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The Poisson–Boltzmann equation (PBE) is one widely-used implicit solvent continuum 
model in the calculation of electrostatic potential energy for biomolecules in ionic 
solvent, but its numerical solution remains a challenge due to its strong singularity and 
nonlinearity caused by its singular distribution source terms and exponential nonlinear 
terms. To effectively deal with such a challenge, in this paper, new solution decomposition 
and minimization schemes are proposed, together with a new PBE analysis on solution 
existence and uniqueness. Moreover, a PBE finite element program package is developed 
in Python based on the FEniCS program library and GAMer, a molecular surface and 
volumetric mesh generation program package. Numerical tests on proteins and a nonlinear 
Born ball model with an analytical solution validate the new solution decomposition and 
minimization schemes, and demonstrate the effectiveness and efficiency of the new PBE 
finite element program package.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The Poisson–Boltzmann equation (PBE) is one widely-used implicit solvent continuum model in the calculation of elec-
trostatic potential energy for biomolecule in ionic solvent [1–4]. However, its numerical solution is very challenging due 
to strong singularity and nonlinearity caused by its singular distribution and exponential nonlinear terms. In the past two 
decades, these challenges were addressed via typical numerical techniques (such as finite difference, finite element, and 
boundary element methods) and popular linear and nonlinear iterative methods (such as the successive over-relaxation 
method, the conjugate gradient method, the inexact-Newton method, the multigrid method, and numerical optimization 
methods) [4–14]. Several PBE program packages and web-based resources were developed, which include DelPhi [6,15], 
MEAD [16], APBS [17,18], PBE solver modules in the biomolecular modeling and simulation programs AMBER [19,20], 
CHARMM [21–23], and NAMD [17,24], making the PBE model a powerful simulation tool in the study of biomolecular 
structure, biological function, catalytic activity, ligand association, and rational drug design [1,25–27].

To further improve current PBE mathematical analysis, in this paper, we first present a novel PBE solution decomposition 
to split the PBE solution u into three parts within both the solute domain D p and solvent domain Ds . These three parts, 
G , Ψ , and Φ̃ (see Theorem 3.1), correspond to electrostatic contributions from the biomolecular charges, the boundary 
and interface conditions, and the ionic solvent charges, respectively. Here, G is a known function collecting all the singular 
points of u while both Ψ and Φ̃ are twice differentiable in D p and Ds . Hence, u can be found through calculating Ψ
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and Φ̃ without involving any singular difficulty. Note that our solution decomposition differs from those in [28–31]. In the 
decomposition from [28], u was split within D p only. In the decompositions from [29–31], Ψ and Φ̃ were defined by elliptic 
boundary value problems with discontinuous coefficients, which had definitions only in the weak sense. Our Ψ and Φ̃ are 
defined by elliptic interface problems, which are well defined in both strong and weak senses. All of the previous solution 
decompositions were performed only for a symmetric 1:1 ionic solution. In contrast, our solution decomposition works for 
a solvent containing any number of ionic species.

As an application of this PBE solution decomposition, we then construct new finite element solution decomposition and 
minimization schemes for solving PBE without any singular and “blow-up” difficulty. To do so, we begin with a review 
of the PBE model for a biomolecule (protein or nucleic acids) immersed in an ionic solvent containing n ionic species. In 
this concise review, the PBE model is clearly described in both SI (Systéke International) units and electrostatic units. Here, 
the values and units of all involved physical parameters are given for the convenience of study. We then show that the 
PBE model using either electrostatic or SI units can be transformed into the same dimensionless form (see (5)) when the 
length is measured in angstroms (Å). Hence, we only need to consider this dimensionless PBE model for the calculations of 
biomolecular electrostatics.

Our PBE solution decomposition and proof on PBE solution existence and uniqueness are presented for the dimensionless 
PBE model (see Theorems 3.1, 4.1, and 4.2). Note that a Lagrange finite element space can be a finite dimensional subspace 
of a Sobolev function space. Hence, a PBE finite element solution decomposition scheme (see Algorithm 1) can be directly 
followed from this novel PBE solution decomposition. As a finite element method, it includes the interface conditions of 
the PBE model naturally so that it can produce a numerical PBE solution with a higher numerical accuracy than a finite 
difference method.

Typically, a nonlinear boundary value problem is solved numerically as a system of nonlinear algebraic equations. To 
achieve a global convergence, an “artificial” merit function (see (39)) is often employed to yield a trust-region, line-search, 
or inexact Newton method [10,32–34]. Because of our PBE solution decomposition, Φ̃ is found to be a unique solution 
of a variational minimization problem with a target functional J over a Sobolev function space, and the first and second 
derivatives of J are available (see Theorem 4.2). Hence, J is a “natural” merit function for us to use to develop an efficient 
Newton-type minimization algorithm for solving a nonlinear boundary value problem of Φ̃ . In our early work [14], we 
showed one minimization protocol for solving a system of PBE mortar finite element equations to be much more efficient 
and effective than a popular nonlinear iterative solver — a subspace trust region Newton method [32,33]. In this paper, we 
intend to extend this work to the case of a Lagrange finite element approximation to Φ̃ .

With our PBE solution decomposition, we propose a simple treatment to deal with a potential “blow-up” problem caused 
by PBE exponential nonlinear terms without affecting the accuracy of a PBE numerical solution. So far, we did not see any 
paper that addressed such a “blow-up” issue. We only encountered one treatment on the “blow-up” issue in a code survey 
of the program package APBS. In our simple treatment, we first construct a modified Newton bilinear form (see (40)) using a 
function truncation strategy. A new modified Newton minimization scheme is then developed through solving this modified 
Newton bilinear form by the preconditioned conjugate gradient (PCG) method with incomplete LU (ILU) preconditioning. Our 
function truncation strategy may not affect any accuracy of a PBE finite element solution since a possible modification to 
the target functional J or its derivatives happens only in the early stage of a minimum search process. To reflect a possible 
affect of a modified J to the new modified Newton minimization scheme, a special iteration test (see (41)) is added to 
make the modified Newton minimization scheme more robust. Eventually, our new modified Newton minimization scheme 
becomes a descent search method so that its convergence can be followed directly from the descent search minimization 
theory [34,35].

