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Abstract. It is pointed out that real-space images recovered from LEED I/E data by the current
holographic reconstruction algorithm can contain strong artifacts which can be misinterpreted as
atomic images (‘ghost atoms’), thereby misguiding a subsequent structural refinement through
conventional LEED. We show that such ghost atoms can be avoided by using an alternative
approximation to the kernel in the reconstruction integral. This is demonstrated for both calculated
and experimental intensities of the structure considered, i.e. a (2 × 2) phase of 6H-SiC(0001̄). A
theory is also developed for a practical implementation of a more general kernel which fully takes
account of the scattering of an electron by the substrate atoms before its first encounter with the
adatom (beam splitter).

1. Holographic interpretation of LEED intensities

The holographic interpretation of low-energy electron diffraction (LEED) intensities was
originally proposed [1] to apply to diffuse LEED patterns arising from adatoms on surfaces,
regarded as beam splitters for the incoming electron beam and for the Bragg reflected waves due
to prior scattering of this wave from the substrate. In terms of the three-step model of diffuse
LEED [2], the reference wave, R, was regarded as the total outgoing wave from the adsorbate
after step 1 of the calculation. That outgoing wave consists of two parts: one (denoted by the
symbol R1) arising from the direct back-scattering of the incident wave by the adatom; and the
other (R2) that from the scattering by the same adatom of electrons previously back-scattered
from the substrate. In this picture, the object waves O are spherical waves emerging from
substrate atoms as a result of the subsequent scattering by the substrate of the composite wave
R (=R1 + R2) (corresponding to step 3 of the diffuse LEED picture).

If the adatoms form a lattice gas on the substrate, the resulting diffraction pattern may be
regarded as simply a more intense version of the interference pattern from a single adsorbate.
Representative scattering paths of the waves R1 and O due to a single adatom are shown as
solid lines in figure 1. A DLEED pattern is the result of the interference between electrons
travelling along a variety of scattering paths in the vicinity of the adsorbate. Consequently, it
is characteristic of the short-range order of atoms in the vicinity of the adsorbate. One aspect
of holographic LEED is at variance with the traditional view of a hologram as arising from
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Figure 1. The beam-splitter arrangement for holographic LEED and different types of scattering
process.

the interference between a known reference wave and an unknown object wave of arbitrary
complexity. It is the presence of the R2-term (whose scattering paths are represented by dashed
lines in figure 1) that might strongly disturb that simple picture. If R2 is considered a part of the
reference wave, the latter is not completely known; if the reference wave were considered to be
only the directly knowable R1-term, R2 would be essentially a nuisance term that disrupts the
holographic picture of an interference between the reference wave, R1, and the object wave, O.

The back-propagation picture [1] of holographic reconstruction gives a clue as to the
most appropriate grouping of terms. In this picture, the reconstruction process retraces the
paths of the electrons backward in time from the diffraction pattern (hologram) to the last
scatterer [3,4], which is the same (the adatom) for both quantities, R1 and R2. In contrast, the
object waves, O, may be regarded mainly as outgoing spherical waves from the last substrate
atoms in the scattering paths following the electrons’ last encounter with the adatom (in step 3
of the diffuse LEED picture [2]). A back-propagation image-reconstruction algorithm would
lead these paths back to the positions of these last scatterers, which include all the substrate
atoms, even in the presence of multiple scattering. This suggests that the idea of grouping R1

and R2 as components of a composite reference wave [1, 5] is likely to be a profitable one.
In this picture, the composite reference wave R (=R1 + R2) may be viewed as a sum of

spherical waves emerging from the adatom [1], just like a photoemitted wave in photoelectron
holography [6]. Consequently, it might be surmised that image-reconstruction algorithms
developed for photoelectron holography might be similarly successful for holographic LEED.
The most successful of these algorithms are applied to a set of photoelectron diffraction patterns
of different energies. They consist of three-dimensional phased Fourier-like transforms that
convert measured intensities in reciprocal space to real-space ‘images’ of the 3D configuration
of scattering atoms in the vicinity of the photoemitter [7–9].

