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ABSTRACT

SOLVING VIRUS STRUCTURES FROM XFEL DIFFRACTION

PATTERNS OF RANDOM PARTICLE ORIENTATIONS USING

ANGULAR CORRELATIONS OF INTENSITIES

by

Miraj Uddin

The University of Wisconsin-Milwaukee, 2013

Under the Supervision of Professor D. K. Saldin

The world’s first x-ray free electron laser (XFEL), the Linac Coherent

Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC) is

now creating X-ray pulses not only of unprecendented brilliance; (a billion

times brighter than the most powerful previous sources [8]) but also of ex-

tremely short duration. Amongst the promised capabilities of this fourth-

generation x-ray sources is the ability to record diffraction patterns from

individual bio-molecules. The very first XFEL “diffract and destroy” exper-

iments are being performed on relatively large objects such as viruses. To

quote from Caspar and Klug [2] “there are only a limited number of efficient

designs possible for biological container which can be constructed from a

large number of identical protein molecules-the two basic designs are helical

tubes and icosahedral shells”. Viruses have regular shapes since their protein

coats are formed by the self assembly of identical protein subunits which are

coded by their genetic material.



Here we develop a test based on the angular correlations of measured

diffraction data to determine if the scattering is of an icosahedral particle.

For a positive correlation test; an efficient algorithm can combine diffraction

data from multiple shots of particles frozen in completely random orientations

to generate a full 3-D image of the icosahedral particle. With this method

it is expected to be possible to increase the concentration of particles in

a solution beyond that of a single particle per snapshot thus allowing the

possibility to get more signals from particles in the solvant. We sucessfully

apply this method [3] to reconstruct 3-D images of satellite tobacco necrosis

virus (STNV) whose atomic coordinates are given in Protein Data Bank

entry 2BUK and of paramecium bursarium chlorella viruses (PBCV) from

experimental data deposited at cxidb.org

Most of prior structural studies involve scattering by ensembles of biomolecules

or viruses, often in the form of crystals. However the state of biomolecules

or viruses could be altered by the crystallization process. The understanding

of bio-functioning of those ultrasmall quantities could be greatly enhanced if

the structural studies were performed on individual uncrystallized particles.

Fiber diffraction played a pioneering role for solving the structure of syn-

thetic polypeptides [4], structure of deoxyribonucleic acid (DNA) [5] and the

structure of helical viruses [6] to name only three of the most important. In

a typical fiber diffraction experiment identical particles are all aligned along

the fiber axis which give rise to layer lines. In this work we have shown that
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fiber diffraction can be obtained from a single particle diffraction volume

reconstructed from completely randomly oriented helical structures, thus ob-

viating the need of single axis alignment done experimentally such as forming

fibers, laser- or flow-alignment.
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Chapter 1

Introduction

Though X-ray crystallography is the primary method for solving structures

of biomolecules or proteins, it requires large crystalline sample. A significant

portion of biomolecules do not crystalize. We want to know protein structure

similar to the way they function in life. In our body cell proteins are in an

aquous environment. In a real XFEL (X-ray free electron laser) scattering

experiment diffraction patterns are collected from biomolecules in a solvent

droplet or biomolecules in a liquid capillary stream.

With a lower concentration (150 mg/mL), the incident X-ray beam illumi-

nates a volume of the solvent which contain roughly 20 - 10,000 biomolecules

depending on the size of the molecule [1]. Producing solvent droplet contain-

ing single particle or capilarry liquid jet stream with much lower concentra-

tion so that the illumination volume would contain a single particle is still

very difficult. Besides the amount of useful scattered intensity from a single
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particle droplet is relatively less than that from a droplet containing multiple

particles.

Unlike X-ray scattering from a crystalline sample consisting of Bragg

spots, XFEL scattering from uncrystallized samples with random orienta-

tion in a solvent droplet consists of diffuse distribution of intensity. Hence

recovering the 3D real space image from diffraction shots of a solvent stream

containing many uncrystallized particle with random orientations is a real

theoretical and computational challenge. With our developed angular corre-

lation mehod of recovering real space 3D electron density from an ensemble

of N diffraction patterns of solvent droplet that could possibly contain sin-

gle particle or many particles in random orientations is a huge advantage in

terms of real experimental feasibility and the number of collected scattered

photons on the pixelated detector.

The recent invention of the X-ray free electron laser (XFEL) at the cost

of roughly a billion dollars apiece has opened a new era for scientists for

studying structural and dynamic molecular biology. The SLAC (Stanford

Linear Accelerator)’s two mile long linear accelerator (LINAC) has begun

a new phase in its career with the creation of Linac Coherent Light Source

(LCLS), the world’s first hard X-ray free elctron laser. Stanford’s LINAC

has produced high-energy electrons for cutting-edge physics research for the

past few decades. This tradition of discovery is being continued by using the

LINAC to drive a new kind of laser creating X-ray pulses of unprecedented

brilliance. Atomic scale snapshots captured by those ultrabright, ultrashort
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pulses in quadrillionths of a second reveal never-before-seen structure and

properties of matter.

Biomolecules are the building blocks of life. XFEL pulses can be used to

investigate the structure and dynamics of biomolecules, proteins and viruses

thus increasing the understanding of human life and diseases. Atoms of a

molecule are constantly moving or vibrating. Conventional X-ray sources

and synchrontons produce long pulses which yield blurred images of this

motion. The LCLS is the first light source that produces X-rays of intense

brilliance and delivers with femtosecond duration. The LCLS which was

selected by Science magazine as one of the top-ten breakthrough innovations

of 2012, takes a qualitative stride far beyond its predecessors by providing an

exceedingly intense beam of X-rays, thus shedding light into the fundamental

process of life.

An XFEL produces pulses which are a billion times brighter than previous

light source [8]. XFEL pulses are extremely short so that scientists can take

stop action pictures of atoms and molecules in motion.

Crystallization (and purification) alters the natural condition of the biomolecules

functioning in nature and some of the biomolecules, particularly most mem-

brane proteins, which are 70% of today’s drug targets cannot be crystal-

lized at all. Hence for understanding of the structure and functioning of

biomolecules which cannot be crystallized, single particle scattering by an
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XFEL is very important. Developing useful theory and algorithms for recon-

structing images of single molecules as well as understanding their functioning

is equally important.

As the XFEL user facility for single particle scattering has become avail-

able, the very first few experiments were performed on relatively large objects

such as viruses and the data are now being made available to the public at

cxidb.org. Viruses tend to have an efficient design to form a protein coat

with a limited amount of genetic material, and then the protein coats are

self assembled. Hence virus capsids are either icosahedral or helical according

to Caspar and Klug [2].

We develop a theory to construct virus structure from XFEL data based

on angular correlations of the scattered intensities and have applied it to

two main types of viruses. Also a test based on angular correlation predicts

whether the scattered intensity in XFEL diffract and destroy experiment is

mainly from an icosahedral virus or not. We also applied this test on the data

collected from chlorella virus (PBCV) which is available to public at cxidb.org

and found that the scattered intensity is primarily from an icosahedral object

and are working on that data set to reconstruct the 3D image of the chlorella

virus.



Chapter 2

Basic Theory

2.1 Correlation theory

From a set of N diffraction patterns interpolated from a cartesian to a polar

grid, the angular cross correlation is defined as [15] the sum of the product

of intensities at different pixels I(q, ϕ)I(q′, ϕ′) averaged over the set of all

diffraction patterns. Since the correlation is obtained via averaging over

all possible orientations, as the number of diffraction patterns for a dataset

becomes larger, the correlation quantity

J(q, q′,∆ϕ) =
1

N

N∑
w=1

Iw(q, ϕ)Iw(q′, ϕ+ ∆ϕ) (2.1)

becomes more accurate.

A 3D reciprocal space distribution of scattered intensity from a single

molecule or an aggregate of many molecules may be constructed from an
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ensemble of N diffraction patterns even if we do not know the relative orien-

tation of each diffraction pattern. Each diffraction pattern either simulated

or experimental is assumed to represent a 2D section of a reciprocal space

intensity distribution and shell-by-shell spherical harmonic expansion coef-

ficients of the intensity distribution may be determined from angular cross

correlations [15] between intensities at different pixels averaged over the en-

semble of measured diffraction patterns.

The intensity distribution of a particular resolution shell in the reciprocal

space of a single molecule may be expanded as [15];

I(q, θ, ϕ) =
∑
LM

ILM(q)YLM(θ, ϕ) (2.2)

where YLM(θ, ϕ)’s are spherical harmonics and ILM(q)’s are shell expansion

coefficients.

Each diffraction pattern samples a 2D section through the reciprocal

space of the molecule in a given orientation. Let us label this reciprocal

space by Cartesian axes X, Y and Z (figure 2.1). Assuming X-ray incidence

direction is antiparallel to Z axis; then the diffraction intensities are those

that would lie on the portion of the Ewald sphere S1 of radius equal to

wavenumber κ = 2π/λIR where λIR is the wavelength of incident radiation.

The view of the Ewald sphere from a direction antiparallel to X axis is shown

in figure 2.2 and that of antiparallel to Z axis shown in figure 2.3 [15]. In

that case the diffracted intensities from every pixel of a diffraction pattern
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Figure 2.1: Construction of 3D diffraction volume from 2D section of Ewald
spheres of random orientation. Ewald sphere S1 due to beam incidence
antiparallel to the Z axis and S2 due to beam antiparallel to Z ′ axis. The
orientation of each Ewald sphere is specified by a set of three Euler angles
(α, β, γ).

may be specified by radial distance q, polar and azimuthal angle θ and ϕ in

the frame of reference of the 3D diffraction volume [15] as

IZ(q, ϕ) =
∑
LM

ILM(q)YLM(θ(q), ϕ) (2.3)

θ(q) = π/2− sin−1(q/2κ) (2.4)
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Figure 2.2: A section of the Ewald sphere S1 viewed antiparallel to Z axis.
θ accounts for the curvature of the sphere for an incident X-ray wavenumber
κ.

