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Abstract:
Thefirst experimental data from single-particle scattering experiments from
free electron lasers (FELs) are now becoming available. The first such
experiments are being performed on relatively large objects such as viruses,
which produce relatively low-resolution, low-noise diffraction patterns in
so-called “diffract-and-destroy” experiments. We describe a very simple test
on the angular correlations of measured diffraction data to determine if the
scattering is from an icosahedral particle. If this is confirmed, the efficient
algorithm proposed can then combine diffraction data from multiple shots
of particles in random unknown orientations to generate a full 3D image
of the icosahedral particle. We demonstrate this with a simulation for the
satellite tobacco necrosis virus (STNV), the atomic coordinates of whose
asymmetric unit is given in Protein Data Bank entry 2BUK.
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1. Introduction

Thefree electron lasers (FELs) now beginning to come online produce radiation many orders
of magnitude brighter than than any existing source, and enable experiments previously the
domain only of science fiction. One such proposed experiment [1] envisages reconstructing the
3D structure of a microscopic entity such as a virus from many ultrashort diffraction patterns
of many identical copies of the particles in random orientations from single pulses of FEL
radiation. Although the particles will undoubtedly suffer catastrophic radiation damage, the
ultrashort nature of FEL radiation is expected to produce diffraction patterns of the particles
before significant disintegration. An experiment on individual mimivirus particles was reported
recently [2]. The paper illustrates convincing diffraction patterns of the virus particle in two
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different orientations, from which 2D projections of the particles are reconstructed using an
iterative phasing algorithm. Although such particles are known to be largely icosahedral, little
evidence of the icosahedral shape is evident in the reconstructed projections. Several algorithms
have been proposed for reconstructing a full 3D image of the particle from an ensemble of many
such diffraction patterns from randomly oriented particles. The methodology followed by some
of these approaches [3–5] is to find the likely orientation of the measured diffraction patterns
in the 3D reciprocal space of the particle.

Another approach [6] dispenses with finding the likely orientations of the individual diffrac-
tion patterns by integrating over orientations, in an attempt to find the spherical harmonic rep-
resentation of the 3D diffraction volume of a single particle from the averages of the angular
correlations of the intensities on the measured diffraction patterns. This method of analysis is
even applicable to individual diffraction patterns from multiple identical particles [7]. The par-
ticles need to be frozen in space or time while the scattering is taking place. If the scattering
is from a single FEL pulse of radiation, the particles will be essentially frozen in time for the
duration of the scattering even if not frozen in space. This opens this method to the analysis
of scattering from particles in random orientations within a droplet. With such an approach,
the “hit rate” in an experiment with a FEL can become 100%, whereas a low hit rate is to be
expected when attempting to hit submicron particles with a submicron pulsed laser beam. The
signal-to-noise ratio from such snapshot patterns is independent of the number of particles per
shot, but increases with the square root of the number of shots [8]. This approach also has the
advantage that it operates on a compressed version of the voluminous data produced by a FEL.

We point out here another advantage of this approach: it is easily amenable to simplifications
resulting from any known point-group symmetry of the particles under study. This is a powerful
advantage for the study of virus structure, which is dominated by that of its protein coat which
encloses the genetic material, DNA or RNA, which contain the instructions for the replication
of the virus. To quote from Caspar and Klug [9] “there are only a limited number of efficient
designs possible for a biological container which can be constructed from a large number of
identical protein molecules, The two basic designs are helical tubes and icosahedral shells”.
Viruses have regular shapes since they are formed by the self assembly of identical protein
subunits which are coded by the limited quantity of genetic material capable of being stored
within the small volume enclosed by its protein coat. An icosahedron, for example can be
formed by the self assembly of at least 60 identical subunits. The genetic material needs to
code for just one of these subunits, a factor of at least 60 smaller than the entire structure.

2. Icosahedral Harmonics

The first aim of this approach is to find the spherical harmonic representation of the intensity
distribution of any resolution shell in the reciprocal space of a single particle. Any prior infor-
mation about the nature of this distribution may be incorporated by limiting the set of spherical
harmonics over which the summation is performed and by any relationship amongst the ampli-
tudes of the different spherical harmonics which are a consequence of any known point-group
symmetry.