Direct applications of such algorithms to LEED, however, are somewhat disappointing.
The characteristic perhaps most associated with holography in the popular view, a fully 3D
reconstructed image, does not usually result. The strongly forward-peaked nature of the direct
reference wave, R1, tends to preferentially reconstruct images of substrate atoms in the direction
of a forward-scattering cone from the adsorbate to the extent that it may drown out images of
the other atoms [10–12]. A solution to this problem was subsequently proposed [5], in which
a kernel is included in the image-reconstruction integral to compensate for the anisotropy
of the composite reference wave R1 + R2. The estimation of the anisotropy of the R1-term
is straightforward enough: it requires only an evaluation of the adsorbate atomic scattering
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factor. An exact estimation of R2, however, is essentially impossible at the outset since
the positions of the substrate atoms relative to the adatom are not known a priori (although
one could conceive of algorithms for iteratively improving an estimate of this quantity, as
discussed below). Nevertheless, quite a successful algorithm has been developed [5, 13], in
which the contribution of R2 in the kernel is approximated by a constant C, treated essentially
as a parameter to be varied until a full 3D picture of atomic arrangements is visible in the
reconstructed image.

For disordered adsorbates, this algorithm has been able to recover atomically well resolved
real-space images from a number of adsorbate systems [13,14]. More significantly, following
earlier ideas [15,16], the method has recently been extended [17,18,21] to the reconstruction
of real-space images of adsorbate systems from conventional LEED intensity-versus-energy
(I/E) curves of the superstructure Bragg spots that arise from an ordered overlayer of
different periodicity to the substrate. This extension of the scope of holographic LEED is
of considerable experimental advantage as most surface crystallography is still performed on
ordered surfaces, and since Bragg spot intensities are much easier to measure in practice than
weak diffuse LEED patterns. The idea exploited is the fact that the discrete intensities may
be viewed as sampling the diffuse LEED pattern of a corresponding disordered system [19].
It has been shown that a (3 × 3) adatom superstructure usually gives a sufficient Bragg spot
sampling density in reciprocal space to enable the recovery of the local atomic arrangements
around the adatom [20]. Under favourable circumstances even a (2 × 2) superstructure
can be sufficient [21]. The method was successfully applied to such cases of long-range
order [17, 21, 22] where clear atomically resolved images could be reconstructed which
have even enabled the determination of the crystallography of a previously unknown surface
structure [17, 18].

Given the complicated anisotropies and energy dependences of the reference and object
waves in holographic LEED, it is remarkable that the simplified kernel [5] in current use was
able to identify the adatom geometry even in so complicated a surface as SiC(111) (3 × 3),
information crucial for the solution of that structure [17]. We found subsequently that there is
at least one case where a false, or ‘ghost’ atom can appear on an image reconstructed by such
an algorithm on an axis through the reference atom perpendicular to the surface. This occurs
for the structure consisting of a (2 × 2)C silicon adatom layer on a 6H-SiC(0001̄) surface.
In section 2 we describe how the appearance of such a ghost atom had initially misguided
the analysis of this structure, which was subsequently determined by a conventional LEED
analysis [23]. In section 3 we revisit the arguments leading to this kernel, and derive a general
expression, valid in the limit of single scattering by the substrate atoms in each of the steps
1 and 3 of a diffuse LEED calculation. We find that one set of approximations to this more
general expression leads to the simplified kernel K1 used up to the present. An alternative set
of (equally arguable) approximations leads to a new practical kernel K2. In section 4 we show
that use of the new kernel K2 enables the elimination of the ghost atoms discussed above from
images reconstructed from both calculated model intensities and experimental data. Section 5
contains a discussion and conclusions.

2. Ghost atoms in reconstructed images of 6H-SiC(0001̄)-(2 × 2)C

Surfaces of silicon carbide are currently under investigation in our laboratory as this material
offers a high potential for technical applications due to its unique electronic properties [24].
In the course of an investigation of the atomic structure of different phases on 6H-SiC(0001̄)
by quantitative LEED, we focused on a (2 × 2)C phase with approximately bulk-like surface
stoichiometry as monitored by Auger electron spectroscopy (AES). The index C is used to
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distinguish the present phase from a different, silicon-rich (2 × 2)Si phase [25]. The left
panel of figure 2 displays the LEED pattern for normal incidence of the primary beam at an
electron energy of 95 eV. Scanning tunnelling microscopy (STM) measurements (see the right
panel of figure 2) reveal a true (2 × 2) surface periodicity in contrast to a mixture of mutually
rotated (2 × 1) domains also consistent with the observed LEED pattern. From both filled-
and empty-state STM images we can conclude that each (2 × 2) unit cell contains only one
protruding surface atom. This is also supported by the undistorted geometry in the vicinity
of point defects and antiphase domain boundaries indicated by the circle and line inserts in
figure 2, respectively.

