(2), and Si(3)
atoms are located. Note that the intensities of all the images on these graphs are
on the same absolute scale, and the images of Si(1), Si(2), Si(3), and Si(4) have
the strongest intensities of the entire three-dimensional distribution pg;(r;) and
located at exactly the atomic positions of our Si(111)(v/3x1/3)B model. No strong
artifact intensities appear in the image function pg;(r;) except some noise which

might be due to multiple scattering contributions to the diffraction pattern.
7.3.4 Radial image functions of the Si(111)-B

In order to reduce the size of the M matrix, one may make use of certain
available information of the system, such as the three-fold symmetry and the for-

ward scattering features on the diffraction pattern, and attempt to reconstruct the
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Figure 7.9: Three dimensional reconstruction image of Fig. 7.8 using APRIORI
algorithm. The upper panel shows a cut of spatial image function pg? (r;)
through the y =0 A plane on which the Si(1) and Si(4) images are seen,
and the lower panel a cut through the z = 0.98 A plane where Si(1), Si(2),
and Si(3) are located. Note that the intensities of all the images are on the

same scale.



image function pg;(r;) only along all the forward scattering directions and obtain
the radial image function (RIF) only along those directions. This will not only dra-
matically reduce the size of M matrix but also decrease the spacings between the
grid points on the RIFs for a better image resolution, while reducing the number
of grid points overall in real space to increase speed and reduce computer memory

requirements.

The reconstructed RIFs pg;(r;) along the four forward-scattering directions
are shown on the lower panels of Fig. 7.10 on page 240, and Fig. 7.11 on page 241,
for radial axes along the normal and 63° polar angles, respectively. It can be seen
that the reconstructed images appear at the correct positions with no artifacts
near the origin as usually seen with other holographic reconstruction methods.
Another important feature is that our APRIORI method completely eliminates
the twin image on the other side of the radial axis. Also shown on the upper
panels of Fig. 7.10 and Fig. 7.11 are the holographic reconstructed RIFs by Bar-
ton’s Helmholtz-Kirchoff integral method, which give arise strong artifacts near
the origin and no particular indication of Si atom was present for both directions.
A scattered-wave included Fourier transform (SWIFT) algorithm [79,?] which cor-
rects for the phase shifts of the scattered wave is used to obtain the RIF plotted
in the middle panels of Fig. 7.10 and Fig. 7.11 along the forward scattering di-
rections. Although significant improvement in the Si images can be seen on the
RIF compared with those from Barton’s algorithm, strong artifact intensities still
appeared near the origin: the Si images are broad with long tails, and the twin

images were not eliminated.
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Figure 7.10: Radial image functions (RIFs) with radial axis along the normal
direction, at 6=0°, by different electron holographic reconstruction al-
gorithms. Upper and middle panels show the results of the Barton’s
Helmholtz-Kirchoff Fourier transform and the Scattered-Wave Included
Fourier transform (SWIFT) method. Lower panel curve is the APRIORI

reconstruction image function pgt-) (r;) after four iterations.
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Figure 7.11: Radial image functions (RIFs) with radial axis along the polar
angle #=63° by different electron holographic reconstruction algorithms.
Upper and middle panels show the results of the Barton’s Helmholtz-
Kirchoff Fourier transform and the Scattered-Wave Included Fourier trans-
form (SWIFT) method. Lower panel curve is the APRIORI reconstruction

image function pgt-) (r;) after four iterations.



7.3.5 Conclusions

A robust new reconstruction algorithm [88], which offers the prospect of over-
coming many difficulties encountered in the traditional photoelectron holography
by making use of linear programming optimization procedures, has been presented.
The rapid new iterative scheme appears to accurately reconstruct the relative po-
sitions of source and scatterers directly from the data of a mono-energetic point-
source diffraction pattern. It makes use of the squared object-wave terms which
are neglected in traditional holographic algorithms to reconstruct the holographic
images. It also does not suffer from a twin-image problem, and even identifies the

chemical species of the scattering atoms.

