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We examine the theory of electron holography with atomic electron sources and its potential for local
crystallography. We simulate electron diffraction pattern by full multiple-scattering cluster calculations
and examine the nature of the reconstructed images. We draw attention to the power of the zone-plate
model of holography for understanding the results, and in particular to the optimal reconstructing prop-
erties of the Gabor zone plate, which in turn suggests the form of an optimal reconstruction algorithm.

I. INTRODUCTION

Considerable excitement has been generated recently
by the infusion of holographic ideas! ~2 for the interpreta-
tion of diffuse electron diffraction patterns of various
kinds. The prospect has arisen of dispensing with the
need for the time-consuming trial-and-error fitting of cal-
culated diffraction patterns to experimentally measured
ones for the extraction of atomic structural information.
It has been suggested that the principle of holographic
reconstruction* may form the basis of an elegant direct
method of structure determination. Accordingly we term
the technique “holographic crystallography.” The first
experimental demonstration of such ideas was reported
recently by us in the cases of reflection Kikuchi patterns®
and Auger emission patterns® from Cu(100) and Cu(111)
surfaces. Similar results were subsequently obtained by
Wei, Zhao, and Tong”® from calculated photoelectron
diffraction patterns from Co/Cu(111) and hecp Co(0001)
surfaces, respectively.

In the holographic interpretation of such diffraction
patterns, reference waves are generated in the vicinity of
individual atoms, and object waves arise from the scatter-
ing of this radiation by other atoms close to the reference
wave sources. Fraunhofer holograms are formed and
recorded in the far field in the form of a diffuse diffraction
pattern. In many respects, however, atoms are quite un-
like the objects whose images are formed in conventional
optical holography. Atoms are not merely amplitude-
reflecting objects for electrons—they also affect the
phases of the scattered waves and, for electron energies
greater than about 500 eV, are highly nonisotropic
scatterers. These facts have profound implications for
the forms of the reconstructed atomic images. In the
“forward-scattering” geometry the scattering objects are
found close to the direct path between the source and the
detector, and the form of the diffraction pattern is greatly
influenced by the strongly forward-peaked nature of the
atomic scattering factors for electrons of medium energy
(~1000 eV) and is little affected by atomic back-
scattering processes. In order to perform the holographic
reconstruction step by computer, Barton? proposed a
Fourier transform algorithm based on the Helmholtz-
Kirchhoff integral. When such an algorithm is used for
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forward-scattering diffraction patterns we found>® that
the images of atoms appear ellipsoidal, with their major
axes oriented along the forward-scattering direction.>$
The appearance of forward-scattering diffraction patterns
is often dominated by features (the forward-scattering
peaks) arising from the forward-peaked nature of the
atomic scattering factors, but the holographic informa-
tion resides in diffraction fringes, which are spread over
large areas of the diffraction pattern. The forward-
scattering peaks themselves, so useful in the identification
of the directions of atomic chains, turn out to be the
cause of identifiable interatomic artifacts on reconstruct-
ed images.’

When single scattering dominates in the forward-
scattering geometry, as in the case of photoelectron
diffraction due to electrons emitted from an atom in a
molecule adsorbed on a surface, or from atoms in an ul-
trathin film, the phase and amplitude variations of the
atomic scattering factors cause the atom images to be
shifted further away from the emitter atom than the true
positions of the scattering atoms. In order to correct for
such atom shifts, and to improve the resolution of the
atomic images, more sophisticated reconstruction algo-
rithms have been suggested by Tong et al.'® and by our-
selves.!! Both these schemes seek to correct the holo-
grams for the angular variation of the phases and ampli-
tudes of the atomic scattering factors. We present here a
critical comparison of the two schemes. When multiple-
scattering acts so as to reduce the dominance of the
forward-scattering peaks, the Helmholtz-Kirchhoff
scheme? is found to be adequate.

In contrast to the forward-scattering geometry dis-
cussed above, we refer to a configuration in which the
scattering objects are further from the measured
diffraction pattern than the source, as the back-
scattering geometry.” An example of such a geometry is
that in which an adsorbate atom on a surface is a source
of electrons. The resulting diffraction pattern is dominat-
ed by the interference between the direct wave from the
source and back-scattered waves from its nearby substrate
atoms. Although the small momentum transfer associat-
ed with forward-scattering events results in temperature
having relatively little influence on diffraction patterns
from such a geometry, “back-scattering” diffraction pat-

2480 ©1991 The American Physical Society



4“4 THEORETICAL PRINCIPLES OF HOLOGRAPHIC CRYSTALLOGRAPHY

terns are greatly affected by the sample’s temperature due
to the greater effect of the Debye-Waller factor for high-
momentum transfers. Thus we find that although signal-
to-noise problems may seriously hinder the measurement
of holographic fringes on back-scattering patterns due to
medium-energy electrons at room temperature, such
measurements may become very feasible near liquid-
nitrogen temperatures. Although the back-scattering
part of atomic scattering factors of electrons of such en-
ergies show much less angular variation, our new recon-
struction algorithm!! is found to improve the accuracy of
the determination of the atom centers in the back-
scattering geometry also.

The work presented here is essentially theoretical, al-
though comparisons with experimental results is made
where appropriate. Diffraction patterns are calculated by
a full multiple-scattering cluster scheme,'? developed
originally for low-energy electron diffraction (LEED).
The lack of any assumption of long-range order enables
us to examine the effects of the presence or absence of in-
dividual atoms or groups of atoms, allowing an isolation
of the effects of particular scattering paths. We find that
considerable insight into the nature of the holographic
processes may be gained by an analysis of very small
atomic clusters.

II. THE CALCULATION
OF THE DIFFRACTION PATTERNS

The form of a diffraction pattern due to the emission of
electrons from atomic sources is determined largely by
the interference between the directly emitted electrons
and those scattered by nearby atoms. Since the latter
electrons may be multiply scattered by many of the near-
by atoms, an adequate theory needs to take this into ac-
count. An approach to the calculation angle-resolved
photoemission intensities from an adsorbate on a surface
has been suggested by Liebsch.!®> The theory was extend-
ed by Davis and Kaplan'* and by Tong and co-
workers!> ¢ for core-level photoemission from substrate
atoms, with the multiple scattering of the emitted elec-
trons evaluated by calculating the scattering properties of
atomic layers parallel to a crystal surface, as in conven-
tional theories of LEED.!” A different approach has been
taken by Barton and Shirley!® and by Fritzsche!® in
which the near neighbors of the emitter are regarded as a
cluster of atoms, thus overcoming the restriction of long-
range two-dimensional order. In order to make the cal-
culations tractable, Barton and Shirley used the Taylor-
series magnetic-quantum-number expansion (TS-MQNE),
and Fritzsche the reduced-angular-momentum expansion
(RAME), both approximation schemes that restrict the
number of angular-momentum components of appropri-
ately rotated interatom electron propagators. Recently
Kaduwela, Friedman, and Fadley? have reported the de-
velopment of a similar computational scheme, which
takes account of a finite number of scattering events and
where the propagators took the form of the so-called se-
parable Green functions of Rehr and Albers.?!