Diffracted intensity from another snapshot from a different orientation of

that molecule may be expressed in the frame of the first one through a Wigner

D - matrix rotation of Euler angles of the above quantities of equation (2.3)

in the following way:

I(w)(q, ϕ) =
∑

LMM ′
D

(w)
LMM ′(α, β, γ)ILM ′(q)YLM(θ(q), ϕ) (2.5)

Hence the cross-correlation J(q, q′,∆ϕ) among all the N diffraction pat-

terns can be written as,

J(q, q′,∆ϕ) =
1

N

∑
LMM ′

D
(w)∗
LMM ′(α, β, γ)I∗LM ′(q)Y ∗LM(θ(q), ϕ)
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Figure 2.3: Each pixel of a single diffraction pattern for a particular orienta-
tion of the molecule may be labelled by the magnitude of the scattering vector
q and azimuthal angle φ in the frame of reference attached to the difafrction
pattern [15]. Intensity cross-correlations may be obtained by multiplying the
intensities Iq,φ and Iq′,φ′ on each diffraction pattern and then averaging over
all diffraction patterns.

×
∑

L′M ′′M ′′′
D

(w)
L′M ′′M ′′′(α, β, γ)IL′M ′′′(q′)YL′M ′′(θ′(q′), ϕ′)(2.6)

Each diffraction pattern has a unique unknown orientation specified by a

given set of Euler angles (α, β, γ); a group element of the representation of

the full rotation or SO(3) Lie group. Here we assume that for a sufficiently

large number of diffraction pattern all the sets of Euler angles span the entire

SO(3) space uniformly. Now the summation over w which is effectively the

summation over the space of all elements of the SO(3) space only involves
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the D function. Using the great orthogonality theorem (Tinkham 2003) we

can write;

1

N

∑
w

D
(w)∗
LMM ′(α, β, γ)D

(w)∗
L′M ′′M ′′′(α, β, γ) =

1

2L+ 1
δLL′δMM ′′δM ′M ′′′ (2.7)

This orthogonality relationship has huge impact over further simplication

of the cross-correlation function. Let us define the following function [15]

of Legendre polynomial PL by doing the M summation over the spherical

harmonics.

FL(qq′; ∆ϕ) =
1

2L+ 1

∑
M

Y ∗LM(θ(q), ϕ)YLM(θ′(q′), ϕ′)

=
1

4π
PL[cos θ(q) cos θ′(q′) + sin θ(q)

× sin θ′(q′) cos(ϕ− ϕ′)] (2.8)

Where ∆ϕ = ϕ− ϕ′

Similarly we define another function BL(q, q′) by doing the M summation

over the ILM coefficients;

BL(q, q′) =
∑
M

I∗LM(q)ILM(q′) (2.9)
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Now the intensity cross correlation can be written as [15];

J(qq′; ∆ϕ) =
∑
L

FL(qq′; ∆ϕ)BL(q, q′) (2.10)

Since indices q and q′ are common on both sides of the above equation

hence for a particular pair of q and q′ the above equation may be written as

[15];

J∆ϕ =
∑
L

F∆ϕ,LBL (2.11)

Here FL(qq′; ∆ϕ) is a standard mathematical function of a real valued

Legendre polynomial; hence BL(q, q′) may be obtained by a matrix inversion

[15].

BL =
∑
∆ϕ

{F−1}L,∆ϕ J∆ϕ (2.12)

The above equations imply that BL(q, q′) is an experimental XFEL quantity

which can be recovered from the average crosscorrelation of the scattered

intensities of the diffraction patterns.
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2.2 Numerical tests

Equation 2.1 takes simple form for a correlation on the same resolution shell

i.e.; q = q′; a particular case which we call autocorrelation.

J(qq; ∆ϕ) =
1

N

N∑
w=1

Iw(q, ϕ)Iw(q, ϕ+ ∆ϕ) (2.13)

For autocorrelation equation 2.8 takes relatively simple form
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Figure 2.4: Plot of intensity autocorrelation C2(ϕ, ϕ′) vs ϕ for ϕ′ = 0 from
a set of 5000 simulated diffraction patterns (left plot resolution 6.6 A0, right
plot resolution 2 A0) for protein chignolin using PDB entry 1UAO. Each
plot is a linear combination of Legendre polynomials (as predicted by theory
[15] entangled with structural information of the biomolecule which resides
in Bl(q, q).

FL(qq; ∆ϕ) =
1

4π
PL[cos2 θ(q) + sin2 θ(q) cos(∆ϕ)] (2.14)

Hence the autocorrelation function can be rewritten in terms of Legendre

polynomials.
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C2(qq; ∆ϕ) =
1

4π

∑
L

PL[cos2 θ(q) + sin2 θ(q) cos(∆ϕ)]×BL(q, q) (2.15)

For a particular resolution shell C2(qq; ∆ϕ) is a function of ∆ϕ only. C2

is a real quantity since we defined it as the sum of the product of the inten-

sities at different pixels averaged over the set of all diffraction pattern; hence

the quantity BL(q, q) is real. Equation 2.11 has been verified by evaluating

C2(qq; ∆ϕ) over 5000 simulated diffraction patterns of random orientations

for small protein chignolin.

Friedel’s rule;

I(~q) = I(−~q) (2.16)

imposes further restriction on the allowed values of angular momentum L;

i.e.;

∑
LM

ILM(q)YLM(q̂) =
∑
LM

ILM(q)YLM(−q̂)

=
∑
LM

ILM(q) (−1)LYLM(q̂) (2.17)

The above equation shows that spherical harmonic expansion coefficients

ILM ’s vanish for the odd values of angular momentum Lodd. Hence the sum

over the angular momentum quantum number L in equation 2.15 is just for

Legendre polynomials of even orders such as; L = 0, 2, 4, 6, 8, 10, ...
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Figure 2.5: Plot of BL(q, q) versus L for q = 0.15×2π A−1 shows the ratio of
the contribution to angular momenta to auto correlation. The crosses repre-
sents the value of BL(q, q) obtained using auto correlation (equation 2.13) in
comparison to the same quantity obtained using spherical harmonic expan-
sion coefficients ILM(q) of the 3D distribution of scattered intensity computed
using PDB entry 1UAO [15]. The near perfect agreement shows the correct-
ness of the theory which implies ILM(q) coefficients may be extracted from
the intensity cross correlation of the measured diffraction patterns.

Careful comparisons of the two BL(q, q) plots (figure 2.5 and 2.6) reveal

meaningful information regarding scattering between the boson field (pho-

ton) and fermion field (mainly electron charge cloud). For q scattering field

(figure 2.5), the contribution of angular momentum to the diagonal term of

BL(q, q) dies away for Lmax > 14 which corresponds to the physical dimen-

sion of the biomolecule L whose spatial electronic charge distribution causes
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Figure 2.6: Same plot of BL(q, q) versus L [15] as shown in figure 2.5; except
this one is for q = 0.5× 2π A−1.

the incoming photon field to be scattered. As per conventional wisdom an-

gular momentum can be related to the magnitude of scattering vector in the

following way;

L × q = Lmax (2.18)

As per the above equation the physical length factor is L(q=0.15) = 14 A0

which is roughly comparable to the physical size of the protein chignolin.

Similarly for a higher value of q = 0.5 × 2π we expect to see higher value

of Lmax to contribute the intensity cross correlation. As per equation 2.18;
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Lmax ∼ 42 which agrees with the vanishing trend of BL(q, q) in the high L

region of figure 2.6. This lead to a crucial discussion addressing the following

issue. While the incoming photon field scatters off the electric field of the

electronic charge distribution of the 3D molecule; a classical definition of

angular momentum can be thought with respect to some axis of the physical

molecule based on the distribution of the atoms containing electronic charges

within the molecule. However; as per conventional wisdom, we can say the

maximum allowed values of angular momentum required for the spherical

harmonic expansion of the 3D diffraction volume may be related to the size

of the molecule in the following way [3],

R× q = Lmax (2.19)

where R is radius of the molecule.

2.3 Correlation convergence criterion

A diffraction pattern is a 2D Fourier projection of a 3D object for an un-

known orientation. With a point of view of constructing a 3D Fourier map

of the object we define the average angular correlation [15] under the as-

sumption that a sufficient large number of diffraction patterns fill the SO(3)

space uniformly so that constructed 3D diffraction volume from the calcu-

lated orientation-independent radial coefficients can be used as an input for
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recovering the real space electron density of the particle via a standard phas-

ing algorithm. One way to test the number of diffraction patterns required

to fill the SO(3) space is to check the number of diffraction patterns required

for correlation convergence.
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Figure 2.7: Correlation convergence tested for uniform orientation for small
protein chignolin via PDB entry 1UAO (www.pdb.org) for various number
of diffraction patterns (circles 20,000 diffraction patterns, star 500 diffraction
patterns, dashed line 300 diffraction patterns). Comparison of the three sets
of data shows correlation converges for 500 diffraction patterns with an R
factor of 0.0042

An alternative time-saving approach could be to test the number of DP’s

required for convergence so that a 2D resolution shell can be constructed

via calculating the Ilm coefficients from the angular correlations. Figure 2.7

shows a correlation plot for a small protein chignolin using various number

of simulated diffraction patterns obtained via uniform cuts across a precalcu-
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lated 3D diffraction volume. It turns out that C2(q, q) for chignolin converges

for 500 diffraction patterns with an R factor 0.0042. This result is remarkable

since it indicates that a 3D electron density reconstruction of a particle may

be possible from an ensemble of some 500 diffraction patterns in contarst to

more than a million diffraction patterns [15]. While analyzing the experimen-

tal diffraction pattern of chlorella (open source data from www.cxidb.org);

we were able to approximately recover the BL(q, q) selection rule that proves

that the data is primarily from an icosahedral object (please see chapter five

for detail).

