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Abstract To efficiently solve a large scale unconstrained minimization problem with
a dense Hessian matrix, this paper proposes to use an incomplete Hessian matrix
to define a new modified Newton method, called the incomplete Hessian Newton
method (IHN). A theoretical analysis shows that IHN is convergent globally, and
has a linear rate of convergence with a properly selected symmetric, positive definite
incomplete Hessian matrix. It also shows that the Wolfe conditions hold in IHN with
a line search step length of one. As an important application, an effective IHN and a
modified IHN, called the truncated-IHN method (T-IHN), are constructed for solving
a large scale chemical database optimal projection mapping problem. T-IHN is shown
to work well even with indefinite incomplete Hessian matrices. Numerical results
confirm the theoretical results of IHN, and demonstrate the promising potential of
T-IHN as an efficient minimization algorithm.
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1 Introduction

Let f be a twice continuously differentiable multivariable function defined on a
bounded neighboring domain, D, of the n-dimensional Euclidean real vector space
Rn. We consider a large scale unconstrained optimization problem:

Findx∗ ∈D ⊂ Rn such that f (x∗) = min{f (x) | x ∈D}, (1)

where x∗ lies in the interior of D, f (x) and the gradient vector g(x) (i.e., the first
derivative of f at x) are expansive to be evaluated, and the Hessian matrix H(x)

(i.e., the second derivative of f at x) is dense, and available to be evaluated analyt-
ically. In practice, however, when n is large enough, it is infeasible to evaluate the
whole Hessian H(x) due to the computer cost of computing and storage. Typical ex-
amples of (1) often arise from biomolecular energy function minimization problems
and chemical database optimal projection problems as well as many other scientific
and engineering applications. The minimization problem of biomolecular potential
energy function is one of the fundamental tasks in biomolecular simulations [10]
while solving the optimal projection mapping problem is a key step in a large scale
chemical database analysis [10, 13, 14]. Developing efficient numerical minimization
algorithms is essential in these application fields.

Currently, typical algorithms for solving (1) include the steepest descent method
(SD), the nonlinear conjugate gradient method (CG), the limited-memory BFGS
method (L-BFGS) [4–6], and the discrete truncated Newton method (D-TN) [6, 7].
They all do not require any evaluations of the Hessian matrices but gradient vectors.
In SD and CG, the gradient vectors are employed to construct descent search direc-
tions. To gain faster minimization algorithms, L-BFGS and D-TN use the gradient
vectors to construct approximate Hessian matrices to define them as modified New-
ton type algorithms [6]. For example, in D-TN, an approximate Hessian matrix is
generated implicitly by using gradient vectors to construct a finite difference approx-
imation to the Hessian-vector product, which is the only place where H(x) occurs in
the truncated Newton method (TN) [1]. However, such a finite difference formula is
inherently numerically unstable, which may disturb the numerical behaviors of D-TN
significantly.

In this paper, we intend to study the idea of constructing an approximate Hessian,
M(x), directly from the Hessian matrix H(x), which is available in Problem (1) and
should be used, even partially, in developing fast minimization algorithms. With a
properly selected sparse pattern and sparse matrix techniques, we can simply con-
struct M(x) as an incomplete Hessian matrix, and evaluate it in a fast way based on
the available computer computing and storage capability. We then substitute it to the
Hessian matrix H(x) of a classic modified Newton method to yield an incomplete
Hessian Newton method (IHN). With a properly selected M(x), IHN is expected to
be numerically stable, easy to be implemented, and have high computer performance
and fast convergence rate.

The focus of this paper is to study some basic convergence properties of IHN.
For this purpose, we simply assume that M(x) is symmetric, positive definite in do-
main D. Following the classic quasi-Newton theory, we prove that IHN converges
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globally, and has both an R-linear rate of convergence and a Q-linear rate of conver-
gence when M(x) is properly selected. We also prove that the Wolfe conditions hold
for IHN with a line search step length of one when the number of IHN iterations is
large enough.

As an application, we construct a particular IHN for solving the chemical database
optimal projection mapping problem as described in [10, 13, 14]. In this application,
the entries of H(x) that correspond to the pairwise distances within a certain short
range become a dominating part of H(x). Thus, they can be selected as the nonzero
entries of M(x), yielding a good approximation of H(x). In this paper, we construct
M(x) by a distance cut-off strategy, and express both H(x) and M(x) in terms of
Kronecker products to display the dense and sparse matrix structures of H(x) and
M(x). Such a sparse expression of M(x) is valuable in programming M(x) by sparse
matrix techniques. To confirm our theoretical results, we carry out numerical exper-
iments on IHN with a real chemical dataset. Numerical results show that the rate
of convergence of IHN can be close to that of the classic modified Newton method
when the incomplete Hessian is properly selected. Even with a very sparse incom-
plete Hessian (a block diagonal matrix with each block being a 2 by 2 matrix), IHN
was still found to have a much faster rate of convergence than SD.