An obvious restriction of the form of the intensity distribution

I(q,θ ,φ) = ∑
lm

Ilm(q)Y m
l (θ ,φ) (1)

is its known inversion (or Friedel) symmetry. Since

Y m
l (π −θ ,−π +φ) = (−1)lY m

l (θ ,φ) (2)

it follows that a spherical harmonic expansion of an intensity distribution may contain only even
values of the angular momentum quantum numberl. The fact that the intensity distribution
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Fig. 1. Visualization of real spherical harmonics (RSHs) of angular momentum quantum
numbersl = 0,1,and 2. The plots are made with MATLAB by an adaptation of software
by Denise L. Chan (avilable from the Mathworks web site).

is real, allows the restriction to a summation over just the so-called real spherical harmonics
(RSHs)Sm

l (θ ,φ) defined by the combinations of spherical harmonics:

Sm
l (θ ,φ) =











1√
2

[

Y m
l (θ ,φ)+(−1)mY−m

l (θ ,φ)
]

m > 0

Y 0
l (θ ,φ) m = 0
1

i
√

2

[

Y m
l (θ ,φ)− (−1)mY−m

l (θ ,φ)
]

m < 0
(3)

where the set of RSH’s withm ≥ 0 form a set, whoseφ dependence is of the form cos(mφ), and
the set withm ≤ 0 likewise a set withφ dependence of the form sin(mφ). If the reconstructed
intensity distribution has a mirror plane, this may be chosen to be thex− z plane, or the plane
for which φ = 0. Then (1) may be replaced by a summation over only the subset of RSHs for
which m ≥ 0, and we may take

I(q,θ ,φ) = ∑
l,m≥0

Rlm(q)Sm
l (θ ,φ). (4)

Since both the right hand side (RHS) and the left hand side (LHS) of the above equation are
real, the coefficientsRlm(q) may also be taken as real.

The 3D polar plots of Fig. 1 display the familiar forms of the RSHs for the values ofl =
0,1,2. Further point group symmetries ofI(q,θ ,φ) result in still further restrictions on allowed
terms of the general expansion (1) above. When the 3D intensity distribution has icosahedral
symmetry, for example, (1) may be replaced by

I(q,θ ,φ) = ∑
l

gl(q)Jl(θ ,φ), (5)
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where the quantitiesJl(θ ,φ) are known as icosahedral harmonics (IHs), specified up to and
includingl =30 by only the angular momentum quantum numberl. Since the orientation of our
reconstructed 3D intensity distribution in the frame of reference of the particle may be chosen
arbitrarily, thex− z plane may be chosen to be the mirror plane, allowing the IHs (5) to be
constructed from just the RSHs of positivem, i.e.

Jl(θ ,φ) = ∑
m≥0

almSm
l (θ ,φ) (6)

where the coefficientsalm are the real numbers for normalized RSHs tabulated by e.g. Jack
and Harrison (1975) [10], the ones for the lowest allowed even values ofl being reproduced
in Table 2. Note the rows are characterized byl and the columns bym. Since the IHs involve
a sum over the magnetic quantum number, at least up tol = 30, they depend on the quantum
numberl only. The forms of the icosahedral harmonics of lowest even degree,l=0,6,10,12, and
16 are illustrated in Fig. 2 using the same 3D polar plots.

Table 1. Expansion Coefficients of the Lowest Even-degree Icosahedral Harmonics with
z-axis Chosen to be the 5-fold Rotation Axis

l\m 0 5 10 15 20
0 1.0
6 0.531085 0.847318
10 0.265539 -0.846143 0.462094
12 0.454749 0.469992 0.756513
16 0.334300 -0.493693 -0.634406 0.491975
18 0.399497 0.450611 0.360958 0.712083
20 0.077539 -0.460748 0.747888 -0.231074 0.411056

Note that since the RSH’sSm
l (θ ,φ) are orthonormal with respect to integrations over spheri-

cal shell, the icosahedral harmonicsJl(θ ,φ) will also be orthonormal with respect to the same
integration provided

∑
m

a2
lm = 1, ∀l. (7)

This condition is clearly satisfied by the coefficients in Table 2.

3. Reconstructing the Diffraction Volume

The average angular correlations amongst the resolution rings of the different measured diffrac-
tion patterns contain information about the 3D diffraction volume of a single particle. Such
angular correlations are defined by

C2(q,q′,∆φ) =
1

Np
∑
p

N−1

∑
n=0

Ip(q,φn)Ip(q
′,φn +∆φ)

=
1

Np
∑
p

1
N

N−1

∑
m=0

Im(q)Im(q′)∗exp(−imφn) (8)

where Ip is the intensity on diffraction patternp, Np is the number of available diffraction
patterns from random orientations of the particle,φn is then-th of N discrete values ofφ , and

Im(q) =
N−1

∑
n=0

Ip(q,φn)exp(imφn) (9)
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Fig. 2. Icosahedral harmonics of angular momentum quantum numberl = 0,6,10,12and
16. Each is a linear combination of the RSH’s of the magnetic quantum numbers indicated.
Visualization by the same software as Fig. 1

the angular Fourier tranform of each resolution ring of thep-th diffraction pattern. Indeed the
fastest way to calculate the average angular correlationC2(q,q′,∆φ) is to exploit the cross-
correlation theorem by performing the angular Fourier transform (9) of each individual diffrac-
tion pattern, take the product of the Fourier transform and its complex conjugate followed by
the inverse transform, and to average the results over the diffraction patterns ((9) plus the second
equality of (8)).