The first example for our new algorithm is to reconstruct radial image func-
tion from a simulated hologram from simple Ni-C-O chain model with C atom as
the emitter. It was demonstrated that the linear programming procedures can re-
construct the Ni and O atom positions correctly with the twin images eliminated,
while distinguishing the species of Ni and O atoms. In order to test the stability
of the new algorithm, Gaussian noise of standard deviation o = 0.5 %, 4.0 %, 8.0
%, and 12.0 % were added to our simulated experimental data. The results are

encouraging for atom images can still be identified up to o = 12.0 %.

The second test was performed for a model Si(111)(v/3x1/3)B system, where
a full dynamical simulation of a photoelectron diffraction diffraction pattern was
carried out, and a three-dimensional image was reconstructed around the source
atom (B emitter). This image strongly indicates the positions of the Si atoms in
the forward-scattering positions, and the twin images were also eliminated in this
case. Since a large number of data points, {I;""} i from 1 to 16384, needed to

be used in the optimization procedure in order to secure a reliable reconstructed



image while at the same time maintaining a reasonable size of program that fits
the memory limit of our computer, we employed a strategy that uses only some of
the data points, say i=1...64, for a run, and then, averages all the results to obtain

the final image function.

In the above two examples the chemical species of the scatterers, and the
number of atoms for each species, Nx, were known beforehand. In an application
of the APRIORI algorithm to real experimental data, the sums over X and Z
could be restricted to the chemical elements known to constitute the sample, as

determined by, e.g., an Auger or photo-electron spectrum.

It might be argued that the particular example we have presented above to
illustrate our method belongs to a class of atomic geometries, which includes the
case of a source atom forming part of a simple adsorbate on a surface, in which the
scattering is fairly kinematical, and that our technique may not be so applicable
for example when the sources are buried deep beneath a surface, where the strong
multiple-scattering effects may be unavoidable. However, we argue that it should
be possible to handle the problem of structure refinement by an adaptation of
the method even in such more general geometries. It should be noted that, in a
typical problem in surface crystallography, the relative positions of most of the
atoms affecting the measured intensities are assumed known, and effort is directed
towards determining the positions (or small displacements from certain reference
positions) of a few of them. We may then re-define the reference wave, R(k), as
being not just that emitted by a single atom, but that arising after the scattering
of the emitted wave from some known reference structure [104], as calculated by
a full multiple-scattering computer program. It is then often reasonable to regard

the scattering of this reference wave from the small number, which we re-identify



as Nx for species X, of atoms of unknown positions (or which deviate from their
positions in the reference structure) as being kinematic, as assumed for example
in the “tensor LEED” technique [107]. For such a problem a kinematic treatment

of the object waves in a reconstruction algorithm would be no limitation.

More generally, it is also possible that this method may be extended to
include some multiple scattering of even the object waves. For example, if we were
to include double scattering, the matrix elements M (k,r;) would contain terms
involving double and triple products of the distributions pz(r;). A procedure can

(0)

still be envisaged in which some initial guess of p,’ of these distributions is refined

by the same type of iterative optimization process.



CHAPTER 8

Summary

In this dissertation, theories and applications of three important techniques of
surface structure determination have been addressed. They are x-ray photoelectron

diffraction, Auger electron diffraction, and photoelectron holography.

We have described in chapter 2 the theories of both single scattering and
multiple scattering schemes of an electron wave in a cluster, and introduced a
concentric-shell algorithm [32] for the calculations of full multiple-scattering of the
angular distributions of Auger electron, x-ray photoelectron, as well as Kikuchi
electron diffraction patterns. This multiple-scattering cluster scheme is based on
dividing a cluster into a series of concentric shells, with an origin chosen at the
source atom, and a convenient computational algorithm for the intra- and inter-
shell calculations. An advantage of a cluster calculation is the removal of the
requirement of translational symmetry of the atomic structure near the surface.
Once the cluster scattering matrix S is calculated, the angular distribution of the
diffraction pattern may be computed for different real experimental conditions with
little extra effort. We have also tested the convergence of the algorithm, and found
that calculations with maximum angular momentum quantum number, /,,; > 60,
will result in similar diffraction patterns after smoothing by a finite aperture semi-
angle. A forward-scattering approximation was also tested by neglecting intra-shell
multiple scattering, and it was found that the resulting diffraction pattern was in
good agreement with that using full multiple scattering for a high electron kinetic

energy of 914 eV.

