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Abstract. The nonlocal dielectric approach can significantly enhance the classical Poisson

dielectric model by including polarization correlations among water molecules. In this paper, a

nonlocal dielectric model for protein in ionic solvent is proposed and analyzed, alongside a new

efficient numerical algorithm and program package for solving the model. In particular, by using

solution splitting and reformulation techniques, it is shown that the solution of the nonlocal dielectric

model is unique, and can be found from solving two well-defined partial differential systems and

one Poisson-like boundary value problem. Consequently, the singular and computational difficulties

caused by Dirac delta distributions and convolution terms are overcome. Furthermore, a nonlocal

linearized Poisson-Boltzmann equation with uniform ionic size effect is proposed and numerically

tested on three protein molecules with up to 6062 atoms by using a fast finite element solver from

the FEniCS project. A nonlocal point charge Born model with a known analytical solution is also

tested to validate the new algorithm and program package. Numerical results demonstrate the high

performance of the program package, and confirm one advantage of the new algorithm in retaining

a high order of accuracy of finite element approximations.
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1. Introduction. Calculation of electrostatic potential energy for proteins in

ionic solvent is a fundamental task in the simulation study of the structure and bio-

logical function of proteins, catalytic activity, and ligand association [17, 25, 31]. One

commonly used mathematical model for estimating the electrostatic potential function

in an ionic solvent is the Poisson-Boltzmann equation (PBE) [2, 13, 16, 22, 23, 27, 37].

But, due to the polarization correlations among water molecules and ionic size effect

[21], the PBE model may not work well in some important bioengineering applica-

tions (such as ion channel studies and rational drug design). To reflect the polarization

correlations among water molecules, several nonlocal dielectric models have been de-

veloped for a wide range of dielectric materials and dipolar liquids in the last thirty

years [4, 5, 6, 7, 8, 10, 19, 20, 28, 30]. Recent progress in the development of fast nu-

merical algorithms has sharply reduced the complexity of solving a nonlocal dielectric

model [15, 33, 35, 36], making it possible for a nonlocal dielectric model to be applied

to large scale biomolecular simulations.

However, the study of a nonlocal model has been limited to the case of pure water

solvent so far due to modeling and algorithmic complications. Most significantly,
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none of the current ionic models incorporate nonlocal dielectric effects. As the first

step toward the direction of changing this situation, in this paper, we propose a

nonlocal dielectric model for protein in ionic solvent (see (2.2)) by assuming that

ionic concentration functions are given. For clarity, we call it the nonlocal Poisson

dielectric model since it includes the classic Poisson dielectric model as a special case.

Because of its simplicity, the nonlocal Poisson dielectric model makes us focus on

the study of two fundamental issues related to nonlocal dielectric modeling: One is

how to deal with the solution singularity caused by Dirac delta distributions while the

other one is how to simplify the computational complexity of a nonlocal model with

convolution terms. In our recent work, the second issue was successfully tackled with

a novel reformulation of a nonlocal model as a partial differential equation (PDE)

system in the case of pure water [35], but how to deal with the case of protein in ionic

solvent is still an open problem. Through studying these two important issues, we

intend to strengthen the theoretical and numerical basis as required for our future work

— the development of advanced nonlocal dielectric models based on the approach of

a constrained electrostatic free energy minimization. In such a minimization process,

the nonlocal Poisson dielectric model is set as one of the constraints. Hence, the

results reported in this paper will be particularly valuable in the future work.

In particular, to overcome the singular difficulties caused by Dirac delta distribu-

tions, we propose and prove a solution splitting formula such that the solution of the

nonlocal Poisson dielectric model can be found through solving two nonlocal models

without any singular difficulty (see Theorem 3.1). The computing difficulties caused

by convolution terms are then overcome through a novel reformulation of each related

nonlocal model as a PDE system (see (4.4), (4.6), and (4.8)) or a Poisson-like bound-

ary value problem (see (4.10)). Next, these PDE systems and Poisson-like boundary

value problem are reformulated as variational problems without involving any surface

integral defined on the interface between the protein and the solvent regions. In this

way, the difficulty of analyzing and programming surface integrals is avoided. Fur-

thermore, these PDE problems are theoretically proved to have unique solutions (see

Theorem 5.1). Consequently, a fast numerical algorithm is derived for solving the

nonlocal Poisson dielectric model.