A combination of the PBE solution decomposition scheme with the modified Newton minimization scheme leads to a 
new effective PBE finite element solver. In this paper, we program it in Python as a new PBE finite element program package 
for a protein in a symmetric 1:1 ionic solvent based on the FEniCS finite element library [36] and a molecular surface and 
volumetric mesh generation program package, GAMer [37]. As a Python program package, our new PBE program package is 
easy to be used and portable on different computer operating systems. Due to the FEniCS finite element library, various finite 
element methods and various direct and iterative linear solvers become available for calculating Ψ and Φ̃ numerically. We 
adapted GAMer as a Python module so that a tetrahedral mesh can be generated within our PBE program package to match
the need of a FEniCS finite element solver. In addition, to speed up calculation, we wrote Fortran subroutines for computing 
the mesh node values of G , ∇G , and our modified hyperbolic functions (see (49)), and converted them as Python modules. 
All the related parameters from the PBE model, DOLFIN, and GAMer are collected into one parameter file, with which we 
can easily control solution accuracy and mesh quality. In this way, a protein file is the only input file for an implementation 
of our new PBE finite element program package.

With this new PBE finite element Python program package, we first made numerical tests on a nonlinear Born ball model 
with analytical solution using linear, quadratic, and cubic finite element methods. Numerical results validated the PBE solu-
tion decomposition scheme and our new PBE finite element program package. We then conducted numerical experiments 
on a protein suite with the number of atoms up to 6062 in a linear finite element method. Numerical results demonstrated 
the effectiveness and efficiency of the modified Newton minimization scheme and the high performance of our new PBE 
finite element program package. For example, in a test of protein represented in the PDB file 4PTI, the total computer CPU 
time was only about 31 seconds on one 2.3 GHz Intel Core i7 of a MacBook Pro, which included the time spent on the 
generation of a finite element mesh with 33 572 vertices and 191 372 tetrahedra.
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Table 1
Parameters of the PBE model (1) in SI units.

Parameter Value Unit (abbr.) Name

ε0 8.854187817 × 10−12 Farad/meter (F/m) Permittivity of vacuum
ec 1.602176565 × 10−19 Coulomb (C) Elementary charge
T 298.15 Kelvin (K) Absolute temperature
kB 1.380648813 × 10−23 Joule/Kelvin (J/K) Boltzmann constant

Finally, to further improve the performance of our PBE program package, we can use the truncated Newton strate-
gies [38–40] to construct a truncated modified Newton minimization scheme. Because the truncated Newton minimization 
method has been programmed in the truncated Newton Fortran program package TNPACK [38,39], one simple way to im-
plement our PBE truncated modified Newton minimization scheme is to call TNPACK directly. We did so by converting 
TNPACK into a Python module. As required by the TNPACK usage, we wrote a driver file and the three required “callback 
functions” in Python for computing function values, gradient vectors, Hessian matrices, the Hessian matrix vector product, 
and preconditioners. Currently, we did not gain any significant performance improvement yet due to the low efficiency of 
callback functions in Python. Hence, such numerical tests were not reported in this paper since more studies are needed on 
the truncated modified Newton minimization scheme and program. We plan to do so in the future.

The remaining parts of the paper are outlined as follows. In Section 2, the PBE model is reviewed. In Section 3, the PBE 
solution decomposition scheme is described. In Section 4, a proof on the PBE solution existence and uniqueness is given. In 
Section 5, the new PBE solution decomposition and minimization schemes are presented. Finally, the new PBE finite element 
program package and numerical results are reported in Section 6.

2. The definition of the PBE model

Let Ω be a sufficiently large bounded domain satisfying that

Ω = D p ∪ Ds ∪ Γ,

where D p is a solute region that hosts a biomolecule (e.g., protein) with np atoms, Ds is a solvent region surrounding D p , 
which contains n different species of ions, and Γ is an interface between D p and Ds . The position r j and charge number z j
of the jth atom of the biomolecule and the charge number Zi of ionic species i are given. Based on the continuum implicit 
solvent approach, both D p and Ds are treated as continuum media with εp and εs being their dielectric constants (or called 
relative permittivity constants), respectively. It is common to set εp = 2 and εs = 80.

2.1. The PBE model in SI units

In the above notation, the PBE model in SI units is defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−εp�Φ(r) = ec

ε0

np∑
j=1

z jδr j , r ∈ D p,

εs�Φ(r) + ec

ε0

n∑
i=1

Zi Mie
− Zi ec

kB T Φ = 0, r ∈ Ds,

Φ
(
s+) = Φ

(
s−)

, εs
∂Φ(s+)

∂n(s)
= εp

∂Φ(s−)

∂n(s)
, s ∈ Γ,

Φ(s) = g(s), s ∈ ∂Ω,

(1)

where Φ is the electrostatic potential function in volts, g is a given function, ∂Ω denotes the boundary of Ω , ec is the 
electron charge, ε0 is the permittivity of vacuum, Mi is an average number density (or called the bulk concentration) of 
the ith ionic species per cubic meters, kB is the Boltzmann constant, T is the absolute temperature, n(s) denotes the 
unit outward normal vector of D p , and δr j is the Dirac-delta distribution, which is defined by 〈δr j , v〉 = v(r j) for any test 
function v [41].

The values and units of physical parameters ε0, ec , T , and kB are listed in Table 1. See the NIST website http :/ /physics .
nist .gov /cuu /Constants /index .html for updates.

When Ω is large enough, it is common to set g = 0 since Φ(r) → 0 as |r| → ∞. Other selections of g can be found 
in [2,4] for example.

2.2. The dimensionless PBE model

By Table 1 and the formula 1 V = 1 J/C, the unit of ec
kB T is found to be 1/V. Thus, by setting

u = ec
Φ, (2)
kB T

http://physics.nist.gov/cuu/Constants/index.html
http://physics.nist.gov/cuu/Constants/index.html
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the PBE model (1) can be transformed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−εp�u(r) = e2
c

ε0kB T

np∑
j=1

z jδr j , r ∈ D p,

εs�u(r) + e2
c

ε0kB T

n∑
i=1

Zi Mie
−Zi u = 0, r ∈ Ds,

u
(
s+) = u

(
s−)

, εs
∂u(s+)

∂n(s)
= εp

∂u(s−)

∂n(s)
, s ∈ Γ,

u(s) = ĝ(s), s ∈ ∂Ω,

(3)

where ĝ = ec
kB T g . Clearly, both δr j and Mi have unit 1/m3, �u has unit 1/m2, and e2

c
ε0kB T has unit m due to C2/(F J) = 1. 

Hence, the both sides of each equation of (3) have the same unit 1/m2, which can be removed from the both sides of each 
equation to make (3) become dimensionless.

The solution u of the PBE model (3) is called the dimensionless electrostatic potential. When u is found, the electrostatic 
potential Φ can be simply said to have a value of u in units kB T /ec .