In chapter 3, we have implemented the full multiple scattering algorithm



described in chapter 2 to simulate the 64 eV M3V V and 914 eV L3VV Auger
diffraction patterns from a Cu(001) surface, and have compared these simulations
with the published experimental data and computer simulations of Frank et al. [1]
who used a “blocking” model. With visual comparison and an R-factor calculation,
it was found that the M, 3V'V and L3V V emissions are dominated by f-wave (I = 3)
electrons. The Auger selection rule was also discussed and it was shown that final
possible emitted electron states of the M, 3V'V and L3V'V transitions are f-waves.
The M,3VV simulation shows that dips appear along most of the projections
of atomic rows, except along the projections of the < 101 > directions where
intensity peaks shows up, while the L3V'V pattern is dominated by high intensity
peaks along the low-index directions. These features on both patterns have been
confirmed by the experiments of Frank et al. [1]. We have found that the angular
momentum of the emitted electron is not the sole factor in determining whether the
intensity forms a peak or a dip along a particular atomic row in a crystal. Other
factors, such as the inter-atomic distances, could also be important in determining
the feature along the projection of an atomic row on a diffraction pattern. This
indicates that an electron diffraction pattern at low energy may not bear a simple
and direct relation between the surface structure and the diffraction pattern. It
is particular gratifying to see that eractly the same computer program reproduces
the different diffraction features of both Auger electron diffraction patterns, while
the “blocking” model has to be supplemented by including a “channeling” effect

to obtain even a semblance of the high energy pattern.

In chapter 4, studies of Auger electron (Mg KLL 1180 eV) and photoelec-
tron (O 1s 955 eV) diffraction angular distribution profiles from MgO(001) sur-

faces are described. Both diffraction patterns were measured in the same scan



from cleaved and sputtered&annealed MgO(001) surfaces. It was found that
there are coincidences between the low-index crystallographic directions and the
forward-scattering maxima on the diffraction pattern. However, the anomalous
phenomenon of peak shifts off the forward-scattering directions have aalso been
observed. Theoretical multiple-scattering calculations have been performed on flat
and rumpled MgO(001) surface models, as well as for neutral and ionic Mg and O
atoms in the MgQO, and the results show that the diffraction patterns from those
different models do not differ very much, even for a highly reconstructed surface
of 10% rumpling and 5% relaxation. This indicates that the peak shifts toward
lower polar angles are not necessarily caused by rumpling in the surface structure
of MgO(001). A series of simulations have been conducted, and it was found that
a short inelastic scattering length of an electron in the MgO crystal seems to be
responsible for such peak shifts. The good agreement between the experiments and
the theoretical calculations for both diffraction patterns occurs when the imagi-
nary part of the electron energy is 16 eV, which corresponds to a short inelastic
scattering length at the lower end of the “universal” curve. It is also shown that
the calculated electron diffraction patterns from a defect-free MgO surface model
is in much better agreement with the photoelectron diffraction experiment per-
formed on the cleaved MgO(001) surface, and gives less agreement with that from
a sputtered&annealed MgO(001) surface. This might suggest that the cleaved
MgO(001) surface has a smaller number of defects than the sputtered&annealed

one.