Clearly, different selections of ionic concentration functions may generate different

nonlocal dielectric models from the nonlocal Poisson dielectric model. In this paper,

we construct ionic concentration functions using the solution of the local linearized

PBE (LPBE) model with uniform ionic size effect [22]. Here all ions and water

molecules are assumed to have a uniform volume to reflect ionic size effects, which are

important in many biological applications. With such particular ionic concentration

functions, the nonlocal Poisson dielectric model can be regarded as a nonlocal LPBE

model with uniform ionic size effect, since it is an extension of the local LPBE model.

This particular nonlocal model is also a good one for us to study the performance of

our fast numerical algorithm for a protein in ionic solvent.
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We programmed our fast algorithm for solving the nonlocal LPBE model as a

Python program package based on the finite element program library DOLFIN [1]. To

generate a tetrahedral finite element mesh for a given protein molecule in a PQR

file, we adapted and converted the mesh generation program package GAMer [38] as

a Python module of our program package using the software development tool SWIG

(http://www.swig.org). As a result, the mesh data generated from GAMer can be

directly used to construct a mesh object of DOLFIN, and stored in XML format – a

format recognized in DOLFIN. We also wrote a Fortran program for computing the

mesh values of the singular function G (see (3.2)) of our solution splitting formula

and its gradient ∇G, and converted it into a Python module using the Fortran to

Python interface generator f2py [26] (http://cens.ioc.ee/projects/f2py2e/). With such

a Python module, we constructed finite element interpolation functions for G and

∇G in a special way to significantly speed up the assembling process of a linear form

involving G or ∇G in a finite element approximation.

To validate our new algorithm and program package, we made numerical experi-

ments on a nonlocal point charge Born model, whose analytical solution is available

in [36, Pages 182-183]. As comparison, we also solved this Born model in a custom-

ary way in which the Dirac delta distribution was approximated by using DOLFIN’s

numerical delta function PointSource. In numerical tests, we solved this nonlocal

Born model approximately by linear, quadratic, and cubic finite element methods,

respectively. Numerical results not only validate our algorithm and program package

but also confirm one advantage of our new algorithm in retaining a higher order of

accuracy of a finite element solution.

We then did numerical tests on three proteins with the number of atoms up to

6062 in ionic solvent containing two different kinds of ions – sodium (N+
a ) and chloride

(Cl−) ions. All the numerical experiments were made on one 2.3 GHz Intel Core i7

MacBook Pro with 8 GB 1600 MHz DDR3 memory. In the tests of protein BPTI

(892 atoms and 69,982 mesh vertices), a linear finite element solution of the nonlocal

LPBE model was found in 0.84 minutes only, which is the total CPU time starting

from reading a protein structure PQR file and including the time spent on the finite

element mesh generation. For a protein with 6062 atoms on a mesh with 158,908

vertices, the total CPU time was 4.1 minutes. These numerical results demonstrate

the high efficiency of our new algorithm and program package.

The remaining part of the paper is arranged as follows. In Section 2, we introduce

the nonlocal Poisson dielectric model. In Section 3, we present the solution splitting

formula. In Section 4. we reformulate each related nonlocal model into a PDE system.

In Section 5, we obtain the weak form of each PDE system and prove its solution

existence and uniqueness. Finally, the fast algorithm, the nonlocal LPBE model, the

program package, and the numerical results are presented in Section 6.

2. The nonlocal Poisson dielectric model. Let the whole space R3 be split

into two disjoint open domains, Dp and Ds, satisfying that Dp is surrounded by Ds,
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and R3 = Dp ∪ Ds ∪ Γ. Here Γ is the interface between Dp and Ds, Dp hosts a

protein molecule with np atoms, and Ds contains the ionic solvent with n different

types of ions. As an implicit solvent approach [27, 32], Dp and Ds are treated as two

different dielectric continuum media with two different dielectric constants, ϵp and ϵs,

satisfying ϵs > ϵp > 0, respectively. We also denote by ϵ∞ the permittivity factor for

water in the limit of high frequency [34], and by ϵ0 the permittivity of the vacuum.