It has been shown [6] that if the data from enough diffraction patterns of randomly oriented
identical particles are averaged,

C2(q,q′,∆φ) = ∑
l

Fl(q,q′,∆φ)Bl(q,q′) (10)

where

Fl(q,q′,∆φ) =
1

4π
Pl [cosθ(q)cosθ(q′)+sinθ(q)sinθ(q′)cos(∆φ)] (11)

wherePl is a Legendre polynomial of orderl,

θ(q) = π/2−sin−1(q/2κ), (12)

κ is the wavenumber of the incident beam, and

Bl(q,q′) = ∑
m

I∗lm(q)Ilm(q′) (13)

Since in Eq.(10), the LHS may be found from experiment, andFl(q,q′,∆φ) is a known math-
ematical function,Bl(q,q′) may be found by solving this equation. Due to its form,Bl(q,q′)
contains information about the 3D diffraction volume of the particle via the spherical harmonic
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expansion coefficientsIlm(q). Because the RSHs are related to the regular spherical harmonics
by a unitary transformation, one may also write

Bl(q,q′) = ∑
m

Rlm(q)Rlm(q′). (14)

This is a more convenient form since all quantities in this equation are real. If theRlm(q) coef-
ficients may be found from deduced values ofBl(q,q′), the expression (4) is just as convenient
for reconstructing the 3D diffraction volume as (1).

However, finding the correctRlm(q)’s from knownBl(q,q′)’s is still a formidable task since
it involves taking a matrix square root [6]. Such a square root is necessarily ambiguous by
an orthogonal matrix which cannot be found from theBl(q,q′)’s alone. In principle, such an
orthogonal matrix may be found from the so-called angular triple correlations [11] or by an iter-
ative phasing algorithm that alternately satisfies constraints to the meaured angular correlations
and in the 3D space of the reconstructed intensity disrtibution [12].

When the particle under study is known to have a high degree of symmetry, like an icosahe-
dral virus, this problem is greatly simplified. Comparing (4) and (5) with definition (6), one can
deduce that, for a diffraction volume with icosahedral symmetry,

Rlm(q) = gl(q)alm (15)

Substituting (15) into (14) we see that one may write

Bl(q,q′) = gl(q)gl(q
′)∑

m
a2

lm (16)

and using (7) this may be simplified further to

Bl(q,q′) = gl(q)gl(q
′) (17)

We see here the great advantage of using IH’s rather than RSHs for this problem of icosa-
hedral symmetry. The sum overm in the RHS of (14) has disappeared completely in the RHS
of (17)! The RHS of this equation is just the product of two scalars. A diffraction volume of
icosahedral symmetry may be reconstructed via (5) if the coefficientsgl(q) are known. Since
the other quantities in (15) are real, it is clear thatgl(q) may be chosen to be real. The magni-
tudes of thegl(q) coefficients may be found from the diagonal quantitiesBl(q,q) deduced from
the intensity autocorrelations on resolution ringq via

|gl(q)| =
√

Bl(q,q) (18)

Thus, the only remaining task in determining the coefficientsgl(q) is determing the signs of
these real numbers. A simple way is to notice that the expression (5) for the intensity of a
resolution shell of radiusq in the 3D diffraction volume may be rewritten

I(q,θ ,φ) = ∑
l

|gl(q)|sign[gl(q)]Jl(θ ,φ) (19)

where the only unknown quantities in the RHS are the signs ofgl(q). Since the only permitted
values of the quantum numberl of the icosahedral harmonic coefficientsgl(q) of a diffraction
volume are the even permitted values up tol=30, namelyl=0, 6, 10, 12, 16, 18, 20, 22, 24, 26,
28, and 30, we attempted to determine these signs by an exhaustive search over the 212 ≃ 4000
combinations of signs by finding the combination that minimized

∑
θ ,φ

|I−(q,θ ,φ)| (20)
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whereI− arethe negative values ofI, for a chosen resolutiuon shellq. The physical basis of this
is simply thatI(q,θ ,φ) has to be a positive definite quantity, and our best approximation to this
is a function with a minimum sum of the magnitudes of negative values. As subsequent results
show, this easily implemented prescription seemed accurate enough to find a good enough
approximation to the correct signs of these coefficients for the chosen reference resolution
ring. To maximixe the number of non-negligible magnitudes|gl(q)| we chose a high-resolution
resolution ring. In order to avoid almost all values|gl(q)| being very small, and thus subject to
significant rounding-off errors, we found the best compromise to choose the reference ring to
be one for whichq ≃ 2

3qmax, whereqmax is the value ofq for the outermost resolution shell.
From Eq. (17), we see that the icosahedral harmonic expansion coefficients of the same

quantum numberl, corresponding to a different resolution shellq′ are related to the now known
ones of resolution shellq by the simple quotient

gl(q
′) = Bl(q,q′)/gl(q), (21)

Thus, having found the coefficientsgl(q) for a paticular shellq, those of the other shellsq′

were determined from this simple quotient, involving the quantitiesBl(q,q′) directly calculable
from the average intensity cross correlations between different resolution rings on the measured
diffraction patterns. Thus the exhaustive search though all 212 combination of signs needs to be
performed only for a single resolution ringq.