In this paper we report the use of an exact multiple-
scattering scheme for the calculation of electron
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diffraction from a cluster surrounding an atom emitter, in
which the multiple-scattering paths are summed to
infinity. Our method is based on a division of the cluster
into a series of shells, and where the scattering paths are
classified as intrashell or intershell processes. Due to the
fact that, for medium-energy electrons in this geometry,
intershell scattering is likely to be much more significant
than its intrashell counterpart, such a decomposition of
multiple-scattering paths forms the basis of a practical al-
ternative computational scheme. Our method is some-
what similar to one employed for the calculation of x-
ray-absorption near-edge structure (XANES);*>2 and,
even more so, to a scheme developed by Pendry and Sal-
din for LEED.?*'2 A fuller account of our theory will be
given in a subsequent article. In this paper we consider
only the scattering from a single shell of atoms surround-
ing the emitter, when the theory takes on a particularly
simple form.

On a muffin-tin model, we can, in general, write the
wave function of monochromatic electrons emitted from
an atom as

W)= A, hiNkr)Y,, (), (1)

Lm

where [ is the angular momentum and m the magnetic
quantum number, k;!) a Hankel function, ¥;,, a spherical
harmonic, k the wave number of the electrons, and r a
position vector. After multiple scattering with the shell
of atoms surrounding the emitter, the outgoing wave
function may be written in the form

()=, Bppeh{D(kr) ¥y, d3) , V)
I',m'
where
B=A4(1-T o]L)_II 00 * (3)

In the above expressions, 4 and B are row vectors
formed from the elements A, and B,,, respectively;
T 50, and T (; are the “out-out” and “out-in” scattering
matrices?? of the shell of atoms surrounding the emitter,
and ¢t is the diagonal ¢ matrix of the emitter atom, whose

nonzero elements are given by

em’—l) ’ @

t=3(
where §, is the phase shift of the emitter atom of angular
momentum /. Note that equation (3) also takes account
of the subsequent scattering of the emitted electron by
the emitter atom.
With the asymptotic expansion of the Hankel func-
tions,
lim A{N(z)=(—i) Tz le® (5)

Z—> X

the diffraction amplitude in the far field may be written as

lpt(k)(x 2 Bl',m'( —i)llYI',m'(ﬁ) , (6)

Im'

where k is the local wave vector of the detected electron.
Since our aim is to analyze the holographic properties

of forward-scattering (or “forward-focusing”®~?’
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diffraction patterns, in this paper we consider only the
simplest type of emission source, namely, an s-wave emi-
tter, i.e., we take 4;,, =56,08,,0, and, with the exceptions
of Figs. 1(a) and 5, all the emitters and scatterers are as-
sumed to be copper atoms. Generalization to nonisotro-
pic emitters is straightforward, and will be considered in
a later publication. The angular-momentum expansions
of the atomic-scattering processes take into account
quantum numbers up to / =15, and the single-center ex-
pansions about the central atom are extended up to
I'=350. The calculations were tested for convergence
with respect to these parameters. The zero-temperature
phase shifts are corrected for finite temperatures by a
Debye-Waller factor!’ assuming a Debye temperature of
320 K and a sample temperature of 300 K, in all cases ex-
cept that of Fig. 12(b), which assumes a sample tempera-
ture of 100 K. For all the atomic clusters, we take into
account the full multiple scattering of the electrons be-
tween the source and all the scattering atoms. The
diffraction patterns are collected over polar angles rang-
ing from 0° to 70°. All the calculations assume an elec-
tron kinetic energy (outside the sample) of 914 eV, which
is the energy of Cu L¥VV Auger emission, and an inner
potential with real and imaginary parts of —15 and —4
eV, respectively.

ITI. THE GABOR ZONE PLATE
AND THE ATOMIC ZONE PLATE

Our atomic holograms are, as we suggested in our in-
troduction, of a rather unusual kind. We can understand
their properties better by comparing them with an optical
analogy. Consider a point source of light, which acts as a
reference wave, incident on a small reflecting object,
which we regard as an isotropic scatterer with a complex
scattering factor f =|flexp(id), which generates an ob-
ject wave. The interference pattern on a portion of a
spherical screen placed a great distance from the source
and scatterer will be symmetric about the axis joining
source and scatterer (which we term the principal axis).
Its intensity variation thus depends only on the polar an-
gle about this axis, and is represented by

H@)=1+|f|*/r3
+2| fleos[kry(1—cos8)+8]/r, , (7

where ry is the distance form the source to the scattering
object and 6 is a polar angle measuring from the line join-
ing the source and scatterer. The argument of the cosine
term arises from the path difference between the waves
forming the interference pattern. The appearance of such
a pattern, projected on a plane perpendicular to the prin-
cipal axis is shown in Fig. 1(a). For the purposes of the
simulation we have taken the wave number, k =8.2
(a.u)”), rp=4.82 a.u. (=2.55 A) for comparison with a
realistic simulation, which follows. For simplicity we
have taken | f|/ro=1 and §=0. Figure 1(a) shows all the
characteristics of an object well-known in optics, namely,
a zone plate, whose properties appear to have been first
noted by Rayleigh.?® Perhaps its best-known form is the
Fresnel zone plate, capable of being created by ruling a
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series of concentric opaque fringes of specified radii on an
otherwise transparent material. A beam of light, sym-
metric about the principal axis, incident on such an ob-
ject is capable of being brought to a series of foci along
the principal axis. The higher-order foci are due to the
need for several orders of Fourier coefficients to describe
the abrupt intensity variations of the Fresnel zone plate.?’
In this sense, the zone plate described by (7) is unique, in
that it is representable by just two Fourier coefficients,
from the decomposition of the cosine term in (7) into its
exponential components. Such an object is known as a
sinusoidal®® or Gabor® zone plate because its relation to
holography. Indeed, the so-called zone-plate model of
optical holography?>* regards a hologram of an extend-
ed object as being a superposition of individual Gabor
zone plates due to reflected light from each point on that
object. On reconstruction, each zone plate reconstructs
its corresponding object point, thus faithfully recreating

(a)

(b)

FIG. 1. (a) A Gabor zone plate, the forward-scattering
Fraunhofer diffraction pattern generated by a point source of
914-eV electrons and an isotropic scatterer of zero phase shift
2.55 A from the source. (b) An “atomic” zone plate from the
same configuration as (a) but with the isotropic scatterer re-
placed by a Cu atom. In (b) a very prominent forward-
scattering peak is observed with an extra fringe in the
diffraction pattern.
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the appearance of the extended object.