When a molecular structure of a protein and a concentration function ci(r) of

ionic species i are given, the charge density function ρ can be estimated by

ρ(r) =

np∑
j=1

Qjδrj +

n∑
i=1

qici(r), r ∈ R3, (2.1)

where each ci has been extended as zero in the protein domain Dp, Qj and rj are the

charge and position of atom j of the protein molecule, respectively, δrj is the Dirac

delta distribution [29], and qi is the charge of ionic species i.

To estimate the electrostatic potential Φ induced by ρ, we define a nonlocal di-

electric model for protein in ionic solvent as follows:{
−∇·(ϵ(r)∇Φ(r) + κ(r)

∫
R3 Qλ(r− r′)∇Φ(r′)dr′) = 1

ϵ0
ρ(r), r ∈ R3,

Φ(r) → 0 as |r| → ∞,
(2.2)

subject to the interface conditions Φ(s+) = Φ(s−) and

ϵ∞
∂Φ(s+)

∂n(s)
+ (ϵs − ϵ∞)

∫
R3

Qλ(s− r′)∇Φ(r′)dr′ · n(s) = ϵp
∂Φ(s−)

∂n(s)
, s ∈ Γ, (2.3)

where ε(r) and κ(r) are defined by

ϵ(r) =

ϵp, r ∈ Dp,

ϵ∞, r ∈ Ds,
κ(r) =

0, r ∈ Dp,

ϵs − ϵ∞, r ∈ Ds,
(2.4)

n(s) denotes the unit outward normal vector of Dp, Qλ(r) is defined by

Qλ(r) =
1

4πλ2|r|
e−|r|/λ, r ̸= 0, (2.5)

∂Φ(s)
∂n(s) = ∇Φ(s) · n(s), ∂Φ(s±)

∂n(s) = limt→0+
∂Φ(s±tn(s))

∂n(s) , and Φ(s±) = limt→0+ Φ(s± tn).

Clearly, the nonlocal model (2.2) includes the classic local Poisson model and

the nonlocal model for protein in pure water studied in [36] as two special cases. In

fact, setting all ci = 0 reduces (2.2) to the case of protein in pure water while setting

ϵ∞ = ϵs reduces (2.2) to the classic local Poisson model{
−∇·(ϵ(r)∇Φ(r)) = 1

ϵ0
ρ(r), r ∈ R3,

Φ(r) → 0 as |r| → ∞,
(2.6)

subject to the interface conditions

Φ(s−) = Φ(s+), ϵp
∂Φ(s−)

∂n(s)
= ϵs

∂Φ(s+)

∂n(s)
, s ∈ Γ. (2.7)
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Due to this reason, we often refer to the nonlocal model (2.2) as a nonlocal Poisson

dielectric model.

One major difficulty in solving and analyzing the nonlocal model (2.2) comes

from the integral term which mixes with derivatives. As in [35, 36], we can detach

the derivatives from the integral term to simplify (2.2) as follows:

−ϵp∆Φ(r) = 1
ϵ0

np∑
j=1

Qjδrj , r ∈ Dp,

−ϵ∞∆Φ(r) + ϵs−ϵ∞
λ2 [Φ(r)− (Φ ∗Qλ)(r)] =

1
ϵ0

n∑
i=1

qici(r), r ∈ Ds,

Φ(s−) = Φ(s+), s ∈ Γ

ϵp
∂Φ(s−)
∂n(s) = ϵ∞

∂Φ(s+)
∂n(s) + (ϵs − ϵ∞)∂(Φ∗Qλ)(s)

∂n(s) , s ∈ Γ,

Φ(r) → 0 as |r| → ∞,

(2.8)

where Φ ∗Qλ denotes the convolution of Qλ with Φ, which is defined by

(Φ ∗Qλ)(r) =

∫
R3

Qλ(r− r′)Φ(r′)dr′.

This reformulation reduces the complexity of solving the nonlocal model (2.2) remark-

ably.

3. Solution splitting formulation. However, because of the Dirac delta dis-

tributions δrj , the solution Φ of the nonlocal Poisson model (2.2) has singular points

at the point charge positions rj for j = 1, 2, . . . , np, causing difficulties in the analysis

and numerical solution of (2.2). To overcome such a difficulty, in this section, we

introduce a solution splitting formula in the following theorem.