In biomolecular electrostatic calculation, the length is measured in angstrom (Å), and Mi is often given as a molar 
concentration: Mi = c̄i mole/liter with c̄i being a given nonnegative real number. Thus, �u(r) and δr j have the units Å

−2

and Å
−3

, respectively, and the total number of ions of the ith species per liter can be estimated as N A c̄i so that Mi is 
estimated by

Mi = N Ac̄i/liter = 103N Ac̄i/m3 = 10−27N Ac̄i/Å
3
, (4)

where N A = 6.02214129 × 1023, which is the Avogadro number, and the formulas 1 liter = 10−3 m3, and 1 m = 1010 Å have 
been used. It is common to set c̄i = 0.1 or 0.2.

Applying (4) to (3), and changing all the length units from meters to angstroms, we obtain the commonly-used PBE 
dimensionless model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−εp�u(r) = α

np∑
j=1

z jδr j , r ∈ D p,

εs�u(r) + β

n∑
i=1

Zic̄ie
−Zi u = 0, r ∈ Ds,

u
(
s+) = u

(
s−)

, εs
∂u(s+)

∂n(s)
= εp

∂u(s−)

∂n(s)
, s ∈ Γ,

u(s) = ĝ(s), s ∈ ∂Ω,

(5)

where α and β are defined by

α = 1010e2
c

ε0kB T
= 2.09985253128 × 106

T
, β = 10−17N Ae2

c

ε0kB T
= 1264.56086316

T
. (6)

Here the parameters values of Table 1 have been used, the length units of angstrom have been removed from the both sides 
of each equation of (5), and the unit of T has been canceled out in (6). It is common to set T = 298.15.

Similarly, the factor ec/(kB T ) can be estimated as

ec

kB T
= 1.602176565 × 10−19

1.380648813 × 10−23T
= 1.1604519193542375 × 104

T
. (7)

In the case of pure water, we have c̄i = 0 for i = 1, 2, . . . , n so that (5) is reduced to the Poisson dielectric model for 
biomolecule in water:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−εp�u(r) = α

np∑
j=1

z jδr j , r ∈ D p,

�u(r) = 0, r ∈ Ds,

u
(
s+) = u

(
s−)

, εs
∂u(s+)

∂n(s)
= εp

∂u(s−)

∂n(s)
, s ∈ Γ,

u(s) = ĝ(s), s ∈ ∂Ω.

(8)
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2.3. The PBE model for symmetric 1:1 ionic solution

In terms of c̄i , an ionic strength, Is , of the solvent is defined by

Is = 1

2

n∑
i=1

c̄i Z 2
i . (9)

In the case of a symmetric 1:1 ionic solution (e.g., the one containing sodium (N+
a ) and chloride (Cl−) ions), n = 2, Z1 = 1, 

Z2 = −1, and c̄1 = c̄2 = Is so that the PBE model (5) can be simplified as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−εp�u(r) = α

np∑
j=1

z jδr j , r ∈ D p,

−εs�u(r) + κ2 sinh(u) = 0, r ∈ Ds,

u
(
s+) = u

(
s−)

, εs
∂u(s+)

∂n(s)
= εp

∂u(s−)

∂n(s)
, s ∈ Γ,

u(s) = ĝ(s), s ∈ ∂Ω,

(10)

where κ2 = 2β Is . For T = 298.15 and Is = 0.1, by (6), it is found that

α = 7042.93990033, κ2 = 0.8482715835384875. (11)

In particular, when u satisfies the assumption∣∣u(r)
∣∣ < 1 ∀r ∈ Ds, (12)

the Taylor series of sinh(u) gives

sinh
(
u(r)

) = u(r) + u(r)3/6 + O
(
u(r)5) ≈ u(r) ∀r ∈ Ds.

Thus, (10) is approximately as the linear PBE (LPBE) model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−εp�u(r) = α

np∑
j=1

z jδr j , r ∈ D p,

−εs�u(r) + κ2u(r) = 0, r ∈ Ds,

u
(
s+) = u

(
s−)

, εs
∂u(s+)

∂n(s)
= εp

∂u(s−)

∂n(s)
, s ∈ Γ,

u(s) = ĝ(s), s ∈ ∂Ω.

(13)

A solution of the LPBE model can be selected as an initial guess to the solution of the PBE model (10).

2.4. The PBE model in electrostatic units

The PBE model in electrostatic units is also often used in electrostatic calculations [2,4], which is defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−εp�Φ(r) = 4πec

np∑
j=1

z jδr j , r ∈ D p,

εs�Φ(r) + 4πec

n∑
i=1

Zi Mie
− Zi ec

kB T Φ = 0, r ∈ Ds,

Φ
(
s+) = Φ

(
s−)

, εs
∂Φ(s+)

∂n(s)
= εp

∂Φ(s−)

∂n(s)
, s ∈ Γ,

Φ(s) = g(s), s ∈ ∂Ω,

(14)

where the length is measured in centimeter (cm), ec in the electrostatic unit esu (or called statcoulomb), T still in Kelvin (K), 
kB in the energy unit erg/K, the potential Φ in esu/cm (or called statvolt), and the bulk concentration Mi can be estimated 
by

Mi = N A

103
c̄i/cm3

for an ionic concentration being given in c̄i mole per liter.
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By the unit conversion formula 1 erg = 1 esu2/cm, ec
kB T is found to have unit cm/esu. Thus, by (2), the PBE models (14)

can also be transformed as a dimensionless form as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−εp�u(r) = α1

np∑
j=1

z jδr j , r ∈ D p,

εs�u(r) + β1

n∑
i=1

Zic̄ie
−Zi u = 0, r ∈ Ds,

u
(
s+) = u

(
s−)

, εs
∂u(s+)

∂n(s)
= εp

∂u(s−)

∂n(s)
, s ∈ Γ,

u(s) = ĝ(s), s ∈ ∂Ω,

(15)

where α1 and β1 are defined by

α1 = 4πe2
c

kB T
, β1 = 4π N Ae2

c

103kB T
. (16)

Here the parameters ec and kB have different values from the ones listed in Table 1 due to electrostatic units.
Although the expressions of α1 and β1 are different from those of α and β , changing length units to angstrom and using 

the unit conversion formulas esu2/erg = 1 cm, 1 erg = 1 dyn cm, 1 cm = 108 Å, 1 m = 1010 Å, we can verify that

α1 = α, and β1 = β.

Hence, either (5) or (15) can be used to calculate the dimensionless electrostatic potential u. For clarity, we will only 
consider (5) in the remaining parts of this paper.

3. PBE solution decompositions

To overcome the singular difficulty caused by the distributions δr j , a solution decomposition for the PBE model (5) is 
presented in Theorem 3.1.