A knowledge of the expansion coefficients for all the resolution shells should enable a recon-
struction of the 3D diffraction volume via (5). If this intensity distribution is interpolated onto
an oversampled [13] 3D Cartesian reciprocal-space grid,(qx,qy,qz), say, an iterative phasing
algorithm [14] may be applied to reconstruct the 3D electron density of the scattering particle.

4. Numerical Tests

Fig. 3. Regular icosahedron [15]

A central thesis of this paper is that the the scattered intensity from an icosahedral particle
may be represented by a sum of icosahedral harmonics. We first sought to verify this proposi-
tion by calculating first the spherical harmonic expansion coefficients of a simple icosahedral
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particle via the expresion

Alm(q) = il ∑
j

f j(q) jl(qr j)Ylm(r̂ j), (22)

where f j(q) is the form factor of the jth atom,r j is its coordinate, andjl is a spherical Bessel
function of orderl.

Fig. 4. Calculated values of theAlm coefficients (arbitrarily takingf j(q) = 1, ∀ j) assuming
12 identical atoms at the vertices of a regular icosahedron. The first two entries in each
column in each line are thel andm values. The next two are the real and imaginary parts
of Alm(q). It will be seen that all coefficients are zero except those for whichl=0 or 6, and
that all non-zero coefficients are real.

For our initial tests we simulated the scattering from an artificial molecule of identical atoms
at the vertices of a regular icosahedron (Fig. 3) of edge length 2 [15] (which we take to be to
be inÅ units, with Cartesian coordinates (also assumed to be inÅ):

(0,±1,±Φ)
(± 1,±Φ, 0)
(±Φ, 0,± 1)

whereΦ is the golden ratio (1+
√

5)/2.
The resulting calculated values of the amplitudesAlm (arbitrarily taking f j(q) = 1,∀ j) for

all possible values of ofl andm are listed in Fig. 4. Note that the amplitudesAlm are all real,
and that, for the values listed, they are non-zero only forl=0 and 6. The values forl=1,2,3,4,5,
and 7 are all seen to be zero, corresponding to non-existing icosahedral harmonics for these
values ofl. Here too, all coefficients are zero except those for whichl=0 or 6, and all non-zero
coefficients are real. Note that this result will be true for any icosahedral orientation since the
a rotation matrix (Wigner D-matrix) will mix only amplitudes of different magnetic quantum
number corresponding to the same angular momentuml. The z-axis of the simple icosahedron
used for this test is a 2-fold rotation axis, not 5-fold, unlike e.g. Fig. 2 above, or Table 1 below.

#148902 - $15.00 USD Received 7 Jun 2011; revised 24 Jul 2011; accepted 27 Jul 2011; published 18 Aug 2011
(C) 2011 OSA 29 August 2011 / Vol. 19,  No. 18 / OPTICS EXPRESS  17326



This is why the amplitudes corresponding to every other value ofm arenon zero forl=6 rather
than every integer multiple of 5, whenz is chosen to be a 5-fold axis.

Fig. 5. Same as Fig. 4, except for values of theILM(q) coefficients calculated by Eq. (24)
from theAlm(q) values in Fig. 4.

Of greater interest for our method are the allowed values ofL for the coefficients,ILM, of the
spherical harmonic expansions of the scattered intensity. Since

I(~q) = |A(~q)|2, (23)

it must follow that ifA(q) has icosahedral symmetry, so mustI(q). However, this is not entirely
obvious from the relationship between the two sets of coefficients

ILM(q) = ∑
lm;l′m′

Alm(q)A∗
l′m′(q)

∫

Ylm(q̂)Y ∗
l′m′(q̂)Y ∗

LM(q̂)dq̂

= ∑
lm;l′m′

Alm(q)A∗
l′m′(q)

∫

Y ∗
lm(q̂)Yl′m′(q̂)YLM(q̂)dq̂

= ∑
lm;l′m′

Alm(q)A∗
l′m′(q)

√

(2l′ +1)(2L+1)

4π(2l+1)
Cl0

l′0L0Clm
l′m′LM (24)

whereClm
l′m′LM is a Clebsch-Gordan coefficient [16]. According to the usual theory of the vector

addition of angular momenta, the allowed values ofL are all integers in the range from|l− l′| to
l + l′, with no obvious indication thatL=1,2,3,4,5, and 7, for instance, are forbidden. However,
a straightforward evaluation of theILM(q) coefficients via (24) reveals this to be the case, as is
seen by the tabulated values of these coefficients in Fig. 5.