2.4 Orientation independent characterstic quan-

tity and symmetry of the object

A key point of this work is to develop a theory and efficient algorithm for

solving virus structure from XFEL data and one of the main challenges for

that is to reconstruct the 3D reciprocal space volume of scattered intensity

from 2D reciprocal space slices which constitute an ensemble of a large num-

ber of diffraction patterns. While doing so we calculate a quantity called

average angular correlation of the scattered intensity (as described in detail

in the previous section; equation 2.1) from the 2D reciprocal snapshots of an

identical copy of the particle which is totally random in its orientation un-

der XFEL diffract and destroy experiments. The beauty of this technique is

that though an experimental data set consisting of a large number (anywhere
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from a thousand to a million) of diffraction patterns (each pattern might be

1000× 1000 pixels or even higher; a typical count); but the reduced data set

consists of a few ∆q steps (say 60) times the azimuthal steps (say 64). In fact

while averaging over a large number of the measured diffraction patterns of

the angular correlation of their intensities [15]; we average out the angular

dependence of the measured 2D reciprocal space constructions leaving be-

hind the radial dependence as a quadratic function of the spherical harmonic

expansion coefficients. Solving for those expansion coefficients ILM ’s from

the quadratic functions BL(q, q′)’s is a major bottleneck; particularly if the

quadratic function involves a summation over azimuthal quantum number

M on the right hand side as shown here (equation 2.11);

BL(q, q′) =
∑
M

I∗LM(q)ILM(q′)

However; if the object under XFEL diffraction experiment has symme-

try (and this is almost true for most viruses); we developed an alternative

approach for solving it. As per Caspar and Klug [2] virus capsids tend to

be either helical or icosahedral in shape. This symmetry of the capsid in

real space is translated into reciprocal space in the 3D reconstruction of the

diffraction volume via the 2D experimental diffraction patterns of the scat-

tered intensities obtained from the identical copies of the viruses (totally

random in its orientations) under diffraction experiments. The next two
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paragraphs will summarize two alternative approaches for solving icosahe-

dral and helical virus structures.

Due to icosahedral point group symmetry the scattered intensity distribu-

tion from an icosahedral particle may be expanded in terms of icosahedral

harmonics [3] which is a restricted sum of real spherical harmonics along

with its azimuthal and angular momentum dependent coefficients (details

discussed in section 3.1; equation 3.24).

I(q, θ, φ) =
∑
L

gL(q)IL(θ, φ)

IL(θ, φ) =
∑
M≥0

aLMYLM(θ, φ)

The azimuthal summation of the square of the coefficients aLM is unity

for any L (equation 3.7); The characterstic radial quantity is now only a

quadratic function of expansion coefficients gL(q)’s; no M summation on the

RHS (equation 3.21). The remaining issue regarding the sign determination

of the expansion coefficients will be discussed in detail in the relevant chapter

(chapter three).

BL(q, q) = gL(q)gL(q)
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For the case of a helical viruses though we expand the scattered intensity

distribution in terms of spherical harmonics (a very natural selection for

expansion) however the summation over the azimuthal quantum number M

of the characterstic structural quadratic radial function may be avoided [9]

up to a certain maximum resolution as a consequence of 493 helical symmetry

of 2TMV (section 4.3; equation 4.20). Here I should mention that the TMV

(tobacco mosaic virus) protein coat consists of roughly 45 subunits of c repeat

unit; each of 69 A0 length. Each subunit consists of 3 helical turns with a

total of 49 proteins [2].



Chapter 3

Reconstruction of an

Icosahedral Virus from a

Single-Particle Diffraction

Experiment

3.1 Icosahedral harmonics

The intensity distribution of any resolution shell may be expanded in terms

of spherical harmonics in the reciprocal space of a single particle [15].

I(q, θ, φ) =
∑
LM

ILM(q)YLM(θ, φ) (3.1)
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Because of the inversion (or Friedel) symmetry of YLM i.e.;

YLM(π − θ,−π + φ) = (−1)LYLM(θ, φ) (3.2)

a spherical harmonic expansion of intensity distribution contains only even

values of angular momentum quantum number L. Since intensity distri-

bution is real, this applies further restriction on the expansion i.e.; intensity

distribution may be expanded [3] in terms of real spherical harmonics (RSHs)

YLM(θ, φ) which are defined as a linear combination of spherical harmonics

(equation 3.3).

YLM(θ, φ) =



1√
2

[YLM(θ, φ) + (−1)MYLM(θ, φ)] M > 0 (3.3a)

Y 0
L (θ, φ) M = 0 (3.3b)

1

i
√

2
[YLM(θ, φ)− (−1)MYLM(θ, φ)] M < 0 (3.3c)

On the RHS of the above equation for M > 0 the φ dependence is of

the form of cos(φ) and for M < 0 the φ dependence is of the form of sin(φ).

If the reconstructed intensity has a mirror plane (we may choose the x − z

plane where φ = 0), then equation (3) can be replaced by summation over

the subset of RHS [3] for which M ≥ 0 namely;

I(q, θ, φ) =
∑

L,M≥0

RLM(q)YLM(θ, φ) (3.4)

Since intensities are real and they are expanded in terms of real spheri-
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Figure 3.1: Visualization of real spherical harmonics (RSH) for angular mo-
mentun L = 0, 1 and 2. Plots are made with MATLAB by an adoption of
code by Denise L. Chan

cal harmonics; so the expansion coefficients RLM may be considered as real

quantities.

Icosahedral point group symmetry imposes further restriction on the ex-

pansion of I(q, θ, φ); namely I(q, θ, φ) can be expanded in terms of icosahedral

harmonics
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I(q, θ, φ) =
∑
L

gL(q)IL(θ, φ) (3.5)

Icosahedral harmonics are certain linear combination of real spherical

harmonics defined as

Figure 3.2: Visualization of icosahedral harmonics (RSH) for angular mo-
mentun L =6 (upper left), 10 (upper right), 12 (lower left) and 16 (lower
right) where the 2 fold, 3 fold and the 5 fold symmetry axis can be seen
clearly. Plots are made using MATLAB code written by Haiguang Liu
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IL(θ, φ) =



∑
M

aLMPL,M cos(θ) cos(Mφ) M > 0 (3.6a)

Y 0
L (θ, φ) M = 0 (3.6b)∑
M

aLMPL|M | cos(θ) sin(|M |φ) M < 0 (3.6c)

where the aLM coefficients are real numbers for normalized real spherical

harmonics tabulated as for example in Jack and Harrison [16]. Since the real

spherical harmonics are orthogonal with respect to integration over spherical

shell, the icosahedral harmonics IL(θ, φ) are orthogonal with respect to the

same integration provided

∑
M

a2
LM = 1 (3.7)

Comparing equation (3.4) with equation (3.5) and (3.6) we can write

RLM(q) = gL(q)aLM (3.8)

Following equation (3.4) we define the orientation independent quantiy

BL(q, q) as

BL(q, q) =
∑
M≥0

RLMRLM (3.9)

Substituting equation (3.8) into (3.9) we get
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BL(q, q) = gL(q)gL(q)
∑
M

a2
LM (3.10)

Using equation (3.7) we can write

BL(q, q) = gL(q)gL(q) (3.11)

3.2 Reconstruction of the diffraction volume

The average angular correlation C2 [15] among the diffraction patterns of

the measured diffraction patterns contains information of the 3D diffraction

volume of a single particle. We define C2 by;

C2(q, q′,∆φ) =
1

Np

1

N

∑
p

N−1∑
pix=0

Ip(q, φpix)I
p(q′, φpix + ∆φ) (3.12)

where Ip is the intensity on diffraction pattern p, Np is the number of

diffraction patterns in random orientation and φn is the nth discrete value

of φ.

The angular Fourier transform of a resolution ring q for the pth diffraction

pattern can be written as [3]

In′(q) =
N−1∑
n=0

Ip(q, φn)exp(in′φn) (3.13)

Using the cross-correlation theorem and by performing an angular Fourier

transform on each diffraction pattern of random orientations, taking the
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Figure 3.3: Plot of the diagonal term of intensity cross correlation for
q = 0.18A−1 and q = 0.25A−1 from the simulated diffraction pattern (data
provided by Peter Schwander) of randomly oriented satellite tobacco necrosis
virus (PDB entry: 2BUK).

product of the Fourier transform and its complex conjugate followed by the

inverse transform; is the fastest way [3] to calculate the average angular

correlation C2(q, q′,∆φ).

The intensity auto-correlation C2(q, q′,∆φ) and the orientation indepen-

dent characterstic quantity BL(q, q′) are related by [15]

C2(q, q′,∆φ) =
∑
L

FL(q, q′,∆φ)BL(q, q′) (3.14)

where

FL(q, q′,∆φ) =
1

4π
PL[cos θ(q) cos θ′(q′) + sin θ(q) sin θ′(q′) cos(∆φ)] (3.15)
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where PL is the Legendre polynomial of order L and

θ(q) = π/2− sin−1(q/2κ) (3.16)

where κ is the wavevector of the incident beam. Following equation (3.16)

BL(q, q) can be obtained by matrix inversion of FL(q, q,∆φ); i.e.;

BL(q, q) = C2(q, q,∆φ)F−1
L (q, q,∆φ) (3.17)

Note that this quantity, derivable from experiment, does not depend on the

azimuthal quantum number M . The construction of the diffraction volume

via

I(~q) =
∑
LM

ILM(q)YLM(θ, φ) (3.18)

requires coefficients ILM(q) which depend on M . However the diffraction

volume of an icosahedral particle may be expanded as

I(~q) =
∑
L

gL(q)IL(θ, φ) (3.19)

where IL(θ, φ) are icosahedral harmonics obtained via M summation of

real spherical harmonics YLM(θ, φ) for only certain angular momentum quan-

tum number L as permitted by icosahedral symmetry of the object (equation

3.6).