However, assuming all the incomplete Hessian matrices to be positive definite
is often too strong to be satisfied in practice. To release this assumption and fur-
ther reduce the computing cost, we use the truncated Newton strategy given in [12]
to modify IHN as a descent search direction method, and call it the truncated IHN
method (T-IHN) for clarity. T-IHN is shown to converge globally even with indefinite
incomplete Hessian matrices. To numerically study the convergence rate and com-
puter performance, we develop a MATLAB program package for T-IHN for solving
the chemical database problem using sparse matrix techniques. We then compare the
convergence and performance of T-IHN with that of SD, BFGS, and D-TN. Here
SD and BFGS were implemented by calling the minimization solver routine fminunc
from the MATLAB library, and the MATLAB program of D-TN is the same as that of
T-IHN except that it uses the Euler forward finite difference formula to approximate
the Hessian-vector product.

Numerical results show that the T-IHN using an incomplete Hessian with about
60 percent of zero entries has a faster rate of convergence and a better performance
than BFGS. T-IHN took less CPU time by a factor of about 2.09 than BFGS for a
dataset of 300 members. T-IHN was also found to have a close rate of convergence
as D-TN and a better performance than D-TN. In this test, T-IHN took less CPU time
by a factor of about 2.6 than D-TN. Here we did not compare T-IHN with L-BFGS
since the MATLAB library does not contain any L-BFGS program routine. Note
that L-BFGS usually has a slower rate of convergence than BFGS. Hence, it can
be expected that T-IHN has better performances in both convergence and CPU time
than L-BFGS.

We also made tests on T-IHN with two very sparse incomplete Hessian matrices:
one has about 97.43% of zero entries, and the other has about 99.67% of zero entries.
Even so, T-IHN was still found to have much better performances in both convergence
rate and CPU time than SD. It took less CPU time by a factor of up to 7.68 than SD.
These numerical results demonstrate the promising potential of T-IHN as an efficient
solver of minimization problem (1).
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The remainder of the paper is organized as follows. We define IHN in Sect. 2,
and present its basic convergent properties in Sect. 3. We then describe the IHN and
T-IHN methods for solving the database problem in Sect. 4. Finally, the numerical
results on IHN and T-IHN are presented in Sect. 5.

2 The IHN method

Let g(x),H(x) and M(x) denote the gradient vector, Hessian matrix, and incomplete
Hessian matrix of f at x ∈D, respectively. We assume that both H(x) and M(x) are
symmetric, positive definite in D. The IHN iterative sequence {xk} for solving (1) is
defined in the form

xk+1 = xk + αkpk, k = 0,1,2, . . . , (2)

where x0 is a given initial iterate in D, pk is a search direction satisfying

M(xk)pk = −g(xk), (3)

and αk is a step length satisfying the Wolfe conditions

f (xk+1) ≤ f (xk) + c1αkg(xk)
T pk and g(xk+1)

T pk ≥ c2g(xk)
T pk (4)

for 0 < c1 < 1
2 < c2 < 1. Clearly, pk = −M(xk)

−1gk , which is a descent search
direction in the sense that

g(xk)
T pk < 0 for k = 0,1,2, . . . . (5)

Denote mij and hij as the (i, j)th entry of M(x) and H(x), respectively. The
sparse pattern P of M(x) is a set of index pairs (i, j) at which mij �= 0. With a
given P , the incomplete Hessian matrix M(x) is defined by

mij (x) =
{

hij (x) for (i, j) ∈ P ,
0 otherwise.

Clearly, a selection of P depends on the problem to be solved and the capacity of a
computer to be used for implementation. In the extreme cases, we can set P = Pf

and Pd , where

Pd = {(i, i) | i = 1,2, . . . , n} and Pf = {(i, j) | i, j = 1,2, . . . , n}. (6)

Obviously, the matrices M(x) with Pf and Pd are respectively the original Hessian
matrix H(x) and the diagonal matrix with h11(x), h22(x), . . . , and hnn(x) as the
diagonal entries. Hence, the IHN with Pf returns to the classic Newton method.



An incomplete Hessian Newton minimization method and its

3 The convergence analysis of IHN

Let ‖ · ‖ be the 2-norm of a vector/matrix. For clarity, we sometimes write f (xk),
g(xk), H(xk), M(xk), g(x∗), H(x∗), and M(x∗) as fk, gk , Hk , Mk , g∗, H∗, and M∗,
respectively. Following the general quasi-Newton theory (e.g., see pp. 43–45 in [6]),
we have the global convergence theorem for IHN as below.

Theorem 1 Let {xk} be a sequence of IHN iterates defined in (2). If there exists a
positive constant η such that

‖Mk‖‖M−1
k ‖ ≤ η for all k, (7)

then limk→∞ ‖g(xk)‖ = 0 for any x0 ∈D.

To discuss the convergence rates of IHN, we make Assumptions 1 and 2.

Assumption 1 The IHN iterative sequence {xk} converges to x∗ ∈ D for any x0 ∈D.
Here g(x∗) = 0 and both M(x∗) and H(x∗) are positive definite.

Assumption 2 There exists a positive integer, k0, such that Wolfe condition (4) is
satisfied with αk = 1 for all k ≥ k0.

The following two definitions will be used in our IHN analysis.

Definition 1 The convergence rate of {xk} is R-linear if there exists a number r be-
tween 0 and 1 such that lim supk→∞ ‖xk − x∗‖1/k = r.