In chapter 5, we have shown the details of carrying out the photoelectron
diffraction simulations from a CoSiy(111) surface for Co-3p (695 eV) angle-resolved

XPD and Si-2p (20 to 130 €V) normal emission modes by considering the real



experimental conditions, such as the polarization direction of the x-ray photon,
the emitted core-level photoelectron states, the electron analyzer position and the
sample orientation. A formula for transforming the dipole transition amplitude
in a laboratory reference frame (defined by the x-ray photon polarization) to that
in a sample reference frame (defined by the sample orientations) is derived. We
assumed that the emitted photoelectrons are mutually coherent if they come from
the same core-level, and are mutually incoherent if they are emitted from different
states. Simulation of the Co-3p XPD pattern from a CoSiy(111) surface does not
show three-fold symmetry, although the surface has three-fold symmetry. This
asymmetric pattern arises from the fact that the x-ray polarization direction is
tilted along the (6, ¢)=(67.5°,0.0°) direction (in polar coordinates), and that an
electron from the core-level tends to be emitted along the polarization direction
of the photon. The Si-2p normal emission diffraction simulation is carried out
by calculating the energy dependent scattering matrix S(e), and assuming that
transition probabilities for Si-2p final states remain the same. Excellent agreement
has been found between the experiment and the simulation including both s and
d-wave emitted by the Si atoms. However, poor agreement was found between the

experiment and the theory if a simple s-wave emitter was used in the calculation.

In chapter 6, theories of photoelectron hologram formation and reconstruc-
tion are discussed. Several reconstruction algorithms, which are aimed at elimi-
nating artifacts in the real space images and correcting image shifts due to phase
shifts of the scattering atoms, have been addressed. It is shown by the recon-
structed image from an O adatom on Ni(001) surface that Barton’s Helmholtz-
Kirchoff algorithm is suitable for the backscattering geometry, where the squared

terms or the self-interference terms in Eq. 6.6, can be neglected, while for a



forward-scattering dominated diffraction pattern, these terms are non-negligible
in the forward-scattering directions. In an example of holographic reconstruction
of Si-2p angle-resolved XPD from Si(001) [2x1], we have shown that the recon-
structed image may fail to locate the correct atom image positions when simply
applying a reconstruction algorithm to the unprocessed hologram. The failure
of the reconstruction is due mainly to the appearance of non-holographic fea-
tures of self-interference terms, which contribute a slowly oscillatory background
to the diffraction pattern. This slow oscillatory background can be removed by
a filtering process, and the reconstructed holographic image shows atomic images
appearing at the true atom positions of a Si diamond structure with atomic res-
olution. The last example in chapter 6 is the holographic reconstruction of the
Co-3p core-level angle-resolved XPD from a CoSi, surface. We use here a refer-
ence and scattered-wave included Fourier transform (RSWIFT) algorithm, which
corrects for the anisotropic emitter waves and the anisotropic atomic scattering
factors. A kernel function involving the atomic transition amplitudes for the final
emitted electron waves and the atomic scattering factors of the scattered atoms
is developed. Although in this algorithm we need to calculate the transition am-
plitudes from the Co-3p core-level, it is still a direct method in the sense that it
requires no prior knowledge of the CoSiz(111) surface structure. The holographic
reconstruction obtained by RSWIFT shows an improvement by a factor of three

over the results from the Barton Helmholtz-Kirchoff and SWIFT algorithms.

In chapter 7, we introduced the basic concepts and fundamental theory of
the linear programming, and then applied the method of linear programming to
solve physics optimization problems in photoelectron holography. A three-step

procedure of (1) specification of the unknown variables, (2) specification of the



constraints, and (3) specification of the objective function, is carried out to convert

an optimization problem into a standard linear programming format.