Thus, the diffraction pattern of Fig. 1(a) may be
thought of as the simplest conceivable hologram, and one
with ideal reconstruction properties. If a spherical wave
of the same wavelength as that used to generate the
diffraction pattern and convergent on the original radia-
tion source were incident from the convex side of our
hologram, it is brought to two foci in addition to its origi-
nal point of convergence. One of these will be the true
position of the original scattering object, and the other
the position of the twin image, equidistant from the
source on the other side of the principal axis. The sizes
of these foci will be determined by just the diffraction
limit, from Abbe’s theory of image resolution.’! All these
points are well illustrated by noting that the amplitude of
|
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the reconstructed image along the principal axis may be
found by rexpressing the Helmholtz-Kirchoff reconstruc-
tion algorithm:?

A(n)= [ H&exp(—ik-1)dk 8)

in spherical polars with the polar axis taken along the
principal axis. The resulting expression is

A(2)=—2n [ H(B)exp(—ikz cos)d (cos®) ,  (9)

which is the form of a one-dimensional Fourier trans-
form. The integral (9) may be performed analytically for
a diffraction pattern of the form (7),° and we find that the
reconstructed intensity I (z)=| 4 (z)|? takes the form

I(z)x(1—¢, )2([1+(f/Zo)2][Sin(KZ/2)/(KZ/2)]2+(f/20){Sin[K(Z —24)/2]/[K(z —z4)/2]}?
+(f /z0){sin[k(z +24) /2] /[k(z +24/2)1}?) , (10)

where
k=(1—c¢, )k (11)

and c,, =cosOp,,,, where 6, is the maximum polar angle
of the recorded hologram.

Thus we see that the intensity distribution along the
principal axis consists of three peaked sinc functions cen-
tered on z =0 and £z,. The first represents the focus of
the undiffracted spherical wave, the second the holo-
graphic reconstruction of the scattering object, and the
third that of the twin image. Since the amplitude terms
giving rise to each of the sinc functions above are local-
ized around different regions of the principal axis, we
have neglected the small terms due to their mutual in-
terference. Note that the phase shift, 8, of our point
scatterer does not appear in (10), indicating that there ex-
ists a whole family of Gabor zone plates, corresponding
to different values of 8 with identical holographic recon-
struction properties. If, as is customary, the normalized
function y=(H —Hy)/H, (where H is the mean value
of H) replaces H in (9), was the case for the function I(z)
shown in Fig. 3(a), which was numerically computed for
the diffraction pattern of Fig. 1(a), the peak at z =0 is el-
iminated. The width, Az, of the central peak of each of
the sinc functions in (10) is given by

Az=2m/k , (12)

which for the assumed values of k =8.2 (a.u.)”! and
Omax=70%1s 1.2 A, in good agreement with that observed
in Fig. 3(a). Note that « is equal to the range Ak, of the
values of the z component of the electron wave vector as-
sociated with the hologram, and thus the width of the
reconstructed images is determined by the Heisenberg
uncertainty relation. This is clearly the best that can be
achieved in any holographic reconstruction, and the Ga-
bor zone plate takes on the significance of being the holo-
gram capable of reconstructing the smallest diffraction-
limited spot image of a point object.

For the purpose of performing electron holography
with atomic scatterers, of course, it is necessary to re-
place the isotropic scattering factor, f, in the above for-
mulae with the atomic scattering factor, whose magni-
tude | f| and phase & are both functions of the scattering
angle 6. For illustration, we plot in Fig. 2 the magnitude
and phase of the “plane-wave” scattering factor

fO)=T34,Y;(6)Y,,(0). (13)
Im
of Cu for an electron energy of 914 eV. The correspond-

ing diffraction pattern from a point emitter of electrons
and a Cu atom placed at the same distance (2.55 A) from

—
o

Magnitude of Scattering Factor
=W OO N
Phase of Scattering Factor (rad)

o .
o

100
Angle of Scattering (deg)

FIG. 2. Plot of the “plane wave” atomic scattering factor
F(8), for 914-eV electrons and a Cu scatterer at 300 K. The
magnitude (a) shows the forward-scattering peak at 0° and very
weak scattering near 180°. The rapid variation of the phase,
arg[ f(6)], plotted in (b), causes a shift of the atom position in
the reconstruction.
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the source as in our previous simulation [Fig. 1(a)] is
shown in Fig. 1(b). Perhaps the most obvious difference
with Fig. 1(a) is the appearance of a relatively much
stronger central peak on the diffraction pattern. This is
associated with the strongly forward-peaked nature of the
electron scattering factors for atoms at such energies.
Also note the existence of one extra fringe over the polar
angle range 0-70°. This is a consequence of the angular
variation of the phase of the scattering factor. The
overall appearance of this diffraction pattern remains
somewhat similar to that of the Gabor zone plate, howev-
er, and we term it an “atomic zone plate.”
The so-called spherical-wave temperature-corrected

scattering factor is not very different from the plane wave

|
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form (13), and in the former case the following
parametrized forms were fitted’ by a least-squares pro-
cedure:

£ ()] = foe ~a1—c0) "
and

8(0)=B(1—cosd)+7v , (15)

where the values of a~25, y=1.8, =5, and fo=5au
were found. With this parametrized form, the recon-
structed image intensity along the principal axis can like-
wise be calculated analytically from (9).° The resulting
intensity takes the form

(16)

image peak from the atomic zone plate away from the
true atom position is by noting that the larger number of

s Fo (14 za(l_c”')—Ze_a“_c”')cos[k(l—cm)(z—-z,-)]}
o —
It z Zp a+k¥Hz—z;)?
fo (14e 7 2o ™) coslk (1—c,, Nz +2))1)
Zg a2+ kX z +z;)?
[
where
z;=zy+B/k an

and F(z) is a function centered on z =0. Equations (10)
and (16) are the same as those given in our other paper’
except that they have been generalized for arbitrary max-
imum polar angle of holographic data 6,,,. In view of
the high value of a the terms involving exponentials con-
taining this quantity in (16) are negligible. Also as before,
the quantity F(z) is largely removed if y replaces H in
(9), and (16) reduces to the sum of the two Lorentians:
1 1

I(2)= + . 18
S T T 18)

This intensity function peaks at z =xz;, which is dis-
placed further away from the emitter position than the
true atom center z, by B/k=0.3 A. Cons1dermg the
simplifications of our analytical model, this is in reason-
able agreement with the displacement observed on the
function [Fig. 3(b)] calculated numerically from the
diffraction data of Fig. 1(b). Also apparent from our
analytical model is that the width of the peaks is approxi-
mately 2a/k =3.2 A. This is in excellent agreement
with the peak width observed on Fig. 3(b). Note that for
the parameters chosen, the widths of these reconstructed
atomic peaks are determined not by the maximum data
collection angle 6,,,, but by the parameter a which
determines the angular width of the forward-scattering
peak. The reason, of course, is that the angular range of
useful data in this case is determined by the latter quanti-
ty rather than the former, since the amplitude of the
holographic fringes dies out over a much smaller angular
range than O,,,.