We next tested this on a realistic model of the small icosahedral virus, satellite tobacco necro-
sis virus (STNV) whose atomic coordinates are deposited in the protein data bank under entry
2BUK (Fig. 6). We calculatedA(q) from the usual structure factor expression

A(~q) = ∑
j

f j(q)exp(i~q ·~r j) (25)
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Fig. 6. Top part of the structure of the satellite tobacco necrosis virus (STNV) viewed down
its 5-fold axis (from structure data in PDB entry: 2BUK)

.

and constructed the diffraction volume from (23). By integrating over spherical shells ofI(~q)
we evaluated the spherical harmonic expansion coefficients of the 3D diffraction volume of
STNV from

Ilm(q) =
∫

I(~q)Ylm(q̂)dq̂, (26)

where ˆq is the unit vector~q/q, with this integration conveniently performed by Gaussian qudra-
ture [17]. Plots of the real and imaginary parts ofIlm in Fig. 7 clearly show the same trend of
vanishing components corresponding tol = 1,2,3,4,5, and 7 and in addition vanishing compo-
nents forl = 8,9,11,13,14,and 15, exactly consitent with the tablulated values of icosahedral
expansion coefficients in Table 1. What is more, it was found that

(−1)mIl(−m)(q) = Ilm(q), (27)

the precise condition for the reality of theRlm(q) coefficients of the RSHs, and hence of the
icosahedral harmonic expansion coefficientsgl(q) via (15).

Since this result is a consequence of the icosahedral symmetry of the diffraction volumeI(q),
it is to be expected of the diffraction volume of all icosahedral viruses (assuming the protein
coat to be the dominant scatterer). In view of (13) this must mean that theBl(q,q′) coeffi-
cients computed from the data of diffraction patterns of random orientations of all icosahedral
particles must all have vanishing values forl = 1,2,3,4,5,7,8,9,11,13,14,15, .., thus provid-
ing a very simple test of whether the diffraction patterns measured in a “diffract and destroy”
experiment with a FEL are from an icosahedral particle.

Assuming this is indeed found to be approximately true in practice (even the so-called icosa-
hedral viruses may have appendages which break the icosahedral symmetry of the protein coat,
and of course the genetic material inside the protein coat would not be expected to have this
symmetry. However, if the bulk of the material of the virus may be assumed to constitute the
protein coat, this must be approximately the case). The icosahedral structure of the protein coat
may be found by an analysis of the largel = 0,6,10,12,16, ... Bl(q,q′) coefficients extactable
from the average angular correlations of the diffraction data.
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Fig. 7. Real and imaginary parts of theIlm(q) coefficients calculated from the computed
diffraction volume of STNV. Each dot represents a value of the (lm) pair. Note that these
coefficients are largely absent forl=1,2,3,4,5,7,8,9,11,13,14,15.

5. Reconstruction of STNV from Simulated Diffraction Patterns

We next attemped a reconstruction of satellite tobacco necrosis virus (STNV) from diffraction
patterns simulated for directions of incidence on a single particle from a uniform angular dis-
tribution in SO(3) [18]. For the model of STNV we took the data of the bological assembly of
STNV from PDB entry 2BUK. Due to the large number of atoms in this biological assembly
(∼ 100,000), the most convenient way to do this was to take slices through a precalculated 3D
diffraction volume of this structure. Average angular correlations of these simulated diffrac-
tion patterns were calculated by the formulae (8) and (9). and theBl(q,q′) coefficients were
calculated from these by inverting Eq. (10).

For the 10,000 simulated diffraction patterns in our test, this process took about a quarter
of an hour on a single processor on a desktop computer. In a real experiment, one may have
to deal with perhaps 100 times as many diffraction patterns, with more pixels per pattern, so
the processing time could be several orders of magnitude greater. However, the bulk of the
time will be spent in generating the average angular correlationsC2(q,q′,∆φ) (8), a process
which easily lends itself to parallelization, since subsets of the diffraction patterns may be
averaged by separate computer processors, and the averages themselves subsequently averaged.
Nevertheless, this process of reduction of terabytes (TB) of measured experimental data is
probably the most computer-resource intensive part of our method. Having thus reduced our
data to a set ofBl(q,q′) coefficients for a set of 30 values ofl, and 61 values ofq (andq′), we
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were left with a set of 30×61×61 real numbers which formed the input to our reconstruction
algorithm.This required about a MB of storage/memory. In a real experiment also, our method
requires the million-fold reduction of the TB of data to a MB of floating-point (real) numbers
that form the input to our reconstruction algorithm. It is recommended that this data reduction
be performed at the site of the data to reduce by a million-fold or so the quantity of data that
needs to be transmitted over the internet to the site where the image reconstruction is performed.
At current rates, the transmission of Terabytes of data over the internet could take several weeks,
whereas the time for the transmission of a MB of data could be measured in seconds. In addition
this process of data reduction is expected to result in considerable noise-reduction of the raw
data though averaging [19].