The magnitudes of the coefficients gL(q) can be directly found from the
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Figure 3.4: BL(q, q) vs q plot for L = 0, 6, 10, 12, 16 and 18. Plots for
L = 1, 2, 3, 4, 5, 7 etc are absent since those components are zero as per icosa-
hedral selection rule. Plots are obtained from some 10 thousand simulated
diffraction pattern (data provided by Peter Schwander) of satellite tobacco
necrosis virus (STNV) whose atomic coordinates are deposted on pdb.org as
2BUK

.

equation

BL(q, q) = gL(q)gL(q) (3.20)

and the BL(q, q) coefficients can be obtained from the intensity auto corre-

lation on a resolution ring q. Thus

|gL(q)| =
√
BL(q, q) (3.21)

Now the only remaining task to construct the diffraction volume is to get
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the correct sign of the gL(q) coefficients. Once we know the sign we can

construct

I(q, θ, φ) =
∑
L

sign(gL(q)) |gL(q)| IL(θ, φ) (3.22)

Since the only permitted values of angular momentum quantum number

for an icosahedral harmonic expansion of the diffraction volume are L =

0, 6, 10, 12, 16, 18, 20, 22, 26, 28 and 30, The correct sign combination for a

single q resolution shell was determined by an exhaustive search over 212 '

4000 sign commbinations that minimizes the (−) ve values of I for a fixed

resolution shell.

Figure 3.5: BL(q, q)’s (plotted along the Y axis) vs L (plotted along the
X axis) for STNV obtained from intensity auto correlation from randomly
oriented simulated diffraction patterns (data provided by Peter Schwander)
clearly shows that for an icosahedral objects the only nonvanishing BL(q, q)’s
are for L = 0, 6, 10, 12, 16, 20, 22, 24, 26 and 30. L = 0 was omitted from the
plot so that other can be visualized properly.
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∑
θ,φ

|Iq−(θ, φ)| (3.23)

Once we know the coefficient gL(q) for a particular shell q, we can get the

coefficients for other shells q′ via the following simple quotient;

gL(q′) = BL(q, q′)/gL(q) (3.24)

It is worth mentioning here that the numerator on the right hand side of the

above equation BL(q, q′) can be directly calculated from the average inten-

sity cross correlation between different diffraction patterns on the measured

diffraction pattern. Note that an exhaustive search over the signs of the

coefficients was done for only one ring.

Once we know all signs and magnitudes of expansion coefficients for all

the resolution shells a 3D diffraction volume may be reconstructed via

I(q, θ, φ) =
∑
L

gL(q)IL(θ, φ) (3.25)

This intensity distribution can be interpolated onto an oversampled 3D

Cartesian reciprocal space grid (qx, qy, qz) and an iterative phasing algorithm

may be applied to reconstruct the 3D electron density of the particle [21].
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3.3 Numerical tests

The key point of this work is that the scattered intensity from an icosahe-

dral particle may be represented as a sum of icosahedral harmonics. This

proposition was verified first by calculating the spherical harmonic expansion

coefficients of a simple icosahedral particle via the expression

Alm(q) = il
∑
j

fj(q)jl(qrj)Ylm(r̂j) (3.26)

where fj(q) is the form factor of the jth atom whose coordinate is ~rj, jl

is a spherical Bessel function and Ylm is a spherical harmonic.

As a first verification the simulation was done for an artificial regular

icosahedral molecule of edge length 2Ao having identical atoms at the vertices

whose coordinates in Cartesian frame given by [17];

(0,±1,±Φ)

(±1,±Φ, 0)

(±Φ, 0,±1)

where Φ is the golden ratio (1 +
√

5)/2.

Calculated values of Alm coefficients for possible values of l’s and m’s are

listed in Fig. 3.7. Clearly we see the calculated coefficients are real and co-

efficients from non icosahedral components are zero; i.e.; Alm(q) coefficients
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Figure 3.6: A regular icosahedron with twelve identical atoms at the vertices
[17].

for l = 2, 4, 8, 14 are zero. These results hold for any orientation of the

icosahedral particle since Wigner D matrix rotation only mixes amplitudes

of different magnetic quantum number corresponding to the same angular

momentum L [3]. It is of greater interest that this method allows the cal-

culation of the ILM(q) coefficients, since the ILM(q)’s are spherical harmonic

expansion coefficients of the scattered intensity;

I(q̂) =
∑
LM

ILM(q)YLM(q̂) (3.27)

Also I(~q) can be written as the mod square of the amplitude A(~q);
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Figure 3.7: Alm coefficients calculated assuming 12 identical atoms at the
vertices of a regular icosahedron (fj = 1 ∀j). The four entries in each column
are respectively l, m, Re[Alm(q)] and Im[Alm(q)].

I(~q) = |A(~q)|2 (3.28)

It is obvious from the above two equations that if A(~q) has icosahedral

symmetry; I(~q) must have icosahedral symmetry as well. However it is not

entirely obvious that the ILM(q)’s possesses icosahedral symmetry. A straight

calculation of ILM(q) coefficients via equation (3.29) (figure 3.8) using A(~q) as

in figure (3.7) reveals that ILM(q) coefficients possess icosahedral symmetry,
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so do Alm(q) coefficients.

ILM(q) =
∑

lm;l′m′
Alm(q)A∗l′m′(q)

∫
Ylm(q̂)Y ∗l′m′(q̂)Y ∗LM(q̂)dq̂

=
∑

lm;l′m′
Alm(q)A∗l′m′(q)

∫
Y ∗lm(q̂)Yl′m′(q̂)YLM(q̂)dq̂

=
∑

lm;l′m′
Alm(q)A∗l′m′(q)

√
(
(2l′ + 1)(2L+ 1)

4π(2l + 1)
)C l0

l′0L0C
lm
l′m′LM(3.29)

where C lm
l′m′LM ’s are Clebsch-Gordan coefficients [19]; L ranges from |l − l′|

Figure 3.8: ILM coefficients evaluated [3] for an artificial icosahedral molecule
using equation (3.30) ( values of Alm coefficients obtained from figure (3.7))
shows vanishing trends for non icosahedral components for L = 1, 2, 3, 4, 5
and 7.
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to |l + l′| as per the standard rule for the addition of angular momentum.

We also tested our model with a realistic icosahedral virus (satellite to-

bacco necrosis virus (STNV)) whose atomic coordinates are deposited in

protein data bank (www.pdb.org) as 2BUK (figure 3.9). As usual A(~q) is

defined by summing the form factor for every atom in the molecule along

with its phase factor;

Figure 3.9: Satellite tobacco necrosis virus (STNV) viewed down along the
5-fold axis. Image obtained using UCSF Chimera.

A(~q) =
∑
j

fj(q) exp(i~q.~rj) (3.30)

Spherical harmonic expansion coefficients ILM(q)’s of the 3D diffraction

volume of STNV was calculated [3] by integrating over spherical shells of

I(~q);
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ILM(q) =
∫
I(~q)YLM(q̂)dq̂ (3.31)

Figure 3.10: Calculated ILM(q) coefficients (real and imaginary parts) from
the simulated diffraction volume of STNV. Each dot on the plots represents
an LM pair either for real or imaginary part of ILM(q).

where the integration is preferably done by Gaussian quadrature [20].

Clearly we see the vanishing trend for non icosahedral components of ILM(q)’s
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for L = 2, 4, 8, 14 (for both the real and imaginary part). Calculated coeffi-

cients also show the precise condition:

ILM(q) = IL,−M(q)(−1)M (3.32)

to ensure the reality of the real spherical harmonic expansion RLM(q) coef-

ficients (equation 3.4) as well as the icosahedral harmonic expansion coeffi-

cients gL(q)’s via (3.11). The symmetry of the real icosahedral object (as-

suming the protein coat of the icosahedral virus is the dominant scatterer) is

translated into reciprocal space and this result is a consequence of the icosa-

hedral symmetry of the diffraction volume I(q̄). This follows from equation

(3.33) that BL(q, q′) coefficients computed from the data of diffraction pat-

terns of icosahedral viruses with completely random orientations must have

vanishing values for L = 1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, ....,. Hence this pro-

vides a very important characterstic test to tell whether the particle subject

to XFEL diffract and destroy experiment is an icosahedral object. However

this is only approximately true in a real experiment since the so called icosa-

hedral viruses may have appendages which break the icosahedral symmetry

of the protein coat. Also the genetic material inside the protein coat may

not have this symmetry since X-rays penetrate more inside the virus; hence

the collected diffraction pattern may contain information about the inside

genetic materials as well as the outer protein coat [3].
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3.4 Reconstruction of STNV from simulated

diffraction pattern

Simulated diffraction patterns of satellite tobacco mosaic virus (STNV) were

calculated for direction of incidence on a single particle for a uniform angular

distribution in SO(3) [15] using data for the biological assembly of STNV

from PDB entry 2BUK. Instead of calculating diffraction patterns for various

orientations we took slices through a precalculated 3D diffraction volume

since the biological assembly of 2BUK consists of roughly 100, 000 of atoms.

Average angular correlations for those (10,000) simulated diffraction patterns

were obtained using equation 3.12 and BL(q, q′) coefficients were obtained via

a matrix inversion as given in equation 3.18.