Figure 2. A LEED pattern at 95 eV (left) and a STM image for −2.75 V (right) for the (2 × 2)C
phase of 6H-SiC(0001̄).

The presence of a single protruding atom per unit cell is a prerequisite for the application
of holographic LEED, as this atom can act as a well defined microscopic beam splitter for
the incoming electron wave. So, the present case seemed to be a promising candidate for a
successful application of the method. Intensity-versus-energy spectra, I (E), of five half-order
spots (( 1

2 0), ( 1
2

1
2 ), (1 1

2 ), ( 3
2 0), ( 3

2
1
2 )) were recorded using a computer-controlled video-LEED

system [26]. They cover an energy range from at least 34 eV up to 349 eV, depending on
the Bragg spot. It should be mentioned that though the sample exhibits threefold rotational
symmetry (including one mirror plane), the LEED pattern is of sixfold symmetry. This is
due to the presence of equally weighted domains of different surface terminations of the
hexagonal 6H polytype which are rotated by 60◦ with respect to each other. Of course, this
superposition of intensities stemming from different domains leaves the successful application
of the reconstruction algorithm to some extent uncertain. In addition, the (2 × 2) periodicity
represents—due to the low density of sampling points—a lower limit for a reliable image
reconstruction.

The reconstruction was performed using the ‘compensated object and reference wave
reconstruction by an energy-dependent Cartesian transform’ algorithm (CORRECT) [5, 13].
The real-space image |A(�r)|2 in the vicinity of the beam splitter located at the origin �r = �0 is
given by

A(�r) =
∫

K(�k, �r)H(�k)e−i(kr−�k·�r) d�k (1)

with �k and H(�k) the wave vector and intensity of the measured electrons, respectively. The
reader should note that due to the sampling of intensities at discrete Bragg spot positions �k‖
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and energies

E =
√

�k2
‖ + k2

⊥

the integral in equation (1) is a (discrete) summation rather than a (continuous) integration.
One of the functions of the kernel K(�k, �r) in (1) is to correct for the anisotropic scattering
by the beam splitter [5], without which only atoms within the forward-scattering cone of the
incident wave would show up [10]. The approximate form of the kernel used up to the present
has been

K1(�k, �r) = r

fb(�k0, �r) + C
(2)

with fb(�k0, �r) the scattering factor of the beam-splitting atom and �k0 the wave vector of the
incident electrons. The quantity C was taken to represent the amplitude of the zeroth-order
approximation to the scattering by the substrate before a final scattering by the adsorbate (beam
splitter) [5]. In applications up to the present, this has been taken to be a free parameter, to be
optimized to retrieve clear images of atoms outside the forward-scattering cone of the beam
splitter [27].

The image resulting from the application of the algorithm (1) to measured LEED intensities
of energy range 106–349 eV from a 6H-SiC(0001̄)-(2 × 2)C surface is shown in perspective in
figure 3. Image intensities on a spatial grid of positions separated by 0.15 Å are represented by
small spheres whose diameters and shadings are proportional to those intensities. The whole
image covers a cylinder of depth 5.0 Å and radius r‖ = 2.7 Å both of which restrict the size of
the image to being smaller than the maximum calculable from the finite sampling in reciprocal
space [21]. The optimized kernel constant used in this calculation was C = 1.4 Å. Image
noise, i.e. intensities below 30% of the maximum in the present case, was not plotted. Due
to the slight silicon enrichment at the surface of the present sample, it was surmised that the
beam-splitter atom in this case was Si. Yet, using the scattering factor, fb(�k0, �r), of carbon
rather than that of silicon in the integral kernel did not significantly modify the result, as the
angular shape of f is not very atom specific.