Since theBl(q,q′) coefficients are related to the expansion coefficientsRlm(q) of the
real spherical harmonics (which satisfy the same selection rule onl as do the expansion
coefficientsIlm(q) of the regular spherical harmonics), it would be expected that thel =
0,6,10,12,16,18,20,22,24,26,28,30 elements of these coefficients are dominant. This was
found to be the case for our simulations of STNV. Some of the larger, predominantly icosa-
hedral, viruses may have appendages like the unique vertex and “hair” of the mimivirus [20]
, or the spike fom a unique vertex of the chlorella virus [21]. Indeed, with values of these
coefficients extracted from experimental single-particle diffraction patterns from an unknown
particle, the satisfaction of this selection rule would be an excellent test of the degree to which
the particle is icosahedral. Inclusion of only the largel = 0,6,10,12,16, ... of theBl(q,q′) co-
efficients in the reconstruction algorithm consistent with icosahedral symmetery is equivalent
to finding the closest icosahedral approximation to the structure.

Fig. 8. Reconstructed image from the diffraction volume of a single STNV particle com-
puteddirectly from a structure factor calculation. STNV is about 20 nm in diameter. The
figure depicts a view of the icosahedron close down its 5-fold rotation axis. The recon-
struction assumed a maximum value ofq, qmax, of about 4.7 nm−1, implying a resolution
of ∼ 1.3 nm. Both the outer and inner surfaces of the virus capsid are apparent in this rep-
resentation. A ribbon diagram of the structure in PDB entry 2BUK is seen to fit within this
capsid.

The procedure described in section 3 was then followed to reconstruct a 3D diffraction vol-
ume, consisting of set of scattered intensitiesI(qx,qy,qz) over 3D reciprocal space as a func-

#148902 - $15.00 USD Received 7 Jun 2011; revised 24 Jul 2011; accepted 27 Jul 2011; published 18 Aug 2011
(C) 2011 OSA 29 August 2011 / Vol. 19,  No. 18 / OPTICS EXPRESS  17330



tion of the reciprocal-space coordinate~q ≡ (qx,qy,qz). In our simulations, we took this to be a
61×61×61 array of real numbers. The computer time for this process was almost ridiculously
short, amounting to no more than a few seconds on a single-processor desktop computer.

Fig. 9. (Media 1) Same as Fig. 8 except that the diffraction volume was reconstucted from
theaverage of angular correlations on 10,000 diffraction patterns of STNV from uniformly
distributed directions over SO(3). The reconstructed electron density is seen to be remark-
ably similar to that in Fig. 8.

Fig. 10. Same as Fig. 9 except that image displayed is a cut perpendicular to the 5-fold axis
of the virus. The 5-fold symmetry of both the external and internal surfaces of the capsid
in this projection are clearly visible.

The final step is the recovery of a 3D electron density of the particle. This may be done by a
standard iterative phasing algorithm. We used the “charge flipping” algorithm of Oszlányi and
Süto [22, 23]. In order to judge the accuracy of the our algorithm in recovering the 3D diffrac-
tion volume, we performed this recovery of the 3D electron density from both the diffraction
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volumeI(q) calculated directly from the STNV structure factors (Fig. 8), and also by our al-
gorithm from theBl(q,q′) coefficients (Fig. 9), which may be computed from the measured
data of the FEL diffraction patterns from random particle orientations. The similarity of the
reconstructed images of Figs. 8 and 9 was a further indication of the validity of the method of
image reconstruction from the quantitiesBl(q,q′) derivable from the average angular correla-
tions. The fact that the reconstructed image consists of a thin protein shell is also seen from
the slice perpendicular to a 5-fold rotation axis through the reconstructed image of Fig. 9 de-
picted in Fig. 10. In the case of all three figures, a ribbon representation of the structure from
the biological assembly of the STNV virus from the same PDB structure used to simulate the
diffraction patterns is superimposed on the semi-transparent electron density to show the excel-
lence of the reconstruction. It should be emphasized that nowhere in our theory is it assumed
that the structure consists of a thin protein shell, unlike the so-called shell model that has been
used in the SAXS analysis of virus capsids [24]. In our case, the existence of a shell is deduced
by an iterative phasing algorithm from the anaysis of data from diffraction patterns of random
particle orientations without any assumptions on our part.

6. Beyond the Icosahedral Approximation

Satellite tobacco necrosis virus (STNV) is an example of a virus with a perfectly icosahedral
protein coat [25]. A host cell gets access to the genetic material of this virus by ingesting it
whole and dissolving its protein coat.

Many of the larger viruses are only approximately icosahedral: they often have appendages,
such as a neck sticking out of the coat that is used to inject the genetic material inside the coat
into a host cell whose protein making capability is hijacked by the virus DNA or RNA.