Theorem 3.1. Let u be the solution of the PBE model (5). Then u is decomposed as

u(r) = G(r) + Ψ (r) + Φ̃(r) ∀r ∈ Ω, (17)

where G is given by

G(r) = α

4πεp

np∑
j=1

z j

|r − r j| , (18)

Ψ is a solution of the linear interface problem⎧⎪⎨⎪⎩
�Ψ (r) = 0, r ∈ D p ∪ Ds,

Ψ
(
s+) = Ψ

(
s−)

, εs
∂Ψ (s+)

∂n(s)
= εp

∂Ψ (s−)

∂n(s)
+ (εp − εs)

∂G(s)

∂n(s)
, s ∈ Γ,

Ψ (s) = ĝ(s) − G(s), s ∈ ∂Ω,

(19)

and Φ̃ is a solution of the nonlinear interface problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�Φ̃(r) = 0, r ∈ D p,

εs�Φ̃(r) + β

n∑
i=1

Zic̄i wi(r)e−ZiΦ̃(r) = 0, r ∈ Ds,

Φ̃
(
s+) = Φ̃

(
s−)

, εs
∂Φ̃(s+)

∂n(s)
= εp

∂Φ̃(s−)

∂n(s)
, s ∈ Γ,

Φ̃(s) = 0, s ∈ ∂Ω.

(20)

Here α and β are given in (6), and wi(r) and ∂G(s)
∂n(s) are defined by

wi(r) = e−Zi(Ψ (r)+G(r)),
∂G(s)

∂n(s)
= − α

4πεp

np∑
j=1

z j
(s − r j) · n

|s − r j|3 . (21)
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Proof. Since 1
4π |r−r j | satisfies the equation −�G j = δr j [42, p. 111],

�G = α

εp

np∑
j=1

z j�
1

4π |r − r j| = − α

εp

np∑
j=1

z jδr j .

For r ∈ D p , we have �Ψ = 0 and �Φ̃ = 0. Thus,

�u = �Ψ + �Φ̃ + �G = − α

εp

np∑
j=1

z jδr j in D p .

Similarly, when r ∈ Ds , it can be easily verified that u satisfies the second equation of (3) since �Ψ = 0, �G = 0, and

wi(r)e−ZiΦ̃(r) = e−Zi(G+Ψ +Φ̃)(r) = e−Zi u .

On the interface Γ , both G(s) and ∂G(s)
∂n(s) are continuous while Ψ and Φ̃ satisfy the interface conditions given in (19)

and (20), respectively. Thus, the function u defined by (17) satisfies the interface conditions of (3) as shown below:

u
(
s+) = Φ̃

(
s+) + Ψ

(
s+) + G(s) = Φ̃

(
s−) + Ψ

(
s−) + G(s) = u

(
s−) ∀s ∈ Γ,

and

εp
∂u(s−)

∂n(s)
= εp

∂Φ̃(s−)

∂n(s)
+ εp

∂Ψ (s−)

∂n(s)
+ εp

∂G(s)

∂n(s)

= εs
∂Φ̃(s+)

∂n(s)
+ εs

∂Ψ (s+)

∂n(s)
− (εp − εs)

∂G(s)

∂n(s)
+ εp

∂G(s)

∂n(s)

= εs
∂

∂n(s)
(Φ̃ + Ψ + G)

(
s+) = εs

∂u(s+)

∂n(s)
∀s ∈ Γ.

Finally, on the boundary ∂Ω , it is obvious that

u(s) = Φ̃(s) + Ψ (s) + G(s) = 0 + (
ĝ(s) − G(s)

) + G(s) = ĝ(s) ∀s ∈ ∂Ω.

This completes the proof of Theorem 3.1. �
In Physics, G , Ψ , and Φ̃ correspond to the electrostatic contributions from atomic charges from the solute domain D p , 

interface and boundary conditions, and ionic charges from the solvent domain Ds , respectively. Thus, the sum U = Ψ + G
gives the electrostatic potential for biomolecule in water (i.e., a solution of the Poisson dielectric model (8)) while the sum 
u = U + Φ̃ gives the electrostatic potential for biomolecule in ionic solvent (i.e., a solution of (5)). Because G contains all 
the singular points of u, Ψ and Φ̃ are expected to be well defined without any singularity.

For the symmetric 1:1 ionic solution, the nonlinear interface problem (20) can be simplified as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�Φ̃(r) = 0, r ∈ D p,

−εs�Φ̃(r) + κ2 sinh(Φ̃ + U ) = 0, r ∈ Ds,

Φ̃
(
s+) = Φ̃

(
s−)

, εs
∂Φ̃(s+)

∂n(s)
= εp

∂Φ̃(s−)

∂n(s)
, s ∈ Γ,

Φ̃(s) = 0, s ∈ ∂Ω,

(22)

where κ2 is given in (11). Under the assumption (12), the above nonlinear interface problem can be linearized as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�Φ̃(r) = 0, r ∈ D p,

−εs�Φ̃(r) + κ2Φ̃ = −κ2U , r ∈ Ds,

Φ̃
(
s+) = Φ̃

(
s−)

, εs
∂Φ̃(s+)

∂n(s)
= εp

∂Φ̃(s−)

∂n(s)
, s ∈ Γ,

Φ̃(s) = 0, s ∈ ∂Ω.

(23)

Clearly, the sum of a solution of the above linear interface problem with U gives a LPBE solution decomposition since it can 
be easily verified to be a solution of the LPBE model (13).
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4. PBE solution existence and uniqueness

Because of the solution decomposition (17), it only needs to consider (19) and (20) for the proof of the PBE solution 
existence and uniqueness. To do so, let H1(Ω) denote the usual Sobolev function space and

H1
0(Ω) = {

v ∈ H1(Ω)
∣∣ v = 0 on ∂Ω

}
.

The norm of H1 is defined by

‖v‖H1(Ω) = (‖v‖2
L2(Ω)

+ ‖∇v‖2
L2(Ω)

)1/2
,

where ‖v‖L2(Ω) = (
∫
Ω

|v(r)|2dr)1/2 is the norm of function space L2(Ω) [43].
By the first Green’s formula, (19) can be formulated into the weak form:
Find Ψ ∈ H1(Ω) such that Ψ = ĝ − G on ∂Ω and

a(Ψ, v) = (εs − εp)

∫
Γ

∂G(s)

∂n(s)
v(s)ds ∀v ∈ H1

0(Ω), (24)

where a(u, v) is defined by

a(u, v) = εp

∫
D p

∇u · ∇vdr + εs

∫
Ds

∇u · ∇vdr. (25)

The solution existence and uniqueness of (19) is shown in Theorem 4.1.

Theorem 4.1. Let U = H1
0(Ω) ∩ H2(D p) ∩ H2(Ds) with the norm given by

‖v‖U = ‖v‖H1(Ω) + ‖v‖H2(D p) + ‖v‖H2(Ds)
.