Since the BL(q, q′) coefficients are related to the real spherical harmonic

expansion coefficients RLM(q); it was found that RLM(q) coefficients for L =

0, 6, 10, 12, 16, 18, 20, 22, 24, 26, 28, 30; obtained from the simulated diffraction

volume of STNV are dominant [3]. However for some larger viruses which are

of basic icosahedral shape might have appendages like the unique vertex of the

chlorella virus [28] or “hair” of mimivirus [27]. Extracting those coefficients

from the experimental single particle diffraction patterns via calculating the

average correlation of the intensities would be an excellent test to see whether

the icosahedral components of the coefficients are dominantly larger than

the non icosahedral components. In fact BL(q, q) coefficients extracted from
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some 800 experimental diffraction patterns of PBCV approximately satisfies

icosahedral selection rule as discussed in chapter six.

Finally a 61×61×61 pixels of 3D diffraction volume of scattered intensities

I(qx, qy, qz) was constructed using the steps as described in section 3.2; which

was the input of a standard iterative phasing algorithm (“charge flipping”

algorithm of Oszlanyi and Suto [29] and [30]) for the recovery of the 3D

electron density of the particle.

Figure 3.11: Reconstructed image of STNV (which is about 20 mm in diam-
eter) directly from structure factor calculation. The figure depicts a view of
the icosahedral virus close down along its 5 -fold rotation axis. The resolu-
tion of the reconstruction is about 1.3 nm. A ribbon diagram of the structure
factor in PDB entry of 2BUK seems to fit the capsid (plot produced by Peter
Schwander).

In order to judge the accuracy of our reconstruction; first the 3D diffrac-
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tion volume of scattered intensity was calculated directly using a structure

factor and then by using the expansion coefficients recovered from the average

angular correlations of the diffraction patterns of scattered intensities. The

recovered 3D electron density for the two cases are shown in figure 3.11 and

figure 3.12 for comparing the correctness of our reconstruction. The similar-

Figure 3.12: Same as 3.12 except the diffraction volume was reconstructed
from the average angular correlations of 10, 000 simulated diffraction pattern
of STNV [3] uniformly distributed over directions of SO(3) space. Recon-
structed electron density seems to be remarkably similar to that of figure
3.11 (plot produced by Peter Schwander).

ity of the reconstructed images of figure 3.11 and 3.12 proves the correctness

of our method of reconstructing the diffraction volume from the BL(q, q′)

coefficients obtained from the avearge angular correlation of the diffraction

pattern of scattered intensities.
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Figure 3.13: Same as 3.12 except a portion of the reconstructed image of
STNV has been cut perpendiculr to the 5-fold axis. The 5-fold symmetry of
both the internal surface and external capsid can be seen clearly across the
cut (plot produced by Peter Schwander).

In fact the reconstructed image consists of a thin protein shell [3] as shown

in figure 3.13; obtained by slicing figure 3.12 perpendicular to the 5-fold rota-

tion axis. All those reconstructions were fitted to ribbon diagrams obtained

from the PDB entry of the biological assembly of STNV to prove the excel-

lence of the reconstruction. The reconstructed STNV structure consists of a

thin shell as obtained by the iterative phasing algorithm without any prior

assumptions on our part [3].
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3.5 Beyond the icosahedral approximation

Regular viruses are mainly of two basic shape [2], icosahedral and helical.

Satellite tobacco virus (STNV) is an example of icosahedral virus that has

perfect icosahedral symmetry [32]. Many of the larger viruses are predom-

inantly of icosahedral shape, except they might have appendages such as a

neck sticking out of the coat which is used to inject the genetic material into

a host cell to produce more identical biological assemblies to be combined to

make another virus.

An ultimate reconstruction algorithm should be able to reconstruct those

nonicosahedral parts as well as the dominant icosahedral bulk volume. The

above procedure has determined the icosahedral harmonic expansion coeffi-

cients gL(q) that best fit the measured quantities BL(q, q′). Any deviations

from those are due to the non-icosahedral part of the structure which may

be written as [15];

δBL(q, q′) =
∑
M

aLM [gL(q)δRLM(q′) + δRLM(q)gL(q′)] + δRLM(q)RLM(q′)

(3.33)

The additional term on the RHS out of the square bracket of the above

equation is due to deviation in structure from icosahedral symmetry. Note

that for (L,M) combination not associated with icosahedral harmonics; the

aLM coefficients will be zero and only the quadratic term in RLM will survive.

Determination of the δRLM(q) coefficients which optimize the agreement of
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theoretical expression (equation 3.33) and measured values might allow us

to do a reconstruction of bulk icosahedral particle with the presence of their

appendages via the construction of diffraction volume as [3];

I(~q) =
∑
LM

[gL(q)aLM + δRLM(q)]YLM(q̂) (3.34)

Note that the L values for the correction term δRLM(q) has no symmetry

restriction except the Friedel symmetry.



Chapter 4

Fiber Diffraction Without

Fibers

4.1 Introduction

Fiber diffraction by helical structures are of great interest since the early

ninteen fifties starting from the work of Cochran, Crick and Vand (denoted

as CCV; 1952) for solving the structure of synthetic polypeptides [4]. The

work of CCV contains the full diffraction theory which is regarded as the

seminal work in this field. Other best known fiber diffraction work done in

the fifties and sixties are the following; structure of deoxyribonucleic acid

(DNA) [5], tobacco mosaic virus (TMV) [6], to name only two of the most

important. In a typical fiber diffraction experiment diffracting particles are

all randomly oriented along the fiber axis. For example; tobacco mosaic
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viruses (TMV) which are rod shaped are drawn into a capillary tube in a gel

to line up their long axis parallel to the capillary axis.

In this work we have shown that fiber diffraction patterns can be recovered

from the single particle diffraction patterns of completely randomly oriented

helical particles as measured in so called “diffract-and-destroy” experiments

with an x-ray free electron laser (XFEL). This computatinal alignment tech-

nique of postprocessed diffraction patterns of totally randomly oriented he-

lical particles obviates the need of single axis alignment done experimentally

such as forming fibers, laser- or flow-alignment.

4.2 Fourier transform of a helix with contin-

uous structure factor

A Fourier transform of (x, y, z) at a reciprocal space point (ξ, η, ζ) can be

written as [4]

T (ξ, η, ζ) =
∫

exp[2πi(xξ + yη + zζ)]dV (4.1)

A uniform helix of radius r, axis spacing C is defined as

x = r cos(2πz/C) (4.2)

y = r sin(2πz/C) (4.3)

z = z (4.4)
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For a uniform helix the volume element dV is proportional to dz, hence

the transform function can be written as

T (ξ, η, ζ) =
∫ P

0
exp[2πi(rξ cos 2π

z

P
+ rη sin 2π

z

P
+ zη)]dz (4.5)

For a helical system, the natural choice of the coordinate is cylindrical. In

cylindrical reciprocal space coordinates (R,ϕ, ζ) the helix transform function

can be written as

T (R,ϕ, ζ) =
∫ P

0
exp[2πi{Rr cos(2π

z

P
− ϕ) + zζ}]dz (4.6)

where R2 = ξ2 + η2 and tanϕ = η/ξ

(4.6) vanishes unless ζ = λ/C, where λ is an integer ((+)ve or (-)ve).

This corresponds to the fact that X-ray scattering from a helix which has an

exact repeat along the vertical distance λ, is confined to layer lines at height

ζ = λ/C in reciprocal space [4] where λ = 0,±1,±2,±3, .....

Hence (4.6) can be written as

T (R,ψ,
λ

C
) =

∫ P

0
exp[2πi{Rr cos(2π

z

P
− ϕ) +

λz

C
}]dz (4.7)

Taking X = 2πRr and φ = 2πz/C the above integral can be solved using

the identity [4].

∫ 2π

0
exp(iX cosφ) exp(iλφ)dφ = 2πiλJλ(X) (4.8)
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where Jλ denotes the λth-order Bessel function.

Hence the transform function can be written as

T (R,ϕ,
λ

C
) = Jλ(2πRr) exp[iλ(ϕ+

π

2
)] (4.9)

Clearly we see that the amplitude of the Fourier transform of a continuous

helix does not depend on ϕ i.e.; it has cylindrical symmetry.

4.3 Helix selection rule

The structure factor of a c repeat unit of TMV consisting of u number of

poteins whose atoms are specified by cylindrical coordinates (rk, ψk, zk) may

be written as

Fc(q) =
∑
k εH

fk exp(2πiq.r)

=
∑
k εH

fk exp(2πi[qxxk + qyyk + qzzk])

=
∑
k εH

fk exp(2πi[ζzk +Rrk(cosψk cosϕ+ sinψk sinϕ)])

=
∑
k εH

fk exp{2πi[ζzk +Rrk cos(ϕ− ψk)]} (4.10)

where H denotes the set of all atoms in one c repeat unit (69 A0 for 2TMV).

(4.10) can be expanded in terms of Bessel function using Jacobi-Anger ex-

pansion (4.11)
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exp(iZ cos θ) =
∑
n ε I

inJn(Z) exp(inθ) (4.11)

where I denotes the set of all integers.

With Z = Rr and θ = ϕ − ψ structure factor expression can be written

as

Fc(q) =
∑
n ε I

∑
k εH

fk i
n exp{2πi(ζzk)} exp{in(ϕ− ψk)} Jn(2πRrk)

=
∑
n ε I

G
′

n,λ(R) exp(inϕ) (4.12)

With ζ = λ
c
; G

′
n,λ(R) is defined as ;

G
′

n,λ(R) =
∑
k εH

fk i
n exp[2πi(ζzk)] exp(−inψk) Jn(2πRrk) (4.13)

In the absence of helix symmetry the diffracted intensity for λ-th layer line

is given by

Iλ(R) =
∑

n,n′ ε I
G

′

n,λ(R)G
′∗
n′,λ(R) (4.14)

In the presence of ph helix symmetry (let us assume a c repeat unit consists

of h turns with a total of p protein; for TMV h = 3 and p = 49); structure

factor of a c repeat unit Fc can be obtained from the structure factor of one

protein Fp via a coordinate transformation of each helix repeating unit.