Theorem 3.1. If each ci is a given function independent of Φ for i = 1, 2, . . . , n,

then the solution Φ of the nonlocal Poisson dielectric model (2.8) can be split as

Φ(r) = Ψ(r) + Φ̃(r) +G(r), r ∈ R3, (3.1)

where G is defined by

G(r) =
1

4πϵ0ϵp

np∑
j=1

Qj

|r− rj |
with all rj ∈ Dp, (3.2)

Ψ satisfies the nonlocal interface problem

∆Ψ(r) = 0, r ∈ Dp,

−ϵ∞∆Ψ(r) + α[Ψ(r)− (Ψ ∗Qλ)(r)] = −α[G(r)− (G ∗Qλ)(r)], r ∈ Ds,

Ψ(s−) = Ψ(s+), s ∈ Γ,

ϵp
∂Ψ(s−)
∂n(s) − ϵ∞

∂Ψ(s+)
∂n(s) = (ϵs − ϵ∞)∂(Ψ∗Qλ)(s)

∂n(s) + g(s), s ∈ Γ,

Ψ(r) → 0 as |r| → ∞,

(3.3)
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and Φ̃ satisfies the nonlocal interface problem

∆Φ̃(r) = 0, r ∈ Dp,

−ϵ∞∆Φ̃(r) + α[Φ̃(r)− (Φ̃ ∗Qλ)(r)] =
1
ϵ0

n∑
i=1

qici(r), r ∈ Ds,

Φ̃(s−) = Φ̃(s+), s ∈ Γ,

ϵp
∂Φ̃(s−)
∂n(s) − ϵ∞

∂Φ̃(s+)
∂n(s) = (ϵs − ϵ∞)∂(Φ̃∗Qλ)(s)

∂n(s) , s ∈ Γ,

Φ̃(r) → 0 as |r| → ∞.

(3.4)

Here α and g(s) are given by

α =
ϵs − ϵ∞

λ2
, g(s) = (ϵs − ϵ∞)

∂(G ∗Qλ)(s)

∂n(s)
+ (ϵ∞ − ϵp)

∂G(s)

∂n(s)
.

Proof. With the functions G,Ψ, and Φ̃, given in (3.2), (3.3), and (3.4), we can

directly verify that the function Φ defined by (3.1) satisfies (2.8).

Since it is well known that −∆ 1
4π|r−rj | = δrj (see [24, page 111], for example),

the definition of G in (3.2) gives

−ϵp∆G =
1

ϵ0

np∑
j=1

Qj∆

(
− 1

4π|r− rj |

)
=

1

ϵ0

np∑
j=1

Qjδrj .

Thus, together with (3.1) and the first equations of (3.3) and (3.4), we get the first

equation of (2.8) as shown below:

−ϵp∆Φ(r) = −ϵp∆(Φ̃(r) + Ψ(r) +G(r)) = −ϵp∆G(r) =
1

ϵ0

np∑
j=1

Qjδrj , r ∈ Dp.

Obviously, ∆G(r) = 0 for r ∈ Ds. With (3.1) and the second equations of (3.3)

and (3.4), we can obtain the second equation of (2.8) as shown below:

− ϵ∞∆Φ(r) + α[Φ(r)− (Φ ∗Qλ)(r)]

=− ϵ∞∆
[
Φ̃(r) + Ψ(r) +G(r)

]
+ α

[
Φ̃(r) + Ψ(r) +G(r)

− (Φ̃ ∗Qλ)(r)− (Ψ ∗Qλ)(r)− (G ∗Qλ)(r)
]

=− ϵ∞∆Φ̃(r) + α[Φ̃(r)− (Φ̃ ∗Qλ)(r)]− ϵ∞∆Ψ(r)

+ α[Ψ(r)− (Ψ ∗Qλ)(r)] + α[G(r)− (G ∗Qλ)(r)]

=− ϵ∞∆Φ̃(r) + α[Φ̃(r)− (Φ̃ ∗Qλ)(r)] =
1

ϵ0

n∑
i=1

qici(r), r ∈ Ds.