If the interface Γ is of class C2 , then the linear interface problem (19) has a unique weak solution Ψ ∈ U satisfying the weak form (24), 
and there exists a positive constant C such that

‖Ψ ‖U ≤ C(εs − εp)

∥∥∥∥∂G

∂n

∥∥∥∥
H

1
2 (Γ )

, (26)

where ∂G(s)
∂n is given in (21), and the norm ‖ · ‖

H
1
2 (Γ )

is defined by

‖u‖
H

1
2 (Γ )

=
(

‖u‖2
L2(Γ )

+
∫
Γ

∫
Γ

|u(s) − u(s′)|2
|s − s′|3 dsds′

) 1
2

.

Proof. From (25) it can be seen that a(u, v) is a bilinear functional on H1
0(Ω). By 0 < εp < εs and Schwarz’s inequality, the 

continuity of a(u, v) can be shown as follows:∣∣a(u, v)
∣∣ ≤ (εp + εs)

∫
Ω

|∇u · ∇v|dr

≤ 2εs‖∇u‖L2(Ω)‖∇v‖L2(Ω) ≤ 2εs‖u‖H1(Ω)‖v‖H1(Ω). (27)

By the Poincaré inequality [43, p. 62],

a(v, v) = εp

∫
D p

|∇v|2dr + εs

∫
Ds

|∇v|2dr

≥ εp

∫
Ω

|∇v|2dr ≥ εp

C1
‖v‖2

H1(Ω)
∀v ∈ H1

0(Ω), (28)

where C1 is a positive constant, from which it implies the coercivity of a(u, v).
Since G is smooth in Ds , ‖∇G‖L2(Ds)

is bounded. By the Green first identity and the equation �G = 0 in Ds ,∫
Γ

∂G(s)

∂n(s)
v(s)ds = −

∫
Ds

�G(r)v(r)dr −
∫
Ds

∇G(r) · ∇v(r)dr

= −
∫

∇G(r) · ∇v(r)dr ∀v ∈ H1
0(Ω). (29)
Ds
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Thus, by the above identity,∣∣∣∣〈∂G

∂n
, v

〉
L2(Γ )

∣∣∣∣ =
∣∣∣∣∫
Ds

∇G · ∇vdr

∣∣∣∣ ≤ ‖∇G‖L2(Ds)
‖v‖H1(Ω),

showing that 〈 ∂G
∂n , v〉L2(Γ ) is a bounded linear functional on H1

0(Ω). Hence, from the Lax–Milgram lemma [44] it implies 
that the weak form (24) has a unique solution in H1

0(Ω).

Furthermore, from the smoothness of ∂G(s)
∂n(s) on Γ it implies ∂G

∂n ∈ H
1
2 (Γ ). By the regularity analysis of a general interface 

problem given in [45, Theorem 2.1] (or see [46,47]), it can be shown that Ψ ∈ U , and satisfies (26). This completes the proof 
of Theorem 4.1. �

The surface integral 
∫
Γ

∂G(s)
∂n(s) v(s)ds may become difficult to be evaluated for a complex molecular surface Γ . To avoid 

this difficulty, we can use (29) to reformulate (24) as a form involving volumetric integrals only:

a(Ψ, v) = (εp − εs)

∫
Ds

∇G(r) · ∇v(r)dr ∀v ∈ H1
0(Ω). (30)

We next write the nonlinear interface problem (20) in the weak form: Find Φ̃ ∈H such that

a(Φ̃, v) − β

n∑
i=1

Zic̄i

∫
Ds

wi(r)e−ZiΦ̃(r)v(r)dr = 0 ∀v ∈ H1
0(Ω), (31)

where H is a subset of H1
0(Ω) defined by

H =
{

v ∈ H1
0(Ω)

∣∣∣ n∑
i=1

wie
−Zi v ∈ L2(Ds)

}
. (32)

We then introduce a variational minimization problem as follows: Find Φ̃ ∈H such that

J (Φ̃) = inf
v∈H J (v), (33)

where J :H →R is a nonlinear functional defined by

J (v) = 1

2
a(v, v) + β

n∑
i=1

c̄i

∫
Ds

wi(r)e−Zi v(r)dr. (34)

Note that using the subset H is necessary since a function v of H1 does not guarantee that each term e−Zi v ∈ L2(Ds).
The solution existence and uniqueness of (20) is presented in Theorem 4.2.

Theorem 4.2. The nonlinear interface problem (20) has a unique weak solution Φ̃ ∈ H ∩ H2(D p) ∩ H2(Ds) defined by the weak 
form (31), which is also a unique minimizer of the variational problem (33).

Proof. We first show that the variational problem (33) has a unique minimizer. Similar to what is done in [48, p. 2549], 
it can be shown that H is a nonempty closed convex subset of H1

0(Ω). The first and second Gâteaux derivatives of J at 
u ∈H, J ′(u) and J ′′(u), which are continuous linear and bilinear functionals on H1

0 and H1
0 × H1

0, respectively, can be found 
as follows:

J ′(u)v = a(u, v) − β

n∑
i=1

Zic̄i

∫
Ds

wie
−Zi u vdr ∀v ∈ H1

0(Ω), (35)

and

J ′′(u)(v, w) = a(v, w) + β

n∑
i=1

Z 2
i c̄i

∫
Ds

wie
−Zi u w vdr ∀v, w ∈ H1

0(Ω). (36)

Since wi(r) > 0 on Ds , with (28), we get that

J (v) ≥ εp ‖v‖2
H1(Ω)

∀v ∈ H,

2C
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and for any u ∈H,

J ′′(u)(v, v) ≥ εp

C
‖v‖2

H1(Ω)
∀v ∈ H1

0(Ω),

from which it implies that J (v) → ∞ as ‖v‖2
H1(Ω)

→ ∞, and J ′′(u)(v, v) > 0 for all nonzero v ∈ H1
0(Ω). Hence, J is 

coercive and strictly convex on H. J is continuous on H since it is twice differentiable; thus, it is lower semicontinuous 
on H. Therefore, from [49, Proposition 1.2, p. 35] it implies that (33) has a unique minimizer Φ̃ ∈H.

Clearly, from (35) it can imply that the minimizer Φ̃ is a unique solution of the nonlinear weak form (31), and Φ̃ ∈
H∩ H2(D p) ∩ H2(Ds) when Φ̃ satisfies the nonlinear interface problem (20). This completes the proof of Theorem 4.2. �
5. New PBE solution decomposition and minimization schemes

Let M be a Lagrange finite element space defined on a tetrahedral mesh of domain Ω such that M is a finite dimen-
sional subspace of H1(Ω), and each function of M is continuous. Set

M0 = {v ∈ M | v = 0 on ∂Ω},
which is a subspace of H1

0(Ω) and a subspace of H too. Thus, according to Theorems 3.1, 4.1, and 4.2, we can construct a 
solution decomposition scheme for calculating a PBE finite element solution in Algorithm 1.