Following the same steps of (4.12), the structure factor of one repeating
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unit of the helix Fp can be written as

Fp(q) =
∑
n ε I

Gn,λ(R) exp(inϕ) (4.15)

where Gn,λ(R) is defined as

Gn,λ(R) =
∑
k ε P

fk i
n exp[2πi(ζzk)] exp(−inψk) Jn(2πRrk) (4.16)

where P denotes the set of all atoms in one helix repeating unit (one protein

molecule).

With ph helix symmetry the k-th atom in J-th protein with coordinate

(rk, ψk, zk) is accompanied by the k-th atom of the (J+1)-th protein accord-

ing to the coordinate transformation [7].

(rk, ψk, zk)→ (rk, ψk + 2πhJ/p, zk + cJ/p) (4.17)

Under this transformation G
′
n,λ(R) of (4.13) can be written as

G
′

n,λ(R) =
u−1∑
J=0

∑
k ε P

fk i
n exp[2πi{ζ(zk + cJ/p)})] exp[−in(ψk + 2πhJ/p)] Jn(2πRrk)

= Gn,λ(R)
u−1∑
J=0

exp[2πiJ(λ− nh)/p] (4.18)

The sum in the above equation 4.18 is non zero only if (λ − nh) is integer
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multiple of p [7]; i.e.;

λ = nh+mp (4.19)

For a 493 helix symmetry of TMV, equation (4.19) can be written as

λ = 3n+ 49m (4.20)

With 493 helix symmetry diffracted intensity for λ-th layer line is redefined

as

Iλ(R) =
∑

n,n′ ε S
G

′

n,λ(R)G
′∗
n,λ(R) (4.21)

Where S is set of all allowed integers as permitted by the selection rule.

Table 4.1: Helix selection rule of TMV 493 helix. Layer lines index λ shown
along Y in bold and the permitted Bessel function order n corresponding to
each layer line shown along X.

λ/n −5 −4 −3 −2 −1 0 1 2 3 4 5

−5 − − − 31 − − −18 − − −67 −
−4 − 64 − − 15 − − −34 − − −
−3 − − 48 − − −1 − − −50 − −
−2 − − − 32 − − −17 − − −66 −
−1 − 65 − − 16 − − −33 − − −

0 − − 49 − − 0 − − −49 − −
1 − − − 33 − − −16 − − −65 −
2 − 66 − − 17 − − −32 − − −
3 − − 50 − − 1 − − −48 − −
4 − − − 34 − − −15 − − −64 −
5 − 67 − − 18 − − −31 − − −

Clearly we see that because of 493 helical symmetry not every Bessel

function are allowed on every layer line. Also we see that for each layer line
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the order of the allowed Bessel functions are separated by 49.

4.4 Diffraction from identical molecules of ran-

dom azimuthal orientation of helical viruses

Fiber diffraction [4] assumes objects periodic along the direction of the fiber

axis give rise to layer lines. This section describes the relationship between

the electron density of each particle and the composite diffraction pattern

produced by the incoherent superposition of diffraction patterns of multiple

copies of the particle differing only in their azimuthal orientations. The struc-

ture factor of a molecule can be expressed in terms of cylindrical reciprocal

space coordinates (R,ϕ, ζ) [13] as

F (R,ϕ, ζ) =
∑
n

Gn(R, ζ)exp(inϕ) (4.22)

Where Gn(R, ζ) is a cylindrical harmonic expansion coefficient defined as

Gn(R, ζ) =
∑
k

fk i
n exp[2πi(ζzk)] exp(−inψk) Jn(2πRrk) (4.23)

The structure factor of the j-th molecule on the helix rotated relative to the

first one by an angle ψj can be expressed as (reference equation (4.10) and

(4.12));

Fj(R,ϕ, ζ) =
∑
n

Gn(R, ζ)exp[in(ϕ− ψj)] (4.24)
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The total scattered intensity can be obtained by summing over the contribu-

tion of all the molecules in the ensemble. Hence,

I(R, ζ) = I0(R, ζ)

=
∑
j

Ij(R,ϕ, ζ)

=
∑
n

|Gn(R, ζ)|2 +
∑
n,n′

Gn(R, ζ)G∗n′(R, ζ)

exp[i(n− n′)(ψ − ψ′j)] (4.25)

The off diagonal terms in the above expression sum to zero due to the

randomness of the azimuthal orientations ψj of different molecules. Since the

diagonal terms do not depend on ϕ, the total scattered intensity from the

ensemble may be written as

I(R, ζ) = I0(R, ζ)

= N
∑
n

|Gn(R, ζ)|2 (4.26)

where N is the number of molecules in the ensemble.

The corresponding intensity Iλ(R) of layer line λ in fiber diffraction is

given in equation (4.21). The essential difference between the usual fiber

diffraction equations (4.12) and (4.21) and (4.23) and (4.26) is that the

discrete layer line index λ in the former two equations is replaced by the

continuous coordinate ζ parallel to the alignment axis in (4.23) and (4.26).
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4.5 Fiber diffraction in XFEL“diffract-and-

destroy” experiment

Structure determination from a“diffract-and-destroy” experiment with X-ray

free electron laser (XFEL) [22] is at least superficially quite distinct, where

reproducible particles of completely random 3D orientations are injected into

the XFEL beam and single particle diffraction patterns are collected for ran-

dom orientations of that particle. The natural choice of a reciprocal space

coordinate system for such an ensemble of collected diffraction patterns from

a single particle or an aggregate of many particles completely in 3D random

orientations is spherical rather than cylindrical irrespective of the size, shape

and symmetry of the particle under study. One of the possible approaches

for structure determination from an ensemble of such a large number of

diffraction patterns is to average over the diffraction patterns the angular

correlations of their intensities as described in chapter two (equation 2.1)

[15]. An orientation-independent quadratic function of the spherical har-

monic expansion coefficients ILM(q) may be extracted from the average over

all measured diffraction pattern of angular autocorrelations of the measured

intensiites for a resolution shell q.

For the case of helical viruses like 2TMV the azimuthal periodicity of

the proteins along the helices or more elaborately 493 helical symmetry (as

discussed in section 4.3) imposes selection criterion on the value of angular

momentum quantum number L and hence the summation over azimuthal
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quantum number M may be overcome if we limit the resolution of our re-

construction upto 12 A0. As in equation 4.12;

I(q̄) = F (R,ψ, ζ)F ∗(R,ψ, ζ)

=
∑
n,n′

Gn(R, ζ)G∗n′(R, ζ)exp[i(n− n′)ψ] (4.27)

according to helix selection rule n−n′ = M can have only values 0, ±49, ±98.

If we limit oursalves for M = 0 then the value of L can only be upto L = 48

since the value value of azimuthal quantum number M must be equal or

less than the angular momentum quantum number L. Hence within our

resolution-restricted model the diffraction volume of intensity (not the am-

plitude !) of 2TMV is azimuthally symmetric (i.e.; the only permitted value

of azimuthal quantum number M = 0). Hence equation (4.27) can be sim-

plified as;

I(q̄) =
∑
nε S

G2
n(R, ζ) (4.28)

where S is the set of all allowed integers as permitted by the selection rule.

The 3D reconstruction of reciprocal space intensity of a helical object

may be found via calculating the spherical harmonic expansion coefficients

of a single c repeat unit (TMV consists of roughly 45 c repeat unit each

of 69 A0 length). According to conventional wisdom the reconstruction of

diffraction volume of scattered intensity [3] upto a reciprocal-space radius

qmax of a macromolecule or virus of radius R may be obtained by using
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angular momentum quantum number up to Lmax where

qmax ∗R = Lmax (4.29)

For TMV R = 90A; the limitation of Lmax < 49 is approximately true for

qmax < 0.5 A−1; i.e.; upto 12 A0 Resolution.

4.6 “One-Term” Model of Cylindrical Har-

monics for 2TMV

Cylindrical harmonics Gn(R, ζ) for 2TMV fall off rapidly with increasing

n for a fixed layer line. The “one-term” model is valid at low resolution;

Res < 12A0 because the higher-order Bessel functions peak at high value

of R as shown in figure (4.2) where we see the contribution of intensity

I(R, ζλ) for various layer line from the first and the second Bessel term. Hence

the “one-term” model [14] uses Gnlowest
(R, λ

c
) for the intensity calculation of

different layer lines. Figure (4.3) shows comparison of “One-Term” model

with many term calculation via I(R, λ
c
) plot for layer lines from λ = 0 to

λ = 5. Clearly we see the validity of the one-term approximations with

many term calculations except for λ = 2 which shows some deviation around

qmax = 0.45A−1

The scattered intensity I(q̄) can be expanded in terms of spherical har-
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Figure 4.1: Intensity plot for various layer lines where contribution towards inten-
sity from the maximally dominant order Bessel term (as per selection rule, table
4.1) shown by asterisk (∗). Contribution from the next dominant order Bessel term
is insignificant (except layer line 2) shown by square for q < qmax corresponding
to resolution less than 12 A0.

monics

I(q̄) =
∑
L,M

IL,M(q)YL,M(θ, ϕ) (4.30)

where YL,M(θ, ϕ)’s are spherical harmonics. For our theory we are considering

only M = 0 term and L ranges from 0 to 48. Hence the above equation can

be written as

I(q̄) =
48∑
L=0

√
2L+ 1

4π
IL,0(q)PL,0(cosθ) (4.31)
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Figure 4.2: Comparison of calculated intensities for 2TMV for various layer
lines using One-Term approximation (thick line) with many term calculation
(thin line) via I(R, l

c
) vs R plot.

where PL is Legendre polynomial of order L.