A physical way to understand the displacement of the

interference fringes in Fig. 1(b) compared with Fig. 1(a)
approximates a Gabor zone plate due to a scatterer fur-
ther away from the source. On the “forward-focusmg”
picture,? a scattering atom at such an energy is regarded
as an imperfect lens for an incident electron beam, bring-
ing it to a somewhat diffuse “focus™ on the far side of the
atom. The diffuse peak in the reconstructed intensity on
the far side of the atom seen on Fig. 3(b) appears to lend

™ T T T T T T T

(a)
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FIG. 3. Reconstructed images from the diffraction patterns
of Figs. 1(a) and 1(b) along the line between source and emitter.
(a) The Gabor zone plate reconstructs a narrow symmetric peak
at the correct position of 2.55 A (indicated by the vertical
dashed line). (b) The reconstructed image from the atomic zone
plate manifests a broader peak, moved to a position further
from the emitter.
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FIG. 4. Line diagram showing the positions of the 12
nearest-neighbors of an atom in the interior of a copper crystal.
The crystal is oriented with the (100) plane perpendicular to the
z axis. These atoms are labeled as referred to in the text.

support to such a view, since a holographic reconstruc-
tion process may be regarded as one which generates, in
part, the time reverse of the wave scattered by that atom.

In the following calculations we will study the
diffraction patterns of different subsets of the nearest
neighbors of a copper atom in a face-centered-cubic
copper crystal. To help visualize the geometry, we
present in Fig. 4 a line diagram of all the nearest neigh-
bors of an atom in the interior of the crystal. This crystal
is oriented with the (100) plane perpendicular to the z
axis. The following calculations will be for atoms in this
orientation, where the detector is a portion of a sphere, in
the half space of positive z, centered on the emitter, very
distant from it. We shall refer to the atoms A4,B,C,D, in
the half space of positive z, as being “‘above” the emitter
atom, the atoms E, F,. . . (negative z) as “below” the emi-

tter atom, and the atoms G,. . . (in the plane z =0) as “in
the plane of”’ the emitter atom.

IV. THE FORWARD-SCATTERING GEOMETRY

The diffraction pattern resulting from scattering from
the four Cu atoms, 4, B, C, and D, above the emitter is
considered next. In Fig. 5(a) we show the pattern arising
from isotropic scatterers, by setting to zero all the atomic
phase shifts except the one corresponding to an angular
momentum, [ =0. Note the prevalence of overlapping in-
terference fringes over the whole pattern. As we saw in
the case of the Gabor zone plate, above, this is the ideal
circumstance for good reconstructions of atomic posi-
tions, as shown in sections through the atoms parallel to
their plane [Fig. 5(b)] and perpendicular to this plane,
passing through atoms C, D, E, and F [Fig. 5(c)]. In Fig.
5(b), the crosses mark the positions of the atoms 4 and D
and the reconstructed atomic positions are seen to be
near perfect. In Fig. 5(c), crosses are placed at the posi-
tions of atoms D and E. The calculation had no atoms at
the positions E and F, and yet the reconstructed image
contains bright features at these positions. These are the
“twin images” of the atoms B and A4.»> The three-

dimensional images of the atoms are ellipsoidal rather

THEORETICAL PRINCIPLES OF HOLOGRAPHIC CRYSTALLOGRAPHY

2485

than spherical. This effect is a consequence of the uncer-
tainty principle:® the resolution parallel to a particular
direction in the image is proportional to the inverse of
the range of electron momenta associated with that direc-
tion in the hologram (i.e., Aa=2w/(k3*™*—k3"),

(a)

(b}

(c

FIG. 5. (a) The diffraction pattern of four isotropic scatterers
placed above the emitter. (b) and (c) contain sections of the
reconstructed image from (a). Section (b) contains the four
atoms 4, B, C, and D of Fig. 4, and crosses mark the positions
of atoms A and D. Section (¢) contains the atoms C and D, and
in the lower part of this section are the twin images of atoms B
and A, which are found at the positions of atoms E and F.

Crosses are placed at the positions of atoms D and E.
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a=x,y,z). Since our hologram is measured over a spher-
ical cap, the resolution parallel to the axis of the cap is
Az=27/[k(1—cos8)], while perpendicular to this direc-
tion, the resolution is Ax,Ay =27 /(2k sinf). Thus, the
resolution parallel to the axis of the cap is always poorer
than that perpendicular to this axis (in the cases here, by
about a factor of 3), giving the atoms an ellipsoidal shape.

The corresponding diffraction pattern for more realis-
tic atom scatterers, with their full scattering factors, is
shown in Fig. 6(a). This is a model of a diffraction pat-
tern due to Auger electrons emitted from atoms in the
subsurface layer of a two-monolayer thin film, since for-
ward scattering dominates the pattern. Note the prom-
inent forward-scattering peaks. The patterns also suggest
that the holographic fringes radiating from each
forward-focusing peak may lose visibility within a small
angle from those peaks. From the holographic point of
view, this implies that the relevant zone plate may have a
much smaller angular range, centered around the
forward-scattering direction. The corresponding sections
through the reconstructed images are shown in Figs. 6(b)
and 6(c).

In these reconstructed images we note several new
effects. First, the ellipsoidal shape of the atomic images
of Fig. 6(c) is exaggerated and the axis of the ellipsoid is
now oriented along the forward scattering direction.
Second, there are high-intensity artifacts shown near the
centers of Figs. 6(b) and 6(c). These effects have been
seen in reconstructed images from experimental
diffraction patters.>® Since it is well known that, at high
kinetic energies, only small-angle atomic scattering is im-
portant, this diffraction pattern is dominated by single
scattering, and therefore the origin of these effects is most
unlikely to be multiple scattering as such. Rather, the
cause is likely to be found in the peculiar form of the
high-energy atomic-scattering factors.