As expected from the LEED pattern, the real-space image exhibits sixfold rotational
symmetry. Obviously, the above-mentioned coexistence of domains of different orientation
does not destroy the image but leads to a superposition of images from the two domains, i.e. the
hexagonal ring of atoms (labelled 1 at depth z = −1.1 Å in figure 3) must be interpreted as
the superposition of the images from two trimers rotated by 60◦ with respect to each other, as
indicated by the lines inserted. Consequently, we interpret the local atomic cluster from either
domain as consisting of the beam-splitting atom (not shown) supported by a trimer of substrate
atoms (1). This in turn is above another atom at depth z = −1.9 Å (labelled (2) in the figure)
followed by a further on-axis atom at depth z = −4.2 Å (labelled (3)).

In order to refine the coordinates of the atom positions recovered by this process, and to
retrieve the remaining atoms within the unit cell not detected by the holographic reconstruction,
a conventional LEED intensity analysis was performed, using standard full dynamical computer
programs [28,29] as well as those employing the perturbation scheme, tensor-LEED [30,31].
Knowing from STM that there is a single protruding atom per (2 × 2) surface unit cell, and
not fully trusting the above image reconstruction, we tried different high-symmetry sites for
that adatom, i.e., sites T1, H3 and T4, displayed in figure 4(a). In the T1 configuration, the
adatom is onefold coordinated and resides on top (T) of a first-layer carbon atom. In the H3

site, it occupies a threefold-coordinated hollow site (H). The T4 site is characterized by the
adatom being threefold coordinated to carbon atoms below and to the next-layer silicon atom
on top (T) of which it resides, resulting effectively in a fourfold coordination. Obviously, this
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Figure 3. A real-space image obtained from holographic reconstruction of measured data for
6H-SiC(0001̄)-(2 × 2)C. See the text for more details.

Figure 4. (a) Possible high-symmetry adsorption sites on the hexagonal surface of SiC shown in
a top view and a side-view projection along the [112̄0] direction. Adatoms are displayed as white
circles. (b) A side-view projection along [112̄0] of the three different surface stacking terminations
S1, S2 and S3 of the 6H polytype. See the text for more details.

site corresponds best to the atomic cluster reconstructed holographically above. In both the
T1 and H3 configurations, atoms directly below the adatom are rather distant, contrary to the
indication in the reconstructed image.
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In addition to the different sites mentioned, the analysis had to consider different possible
surface terminations of the 6H polytype. These are denoted by S1, S2 and S3 where the
indices refer to the number of identically oriented (i.e. linearly stacked) SiC bilayers below
the surface, as indicated in figure 4(b). Each termination appears in two equally probable
orientations, mutually rotated by 60◦, as indicated by the shaded areas. All three stacking
sequences, and their respective domain weights, as well as the different sites of the adatoms
and their chemical identity (silicon or carbon) were tested in the course of the LEED analysis.
Surprisingly, in view of the indication of a T4-type atomic cluster from the holographic analysis
above, and the fact that the T4 silicon-adatom configuration has been found for e.g. the
(
√

3 × √
3) phase of 4H-SiC(0001) both experimentally [32] and by density functional theory

(DFT) calculations [33, 34], the T4 configuration failed to produce a satisfactory fit to the
experimental LEED intensity-versus-energy (I/E) spectra. Instead, the best fit with a Pendry
R-factor [35] of RP = 0.20 was found for a silicon adatom in an H3 geometry on a dominantly
S1-terminated surface, as displayed in figure 5 in top (upper panel) and side views (lower
panel). More details of the structure determination and the precise structural parameters are
given elsewhere [23].

Figure 5. The best-fit structure model of the (2 × 2)C phase on 6H-SiC(0001̄) in a top view (upper
panel) and side view (lower panel). Both panels depict the dominant S1 surface termination.