Using (4.28) we can say more precisely

|G|2(R, ζλ) =
48∑
L=0

√
2L+ 1

4π
IL,0(q)PL,0(

ζλ
q

) (4.32)

Using the above equation IL,0(q) can be obtained by matrix inversion which is

purely a orientation independent quantity as measured in so called “diffract-
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and-destroy” XFEL experiment.

IL,0(q) = |G|2(R, ζλ)[P
′

L,0(
ζλ
q

)]−1 (4.33)

where

P
′

L,0(
ζλ
q

) =

√
2L+ 1

4π
PL,0(

ζλ
q

) (4.34)

4.7 Recovering a fiber diffraction pattern from

an XFEL “diffract-and-destroy” experi-

ment

Diffraction patterns of completely randomly oriented helical molecules as

measured in “diffract-and-destry” XFEL experiment [22] can be post pro-

cessed to yield a “fiber diffraction” pattern via computational alignment. We

recover the fiber diffraction pattern from the calculated BL(q) coefficients;

an orientation-independent radial quantity which can be obtained from an

experimental XFEL “diffract and destroy” experiment using correlation the-

ory [15]. In a “diffract and destroy” experiment with an X-ray free electron

laser, particles are injected into the beam in completely random orientations

and hence one would not expect to see the layer line structure of the oriented

helix in those diffraction patterns. Here we have shown that appropriate

computational alignment of the ensemble of such diffraction patterns enable
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Figure 4.3: Fiber diffraction pattern of TMV obtained solely from the quan-
tity expected to be measured from XFEL ”diffract and destroy” experiment
of single viruses completely in 3D random orientations

us to reconstruct such a fiber diffraction pattern as shown in Figure 5.4; thus

obviating the need to do it by experimental means such as forming fibres,

laser- or flow-alignment. Clearly we see the intensities along the layer lines;

everywhere else it is zero.

In order to judge the accuracy of the recovery of our fiber diffraction

pattern (figure 4.3); a comparison of maximum layer line intensities (scaled
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to layer line 3) was made with a standard fiber diffraction pattern (figure

4.4) [11] and we found fairly close agreement (within 10− 12% variation) for

all the layer lines except the first layer line (16% variation).

This variation in intensities for different layer lines is okay since our

diffraction pattern is limited by a resolution of 12 A0 whereas Namba’s con-

struction has a resolution 2.9 A0. In contrast to the resolution comparison;

a remarkable achievement in our computational construction is that this can

be obtained from XFEL scattering without the need of uniaxial alignment

such as forming fibers. It is worth mentioning here that until the discovery

of the computational alignment technique [9] fiber diffraction was the only

method for solving helical bio-structure such as DNA or TMV.

Figure 4.4: Fiber diffraction pattern from an oriented solution of tobacco
mosaic virus [11].
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4.8 Reconstruction of TMV diffraction vol-

ume

If M = 0 is the only term included in the expansion of the 3D intensity

distribution of the scattered intensity of 2TMV; the diffraction volume up to

the resolution limit can be written as

I(~q) =
∑
L

IL0YL0(θ, ϕ) (4.35)

where the magnitudes of the real expansion coefficients IL0(q) are determined

as

|IL0(q)| =
√
BL(q, q) (4.36)

and their signs be determined using the ring triple correlation function [26].

Once an oversampled diffraction volume is constructed from the IL0(q) coef-

ficient; the 3D real-space electron density is obtained by using an iterative

phasing algorithm. The magnitude of the expansion coefficients can be ob-

tained from the average angular correlation of the measured diffraction pat-

tern of their intensities and their signs from the ring triple correlation (RTC)

function

C3(q,∆φ) =
∫
TL(q)PL(cos(∆φ)) (4.37)

where

TL(q) =
∑
L1L2

G(L10;L20;L0)IL10(q)IL20(q)IL0(q) (4.38)
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Figure 4.5: Real space image of a portion of tobacco mosaic virus (TMV)
recovered from an oversampled low resolution 3D diffraction volume con-
structed only using the M = 0 term of the spherical harmonic expansion
coefficient; a quantity expected to be recovered from an ensemble of XFEL
diffraction patterns from random orientations of the virus.

where G is a Gaunt coefficient. Assuming BL(q) and TL(q) are the only

quantities recovered from the XFEL “diffract and destroy” experiment, the

spherical harmonic expansion coefficients IL0(q) can be recovered from (4.36).

From equation (4.38) it is clear that the magnitude of TL0(q) depends on

the sign of IL0(q) since for each L, TL0(q) can be calculated for all possible

sign combinations of IL10(q) and IL20(q) since the summation on the RHS of
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equation (4.38) runs over L1 and L2 where

L1 + L2 > L > |L1 − L2| (4.39)

as per standard rule for the addition of angular momenta. Consequently those

signs may be recovered by optimization of TL(q). The recovered IL(0) coeffi-

cients can be used to generate a low resolution (about 12 A0) 3D diffraction

volume as per (4.36). A section of this diffraction volume passing through

the origin parallel to ζ axis is expected to be identical to a fiber diffraction

pattern consisting of layer lines as shown in figure (4.3).

This result is remarkable. Using fiber diffraction TMV has been deter-

mined upto a resolution of 2.9 A0 [31]. However attempts to align particles

by all other ways always encountered the obstacle of the entropic tendency

to disorder them at any finite temperature [10]. Here we have demonstrated

our ability to produce a near-perfect fiber diffraction pattern [9] of 2TMV up

to 12 A0 resolution by post processing the diffraction patterns of completely

randomly oriented particles in 3D! [9].

In order to judge the feasibility of recovering the real-space image of he-

lical particles via the recovery of a fiber diffraction pattern from an XFEL

“diffract-and-destroy” experiment using the phasing technique used by fiber

diffraction experts, we sent our diffraction pattern (figure 4.3) to Gerald

Stubbs (Vanderbilt University); a well known fiber diffraction expert. Us-

ing our data as an input aided by the insertion of a heavy atom derivative;
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the reconstructed real space image of 2TMV is shown in figure (4.6), where

we see the enhancement of resolution due to post processing our data via

insertion the heavy atom derivative.

Figure 4.6: A portion of the reconstructed real space image of 2TMV using
our recovered fiber diffraction pattern (figure 4.3) as an input aided by the
simulated insertion of heavy atom derivative. Image reconstruction done by
Gerald Stubbs (vanderbilt university).



Chapter 5

Reconstruction of PBCV from

XFEL Ultrashort Pulses

5.1 Introduction

The discovery of X-rays by Wilhelm Rontgen at the end of 19th century may

be regarded as one of the most important discoveries for the advancement in

science. Following Max von Laue’s discovery of X-ray diffraction by a crystal,

William and Lawrence Bragg made it possible to calculate the positions of

the atoms within a crystal from x-ray scattering data. However states of the

biomolecules could be affected by the crystallization process and a significant

fraction of biomolecules (as for example membrane proteins) cannot be crys-

talized at all. Understanding the functioning of those ultrasmall quantities

may be greatly enhanced if structural studies were performed on individual
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uncrystallized particles such as viruses. However most X-ray sources includ-

ing synchrontons do not offer enough brilliance so that a single particle can

be detected from scattering.

Other techniques for structural study of single nanoparticles like SAXS,

cryo EM have their own drawbacks. SAXS aims to reconstruct the real space

image from angularly averaged intensity scattered from a large number of

biomolecules in solution through the variation of one radial parameter. On

the other hand; electrons suffer multiple scattering and might not penetrate

sufficiently to reveal the internal structure of a large virus. Hence the XFEL

which delivers an intense beam which is roughly 10 billion times brighter

[23] than a conventional synchronton source allows us the unique possibility

of understanding the structure of the capsid as well as the internal genetic

materials of the bio-molecule.

XFEL pulses are so intense that they could have destroyed the biomolecules

and turned them into plasma. However simulation shows [22] that the

extremely short duration of the pulse (< 50 femtosecond; time in which

light travels the distance of a tiny fraction of the width of human hair)

can outrun radiation damage in the so called “diffract and destroy” ex-

periment. In this work we report the 3D structure determination of the

paramecium bursarium chlorella virus (PBCV) from some 800 diffraction

patterns from the highly intense ultrashort pulses from the world’s first x-

ray free electron laser at LCLS (Stanford, California). This is the first XFEL
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benchmark data set freely available to the public through the coherent x-ray

imaging data bank (www.cxidb.org) for testing the theoretical approach, as

well as algorithm development for 3D image reconstruction.

An aerosolized solution of PBCV viruses (which is roughly of icosahedral

shape except the spike at one of the vertices of 5-fold symmetry axis along Z

[6] were injected into the XFEL interaction region using an aerodynamic lens

stack [25] and diffraction patterns [23] were collected from the back detector

(roughly 740 mm from the interaction region). There are several challenges

while constructing a real space image from an ensemble of a 2D diffraction

patterns. Firstly; each diffraction shot is obtained from an individual iden-

tical particle with completely random orientation which is unkown. Unlike

scattering from a periodic objects, the diffraction pattern from single parti-

cle scattering consists of a diffuse intensity distribution rather than intensity

being concentrated on Bragg spots. To maintain similarity to the natural

environment of the viruses in which they function, a solution of PBCV was

injected into the LCLS atomic, molecular and optical science (AMO) beam-

line in the form of a tiny droplet of a buffer solution (mainly water) using the

virtual gas dynamic nozzle developed by De Ponte et al [24]. Hence a signif-

icant amount of scattering is from the water droplet. The deposited set of

diffraction data on coherent x-ray imaging data bank does not guarantee that

the diffraction patterns arises from the scattering by a single virus. The set of

roughly 800 diffraction patterns include a single particle diffraction pattern
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as well as diffraction patterns from solvent droplets and sample aggregates

of multiple viruses and water droplets [23]. Despite all those challenges here

we are reporting the approximate recovery of icosahedral selection rule from

experimental data.