Definition 2 The convergence rate of {xk} is Q-linear if there exists a constant 0 <

c < 1 and a positive integer k0 such that ‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ whenever k ≥ k0.

Using the similar arguments in both [9] and the proof of Theorem 6.1 in [4], we
can prove the R-linear convergence for IHN.

Theorem 2 If Assumption 1 and condition (7) hold, then the IHN iterative sequence
{xk} is R-linearly convergent.

The following corollary gives an easy-to-check sufficient condition for the IHN
using the sparse pattern Pd defined in (6).

Corollary 1 Let Assumption 1 hold and the sparse pattern of incomplete Hessian
matrix Mk be given with Pd in (6). If the diagonal elements of Hk are positive and
bounded, then IHN is convergent both globally and R-linearly.

Proof We only need to prove that (7) is satisfied. Let h
(k)
ii for i = 1, . . . , n be the

diagonal elements of Hk . By the assumption, there exist two positive constants b1
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and b2 such that b1 ≤ h
(k)
ii ≤ b2 for all i and k. Thus,

‖Mk‖‖M−1
k ‖ = max1≤i≤n |h(k)

ii |
min1≤i≤n |h(k)

ii |
≤ b2

b1
.

Hence, the proof follows from Theorems 1 and 2. �

To discuss the Q-linear rate of convergence, we need Lemmas 1 and 2.

Lemma 1 If Assumption 1 holds, then for any η > 0, there exists ε > 0 such that
H(x) and M(x) are positive definite, ‖M(x)−1 − M(x∗)−1‖ < η, and ‖g(x) −
g(x∗) − H(x∗)(x − x∗)‖ < η‖x − x∗‖ whenever ‖x − x∗‖ ≤ ε.

The above lemma can be proved by similar arguments to the ones from Sects. 2.3.3
and 3.1.6 in [8].

Lemma 2 If H and M are symmetric, positive definite, then

λmin(M
−1H) − 1 ≤ xT (H − M)x

xT Mx
≤ λmax(M

−1H) − 1, ∀x �= 0, (8)

where λmin(M
−1H) and λmax(M

−1H) denote the smallest and largest eigenvalues
of M−1H , respectively.

Proof Let M1/2 be the square root matrix of M . Set H̄ = M−1/2HM−1/2 and y =
M1/2x for any nonzero x ∈ D. It is easy to show that xT Hx = yT H̄y, yT y = xT Mx,
and H̄ is similar to M−1H . Hence,

λmin(M
−1H)yT y ≤ yT H̄y ≤ λmax(M

−1H)yT y,

from which it is then easy to obtain (8). �

Since M∗ is assumed to be symmetric, positive definite, its square root matrix
M

1/2∗ exists and satisfies that M∗ = M
1/2∗ M

1/2∗ . Thus, a new norm, ‖ · ‖∗, can be well
defined by

‖x‖∗ = ‖M1/2∗ x‖, ∀x �= 0. (9)

Under this new norm, we obtain the Q-linear convergence rate for IHN in The-
orem 3. Here the spectral radius of a matrix, say A, is denoted by ρ(A), which is
defined as the largest of the modules of the eigenvalues of A.

Theorem 3 Let Assumptions 1 and 2 hold. If

ρ(M−1∗ H∗) < 2, (10)

then the IHN iterative sequence {xk} has a Q-linear rate of convergence under the
norm ‖ · ‖∗ defined in (9).
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Proof Set H̄∗ = M
−1/2∗ H∗M−1/2∗ , and denote by λj as the j th eigenvalue of H̄∗ for

j = 1,2, . . . , n. Clearly, H̄∗ is symmetric, positive definite because of Assumption 1
so that all its eigenvalues are positive. Further, H̄∗ is similar to M−1∗ H∗; thus, both
M−1∗ H∗ and H̄∗ have the same eigenvalues. Hence, I − M−1∗ H∗ has eigenvalues
1 − λj for j = 1,2, . . . , n, and from (10) it follows that 0 < λj < 2 or |1 − λj | < 1
for j = 1, . . . , n. Therefore, ρ(I − M−1∗ H∗) = max1≤i≤n |1 − λi | < 1, and we can
select a positive real number, t , such that ρ(I − M−1∗ H∗) ≤ t .

We next set E∗ = M∗ − H∗ and Ē∗ = M
−1/2∗ E∗M−1/2∗ . It is easy to see that Ē∗

is symmetric, and similar to I − M−1∗ H∗. Hence, ‖Ē∗‖ = ρ(Ē∗) = ρ(I − M−1∗ H∗).
With (2) and Assumption 1, we can get that

M
1/2∗ (xk+1 − x∗)

= M
1/2∗ (xk − M−1

k gk − x∗) = M
1/2∗ (−M−1

k (gk − g∗) + (xk − x∗))

= −M
1/2∗ M−1

k (gk − g∗ − H∗(xk − x∗))

− M
1/2∗ (M−1

k − M−1∗ )H∗(xk − x∗) + M
−1/2∗ E∗(xk − x∗). (11)

The last term of the above expression can then be estimated as below:

‖M−1/2∗ E∗(x∗ − xk)‖ = ‖Ē∗M1/2∗ (x∗ − xk)‖
≤ ‖Ē∗‖‖x∗ − xk‖∗ = ρ(Ē∗)‖x∗ − xk‖∗
= ρ(I − M−1∗ H∗)‖x∗ − xk‖∗ ≤ t‖x∗ − xk‖∗. (12)