The tubular shape of the reconstructed atomic im-
ages™® is caused by the angular dependence of both the
magnitude and phase of the scattering factor of the atom
under study, as mentioned in our discussion of Fig. 3(b).
Because the fringe intensity is significant only over a nar-
row angular range, centered about the forward-scattering
direction, the relevant zone plates for the atoms are
effectively truncated at some maximum angle from this
direction. Applying the same resolution arguments as
above, we see that the atom image width will be a max-
imum parallel to the forward-scattering direction.

For comparison with the single-atom case in Fig. 3, we
plot in Fig. 7(a) the intensity along a straight line through
the position of the electron source and that of a scatter-
ing atom (say A of Fig. 4) on the reconstructed image.
We have termed the function represented by such a graph
a “radial image function,” or RIF for short. This RIF
looks similar to that of Fig. 3(b) except for the high-
intensity features at small radius, a particularly bright
feature occurring at 0.8 A. The origin of such a feature
has been observed to be associated with the forward-
scattering peaks on the diffraction patterns.’> We now
offer a physical explanation of this observation.

We have already seen that a Gabor zone plate is cap-
able of generating a sharp peak on a RIF. If the image
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artifact at » =0.8 A were due to some kind of artificial
Gabor zone plate on the diffraction pattern, then accord-
ing to (7) that zone plate must possess a bright fringe at
an angle of =60 away from the radial direction being
considered (assuming k =15.5 A ~! corresponding to an
energy of 914 eV), remembering that the =0 bright spot

(a)

(b)]

1 A A

(c)

FIG. 6. The diffraction pattern and reconstructed images for
copper atoms in the same geometry as for Fig. 5. The recon-
structed images of the atoms appear distorted and shifted to
larger distances from the emitter atom. Also seen are artifacts,
away from atom positions, due to the forward-scattering
features in the diffraction pattern.
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FIG. 7. Reconstructed intensity along the line joining the
emitter and atom A4: (a) for Fig. 6(a); (b) same as (a) but using a
new reconstruction technique, which deconvolves the phase the
scattering factor; (c) same as (b), but now deconvolving both the
magnitude and phase of the scattering factor. Curve (d) is the
reconstructed intensity along the line passing through atom E of
Fig. 4, for the back-scattering diffraction pattern of Fig. 12(b).

is assured in this case by the forward-scattering effect of a
real atom along the direction of our radial image function
(corresponding to a phase §=0). But 60° is precisely the
angle between the forward-scattering peak of the atom A4
and that of a neighboring scattering atom, such as B.
Thus, the forward-scattering peaks due to other atoms
may be considered to generate a crude pseudo-Gabor
zone plate centered on the forward-scattering direction of
atom a, to give rise to the artifact seen on the recon-
structed image.

At first sight, the above analogy with the Gabor zone
plate may sound somewhat farfetched in view of the
strong azimuthal variation, about the direction of the
RIF in question, of the intensity associated with the other
forward-scattering peaks on the diffraction pattern. That
this is not the case may be seen by realizing that the am-
plitude RIF in an arbitrary direction may be written as a
generalization of (9) if the polar axis is now taken along
that RIF:

A(2)=— [J(8)exp(—ikr cosf)d(cosh) , (19)

I(k)=constX [1+ 3 |f(y )72+
i

i

+ 3y )f (v jlexpl —ik (r;—r;)+ik-(r;—1;) ] /(r;7;)

i#*j

According to Barton’s? argument, the term linear in
S*(y;) gives rise to peaks in the reconstructed intensity
| 4(r)|> when r=r;, the true positions of the atom

centers, if the Helmholtz-Kirchoff algorithm (8) is em-
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where
J(&)= [H(6,4)d¢ . (20)

Thus the amplitude RIF, A4(z), can be written as a one-
dimensional Fourier transform of the azimuthally-
integrated polar angle variation of the holographic inten-
sity. Hence the azimuthal variation about the RIF direc-
tion is of no consequence for the form of the RIF, a fact
that emphasizes the utility to the zone-plate model above.

The realization that forward-scattering features on
diffraction patterns do not in themselves carry holo-
graphic information but that, on the contrary, they act to
degrade the crystallographic fidelity of the reconstructed
images suggests the possibility of a more sophisticated
reconstruction algorithm than (8), at least in the case
where the form of a diffraction pattern is due mainly to
single-scattering processes. We examine this possibility
in Sec. IVA. '

A. A deconvolution algorithm
for locating the atom centers

We have already noted that a Gabor zone plate recon-
structs the image of an atom much more faithfully than
the corresponding atomic zone plate. We see this ap-
parent shift even in the presence of many scattering
atoms (see Fig. 6). The question then arises whether, in
electron emission holography, it would be possible to re-
cover the optimal holographic properties of superposed
Gabor zone plates for the accurate reconstruction of true
atomic positions. A clue to such a scheme is found by
considering the kinematic expression for the intensity of
the diffraction pattern due to an s-wave emitter and
several scattering atoms, specified by the index i:

I(k)=constX |1+ 3 f(y;)expli(kr,—k-t)1/r; |?,

21
where
i =i;.?i . (22)

An equation of this form also holds when multiple
scattering is present if f () is generalized to take into ac-
count all scattering paths that end on the atom i.'® Ex-
panding the square, Eq. (21) may be written

S f*(y;)expli(k-r;—kr;)]/r;+c.c. ] cee

. (23)

ployed, by virtue of a stationary-phase condition. The
same argument suggests that the complex conjugate of
the above term in I (k) gives rise to a peak at the position

of the “twin” image r=—r,. This argument is based on
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the assumption that f(y;) and_its complex conjugate
vary much more slowly with k than the exponential
terms multiplying them in (23). Both arguments are ex-
act in the case of an isotropic scatterer [for which f(y;)
is a constant], which gives rise to superimposed Gabor
zone plates. When the angular dependence of f cannot
be neglected, the reconstructed image contains a com-
ponent that may be regarded as the convolution of the
true positions of the atomic cores with the Fourier trans-
form of the relevant atomic scattering factors. This sug-
gests the following deconvolution algorithm!! for extract-
ing the crystallographic information, namely the true po-
sitions of the atoms.

A= [[T&)/f*&D)]lexp(—ikk-n)dk . (24)

Substituting (23) into (24), we see that the expression for
A (r) contains the term
3 (1/r)exp(—ikr) [ [F*(k2)/F* (k7))
i
Xexp[ikk-(r;—r)]dk , (25

which recovers an exact stationary -phase condition for
the atom positions, precisely as in the case of the Gabor
zone plate. Note also that the division of I(k) by the
highly forward-peaked function f* also has the beneficial
effect of reducing the forward bias of the holographic
fringe distribution, increasing the effective angular range
of the holographic data and thereby improving image
resolution.