5.2 Data classification and smoothing

Data as obtained from www.cxidb.org consists of roughly 800 diffraction

pattern

Figure 5.1: Comparison of a typical single shot PBCV diffraction pattern
(top: raw data as obtained from cxidb.org; botton: smoothed data).

One of the main challenges for constructing a real space image from single

particle experimental diffraction pattern is the high signal to noise ratio.

However, this can be overcome with a unique smoothing technique called

“Contour Gaussian Smoothing” where each pixel of the diffraction pattern is

weight avearged with a gaussian kernel by its neighboring pixels. Out of 800

diffraction pattern roughly 600 diffraction pattern were manually classified

as diffraction patterns from PBCV and multiple aggregates of PBCV as per

[23]. The original set of 800 diffraction patterns consists of patterns from
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solvent droplets, sample aggregates or multiple particles including PBCV

and nanorice garins.
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Figure 5.2: Comparison of a typical single shot PBCV diffraction pattern
(top: raw data as obtained from cxidb.org; botton: smoothed data). The
spike-like features which arise due to the flat side (hedra) of the virus in
water droplet. Smoothing recovers the features shaded by noise during XFEL
diffract and destroy experiment. Two images are shown on the scale.
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5.3 Icosahedral selection rule

According to Caspar and Klug [2]; viruses are mainly of two basic shapes;

icosahedral or helical. PBCV is mainly of icosahedral shape; except the spike

along the 5-fold symmetry axis [6]; which breaks the icosahedral symmetry.

Hence BL(q, q) obtained from experimental diffraction shots on PBCV which

was in a water droplet (PBCV has a radius of 1000 A0 and avearge estimate

of the radius of the water droplet is roughly 0.5µ); we do not expect to see a

perfect agreement of icosahedral selection criterion on the extracted BL(q, q)

coefficients.

Figure 5.3: Plot of BL(q, q) vs L obtained from the average angular cor-
relation of the diffraction pattern (roughly 800) of scattered intensities of
paramecium bursarium chlorella virus (PBCV), which is totally random in
its orientations exposed to XFEL single particle diffraction shot. Plot shows
that the icosahedral component (L = 0 component is not shown on the plot;
so that other components can be compared with each other) of the square of
the expansion coefficients are dominant; i.e.; BL(q, q) for L = 6 is dominant
than that of L = 2, 4, 8, .. and BL(q, q) for L = 10 is dominant than that of
L = 8, 12, ... In the plot the BL(q, q)’s for all the q values for a fixed L are
plotted side by side.
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As shown in figure (5.2); we see the non-icosahedral components (BL(q, q)

for L = 2, 4, 8, ..) do not vanish completely; however the icosahedral compo-

nents dominate the non-icosahedral components. Since the icosahedral selec-

tion rule is approximately satisfied in the BL(q, q) coefficients extracted from

the experimental diffraction patterns; so we may predict that the scattered

intensity is primarily from an icosahedral object. This prediction is also ver-

ified if we look at the BL(q) vs q plot for different L values. In figure (5.4)
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Figure 5.4: Bl(q, q) vs q plot for l = 0, 2, 4, 6, 8, 10 obtained from the aver-
age angular correlation of the experimental diffraction pattern of scattered
intensities

we see that BL(q, q) for L = 6 and L = 10 dominate compared to L = 2, 4

and L = 8.



Chapter 6

Discussion and Conclusion

Single particle “diffract and destroy” experiments with ultrashort and ultra-

bright pulses of XFEL radiation are an important means of determining the

structures of uncrystalized biomolecules. In contrast, X-ray crystallography,

the leading technique for structure determination, requires large, high quality

single crystalline samples. However, not all biomolecules (about 40%) can be

crystalized [15]. Some membrane proteins or certain viruses are difficult to

crystalize though they are a significant portion of today’s drug targets. Al-

though half a million proteins have been sequenced; structure of only about

10% have been determined so far (www.pdb.org). Hence our ability to deter-

mine the structure of certain biomolecules or viruses as well as the way they

function in nature may be determined via uncrystalized particle scattering.

This will constitute a breakthrough.

As the first XFEL user facilities are being made available, the very first
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few experiments being done on relatively large objects such as viruses which

produce low resolution diffraction patterns. In this work we developed a

theory and computational method for solving virus structure by XFEL scat-

tering from uncrystalized particles. With this method an ensemble of a large

number of diffraction patterns obtained from the new generation of power-

ful x-ray free-electron lasers from a single particle or particles, completely

random in their orientation, can be combined together to reconstruct a 3D

Fourier map of the particle and then a phasing algorithm can be used to

recover its full 3D image.

With our theory we can extract a quadratic function of the spherical

harmonic expansion coefficients ILM ’s of the diffraction volume from a set

of diffraction patterns of single molecule or molecular aggregates completely

random in their orientation while XFEL radiation is diffracted from them and

the intensity is recorded before they are destroyed by the radiation damage

of the XFEL. The main challenge is to recover the ILM ’s coefficients from the

quadratic function which includes a summation over the azimuthal quantum

number M of the intensity distribution for a single particle for each angular

momentum quantum number L. The maximum allowed values of angular

momentum for our theory is limited by the size of the particle and the res-

olution of the real space image reconstruction, as discussed in chapter two.

However if the particle under study has symmetry, so does the diffraction

volume; we showed our ability to reconstruct 3D diffraction volumes and to

recover the real space 3D electron density distribution of the molecule.
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We mainly applied our method for solving virus structure since most of

the virus structures have known symmetries. Viruses tend to have efficient

designs to form protein coats with limited amount of genetic materials so

that protein coats can be self assembled. As per Caspar and Klug [2] viruses

tend to be primarily icosahedral (satellite tobacco mosaic virus (STNV) or

chlorella virus (PBCV)) or helical (tobacco mosaic virus (TMV)).

We developed a test based on angular correlation to predict whether a

virus is icosahedral or not. For icosahedral virus, the extracted quadratic

function of expansion coefficients only survives for certain L values due to

the point group symmetry of icosahedral particle. This selection rule in

the radial quadratic function is a test to tell whether the set of diffraction

patterns collected from a diffract-and-destroy XFEL experiment is primarily

from an icosahedral molecule.

The intensity distribution of an icosahedral particle may be expanded

in terms of icosahedral harmonics which is an azimuthal quantum number

weighted linear combination of real spherical harmonics (details in chapter

three) rather than expanding with usual spherical harmonics. Since for each

value of the angular momentum quantum number L, the azimuthal sum of

the square of the weights is unity (equation 3.7). So the azimuthal summation

disappears in the radial quadratic function BL(q, q) of expansion coefficients.

Hence the magnitudes of the expansion coefficients can simply be obtained

by taking square roots of BL(q, q)’s and sign can be determined via a mini-

mization method. It is important to mention here that icosahedral harmonics
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are non degenearte upto Lmax = 28 which limits our resolution with our cur-

rent method for real space image reconstruction in addition to the size of the

particle. With all those contraints, we reconstructed the real space image

of satellite tobacco necrosis virus (STNV) using 10, 000 simulated diffraction

patterns [3] upto a resolution of 13 A0 and the reconstructed image fits nicely

with the model from the Protein Data Bank (PDB) coordinates as shown in

figure (3.13).

So far fiber diffraction is the primary method for solving some of the

helical structures in nature such as DNA or some of the helical viruses (such

as 2TMV) where the helices need to be lined up along a uniaxial direction.

However we have shown that a fiber diffraction pattern can be recovered from

single particle XFEL diffract and destroy experiments [9] as highlighted as a

Synopsis in Physics [18]: “No Need to Line Up”. 2TMV consists of roughly

44 periodic c repeat units along the Z direction. X-ray scattering from an

ensemble of such a periodic 2TMV uniaxial bundle (or fiber) gives rise layer

lines in fiber diffraction pattern.

The natural selection of coordinate system for the expansion of layer line

intensity should be cylindrical using cylindrical harmonics [13] as in the CCV

theory [5]. In this work (chapter four) we have demonstrated that intensity

distribution of 2TMV for q-th resolution ring may be expanded in terms of

spherical harmonics and an orientationally independent quadratic function

of expansion coefficients may be recovered from XFEL diffract and destroy

scattering experiment from uncrystalized particles from completely randomly
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oriented 2TMV helices thus obviating the need of uniaxial alignment. It

is important to mention here that for our reconstruction of the diffraction

volume the only allowed values of azimuthal quantum number M = 0 [9]

provided if we limit the value of angular momentum quantum number upto

Lmax = 48. This is a consequence of the 493 helix of 2TMV which gives

rise to the helix selection rule (equation 4.20; table 4.1). Once the radial

quadratic function of expansion coefficients is known (since M = 0 is the

only azimuthal quantum number; no summation over M), the magnitudes of

the expansion coefficients can be obtained by taking the square root of BL(q)s

and their phases can be recovered by the ring triple correlation function [26],

[9].

If the M = 0 term is the only allowed azimuthal quantum number and

Lmax = 48 for the reconstruction of diffraction volume and radius equals half

the length of c repeat unit (34.5 A0) along c axis and 100 A0 along the per-

pendicular direction of c axis; the resolution for our real space reconstruction

is 12 A0 (equation 4.29).
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