To estimate the other two terms of (11), we set η = 1
2 (1 + t), and

μ = max
{‖H∗‖,‖M∗‖,‖M−1∗ ‖,‖M1/2∗ ‖,‖M−1/2∗ ‖}. (13)

Obviously, t < η < 1, and there exists a sufficiently small positive number, γ , satis-
fying

t + μ2(2μ + γ )γ ≤ η. (14)

For the above γ > 0, using the continuity of H(x) and M(x) at x∗ and similar argu-
ments in the proof of Lemma 1, we can show that there exists positive number ε such
that

‖M(y)−1 − M(x∗)−1‖ ≤ γ, (15)

and

‖M1/2∗ (g(y) − g(x∗) − H(x∗)(y − x∗))‖ ≤ γ ‖M1/2∗ (y − x∗)‖ (16)

whenever ‖y − x∗‖ ≤ ε.
Furthermore, from the definition of the convergence of sequence {xk} it can follow

that there exists integer k1 > 0 such that ‖xk − x∗‖ ≤ ε for k ≥ k1. Hence, by (13)
and (15), we can obtain that

‖M1/2∗ (M−1
k − M−1∗ )H∗M−1/2∗ ‖ ≤ γμ3,
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and

‖M−1
k ‖ ≤ ‖M−1∗ ‖ + ‖M−1

k − M−1∗ ‖ ≤ μ + γ for k ≥ k1.

Finally, applying the above two expressions, (12), (14) and (16) to (11) gives

‖xk+1 − x∗‖∗ = ‖M1/2∗ (xk+1 − x∗)‖
≤ ‖M1/2∗ M−1

k (gk − g∗ − H∗(xk − x∗))‖
+ ‖M1/2∗ (M−1

k − M−1∗ )H∗(xk − x∗)‖ + ‖M−1/2∗ E∗(xk − x∗)‖
≤ (γμ2(2μ + γ ) + t)‖M1/2∗ (xk − x∗)‖
≤ η‖M1/2∗ (xk − x∗)‖ = η‖xk − x∗‖∗ (17)

whenever k ≥ k1. This completes the proof of Theorem 3. �

From the above proof we see that the condition ρ(I − M−1∗ H∗) < 1 follows
from (10), and is then used in the remaining part of the proof. Thus, we have

Corollary 2 Let Assumptions 1 and 2 hold. If

ρ(I − M−1∗ H∗) < 1, (18)

then IHN has a Q-linear rate of convergence under the norm ‖ · ‖∗.

According to the theory of linear stationary iterative methods [15], (18) gives a
sufficient and necessary condition to guarantee the convergence of an iterative method
constructed by the matrix splitting H∗ = M∗ −N∗ with N∗ = M∗ −H∗ for solving the
linear system with coefficient matrix H∗. Thus, (18) is a natural condition to construct
an efficient IHN.

The condition (10) in Theorem 3 depends on the solution x∗, which is difficult to
be verified. To improve it, we propose a sufficient condition that only depends on the
current iterate in the following corollary.

Corollary 3 Let Assumptions 1 and 2 hold. If Hk is positive definite and there exist
positive constant η < 2 and positive integer k1 such that

‖M−1
k Hk‖ ≤ η, ∀k > k1, (19)

then IHN has a Q-linear rate of convergence under the norm ‖ · ‖∗.

Proof From the property of matrix norm and the assumptions it follows that

ρ(M−1
k Hk) ≤ ‖M−1

k Hk‖ ≤ η for all k > k1.

Letting k → ∞ in the above expression immediately gives condition (10). Thus, the
proof is followed from Theorem 3. �
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A sufficient condition is given in the following theorem to guarantee that IHN
satisfies Assumption 2.

Theorem 4 Let Assumption 1 hold. If the eigenvalues λ
(k)
i for i = 1, . . . , n of M−1

k Hk

have lower and upper bounds λl and λu and there exists positive integer k1 such that

1 − c2 < λl ≤ λ
(k)
i ≤ λu < 2 − 2c1 for i = 1, . . . , n and k ≥ k1, (20)

where c1 and c2 are the two constants in the Wolfe conditions of (4), then Assump-
tion 2 holds for IHN.

Proof By Taylor expansion, we can get that

f (xk + pk) − f (xk) − c1g
T
k pk

=
(

1

2
− c1

)
gT

k pk + 1

2
pT

k (gk + Hkpk) + 1

2
pT

k (H(uk) − Hk)pk, (21)

where uk = xk + tkpk with 0 ≤ tk ≤ 1. Set

r = 1

2
λmin(M(x∗)), and ω = r

2
min{2 − 2c1 − λu, λl + c2 − 1}. (22)

From Assumption 1 and (20) it can be shown that both r and ω are positive. Thus, an
upper bound for λu − 1 and a lower bound for λl − 1 can be estimated in terms of r

and ω as below:

λu − 1 ≤ λu + 2 − 2c1

2
− 1 = 1 − 2c1 − 1

2
(2 − 2c1 − λu)