With the aid of a linear programming optimization routine, we developed the
reconstruction algorithm of “atomic position recovery by iterative optimization of
reconstructed intensities” (APRIORI). This method is sensitive to the dominant
features of a diffraction pattern, e.g. the forward-scattering peaks, and takes ac-
count, of the self-interference terms (squared terms) neglected in traditional holo-
graphic reconstruction schemes. Since we were more interested in determining the
positions of the scatterers rather than their wave-fields, so we introduced a spa-
tial function, px(r), which represents the probability distribution of a scatterer of
species X in the real space. An expression for the intensity of electron diffraction
pattern is derived and optimized to the experimentally measured data subject to
relevant constraints. An iterative scheme is proposed to optimize the error function
of the absolute value of the difference between the experimental measured and the
calculated data. Once an initial guess of spatial function is put in the intensity ex-
pression, a linear programming optimization process may be carried out and a new
spatial function is obtained. The iterative optimization process is continued by us-
ing the new spatial function, and is halted when spatial function is self-consistent.
The initial guess of the spatial function does not affect the final result. The first
test of our new algorithm was to reconstruct a holographic radial image function
from a photoelectron diffraction pattern due to a C emitter from a Ni-C-O chain
model. We were able not only to reconstruct the correct positions of Ni and O
atoms, but also to separately identify the Ni and O species, and to eliminate the
twin images. The second test was to reconstruct a three-dimensional image from

the photoelectron diffraction from a model of a B emitter on a Si(111)(v/3 x v/3)B



surface. The reconstructed image shows good agreement with the atom positions
on the model, and no twin images or strong artifacts were found. In this case
also, the test diffraction pattern was simulated by a full dynamical calculation.
The stability of this algorithm was also tested with Gaussian noise of standard
deviations 0=0.5%, 4.0%, 8.0%, and 12.0% on the Ni-C-O model, and the results

show that the image reconstructions survive up to that noise level.
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Appendix

Calculation of the shell scattering matrices

The incident and outgoing waves around central atom can be expanded about

an atom at position, r;, in the ¢th shell around the emitter using the formulae:

. r—r

i (k) Vi (8) = 3 g (klr = 2 Yy () (8.1)
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are the propagator from atom ¢ of position vector r; to atom j of position r; in
the gth shell. §7 , is the same as g%, except that ju is substituted for hl(},). The

superscript o represents the atom at the origin.



The “out-in” scattering matrix, T{?, of the gth shell consists of elements

Tq%n Vot and form the coefficients in the expansion of the scattered wave field
oI -
Z Tq,lml m']l (kT)Y;'m' (I‘) (85)
U'm/

generated by an outgoing wave,
h (k) Yim (8), (8.6)

centered on the absorbing atom.

To evaluate Tfl)] , first consider a scattering atom at position r;, with t-matrix

t;. The wave field, (8.6), can be re-expressed by Eq. 8.1 as

r—r;
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a sum of standing waves about the atom at r;. The wave initially-scattered by the

atom at r; can be written
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We end up with
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thus
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where
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are the elements of the real-space Korringa-Kohn-Rostocker (KKR) matrix H and
tir, is an element of the (diagonal) t-matrix of atom ¢, and thus
Bjpr = Tpi i (8:8)
il
where we define the matrix T as the inverse of H, where the matrix elements

satisfy

ik ki
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where H has a linear dimension of the number of atoms in the cluster multipled by
the number of /m components considered in the scattering by a single atom. Thus

the final scattered wave field due to the incidence of wave (8.6) on the cluster is

r—r;

) (8.9)

LS 1
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with B, ;» is given by Eq. 8.8. The final step in the evaluation of T is to re-
express Eq. 8.9 as a sum of spherical standing waves centered at the origin. Each
of the waves in Eq. 8.9 can be re-expressed in terms of such wave as

Z Bij” gi?,, ,L” jlm (k’]")YLm (f‘)

j,L” ,L'”



Thus the outgoing spherical wave (8.6) has generated the set of standing waves
scattered back towards the origin:

Z T 0L Lm]l'" (kT)Y ”I( )

j’L LIII

where

— jo  rij jo
L LIII = z g qu I L” gL” ,L”’
],L L

as given by Eq. 2.23.

It is not difficult to see that similar arguments also lead to the forms of the
elements of the “out-out”, “in-in”, and “in-out” scattering matrices T, T}!, T}°

of qth shell given by Eqs. 2.22, 2.24 and 2.25 respectively.
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