Algorithm 1 (PBE finite element solution decomposition scheme). Let u be a finite element solution of the PBE model (5) on the 
Lagrange finite element space M. Then, it can be calculated in four steps:

Step 1. Calculate G via (18) and ∇G(r) = − α
4πεp

∑np

j=1 z j
r−r j

|r−r j |3 on M.

Step 2. Find a finite element solution Ψ of the linear problem (19) on M such that Ψ = ĝ − G on ∂Ω , and

a(Ψ, v) = (εp − εs)

∫
Ds

∇G(r) · ∇v(r)dr ∀v ∈ M0. (37)

Step 3. Find a finite element solution Φ̃ of the nonlinear interface problem (20) on M0 by solving

J (Φ̃) = min
v∈M0

J (v). (38)

Step 4. Construct u by the solution decomposition:

u(r) = Φ̃(r) + Ψ (r) + G(r) ∀r ∈ Ω.

In Step 3, Φ̃ can also be found directly from solving the nonlinear weak form (31) on M0. Typical nonlinear iterative 
methods for solving a system of nonlinear algebraic equations (such as a subspace trust-region Newton method [32,33] and 
a line search inexact Newton method [34]) can be applied to the numerical solution of (31). To achieve a global convergence, 
a merit function is usually set in the form

f (U ) = 1

2

n∑
i=1

[
Fi(U )

]2
, (39)

for a nonlinear algebraic system in the form F (U ) = 0. Here F (U ) = (F1(U ), F2(U ), . . . , Fn(U ))t , U ∈ Rn , and Fi : Rn → R

is a multivariable function [34]. Because of the equivalence between (31) and (33), the functional J has become “a natural 
merit function”. Hence, a minimization scheme is selected to find Φ̃ in Step 3 of Algorithm 1 since using a natural merit 
function can lead to a more effective and efficient nonlinear iterative solver than using an artificial merit function of (39)
[14,34].

In particular, a modified Newton minimization scheme for solving (38) is constructed in Algorithm 2.

Algorithm 2 (Modified Newton minimization scheme). Let Φ̃(k) denote the kth iterate of the modified Newton minimization 
scheme for solving (38) and an initial iterate, Φ̃(0) , be given. For k = 0, 1, 2, . . . , the (k + 1)th iterate Φ̃(k+1) is defined by 
the following steps:

Step 1. The “blow-up” test: If (−Zi)(Ψ (r) + G(r) + Φ̃(k)(r)) > τ for r ∈ Ds , truncate the value of e−Zi (Ψ +G+v) as eτ . Here τ
is a truncation parameter (τ = 85 by default), and the modifications of J , J ′ , and J ′′ are denoted by J̄ , J̄ ′ , and J̄ ′′ , 
respectively.

Step 2. Find a descent search direction pk ∈M0 from solving the modified Newton bilinear variational form

J̄ ′′(Φ̃(k)
)
(pk, v) = − J̄ ′(Φ̃(k)

)
v ∀v ∈ M0. (40)
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Step 3. Set steplength λk = 1.
Step 4. The iteration test: Accept λk and pk and go to Step 6 if

J̄
(
Φ̃(k) + λk pk

) ≤ J̄
(
Φ̃(k)

)
or

∥∥ J̄ ′(Φ̃(k) + λk pk
)∥∥ ≤ ∥∥ J̄ ′(Φ̃(k)

)∥∥. (41)

Step 5. Determine another value of λk by a line search algorithm to satisfy (41).
Step 6. Define the update Φ̃(k+1) by

Φ̃(k+1) = Φ̃(k) + λk pk. (42)

Step 7. The convergence test: Stop the iteration provided that∥∥ J̄ ′(Φ̃(k+1)
)∥∥ < ε or

∥∥Φ̃(k+1) − Φ̃(k)
∥∥ < ε, (43)

where ε is a convergence tolerance (ε = 10−12 by default).

Two choices of Φ̃(0) are suggested for Algorithm 2. One is to set Φ̃(0) = 0, and the other one is to set Φ̃(0) as a solution 
of the linear interface problem (23). These two choices lead to the solutions of the Poisson dielectric model (8) for protein 
in water and the LPBE model (13), respectively. Thus, they may be two good choices for Algorithm 2.

A search direction pk is said to be a descent search direction if it satisfies the condition

J̄ ′(Φ̃(k)
)

pk < 0. (44)

In this paper, the PCG with the ILU preconditioning is considered to generate a descent search direction pk in Step 2. That 
is, we stop the PCG iteration if its current iterate fails to satisfy the condition (44), and output the previous PCG iterate as 
pk . In case the failure happens at the first PCG iterate, we set pk to be a steepest descent direction.

To further reduce the costs of numerical calculations, truncated Newton strategies [38–40] can be employed in Step 2, 
along with a line search algorithm given in [50] to determine a steplength λk in Step 5 satisfying the Wolfe conditions

J̄
(
Φ̃(k) + λk pk

) ≤ J̄
(
Φ̃(k)

) + αλk J̄ ′(Φ̃(k)
)

pk, J̄ ′(Φ̃(k) + λk pk
)

pk ≥ β J̄ ′(Φ̃(k)
)

pk,

where α ∈ (0, 12 ), β ∈ ( 1
2 , 1). With such modifications, we can obtain a truncated modified Newton minimization method 

for solving (38).
The “Blow-up” Test of Step 1 is necessary to avoid a possible overflow problem caused by the exponential terms of J , 

J ′ , and J ′′ , since a large positive value of Zi(Ψ (r) + G(r) + Φ̃(k)(r)) may occur in Ds in a minimizer search process. With a 
sufficiently large τ , the test can be passed by all Φ̃(k) near the minimizer. Thus, it should not affect the accuracy of a finite 
element solution.

Clearly, the modifications of J at Φ̃(k) may be different from that at the update Φ̃(k+1) . This may cause J̄ to be ascent 
even though J is descent. The Iteration Test of Step 4 reflects this case, which allows the iteration to be continued in this 
case if the gradient norm ‖ J̄ ′(Φ̃(k))‖ is still reduced. When Φ̃(k) is near the minimizer, we should have J̄ = J . Hence, the 
modified Newton minimization scheme eventually becomes a descent search method. Consequently, its convergence can be 
followed directly from the descent search minimization theory [34,35].