≤ 1 − 2c1 − ω

r
, (23)

and

λl − 1 ≥ λl + 1 − c2

2
− 1 = −c2 + 1

2
(λl + c2 − 1)

≥ −c2 + ω

r
. (24)

Further, by the continuity of H , we can select ε > 0 such that

‖H(z) − H(x)‖ ≤ ω (25)

whenever ‖x − x∗‖ ≤ ε and ‖z − x∗‖ ≤ ε. Based on Assumption 1, we can also find
positive integer k2 ≥ k1 such that

λmin(Mk) ≥ r, ‖xk − x∗‖ ≤ ε, ‖xk + pk − x∗‖ ≤ ε, (26)

and H(xk) is positive definite for all k ≥ k2. As the result of the last two inequality
of (26),

‖uk − x∗‖ = ‖tk(xk + pk − x∗) + (1 − tk)(xk − x∗)‖ ≤ ε.
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Hence, with (25) and the second inequality of (26), we can get that

|pT
k (H(uk) − Hk)pk| ≤ ω‖pk‖2, ∀k ≥ k2. (27)

Also, by (3), (8) and (23), the term pT
k (gk + Hkpk) of (21) is estimated as

pT
k (gk + Hkpk) = pT

k (Hk − Mk)pk ≤ (λu − 1)pT
k Mkpk

≤
(

1 − 2c1 − ω

r

)
pT

k Mkpk. (28)

Therefore, applying (3), the first one of (26), (27), and (28) into (21) gives

f (xk + pk) − f (xk) − c1g
T
k pk

≤ −
(

1

2
− c1

)
pT

k Mkpk +
(

1

2
− c1 − ω

2r

)
pT

k Mkpk + 1

2
ω‖pk‖2

= − ω

2r
pT

k Mkpk + 1

2
ω‖pk‖2

≤ −1

2
ω‖pk‖2 + 1

2
ω‖pk‖2 = 0, ∀k ≥ k2. (29)

This completes the proof of the first inequality of (4) for Assumption 2.
We next prove the second inequality of (4) for Assumption 2.
By the mean value theorem and (3),

g(xk + pk)
T pk = gT

k pk + pT
k Hkpk + pT

k (H(vk) − Hk)pk

= pT
k (Hk − Mk)pk + pT

k (H(vk) − Hk)pk, (30)

where vk = xk + t ′kpk with 0 ≤ t ′k ≤ 1. Similar to (27), we obtain

|pT
k (H(vk) − Hk)pk| ≤ ω‖pk‖2, ∀k ≥ k2. (31)

A combination of (8) with (20) and (24) gives

pT
k (Hk − Mk)pk ≥ (λl − 1)pT

k Mkpk ≥
(

−c2 + ω

r

)
pT

k Mkpk. (32)

Thus, by (3), (26), (30), (31), and (32),

g(xk + pk)
T pk − c2g

T
k pk

= c2p
T
k Mkpk + pT

k (Hk − Mk)pk + pk(H(vk) − Hk)pk

≥ c2p
T
k Mkpk +

(
−c2 + ω

r

)
pT

k Mkpk − ω‖pk‖2

= ω

r
pT

k Mkpk − ω‖pk‖2 ≥ 0 for k ≥ k2.

This completes the proof of Theorem 4. �
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4 The IHN and T-IHN methods for chemical database problem

As an application, we construct IHN and T-IHN for solving the chemical database
optimal projection mapping problem described in [10, 13, 14]. The key step is the
construction of incomplete Hessian matrix Mk , which is presented in details in this
section.

With the notation of [13], we recall the database problem as below.
Let a chemical database of n members have been characterized as an n × m ma-

trix X:

X = (X1,X2, . . . ,Xn)
T =

⎡
⎢⎢⎢⎣

x11 x12 . . . x1m

x21 x22 . . . x2m

...
...

. . .
...

xn1 xn2 . . . xnm

⎤
⎥⎥⎥⎦ , (33)

where Xi = (xi1, xi2, . . . , xim)T stands for the ith member of the database, xij de-
notes the value of the j th chemical descriptor for ith member, and the distance
δij = ‖Xi − Xj‖ measures the similarity of the ith member with j th member. A key
step in the efficient visualization protocol proposed in [13, 14] is to solve the follow-
ing unconstrained minimization problem:

E(Y ∗
1 , Y ∗

2 , . . . , Y ∗
n ) = min

∀Yi∈Rl
E(Y1, Y2, . . . , Yn), (34)

where Yi = (yi1, yi2, . . . , yi l)
T , l is a positive integer less than m, and the objective

function E is defined by

E(Y1, Y2, . . . , Yn) = 1

4

n−1∑
i=1

n∑
j=i+1

ωij

∣∣d(Yi, Yj )
2 − δ2

ij

∣∣2
. (35)

Here d(Yi, Yj )
2 = ∑l

k=1(yik − yjk)
2, and ωij is the weight constant, which is set

as ωij = 1/δ4
ij if δ4

ij ≥ η and ωij = 1 if δ4
ij < η. The parameter η is a small positive

number such as 10−12. In [13, 14], the above minimization problem was solved by
D-TN with an initial guess generated from SVD/PCA (singular value decomposition
or principal component analysis) [2, 3].