An ultimate reconstruction algorithm should be able to reconstruct these non-icosahedral
parts of the structure in addition to the icosahedral part. The above procedure has determined the
icosahedral harmonic expansion coefficientsgl(q) that best fit the measured quantitiesBl(q,q′).
Any deviations from these values are due to the non-icosahedral parts of the structure. Any
differences between the experimental values ofBl(q,q′) andgl(q)gl(q′) may be written

δBl(q,q′) = ∑
m

alm{gl(q)δRlm(q′)+δRlm(q)gl(q
′)}+δRlm(q)δRlm(q′), (28)

in terms ofδRlm(q), the extra contribution to the RSH expansion coefficients due to deviations
from icosahedral symmetry. Note that for(l,m) combinations not associated with icosahedral
harmonics, e.g. those for which there is no entry in a list like Table 1, the termsalm will be
zero, and only the quadratic terms inδRlm will survive in (28). Determination of theδRlm(q)
coefficients which optimize the agreement the theoretical expression (28) and the measured
values will enable the construction of a better estimate of a single-particle diffraction volume
via

I(~q) = ∑
lm

{gl(q)alm +δRlm(q)}Slm(q̂). (29)

The presence of the correction termsδRlm(q), which have no symmetry restrictions (apart
from Friedel symmetry) will allow the diffraction volume calculated by this formula to include
deviations from icosahedral symmetry.

Application of an interative phasing algorithm to an oversampled diffraction volume calcu-
lated by this expression will enable the determination of the full structure of the virus, including
any appendages that break the approximate icosahedral symmetry.
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7. Discussion

The remarkable similarity of the reconstructed electron densities of Figs. 8 and 9, and the fit
of the latter to the model of STNV from the PDB file, are indications of the correctness of the
method of reconstruction of the 3D diffraction volume from the average angular correlations
of the 10,000 simulated diffraction patterns of STNV. We calculated from these theBl(q,q′)
coefficients for all values ofl from 0 to 30. We found good agreement with the selection rule
on thel coefficients in which the sizes of theBq,q′ coefficients for all odd values ofl were
small (due to Friedel, or inversion, symmetry) and in addition the even valuesl=2,4,8, and
14 were also small, due to the icosahedral symmetry of the 3D diffraction volume of a single
particle. We includedgl(q) coefficients for the non-negilibleBl(q,q′) coefficients up tol=30
(up to which value the icosahedral harmonic expansion coefficients depend on thel quantum
number only). Ifqmax is the maximum value of the reciprocal-space coordinateq up to which
the reconstruction is valid, conventional wisdom [26] suggests thatlmax and qmax should be
related by

qmaxR = lmax, (30)

whereR is the radius of the particle. Taking

qmax = 2π/d (31)

whered is the resolution. Substituting (31) into (30) and rearranging, we find that

d/R = 2π/lmax ≃ 1/5. (32)

STNV has a radius of∼ 100 Å suggesting a resolution of about 20Å. In practice we found
that increasingqmax a further 50% or so, while keepinglmax fixed at 30 seemed to improve
the quality of the reconstructed image. Presumably because up to about 1.5qmax the spherical
harmonic expansion coefficients ofl greater than 30 remain small.

It should be emphasized this is not necessarily an absolute limit of the resolution obtainable
with the use of icosahedral harmonics. The higher order harmonics, at least up tol=44, have
been tabulated by Zhenget al. [24]. At least up to this value, the degeneracy of the icosahedral
harmonics characterized by a particular value ofl is no more than two. Although the algorithm
for recovering the expansion coefficients of such degenerate hamonics from the experimental
data is a little more complicated, it seems far from an insuperable problem.

The images in Figs. 8 to 9 were computed by an iterative phasing algorithm [22, 23] from a
reciprocal-space distribution of intensities oversampled [13] by a factor of∼ 2 with respect to
the size of STNV, up to aqmax value of∼ 0.47Å−1 (a 61×61×61 array), implying a resolution
of about 13Å, and ad/R ratio closer to 1/8. Further, the images of Fig. 8-10 reveal this coat
to be hollow. The slice (Fig. 10) through the reconstructed image perpendicular to the 5-fold
axis reveals both external and internal surfaces of 5-fold rotational symmetry. The revelation of
the hollow nature of the protein coat is of course an extra feature contained in the 3D intensity
distribution above and beyond the assumed icosahedral symmetry. It is revealed by the iterative
reconstruction algorithm used [22,23] due to the paricular variation of theBl(q,q′) coefficients
with the radial reciprocal-space coordinatesq andq′.