Another desirable byproduct of our deconvolution of
f* is that although the stationary-phase condition is
enhanced for the true atom image, it is diminished for the
twin. The only remaining practical question is the form
chosen for f. In the case where just a single layer of
atoms lie between source and emitter, we believe it is
reasonably well approximated by the expression for the
kinematic ‘“plane-wave” atomic scattering factor (13).
Using this form, we have implemented our deconvolution
algorithm (24) for image reconstruction. The results are
illustrated in Figures 7, 8, and 9. If we replace f* (%) in
(24), by exp{zarg[f*(k 7)1}, we “remove” only the
phases of the relevant (complex conjugate) atomic
scattering factors in (23). Figure 8 shows the resulting
image. The corresponding line plot is shown in Fig. 7(b).
In comparison with the reconstructed images in Fig. 6,
we see that the image peaks are moved back to the true
atom positions, and that the peak asymmetry and intera-
tomic artifacts are significantly reduced, especially in the
planar sections. However, there remains some asym-
metry of the atom images about the exact positions of the
atoms. Also, the twin images, visible in the lower part of
Fig. 8(b) are no longer symmetric with respect to the true
images. This is due to the fact that, at the positions of
the twins, the diffraction pattern is divided by the com-
plex exponential of the phase of the back-scattering, rath-
er than the forward-scattering factor.

In Fig. 9, we show the plane of constant z through the
atoms 4, B, C, and D in the image resulting from a full
implementation of our new algorithm (24). This results
in the “removal” of both the amplitude and phase of the
relevant atomic scattering factors in the single-scattering
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(a)

(b)

FIG. 8. The reconstructed intensity from the diffraction pat-
tern of Fig. 6(a) in (a) the ABCD plane, and (b) the CDEF plane
of Fig. 4 using the reconstruction scheme, which compensates
for the phase of the atomic scattering factor. The images are
shifted back to their true positions but still appear asymmetric.

FIG. 9. Same as Fig. 8(a), but here using the reconstruction
algorithm, which deconvolves the full atomic scattering factor
from the image.
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terms in (23). In this plane the atoms appear symmetric
and are so sharply peaked that they completely dominate
the artifacts near the z axis. The corresponding line plot
is shown in Fig. 7(c). Here too we see that the atom im-
age is symmetric, but because the forward-scattering
magnitude is large, division by this factor reduces the
peak height relative to images due to backscattering and
to the small radius artifacts. We have not shown the sec-
tion of constant x for this case because the part of the im-
age with negative z has been divided by the small back-
scattering amplitude and therefore dominates this sec-
tion.

At this point we would like to comment on the relative
merits of our modified reconstruction scheme and one
proposed recently by Tong et al.'® Both schemes address
the same problem, namely, an optimum extraction of
structural information from a diffraction pattern by elim-
inating effects arising from the details of the atomic po-
tentials, as manifested by the angular variations of the
phases and amplitudes of the atomic scattering factors.
However, there are significant differences. The method
of Tong et al.'® involves the division of the intensity
enhancement function y(k)=[I(k)— 4]/ 4 [where 4 is
the angle-averaged value of I (k)] by a function of k only,
which individually corrects y by the amplitude and phase
of the atomic scattering factor along a particular
forward-scattering direction. One problem with this is
that the forward-scattering directions have to be
identified from the diffraction pattern. This is often
difficult due to the presence of the so-called “diffraction
peaks,” which may be as intense as the forward-
scattering peaks (see, e.g., the Auger diffraction pattern
in Fig. 11). Even if the forward-scattering directions
were identified, the resulting reconstructed “images” are
each meaningful only along those particular directions.
The authors!? propose the creation of a composite image
from radial image functions along the different forward-

J
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scattering directions, although none is shown in their ar-
ticle. Instead, we propose dividing the diffraction pattern
by a test function representing the angular variation of
the scattering factor of an atom placed at the position of
image point currently being calculated. That is, we divide
by a function of both reciprocal space (k) and real space
(r). By this means we obtain a meaningful three-
dimensional image in one step, without a prior knowledge
of the forward-scattering directions.

B. Multiple scattering,
intermodulation noise, and autocorrelation

When electrons are emitted from atoms in a layer im-
mediately below the outermost surface layer, the strongly
forward-peaked nature of the atomic scattering factors
results in a measured diffraction pattern being dominated
by interference between the direct (or reference) wave and
single-scattering paths. If the electron sources were
deeper within the crystal, the number of significant
multiple-scattering paths increases. It is important to an-
alyze the effects of such multiple scattering and other
many-atom effects. We note that, the first successful ex-
periments on holography with local reference waves™® in-
volved incoherent electrons emitted from many layers of
atoms near a single-crystal surface, a circumstance in
which multiple scattering must be expected to play a
significant role. Unlike the configurations discussed
above, in the single-crystal case the Helmholtz-Kirchoff
algorithm (8) was found to reproduce the true atom posi-
tions on the reconstructed image, without the need for
the deconvolution procedure discussed in Sec. IVA. We
suggest the following explanations of this effect.

We may regard the kinematic expression (23) for the
diffracted intensity as the first four terms of a multiple-
scattering series expansion; the next two terms, due to
double scattering, being approximately:

> > f*(ﬁ-(rjér,- DT T exp] —iker; —ik( lt;—r;l—r)1/Ux; —x;l7) +e.c. (26)

P#0 joi

These and higher-order scattering terms have different
and more complicated prefactors to the exponential,

e , than the direct term [the third term of Eq. (23)].
Thus, if enough of these terms have sufficient magnitude,
the phases of these prefactors tend to be randomized, and
their amplitudes tend to become more isotropic, condi-
tions that favor the faithful reconstruction of the true
atom positions by means of the Helmholtz-Kirchhoff al-
gorithm (8).