(This figure is in colour only in the electronic version, see www.iop.org)

Obviously, the adatom geometry obtained by conventional LEED is in clear conflict with
the holographically reconstructed image. The latter suggests the presence of an atom about
z = −2.0 Å below the beam-splitting adatom. As this atom is missing in the structure reliably
determined by conventional LEED, it must be an artifact of the image reconstruction, a ghost
atom. In other words, the reconstruction procedure described and used above is not fully
reliable, and a re-examination is necessary. This is described in the next section.
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3. Development of an improved integral kernel

The basic processes forming the superstructure diffraction spots were already illustrated in
figure 1. The complex amplitude in the direction of the detected wave vector �k of the part of
the reference wave due to direct back-scattering from the adatom is denoted by R1(�k), that
(whose scattering paths are denoted by dashed lines in the same figure) from scattering by
substrate atoms prior to its scattering by the adatom is defined as R2(�k) and O(�k, �r) is the
object wave due to single scattering of the total reference wave by a substrate atom at position
�r relative to the adsorbate. Of course, all these quantities depend also on the wave vector �k0

of the incident beam, but for the sake of clarity, we omit this dependence for the moment.
The combined reference wave may be written as

R(�k) = R1(�k) + R2(�k). (3)

where

R2(�k) =
∫

d�r ρ(�k, �r)n(�r). (4)

ρ(�k, �r) is the contribution to R2 from scattering by a substrate atom at an arbitrary position �r
(neglecting multiple scattering within the substrate) and n(�r) is defined as the distribution of
atoms within the substrate (the quantity to be determined) [36–38].

The intensity formed by the interference of the reference and object waves is

I (�k) =
∣∣∣∣R(�k) +

∫
d�r O(�k, �r)n(�r)

∣∣∣∣
2

. (5)

Subtracting from the intensity I the term in (5) depending solely on the reference wave
R, we may define an ‘interference function’, H(�k), by

H(�k) ≡ I (�k) − ∣∣R(�k)
∣∣2 =

∫
d�r M(�k, �r)n(�r) (6)

with

M(�k, �r) =
[
R∗(�k)O(�k, �r) + c.c.

]
+ O∗(�k, �r)

∫
d �r ′ n(�r ′)O(�k, �r ′) (7)

where the term within the square brackets represents an ‘elementary hologram’ [36] and the
last term the one involving products of elementary object waves that is usually neglected in
holography. (The symbol c.c. denotes the complex conjugate of the term preceding it.)

Even if the quantity R on the LHS is replaced by the so-called ‘direct’ reference wave
R1, equation (6) is a non-linear equation for the unknown atom distribution n(�r). Iterative
procedures for solving equations of such a form have been developed for photoelectron
holography [37, 38] and protein crystallography [39, 40]. We will explore the application
of similar algorithms in future work (complicated by the fact that the quantity |R|2 on the LHS
of (6) is itself a non-linear function of n through R2). Here, we make two approximations:
(a) we replace R(�k) on the LHS of (6) by the directly calculable quantity R1(�k) (so making
H(�k) = I (�k)−|R1(�k)|2 a known signal) and (b) we make the usual holographic approximation
of neglecting the quadratic object wave terms in (7). With these approximations, equation (6)
reduces to a linear Fredholm integral equation of the first kind [41], if the quantity M(�k, �r)
is assumed known. Formally, it may be solved by multiplication with an auxiliary function
Q(�k, �r) and subsequent integration over the whole of k-space, i.e.∫

d�k Q(�k, �r)H(�k) =
∫

d �r ′ n(�r ′)
∫

d�k Q(�k, �r)M(�k, �r ′).
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This leads to

n(�r) =
∫

d�k Q(�k, �r)H(�k) (8)

provided that Q(�k, �r) satisfies the condition∫
d�k Q(�k, �r)M(�k, �r ′) = δ(�r − �r ′). (9)

With the above approximations, the function M(�k, �r) may be written as follows:

M(�k, �r) =
[
R∗

1(
�k) +

∫
d �r ′ n(�r ′)ρ∗(�k, �r ′)

]
O(�k, �r) + c.c. (10)

The presence of the function n in (10) violates the Fredholm requirement that M(�k, �r) be
completely known. Nevertheless, as we see below, in a full application of this algorithm we
take n in M to be that found from an earlier iteration in practice. The same holds for the
interference function H(�k) itself, as it results by subtraction of |R(�k)|2 from the measured
intensity I (�k). Effectively, this does make (6) the said linear Fredholm equation at each
iteration.