6. Program package and numerical results

A combination of Algorithm 1 with Algorithm 2 yields a new PBE finite element solver. As initial numerical studies, in 
this section, we only numerically test it for a protein immersed in a symmetric 1:1 ionic solution. In this case, the PBE 
model is given in (10), whose finite element solution can be constructed from Algorithm 1 with a finite element variation 
form of (22) being followed from (31) as follows: Find Φ̃ ∈M0 such that

a(Φ̃, v) + κ2
∫
Ds

sinh(Φ̃ + U )vdr = 0 ∀v ∈ M0, (45)

and J̄ , J̄ ′ , and J̄ ′′ can be found in the forms

J̄ (v) = 1

2
a(v, v) + κ2

∫
Ds

ĉosh(v + U )dr ∀v ∈ M0, (46)

J̄ ′(Φ̃)v = a(Φ̃, v) + κ2
∫
Ds

ŝinh(Φ̃ + U )vdr ∀v ∈ M0, (47)

J̄ ′′(Φ̃)(v, w) = a(v, w) + κ2
∫

ĉosh(Φ̃ + U )v wdr ∀v, w ∈ M0, (48)
Ds
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where ŝinh and ĉosh denote modified hyperbolic sine and modified hyperbolic cosine, respectively, as defined by

ŝinh(u) =
{ sinh(u) if |u| < τ,

sinh(τ ) if u ≥ τ ,

− sinh(τ ) if u ≤ −τ ,

ĉosh(u) =
{

cosh(u) if |u| < τ,

cosh(τ ) if |u| ≥ τ .
(49)

We developed a finite element program package for solving the PBE model (10) in Python based on the FEniCS finite 
element program library [36] and GAMer [37]. To speedup calculation, we wrote Fortran subroutines for calculating the 
mesh node values of G , ∇G , ŝinh(Φ̃(k) + Ψ + G), and ĉosh(Φ̃(k) + Ψ + G), and converted them as Python modules by the 
Fortran-to-Python interface generator f2py [51] (http :/ /cens .ioc .ee /projects /f2py2e/). In addition, a Python parameter file 
is provided to control parameters from DOLFIN and GAMer such that a PQR file of protein is the only input file for our 
new PBE program package. Here, a PQR file is generated by the program tool PDB2PQR (http :/ /www.poissonboltzmann .org /
pdb2pqr/) [52] from a PDB file of a protein, which can be downloaded from the Protein Data Bank (PDB) (http :/ /www.rcsb .
org/), to get all the required data (such as atomic coordinates, charges, radii, and the hydrogen atoms missed in the PDB 
file) for the numerical solution of PBE.

To check the convergence rule (43), we calculated the following gradient norm, ‖ J̄ ′(v)‖, at each iterate (i.e., v = Φ̃(k)) of 
our modified Newton minimization scheme:

∥∥ J̄ ′(v)
∥∥ =

√√√√√ N∑
j=1

[
J̄ ′(v)φ j

]2
for v ∈ M0, (50)

where N is the number of mesh nodes {r j}, and φ j is a Lagrange interpolation polynomial of degree m ≥ 1 satisfying that 
φ j(ri) = 0 for i �= j and 1 for i = j.

In all the numerical experiments, we used εp = 2, εs = 80, the values of α and κ given in (11), τ = 85 for the “blow-up” 
test, and ε = 10−12 for the convergence test of (43). Each involved system of linear algebraic equations was solved by PCG 
with ILU preconditioning until the relative residue error and the absolute residue error were less than 10−8. All the tests 
were done on one 2.3 GHz Intel Core i7 of MacBook Pro with 8 GB 1600 MHz memory.

6.1. Numerical tests on a nonlinear Born ball model with analytical solution

To validate the solution decomposition scheme and our PBE program package, we made numerical tests on the following 
nonlinear Born ball model:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−εp�u = αzδ in D p,

−εs�u + κ2 sinh(u) = f in Ds,

u
(
s+) = u

(
s−)

, εs
∂u(s+)

∂n
= εp

∂u(s−)

∂n
on Γ,

u(s) = ĝ(s) on ∂Ω,

(51)

where z is a charge number, α and κ2 are given in (11), D p = {r | |r| < a}, Ds = {r | a < |r| < A}, Γ = {r | |r| = a}, ∂Ω = {r |
|r| = A}, ĝ(s) = αz

4πεs|s| , f (r) = κ2 sinh( αz
4πεs|r| ), and the analytical solution u is given by

u(r) =
{

αz
4πa

( 1
εs

− 1
εp

) + αz
4πεp |r| in D p,

αz
4πεs|r| in Ds.

(52)

In the numerical tests, we set a = 1, A = 10, and z = 1, and used a tetrahedral mesh with 2955 vertices and 17 357
tetrahedra (see Fig. 1). The mesh excludes the origin point as a mesh node to avoid the singularity of G(r) at the origin. To 
reflect the case of the Born model, we modified our program package to subtract the term 

∫
Ds

f (r)vdr from the expressions 
(47) and (46) of J̄ ′ and J̄ , respectively. An initial guess Φ̃(0) = 0 was used in each test.

The numerical results are reported in Table 2. A comparison of the finite element solution uh with the analytical solution 
u is displayed in Fig. 2. From Table 2 it can be seen that the accuracy of a finite element solution can be improved signifi-
cantly as the order m of the finite element method is increased from 1 to 3. As shown in Fig. 2, the finite element solution 
(m = 2) matches the analytical solution very well. These numerical results well validated the PBE solution decomposition 
scheme and our PBE finite element program package.

The numerical results of Table 2 confirmed the efficiency of our modified Newton minimization scheme and PBE program 
package too. For example, a finite element solution was found in 5 iterations and about 8 seconds for a system of nonlinear 
quadratic finite element equations defined on a mesh with 23 522 mesh nodes. It is also interesting to see that the starting 
gradient norm is reduced sharply when the finite element order m is increased from 1 to 2, resulting in a sharp reduction 
of the total number of iterations from 29 to 5.

http://cens.ioc.ee/projects/f2py2e/
http://www.poissonboltzmann.org/pdb2pqr/
http://www.rcsb.org/
http://www.poissonboltzmann.org/pdb2pqr/
http://www.rcsb.org/
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Fig. 1. A mesh partition of the spheric domain Ω with a = 1 and A = 10. Here the meshes of D p and Ds are marked in red and cyan, respectively. A part 
of cross section of the mesh is displayed in the right figure. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Table 2
Performance of our PBE finite element program package for solving the nonlinear Born ball model (51) with 
a = 1, A = 10, and z = 1. Here u and uh denote the analytical and finite element solutions, respectively, and the 
numbers in parentheses are the number of mesh nodes of the mth order finite element method (FEM).