Some the advantages of this method of analysis of single particle diffraction patterns from
unknown particle orientations compared with other proposed algorithms [4,5] should be pointed
out. Since it has been shown [7, 12, 19, 27, 28], that the angular correlations of multiple iden-
tical particles in arbitrary orientations are essentially identical to those from a single particle,
the method we have described is equally applicable to droplets containing multiple particles
injected into the XFEL [29] as to the injection of single particles in random orientations. Thus
there is no need to discard diffraction patterns from multiple particle hits.
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Since the inputs to our algorithm are not the direct photon counts, but rather the average of the
angularcorrelations between intensities of thesame diffraction patterns, it is insensitive to shot-
to-shot fluctuations between the diffraction patterns, as may be caused by intensity variations
of the incident X-ray beam or, for example, by the number of particles scattering a particular
X-ray pulse.

The raw experimental data is likely to consist of∼ 106 diffraction patterns, each of∼ 106

pixels. Thus the raw experimental data will require TB of storage. Of course, this is very noisy
data, and the structural information content is much less than this. The averaging of the angular
correlations that we perform may be regarded as a form of data averaging that results in info-
mormation concentration and noise reduction. Even if the number of values of q chosen is, say,
61, and these coefficeints are evaluated for, say, 30 values ofl, the total number of these (real)
coefficients will be only of the order of 100,000, requiring less than a MB of storage. This data
reduction is best performed at the site of the data to allow the tranference of a million times less
data over the internet to the site of image reconstruction. The reconstruction of 3D images of
the quality of Figs. 8-10 from a properly constructed set ofBl(q,q′) coefficients is extraordinar-
ily rapid. In our calculations, reconstruction of an array ofI(qx,qy,qz) values representing a 3D
diffraction volume at reciprocal-space coordinates~q ≡ (qx,qy,qz) on a 61×61×61 Cartesian
grid took just a few seconds on a single Intel Q6600 processor, using an Intel Fortran compiler.
The reconstruction of real-space images of the quality of Figs. 8-10 from this array by means
of a “charge flipping” algorithm [22,23] took a further 4 minutes for 200 iterations on a laptop
PC.

Of course, the averaging of the data from the different diffraction pattterns assumes they all
arise from copies of the particle in different orientations (as does the technique of small angle
X-ray scattering, SAXS, for example). In order to distinguish between different conformations
of the individual molecules, it may be necessary to operate on the entire ensemble of all the
measured diffraction patterns One of the disadvantages of such methods is the need to operate
on single-particle diffraction patterns and thus, unlike with our method, diffraction patterns
from multiple hits need to be removed. Such methods also face the problem of the uncertain
normalization of incident intensities between successive pulses of incident radiation. Also, in
contrast to our method, such techniques may require the tranferance of perhaps TB of data over
the internet to the site of the data performing the analysis, which needs to be equipped with a
cluster of computers performing parallel computations.

8. Conclusions

When reconstructing the structure of a virus from “diffract and destroy” type single-particle
diffraction experiments proposed for the free electron laser [1], one may exploit the dictum
of Caspar and Klug [9] that “there are only a limited number of efficient designs possible
for a biological container which can be constructed from a large number of identical protein
molecules, The two basic designs are helical tubes and icosahedral shells”. We offer here a
solution for the case of icosahedral viruses. For those viruses which are substantially, though not
completely icosahedral, the method proposed is expected to be useful nontheless for initially
reconstructing the approximate icosahedral structure. The deviations from this structure can
then be found by a perturbation theory which does not impose this symmetry.

The input to the algorithm is data from diffraction patterns of randomly oriented identical
particles (where the particle orientations are unknown) in the form of the average of the angu-
lar correlations. As a consequence of any approximate icosahedral symmetry of the scattering
particles, the angular momentum decomposition of the angular correlations contains only a few
dominant contibutions from low values of the angular momenta.

This immediately suggests a simple test of whether the experimentally measured data are
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from the scattering by an icosahedral object. If so, the components of the quantitiesBl(q,q′),
derivable from the angular correlations, should have much smaller values forl=1,2,3,4, and 5
than forl=0 andl=6, for example. What is more, as we have shown in this paper, the coefficients
gl(q) of the icosahedral harmonic expansion of the 3D diffraction volume of the particle may be
derived from theBl(q,q′) data and a positivity condition on the intensities of the 3D diffraction
volume. This will be the case even if the individual diffraction patterns are a result of scattering
from more than one particle, so there will be no need to discard the diffraction patterns from
multiple particles.

Having obtained the coefficients of an icosahedral harmonic expansion, the 3D diffraction
volume may be reconstructed as a sum over these icosahedral harmonics. By definition, the
resulting diffraction volume will have icosahedral symmetry. If this is constructed at a grid that
is oversampled by a factor of 2 in each dimension, we have shown that a “charge flipping” algo-
rithm with no fixed support contraint is able to reconstruct a 3D image of the particle. We find
that this procedure not only reconstructs an icosahedral shape for the particle, in simulations
for the satellite tobacco necrosis virus (STNV) it even reveals the hollow nature of the protein
coat.
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