Set Y = (Y1, Y2, . . . , Yn)
T . To construct the incomplete Hessian matrix M(Y), we

first find the Hessian H(Y) of E(Y) as below:

H(Y) =
n−1∑
i=1

n∑
j=i+1

Hij (Y ), (36)

where Hij (Y ) denotes the second derivative of the term
ωij

4 [d(Yi, Yj )
2 − δ2

ij ]2 with
respect to Y . We express Hij (Y ) as an n×n block matrix with each block entry, hμν ,
being an l × l matrix. It is easy to find that

hμν =
{

Πij if μ = ν = i or μ = ν = j ,
−Πij if μ = i, ν = j or μ = j, ν = i,
0 otherwise,



D. Xie, Q. Ni

where Πij denotes an l × l matrix defined by

Πij = ωij (rij Il + 2RijR
T
ij ).

Here rij = d(Yi, Yj )
2 − δ2

ij , Rij = Yi −Yj , and Il is the l × l identity matrix. Clearly,
Hij is sparse with only four nonzero block entries, hii, hjj , hij , and hji , where hii =
hjj and hij = hji . In terms of Kronecker product ⊗,1 Hij (Y ) can be expressed as

Hij (Y ) = (eie
T
i − eie

T
j − ej e

T
i + ej e

T
j ) ⊗ Πij ,

where ei denotes the ith standard unit vector of Rn. Thus, if we define Πii = 0, then
the Hessian H(Y) can be written as

H(Y) =
n−1∑
i=1

n∑
j=i+1

(eie
T
i − eie

T
j − ej e

T
i + ej e

T
j ) ⊗ Πij

=
n∑

i=1

(
eie

T
i ⊗

n∑
j=1

Πij

)
−

∑
i<j

(eie
T
j + ej e

T
i ) ⊗ Πij . (37)

Clearly, the first and second terms of (37) give the main block diagonal part and the
off-diagonal part of H(Y), respectively. From the above expression it is easy to see
that H(Y) is a full dense matrix of N × N with N = nl.

Using the distance cutoff strategy, we define the incomplete Hessian matrix M(Y)

as follows: With a given cutoff radius, τ > 0, we construct the sparse pattern P by

P = {(i, j) | ‖Xi − Xj‖ ≤ τ for i, j = 1,2, . . . , n}.
We then define M(Y) by

M(Y) =
n∑

i=1

(
eie

T
i ⊗

n∑
j=1

Πij

)
−

∑
(i,j)∈P

(eie
T
j ) ⊗ Πij . (38)

Clearly, the above matrix of M(Y) is symmetric due to the symmetry of the subma-
trix Πij and the definition of P . Hence, in computer implementation, we can only
evaluate and store the upper triangular part of M(Y) to reduce the costs of computing
and storage.

To properly control the sparsity of M(Y), we propose to select a value of the cutoff
radius τ by the formula

τ = ξ

[
2

n(n − 1)

n∑
i=1

n∑
j=i+1

δ2
ij

]1/2

, (39)

1The Kronecker product ⊗ of an m × n matrix, say A = (aij )m×n, with a μ × ν matrix B is defined as a
μm × νn matrix in the form A ⊗ B = (aij B)m×n .
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where ξ is an adjusting factor for the sparsity of M(Y). If ξ = 1, τ gives a mean value
of the distances between each pair of the database members. In other words, about a
half of the entries of M(Y) may be zero. As the value of ξ is reduced to zero, M(Y)

becomes the block diagonal matrix Md(Y ):

Md(Y ) =
n∑

i=1

(
eie

T
i ⊗

n∑
j=1

Πij

)
. (40)

From the block Jacobi convergence theory (see p. 111 in [15], for example) it fol-
lows that ρ(I −Md(Y ∗)−1H(Y ∗)) < 1 if H(Y ∗) and 2Md(Y ∗)−H(Y ∗) are positive
definite and all the main diagonal block entries of H(Y ∗) are symmetric, positive def-
inite. Hence, by Corollary 2, it is claimed that the IHN method with the incomplete
Hessian of (40) is Q-linearly convergent.

With the incomplete Hessian M(Y) of (38), we obtain IHN for solving the data-
base problem (34).

We next describe T-IHN for solving the database problem (34).
The T-IHN iterative sequence {xk} is defined in the same form as the one in (2)

except that the descent search direction pk is selected as either an iterate of the pre-
conditioned conjugate gradient method (PCG) [2] for solving (3) or −gk (in the worst
case) according to the truncated Newton strategy given in [12]. For clarity, the scheme
for generating pk is presented in Algorithm 1. The initial iterate x0 of T-IHN is gen-
erated by using the SVD/PCA scheme given in [13].

Algorithm 1 (Defining the descent search direction pk for T-IHN)
Let Bk be a preconditioner for Mk , and wj represent the j th PCG iterate for solv-

ing (3). Set ηk = min{ck/k, ‖gk‖}, and give ε > 0 and ITPCG > 0 (e.g., ck = 0.5,
ε = 10−6 and ITPCG = 80). The kth descent search direction pk of the T-IHN
method is selected by the following steps:

1. [INITIALIZATION]
Set j = 1, w1 = 0, r1 = −gk , and d1 = z1,
where z1 solves the linear system Bkz1 = −r1.