In order to find a practical auxiliary function Q(�k, �r), we take

R1(�k) = fb(�k0, �k) (11)

ρ(�k, �r) = fs(�k0, −�r)fb(−�r, �k)
ei(kr+�k0·�r)

r
(12)

and

O(�k, �r) = fb(�k0, �r)fs(�r, �k)
ei(kr−�k·�r)

r
(13)

where the expressions for ρ and O account only for single scattering by the substrate. In the
above, the atomic scattering factors fb,s are those of the (adatom) beam splitter (b) or substrate
atoms (s). The scattering factors are functions of the electron energy and the scattering angle
through the well known expression

f (�k, �k′) = 1

k

∑
l

(2l + 1)eiδl (k) sin δl(k)Pl(�̂k · �̂k′)

where δl(k) and �̂k · �̂k′ denote the scattering phase shifts and the cosine of the scattering angle,
respectively.

The stationary-phase argument [3, 42, 43] suggests that the auxiliary function may be
approximated by

Q(�k, �r) =
[
R∗(�k)O(�k, �r)

]−1
.

Substituting from (3), (4), (11), (12) and (13), this can be written explicitly as

Q(�k, �r) = re−i(kr−�k·�r)[
f ∗

b (�k0, �k) + R∗
2(

�k)
]
fb(�k0, �r)fs(�r, �k)

(14)

with

R2(�k) =
∫

d �r ′ n(�r ′)fs(�k0, −�r ′)fb(−�r ′, �k)
ei(kr ′+�k0· �r ′)

r ′ . (15)
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This suggests a reconstruction algorithm:

n(�r) =
∫

d�k K(�k, �r)e−i(kr−�k·�r)H(�k)

with a kernel

K(�k, �r) = r[
fb(�k0, �r) + C(�k)

]
f ∗

b ( �k0, �k)fs(�r, �k)
(16)

where

C(�k) = R∗
2(

�k)fb(�k0, �r)/f ∗
b ( �k0, �k). (17)

Since the expression (17) for C(�k) contains the quantity R2(�k), which involves an integral
over the very distribution (n(�r)) sought, it can only strictly be evaluated by some sort of iterative
scheme in which a first estimate of n(�r) is substituted back into (15) and the procedure iterated
to self-consistency.

This was avoided in our earlier approximation to the kernel (2) by replacing C(�k) by
an adjustable constant parameter. That kernel also neglected the (relatively small) angular
variations of the back-scattering factors f ∗

b ( �k0, �k) and fs(�r, �k) in (17) by treating them as
constants. The approximation to the kernel (16) employed in the work described in the next
section retains the explicit forms of these scattering factors, but avoids the integral in (15) by
neglecting altogether the term C(�k). That is, our present approximation to K is

K2(�k, �r) = r

fb(�k0, �r)f ∗
b ( �k0, �k)fs(�r, �k)

. (18)

Ultimately, of course, the correct procedure would be to develop an iterative algorithm
(which may be an order of magnitude more time consuming) to properly evaluate K (and H )
from (16), (17), (4) and (12). The expressions (2) and (18) are both approximations to the full
kernel which avoid the self-consistency iterations. The main purpose of the present paper is to
point out that the problem we have encountered with the approximation K1 in the occasional
generation of a ghost atom on the high-symmetry axis directly below the adatom beam splitter
may be overcome with the use of the alternative approximation K2.

4. Elimination of the ghost atom

In this section we test our new kernel (18) above, and demonstrate that it enables the
reconstruction of reliable real-space images without the appearance of a ghost atom. As a first
step, reconstructions were performed using calculated intensities of the 6H-SiC(0001̄)-(2 × 2)C

best-fit structural model. In order to avoid running into possible difficulties arising from
different domains and surface terminations, we applied the algorithm to each of the terminations
S1, S2, S3 separately. The intensities were calculated for single Si domains (which give rise
to a threefold-symmetric diffraction patterns), and also mixed with those from the rotated S∗

i

domain (to give a sixfold-symmetric patterns). The data from I/E curves of a total of 13
beams (for a single domain) were taken as input to the reconstruction algorithm.