When the reference wave is scattered by a large num-
ber of atoms in a crystal the fourth term in Eq. (23) may
also play a role in the image formation. In conventional
holography, this term §ives rise to what is known as “in-
termodulation noise”,”” which acts essentially to degrade
the image. However, in the special case where the objects
(in our case the scattering atoms) form a Bravais lattice,
this circumstance may act to reinforce the image. We

can appreciate this by noticing that application of the

Helmbholtz-Kirchoff algorithm (8) to this term results in
approximate stationary-phase conditions when r=r; —T;.
The resulting image would be an autocorrelation of the
atomic structure. Such a process is quite analogous to
the generation of a Patterson function in x-ray crystallog-
raphy.>® In the case of a Bravais lattice, the peaks of the
Patterson function are coincident with the true atom po-
sitions, and the intermodulation noise actually acts to
reinforce the image of the lattice. In the case of atomic
clusters with no long-range order, extra peaks may ap-
pear on the reconstructed image, corresponding to dis-
tances r; —r; from the source if the higher-order terms
are strong enough. Thevuthasan et al.* have termed
these peaks “self-images.” It has also been pointed out,>
that in emission electron holography, independent of the
details of the scattering, a Fourier-transform algorithm
reconstructs an autocorrelation of the wave function of
the emitted electron.
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To summarize, from the point of view of the use of x-
ray photoelectron holography for studies of epitaxial
growth, it would appear that, in the case of ultrathin
films, or that of an emitter atom in a molecule adsorbed
on a surface, a deconvolution algorithm, like that dis-
cussed in Sec. IV A, is necessary, but for single-crystal
surfaces the Helmholtz-Kirchoff algorithm? is more ap-
propriate, although in that case the atomic images are
broadened and elongated in the forward-scattering direc-
tions.

In intermediate cases, it may be helpful to combine our
algorithm, (24), which improves fidelity of the parts of
the reconstructed atomic images due to single scattering,
with one, suggested recently by Barton,*® for enhancing
the contributions to the image of the single-scattering
terms by combining the data from diffraction patterns
from electrons of several energies. The combined algo-
rithm could be written

A= [ [T/ kTR e orakdr . @7)

C. The localization of the holographic fringes

A further important aspect of holography in our
forward-scattering geometry is illustrated in Fig. 10(a).
Here we have artificially removed the intensity from the
upper left-hand quadrant of Fig. 6(a), and the resulting
sections through the reconstructed image are shown in
Figs. 10(b) and 10(c). Note the disappearance of the im-
age of the atom D, giving rise to the forward-scattering
feature within the blocked-out section. This is an unex-
pected result to those familiar with optical holograms,
where the removal of part of a hologram causes some loss
of resolution, but does not lead to the preferential remo-
val from the image of some particular localized object.
Our observation is a clear indication that in the forward-
scattering geometry, strong holographic fringes associat-
ed with a particular atom are found only in the near vi-
cinity of the forward-scattering peak associated with that
particular atom.

The validity of this result is further reinforced by the
observation of the same effect on a measured diffraction
pattern [Fig. 11(a)] from an experiment with 914-eV
Auger electrons from a Cu(100) surface. Figures 11(b)
and 11(c) are the sections through the reconstructed im-
age corresponding to Figs. 10(a) and 11(b), respectively,
on the calculated holograms. The relative displacements
of the nearest-neighbor scatterers from the sources in the
experimental sample are the same as in the model calcu-
lations above. We point out here that this experimental
data is new and is an improved dataset with higher
signal-to-noise ratio than was previously published.®

These results must not be taken to imply that useful
holographic information about any particular atom is not
found over the whole of the hologram. In fact, if the
forward-scattering Peaks were removed by a Fourier
filtering technique,®’ the weaker holographic fringes fur-
ther away from the forward-scattering direction may be
recovered and usefully employed for reconstruction pur-
poses.

Conversely, it should be noted that a reconstruction al-
gorithm for a single hologram which restricts its scope of
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operation to data on a limited angular range around the
forward-scattering direction must suffer from a severely
reduced resolution on the reconstructed image, according
to Abbe’s theory.3!

(a)

(b

(c)

FIG. 10. (a) The diffraction pattern of Fig. 6, where we have
blocked out one quarter of the data and (b) and (c) the same pla-
nar sections through the reconstructed image as in Fig. 6. We
see the unexpected result that the atom D appears to be missing
from the reconstruction. Forward scattering causes most of the
measurable holographic fringes of an atom to be localized in a
small part of the diffraction pattern. Thus, unlike optical holog-
raphy, excising a part of a forward scattering hologram may re-
move specific features from its reconstruction.
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V. THE BACKSCATTERING GEOMETRY:
EFFECTS OF THERMAL VIBRATIONS

An advantage of the forward-scattering geometry for
atomic-resolution holography is that the waves from the
scattering atoms are not small, and hence give apprecia-
ble and easily measurable fringes on interference with the

(a

(b)

(c)

FIG. 11. We have performed the process of Fig. 10 on new
Cu(100) single crystal Auger data to show this effect is repro-
duced vsing experimental data.
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wave from the source. Its disadvantages are the appear-
ance of the strong forward-scattering peaks, which give
rise to interatomic artifacts, as well as the strong angular
variation of the phase of the atomic scattering factor,
which give rise to shifted atom images. This may necessi-
tate the deconvolution of the effects of the nonisotropic
atomic scattering factors from the reconstructed image.
The first computer simulations of electron holography
from local electron sources®® concerned source atoms ad-
sorbed on crystal surfaces, and it is important to compare
our results above with those that might be expected in
the “backscattering” geometry.

In the backscattering geometry, the scattering atoms
are found at greater distances from the detector than the
source. As a result, holographic fringes result from the
interference between the electrons direct from the source,
and those which suffer backscattering from the nearby
atoms. The first and most obvious effect is that the visi-
bility of the holographic fringes is much lower. Not only
is the atomic back-scattering factor much smaller than
the forward-scattering factor at such energies, the high
momentum transfer in the scattering process also causes
the Debye-Waller factors to be severely reduced.

However, if we examine, in Fig. 2, the nature of the
back-scattering part of the atomic scattering factor, (i.e.,
for scattering angles between 90° and 180°), we notice that
it varies much less rapidly in both amplitude and phase
than its forward-scattering counterpart. That is, the
parts of Figs. 2(a) and 2(b) near 6=180° are much more
slowly varying than those near 6=0°. Therefore
diffraction patterns due to back scattering might be ex-
pected to yield good reconstructed images even with the
Helmholtz-Kirchoff algorithm (8). A simulated pattern
in this geometry is shown in Fig. 12(a), where only the
four nearest-neighbor atoms below the emitter are used in
the calculation (atoms E,F,. .. in Fig. 4). We see that
the fringes are so weak as to be hardly noticeable. More
quantitatively, if we define the contrast in a diffraction
pattern as the difference between the maximum and
minimum intensity divided by the average intensity in the
pattern, the back-scattering diffraction pattern has only
7% of the contrast of that of Fig. 6(a). This kind of sig-
nal to background ratio is inaccessible to present mea-
surement techniques.