2. [SINGULARITY TEST]
If either |rT

j zj | ≤ δ or |dT
j Mkdj | ≤ δ (e.g., δ = 10−10),

exit the algorithm with pk = wj (for j = 1, set pk = −gk).
3. Compute αj = rT

j zj /d
T
j Mkdj and wj+1 = wj + αjdj .

4. [DESCENT DIRECTION TEST]
If gT

k wj+1 ≥ gT
k wj + δ,

exit the algorithm with pk = wj (for j = 1, set pk = −gk).
5. Compute rj+1 = rj − αjMkdj .

6. [TRUNCATION TEST]
If ‖rj+1‖ ≤ ηk‖gk‖ or j + 1 > ITPCG,

exit the algorithm with pk = wj+1.

7. Compute βj = rT
j+1zj+1 / rT

j zj , and dj+1 = zj+1 + βjdj ,
where zj+1 solves the linear system Bkzj+1 = rj+1.

8. Increase j to j + 1 and go to Step 2.
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As shown in [12], a descent search direction is produced from Algorithm 1 even
with indefinite Mk or Bk . Thus, T-IHN is a descent search direction method, whose
global convergence follows immediately from the general theory of descent meth-
ods [6].

The performance of T-IHN can be improved significantly if a good preconditioner
Bk can be selected. However, since Mk is often indefinite for this database problem,
its preconditioning causes difficulties in both theory and practice. We avoid such
difficulties in this paper by simply setting Bk to be an identity matrix.

5 Numerical results

We developed two MATLAB program packages for IHN and T-IHN for solving the
database problem (34), respectively. The IHN program package is only used for nu-
merically studying the convergence behaviors of IHN. Thus, we simply store the
incomplete Hessian Mk into a full matrix array and solve the related linear systems
by a direct solver. In the T-IHN package, we evaluated and stored only the nonzero
block entries of the upper triangular part of Mk , and evaluated the product of Mk

with a nonzero vector using only the nonzero block entries of Mk . In both IHN and
T-IHN packages, the step length αk was calculated by calling the line search program
from the MATLAB library, where we used c1 = 0.01, c2 = 0.9, and an initial guess of
one (based on the result of Theorem 4). The test data sets were selected from a large
chemical database provided by the Medical College of Wisconsin, in which each
member consists of one rat’s renal reactions to different physiological and medical
experiments.

As comparisons, we also solved the database problem (34) by the classic Newton
method, SD, BFGS, and D-TN. Here BFGS and SD were implemented by calling the
minimization program routine, fminunc, from the MATLAB library with the option
of HessUpdate as ‘bfgs’ and ‘steepdesc’, respectively. The other options for BFGS
and SD included the scaled-identity matrix as the initial Hessian approximation, and
the default mixed cubic and quadratic polynomial line search method, which is the
same as the one used in the IHN and T-IHN packages. The D-TN program package
was the same as the T-IHN package except that the Hessian-vector product Hkd was
approximated by the Euler forward finite difference approximation:

Hkd ≈ g(xk + hd) − g(xk)

h
, (41)

where xk is the kth D-TN iterate, d is a vector, and h is set as

h = max

{
ς

max{10ς,‖d‖} ,0.1ς

}

with ς = 2
√

εm(1 + ‖xk‖
√

N), ε = 10−10, and N = ln. The above h is the same as
the default setting for D-TN within TNPACK [11]. With (41), each evaluation of Hkd

requires one new gradient evaluation. All the tests on SD, BFGS, D-TN, IHN and
T-IHN used the same MATLAB program routine we wrote for computing function
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Fig. 1 The sparse patterns of the three incomplete Hessian matrices of 160 × 160 with the sparsity ratio
ρ = 44.46%,23.84% and 1.25% (from left to right)

Table 1 Comparisons of the
convergence of IHN with that of
Newton and SD for solving the
database problem (34) with
n = 80 and l = 2

Minimizer Iterations Final E Final ‖g‖

Classic Newton 53 20.663 6.74×10−7

IHN ρ = 44.46% 68 21.334 9.43×10−7

IHN ρ = 23.84% 105 20.776 9.62×10−7

IHN ρ = 1.25% 279 20.538 9.76×10−7

SD 7184 20.633 9.75×10−7

values E and gradient vectors gk . They also used the same iteration stopping rule (i.e.,
‖g(xk)‖ < 10−6), the same initial iterate generated from SVD (except IHN), and the
same datasets with m = 9 and l = 2. The numerical experiments were made via MAT-
LAB version R2006a on a laptop computer (Latitude D610 with Intel Pentium(R) M
1.86 GHz processor, and 1 GB RAM) at the University of Wisconsin-Milwaukee.

In the numerical tests on IHN, we used a dataset with n = 80. As required by the
IHN analysis, an initial guess x0 was selected such that all the Hessian and incomplete
Hessian matrices Hk and Mk were positive definite (we checked them by evaluating
their eigenvalues). Three incomplete Hessian matrices were constructed by using ξ =
0.5,0.2235 and 0, which gave the cutoff radius τ = 185.26,82.81 and 0, respectively,
according to (39). The resulted three incomplete Hessian matrices were found to
have that ρ = 44.46%, 23.84% and 1.25%, respectively, where ρ is the percentage of
nonzero entries of an N × N sparse matrix defined by

ρ = 100(Total Number of Nonzero Entries)

N2
%.