The resulting real-space images of the S1 and S2 surface terminations are displayed
in figure 6 and figure 7, respectively, where the left- and right-hand panels correspond to
reconstructions from the corresponding single-domain threefold-symmetric and the mixed-
domain sixfold-symmetric data, respectively. (The results for the S3 termination are not shown,
as the local adatom geometry is not much different from that of the S2 termination.) All images
span a cylinder of radius 2.0 Å and depth 7.0 Å below the beam splitter. The scattering factors
of both the adatom and substrate atoms were taken to be those of Si.
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Figure 6. Atomic images reconstructed from calculated intensities of the S1 surface termination of
the 6H-SiC(0001̄)-(2 × 2)C best-fit structure model. The left (right) panel correspond to threefold-
symmetric (sixfold-symmetric) data. The electron energy range of the data used is 129–351 eV;
the noise level below which image signals are cut off is 20% of the maximum.

Figure 7. As figure 6, but for the S2 surface termination.

Clearly, the images allow for an unambiguous identification of the H3 hollow site from
either the single-domain threefold data or the mixed-domain sixfold data. The ghost atom
from the use of the previous integral kernel is totally absent, with no remaining image artifact,
and no appearance of any new ghost atom. The different local adatom geometries for the S1

and S2 terminations are clearly retrieved, with the use of an integral kernel devoid of a free
parameter like the quantity C of the previous kernel (2). Once again, no carbon atoms show up
in the images due to their weak scattering compared to silicon. This is independent of whether
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Si or C scattering factors are used for those of the beam splitter or substrate atoms.
The positions of all atomic images are accurate to within 0.3 Å, as judged from the result

of the conventional analysis [23]. This is remarkable in view of the strong buckling (of up
to 0.22 Å), within the topmost two SiC bilayers, since deviations from bulk-like positions in
the substrate contribute intensity to fractional-order spots or, viewing it another way, act as
additional beam splitters [21]. Apparently, in our case the buckling of substrate atoms does
not seriously affect the recovered image, presumably because its contributions to the LEED
intensities do not match the phase factors in the reconstruction integral (16) giving rise to the
above-mentioned stationary-phase conditions.

We also applied the new integral kernel to experimental data. Compared to the calculated
data, the experimental data set is considerably smaller in size in respect of the number of
fractional-order spots as well as the total energy range. Nevertheless, the same clear atomic
image results, as demonstrated in figure 8. Also, the atomic positions are retrieved with the
same accuracy, i.e., less than about 0.3 Å from the true positions.

Figure 8. A real-space image reconstructed from experimental data for the 6H-SiC(0001̄)-(2×2)C
surface phase. The electron energy range of the data used is 135–349 eV; the noise level is 15%.

5. Discussion and conclusions

The method of directly recovering from a set of LEED I/E data a 3D image of the local atom
arrangements in the vicinity of an adatom on a surface by means of a holographic algorithm
has had spectacular success recently in helping to solve the structure of SiC(111)-(3 × 3) that
may have offered great resistance to conventional LEED analysis due to the complexity of its
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surface reconstruction [17,18]. When applied to the (2×2)C phase of 6H-SiC(0001̄), however,
which also contains a single adatom per surface unit cell, as revealed by scanning tunnelling
microscopy, the same holographic algorithm reconstructs a false (or ‘ghost’) atom image on
the high-symmetry axis perpendicular to the surface and directly below the adatom (although
the positions of other nearby atoms are correctly reproduced).

In an attempt to ascertain the causation of this ghost atom, we re-examined the current
theory of holographic LEED. Our conclusion is that although the general framework of the
‘compensated object and reference wave reconstruction by an energy-dependent Cartesian
transform’ (or CORRECT) theory remains valid, an alternative approximation to the kernel
included in the reconstruction integral appears to improve the computed images, with an
elimination of the ghost image, and with nearby atom positions determined to a high degree
of accuracy.

We also suggest a practical method of calculating an even more accurate kernel, based
on an iterative procedure. The scattering of an incident electron by the substrate prior to its
first encounter with the adatom is correctly treated to the order of single scattering by the
substrate atoms. The main consequence is the discovery of a practical method of computing
the term denoted by the symbol C in the previous version of the kernel, where that quantity
was treated essentially as a constant adjustable parameter. The method that we propose for
the calculation of this quantity depends on a prior calculation of an atom distribution function
n by the approximate algorithm of this paper (where R2 and so C are set to zero). The
distribution n from that first iteration is then used to estimate the quantity R2 (and so calculate
C and modify H ), which quantifies the effect of the prior substrate scattering for the next
iteration of the algorithm. It is proposed that the iterations be repeated to self-consistency of
the distribution n.
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