The situation is much improved when the same pattern
is calculated for a sample at 100 K. As indicated in Fig.
12(b), the contrast at 100 K is 25% of that in the
forward-scattering geometry. The measurement of holo-
graphic fringes from an experiment in this case would be
difficult but probably not impossible. The images recon-
structed from this pattern, using the Helmholtz-Kirchoff
algorithm (8), are shown in Figs. 13(a) and 13(b). Note
the excellent reproduction of the atom positions on the
image. In this case the hologram much more resembles
that for the s-wave scatterers of Fig. 5, and the holo-
graphic fringes are distributed much more evenly over
the whole of the diffraction pattern. The variation of the
image intensity along a straight line from the source to
the scattering atom is shown in Fig. 7(d). Here we see
that the atom peak is sharp and symmetric, but shifted

slightly (by 0.15 A) from its true position. This shift is
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caused by the relatively small angular variation of the
phase of the atomic back-scattering factor. The electron
back-scattering factor contains a small but non-negligible
angular variation, and we find, even in this geometry, our
deconvolution algorithm (24) noticeably improves the
fidelity of the reconstructed image.

A further point of interest is the absence of small ra-
dius artifacts in both sections through the reconstructed
image and in the line plot of Fig. 7(d). This is further
support for our assertion that such artifacts are caused by
the forward-scattering peaks on diffraction patterns.

On the basis of these data, we see that if the experimen-
tal difficulties of low holographic fringe contrast were
overcome, the back-scattering geometry may well become
an attractive one for electron holography of atomic struc-
tures. We note that the diffraction pattern shown here is
a model for an adsorbate system at very low coverages.

In the case of a single-monolayer-thin film, such as
copper on nickel, using Auger emission from copper
atoms, the emitter would also be surrounded by copper
atoms in the z =0 plane. These atoms are likely to give

(a)

(b)

FIG. 12. Back-scattering diffraction patterns for a copper
atom emitter with four copper atoms below it, at 300 K (a) and
100 K (b). The holographic fringes are practically immeasur-
able in (a) but may be measurable in (b), where the contrast is
about 25% of that in Fig. 6(a).
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stronger fringes than those from the substrate, and may
make possible the reconstruction of the nearby copper
atoms in that plane. One may also improve the contrast
in the diffraction pattern by using a substrate of high
atomic number (such as tungsten) to increase the back-
scattering cross section, or a substrate with a higher De-
bye temperature, to minimize Debye-Waller losses.
Another way to improve the backscattering fringe con-
trast would be to use a lower electron kinetic energy to
make the measurement.>> However, this has the draw-
back of reducing the image resolution.’

V1. THE COEXISTENCE
OF FORWARD AND BACK SCATTERING

Comparing the visibility of the holographic fringes in
Figs. 6(a) and 12(a) it might be expected that, when for-
ward and back scattering coexist, the fringes due to the
latter may be overwhelmed by the former. As a final test
of this we show, in Fig. 14, the calculated diffraction pat-
tern from an emitter surrounded by all 12 nearest-

(a) }

(b)

FIG. 13. The same sections through the reconstructed image
from the diffraction pattern of Fig. 12(b) as in Fig. 5. Back-
scattering patterns give sharp, artifact-free images, and this
would be a desirable geometry for electron holography if the
problems of the signal level could be overcome.
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FIG. 14. The diffraction pattern from an emitter surrounded
by all 12 of its nearest neighbors. This pattern is very similar to
that of Fig. 6(a), showing that the four atoms that are situated
between the emitter and the detector are the most important in
determining the diffraction pattern.

neighbor atoms, that is, all the scattering atoms shown in
Fig. 4. Comparing this with Fig. 6(a), we see that the
difference between a cluster containing the four atoms
above the emitter and one containing all 12 nearest-
neighbor atoms is detectable but not very noticeable.
Furthermore, image reconstructions from the latter pat-
tern are practically indistinguishable from those of the
former. In the plane of the emitter the forward-
scattering artifacts dominate, and it is impossible to see
the in-plane scattering atoms. This result agrees with ex-
periments performed on single-crystal samples.

VII. CONCLUSIONS

Using a full multiple-scattering cluster calculation, in-
cluding the effects of thermal vibration, we have investi-
gated the holographic properties of electron diffraction
patterns formed by atomic sources of electrons. These
electrons are surrounded by nearby atoms, which scatter
the emitted electrons so as to generate an interference
pattern in the far field with the direct waves from the
sources. Cluster models perhaps are the most convenient
ones for isolating the elements of the complex multiple-
scattering processes, which take place in a real experi-
ment because of the facility they offer for selectively
studying the contributions of individual atoms or groups
thereof.

We find that the strongly peaked and angle-dependent
forward-scattering factor localizes the measurable holo-
graphic fringes of an atom to a narrow angular cone cen-
tered about the forward-scattering direction. This
scattering-factor can also shift the apparent atomic posi-
tions in the reconstructed images and elongate the atomic
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images along the forward-scattering direction. It is also
indirectly the cause of high-intensity interatomic artifacts
in the reconstructed images because forward-scattering
features from neighboring atoms may behave as unphysi-
cal pseudoholographic fringes. A deconvolution algo-
rithm, which corrects for the amplitude and phase varia-
tion of the atomic-scattering factor, is found to be more
appropriate for forward-scattering holography when
multiple-atom scattering effects are not too dominant.
When scattering due to many atoms is important, the
Helmholtz-Kirchoff reconstruction algorithm? is found to
be adequate, as was shown in the case of experimental
Kikuchi and Auger diffraction patterns from the surfaces
of bulk crystals.>®

For electrons of energies of the order of 1000 eV,
back-scattering effects are found to be very weak com-
pared with those due to forward scattering at room tem-
perature, and back scattering contributes litile to
diffraction  patterns containing forward-scattering
features. However, at 100 K it may be possible to mea-
sure a back-scattering pattern from an adsorbed over-
layer on copper, even at such energies. Reconstructing
images from such back-scattering patterns with the use of
the Fourier transform algorithm gives rise to bright
peaks associated with the atoms, with few noncrystallo-
graphic artifacts. Nevertheless, even in this case, our
deconvolution algorithm leads to more accurate bond
length determinations.

In one of his earliest papers on the subject Gabor>® de-
scribed holography as a form of “diffraction micros-
copy,” which he hoped would ultimately lead to the im-
aging of atomic structures. He proposed the use of an
external source of electrons, a macroscopic distance from
the objects studied, a geometry that places quite severe
demands on electron coherence lengths. Using, as refer-
ence waves, electrons emanating from atoms within the
sample! overcomes this difficulty. The resulting “im-
ages” are, of course, averages of the atomic structures
surrounding all the emitters contributing to the measured
diffraction pattern, and therefore are most useful in the
presence of a substantial degree of short-range order.
Nevertheless, there seems every prospect of the fruitful
inclusion of holographic crystallography, into the armory
of techniques for atomic structure determination.
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