Their sparse patterns were plotted in Fig. 1. From this figure we see that the incom-
plete Hessian with ρ = 1.25% is a block diagonal matrix with each block being a
2 by 2 matrix.

Figures 2 and 3 and Table 1 compare the convergence behaviors of the IHN using
the above three sparse incomplete Hessian matrices with that of the Newton and SD
methods. Here the minimum point x∗ used in computing errors ‖xk − x∗‖ for each
method was found previously by this method. From the figures we see that the con-
vergence speed of IHN becomes decreasing as the sparsity percentage ρ is reduced.
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Fig. 2 Comparisons of the
absolute errors of IHN with that
of the classic Newton method
for solving the database prob-
lem (34) with n = 80 and l = 2

Fig. 3 Comparisons of the
gradient norms of IHN with that
of the Newton and SD methods
for solving the database prob-
lem (34) with n = 80 and l = 2

With ρ = 44.46%, the convergence rate of IHN was close to that of the classic New-
ton method. In the case of ρ = 1.25%, where incomplete Hessian M(xk) is a block
diagonal matrix with each block being a 2 by 2 matrix, IHN was still found to have a
much faster convergence speed than SD.

In the numerical experiments on T-IHN, we selected a dataset of 300 members
(n = 300) from the large database. We also constructed three incomplete Hessian ma-
trices using ξ = 0.5,0.1 and 0, which resulted in the cutoff radius τ = 179.89,35.978
and 0, and the sparsity percentage ρ = 40.22%,2.58% and 0.33%, respectively. We
plotted the sparse patterns of the incomplete matrices with ρ = 40.22% and 2.58%
in Figs. 4 and 5. It is interesting to note that the nonzero entries of Mk are distributed
across the whole matrix. The one with ρ = 0.33% is a block diagonal matrix with
each block being a 2 by 2 matrix.

Table 2 gives the performance data on the T-IHN, D-TN, BFGS, and SD methods
for solving the database problem (34) with n = 300 and l = 2. Here, funcCount de-
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Fig. 4 The sparse pattern of the
600 × 600 incomplete Hessian
matrix with the sparsity ratio
ρ = 40.2%

Fig. 5 The sparse pattern of the
600 × 600 incomplete Hessian
matrix with ρ = 2.58%

Table 2 Comparisons of the convergence and performance of T-IHN with that of D-TN, BFGS, and SD
for solving the database problem (34) with n = 300 and l = 2. Here the CPU time is measured in seconds

Minimizer Iterations Final E Final ‖g‖ funcCount CPU

BFGS 196 330.67 1.19 × 10−6 199 25.04

D-TN 19 (846) 330.67 4.45 × 10−6 909 27.26

SD 3531 330.67 2.76 × 10−5 6683 373.15

T-IHN ρ = 40.22% 21 (714) 330.67 9.14 × 10−6 83 11.28

T-IHN ρ = 2.58% 186 (1964) 330.67 9.46 × 10−6 440 48.56

T-IHN ρ = 0.33% 246 (9403) 330.67 8.85 × 10−6 553 61.25

notes the number of calling the program routine for evaluating E and g as well as M

(T-IHN only), the number in parentheses is the total number of CG iterations within
the D-TN and T-IHN methods, and the computer CPU time is measured by the MAT-
LAB time functions tic and toc, where tic saves the current time that toc uses later
to measure the elapsed time in seconds. Comparisons of the convergence processes
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Fig. 6 Comparisons of the
gradient norms of T-IHN with
that of D-TN and BFGS for
solving the database
problem (34) with n = 300 and
l = 2. The convergence rate of
T-IHN is shown to be able to be
close to that of D-TN and faster
than that of BFGS

Fig. 7 Comparisons of the
gradient norms of T-IHN with
that of SD for solving the
database problem (34) with
n = 300 and l = 2. Even with
two very sparse incomplete
Hessian matrices, T-IHN is
shown to have a much faster
convergence speed than SD

of T-IHN, D-TN, BFGS, and SD in terms of gradient norms are displayed in Figs. 6
and 7.

From Table 2 and Fig. 6 we see that the T-IHN with ρ = 40.22% (i.e., about
60 percentage of the entries are zero) not only had a rate of convergence that is close
to D-TN and faster than BFGS, but also had better performances than both D-TN and
BFGS. In these tests, T-IHN took less CPU time by a factor of 2.4 than D-TN and by
a factor of 2.2 than BFGS.

As shown in Table 2, even with a very sparse incomplete Hessian matrix, T-IHN
still had a much faster convergence speed and better performance than SD. The T-IHN
using the incomplete Hessian with ρ = 2.58% and 0.33% reduced the total CPU time
of SD by the factors of about 7.68 and 6.09, respectively.

These numerical results demonstrate the promising potential of T-IHN as an effi-
cient algorithm for solving the minimization problem (1). In our sequent work, we
intend to further improve the convergence rate of T-IHN and study the precondition-
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ing issue for T-IHN to further improve the performance of T-IHN for solving a very
large database problem.
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