FEM order m m = 1 (2955) m = 2 (23 522) m = 3 (79 059)

‖u − uh‖L2(Ω) 2.3897 1.816 × 10−1 4.168 × 10−2

Start ‖ J̄ ′(Φ̃(0))‖ 7.573 × 108 1.479 × 101 1.691 × 10−1

Final ‖ J̄ ′(Φ̃(k))‖ 3.275 × 10−8 6.066 × 10−9 6.036 × 10−9

Total iteration number for solving (38) 29 5 4
Total CPU time (sec.) 2.18 7.77 68.53

Fig. 2. A comparison of the quadratic finite element solution (in blue circle) with the analytical solution (in red plus) for the nonlinear Born ball model (51)
with a = 1 and A = 10. The nodes are selected by considering their x-coordinates in a step-length of 0.2 with their magnitudes decreasing on [−10, 0] and 
increasing on [0, 10]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

6.2. Numerical tests on proteins

To demonstrate the effectiveness and efficiency of our PBE finite element program package, numerical experiments were 
made on four proteins represented in the PDB files 4PTI, 1CID, and 2AQ5 and the PQR file FAS2.pqr. The linear inter-
face problem (22) was selected to generate initial iterates Φ̃(0) . By using GAMer, the domains Ω for these four proteins 
were generated as the spherical balls with radii 461.90, 463.72, 749.90, and 720.16 Å and centers (15.29, 20.81, 4.60), 
(−1.57, 0.65, 24.67), (−9.76, 38.18, 32.80), and (14.81, 53.14, 21.21), respectively, together with the protein domains D p

and the tetrahedral meshes with the number N of vertices being 33 572, 389 26, 84 415, and 107 400.
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Fig. 3. Protein domains D p and their surface meshes generated by GAMer for proteins represented in 4PTI, 1CID, and 2AQ5 PDB files. Here the molecular 
structures of the proteins are represented in solid lines.

Table 3
Performance of our modified Newton minimization scheme for solving the variational minimization problem (38) for four proteins represented in 4PTI 
(N = 33 572, np = 892), FAS2 (N = 389 26, np = 906), 1CID (N = 84 415, np = 2783), and 2AQ5 (N = 107 400, np = 6024). Here the CPU time is measured 
in seconds.

Protein Start 
J̄ (Φ̃(0))

Final 
J̄ (Φ̃(k))

Start 
‖ J̄ ′(Φ̃(0))‖

Final 
‖ J̄ ′(Φ̃(k))‖

Total 
iterations

CPU 
time

4PTI 3.78 × 109 3.52 × 108 9.69 × 105 1.89 × 10−6 18 11.17
FAS2 3.59 × 108 3.55 × 108 1.56 × 105 2.10 × 10−6 15 11.39
1CID 1.56 × 109 1.49 × 109 5.32 × 106 2.73 × 10−6 24 48.59
2AQ5 4.44 × 109 1.32 × 109 1.40 × 109 1.31 × 10−6 33 90.45

Fig. 3 displays three protein domains as examples to show that D p has a very complex shape, whose boundary gives 
the interface Γ , making a finite element mesh generation to be a challenging task. From the figure it can also be seen that 
a three-dimensional molecular structure of each protein was wrapped well by D p , showing that the protein domains D p

generated from GAMer are satisfactory for our numerical experiments.
Table 3 reports the performance of our modified Newton minimization scheme for solving the variational minimization 

problem (38) for the four proteins. In these tests, the convergence tolerance of (43) was set as ε = 10−12. From this table it 
can be seen that our modified Newton minimization scheme worked effectively and efficiently. For example, in the case of 
4PTI, it took only about 11 seconds to find a minimizer of (38) on a mesh with 38 572 vertices. Even for a protein molecule 
(2AQ5) with 6062 atoms on a mesh with 107 400 vertices and 665 297 tetrahedra, a minimum solution was found in only 
90.45 seconds while the gradient norm was reduced from 1.40 × 109 to 1.31 × 10−6 in 33 iterations.

Fig. 4 displays the convergence behavior of our modified Newton minimization scheme for the four protein cases. From 
Fig. 4 we see that the gradient norm ‖ J̄ ′(Φ̃(k))‖, which is defined in (50), the solution difference ‖Φ̃(k) − Φ̃(k+1)‖, and 
the relative error of the target functional of the variational minimization problem (38), which is defined as | J̄ (Φ̃(k+1)) −
J̄ (Φ̃(k))|/| J̄ (Φ̃(k+1))|, were reduced quickly, numerically confirming the convergence of our modified Newton minimization 
scheme. Here the differences ‖Φ̃(k) − Φ̃(k+1)‖ were almost zero at the last iteration due to that the last two vectors of 
− J̄ ′(Φ̃(k)) (the right hand side term of the Newton equation (40)) were almost identical. They were plotted approximately 
as O (10−14) to be displayed in the logarithmic scale.

Table 4 reports the performance of our finite element program package in terms of CPU time. Here the total time 
includes the CPU time spent on data input, data output, and mesh generation. From this table it can be seen that all the 
linear finite element equations were efficiently solved by the PCG using the ILU preconditioning, which only took about 3 
to 11 seconds. However, the CPU time spent on mesh generation almost took a half of the total time. It was increased from 
about 12 seconds to 106 seconds when the number of atoms of a protein was increased from 892 to 6024. This indicates 
that mesh generation is the bottleneck in the finite element solution of the PBE model.

In the future, we will carry out further studies on our PBE solution decomposition and minimization schemes, and de-
velop more efficient linear and nonlinear iterative solvers for solving (19) and (38). We will also program the truncated 
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Fig. 4. Convergences of the modified Newton minimization scheme for solving the variational minimization problem (38) in terms of the gradient norm 
‖ J̄ ′(Φ̃(k))‖ (in blue circles), the difference ‖Φ̃(k) − Φ̃(k+1)‖ (in red triangles), and the relative error | J̄ (Φ̃(k+1)) − J̄ (Φ̃(k))|/| J̄ (Φ̃(k+1))| (in green plus). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Performance (in CPU time in seconds) of our PBE finite element program package on one 2.3 GHz Intel Core i7 processor of a MacBook Pro.

Protein Find 
mesh

Find 
G & ∇G

Solver (37)
for Ψ

Solve (38)
for Φ̃

Total 
time

4PTI 11.969 0.678 2.735 11.17 31.173
FAS2 16.03 0.7987 3.272 11.398 37.071
1CID 25.785 5.1563 7.658 48.594 99.269
2AQ5 106.372 14.212 10.693 90.456 238.315

modified Newton minimization scheme in an efficient way to further improve the performance of our finite element pro-
gram package.
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