Clearly, G(r) → 0 as |r| → ∞. Combining this fact with the boundary conditions

of (3.3) and (3.4), we obtain the boundary condition of (2.8):

Φ(r) = Φ̃(r) + Ψ(r) +G(r) → 0 as |r| → ∞.



Efficient Algorithm for Nonlocal Dielectric Model 7

Since G is smooth on the interface Γ, the first interface condition of (2.8) follows

from the first interface conditions of (3.3) and (3.4). Finally, by the second interface

conditions of (3.3) and (3.4), the second interface condition of (2.8) is verified as

follows:

ϵp
∂Φ(s−)

∂n(s)
= ϵp

∂Φ̃(s−)

∂n(s)
+ ϵp

∂Ψ(s−)

∂n(s)
+ ϵp

∂G(s)

∂n(s)

=ϵ∞
∂Φ̃(s+)

∂n(s)
+ (ϵs − ϵ∞)

∂(Φ̃ ∗Qλ)(s)

∂n(s)
+ ϵ∞

∂Ψ(s+)

∂n(s)
+ (ϵs − ϵ∞)

∂(Ψ ∗Qλ)(s)

∂n(s)

+ (ϵs − ϵ∞)
∂(G ∗Qλ)(s)

∂n(s)
+ (ϵ∞ − ϵp)

∂G(s)

∂n(s)
+ ϵp

∂G(s)

∂n(s)
,

=ϵ∞
∂

∂n(s)

[
Ψ(s+) + Φ̃(s+) +G(s)

]
+ (ϵs − ϵ∞)

∂

∂n(s)

[
(Ψ ∗Qλ)(s) + (Φ̃ ∗Qλ)(s) + (G ∗Qλ)(s)

]
=ϵ∞

∂Φ(s+)

∂n(s)
+ (ϵs − ϵ∞)

∂(Φ ∗Qλ)(s)

∂n(s)
.

This completes the proof.

Because of Theorem 3.1, the solution Φ of (2.8) can now be found through solving

the nonlocal interface problems (3.3) and (3.4), which do not involve any singular

Dirac delta distributions. In this way, the singular difficulties caused by Dirac delta

distributions have been avoided completely in the solution of the nonlocal model (2.8).

4. Reformulation of PDE systems. To further reduce the complexity of a

nonlocal model, in this section, we reformulate the nonlocal interface problems (2.8),

(3.3), and (3.4) as three PDE systems without any convolution calculation. x Let u,

u1, and u2 denote the convolutions Φ ∗ Qλ, Ψ ∗ Qλ, and Φ̃ ∗ Qλ, respectively. As in

[36], we can find that they satisfy the following three equations:

−λ2∆u(r) + u(r)− Φ(r) = 0, r ∈ R3, (4.1)

−λ2∆u1(r) + u1(r)−Ψ(r) = 0, r ∈ R3, (4.2)

−λ2∆u2(r) + u2(r)− Φ̃(r) = 0, r ∈ R3. (4.3)

We then combine them with the nonlocal problems (2.8), (3.3), and (3.4) to yield

three systems of PDEs as listed below.

The first system for solving (Φ, u) is given by

−ϵp∆Φ(r) = 1
ϵ0

np∑
j=1

Qjδrj , r ∈ Dp,

−ϵ∞∆Φ(r) + α[Φ(r)− u(r)] = 1
ϵ0

n∑
i=1

qici(r), r ∈ Ds,

−λ2∆u(r) + u(r)− Φ(r) = 0, r ∈ R3,

Φ(r) → 0, u(r) → 0 as |r| → ∞,

(4.4)
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subject to the interface conditions

Φ(s−) = Φ(s+), ϵp
∂Φ(s−)

∂n(s)
= ϵ∞

∂Φ(s+)

∂n(s)
+ (ϵs − ϵ∞)

∂u(s)

∂n(s)
, s ∈ Γ. (4.5)

The second system for solving (Ψ, u1) is given by
∆Ψ(r) = 0, r ∈ Dp,

−ϵ∞∆Ψ(r) + α[Ψ(r)− u1(r)] = −α[G(r)− u0(r)], r ∈ Ds,

−λ2∆u1(r) + u1(r)−Ψ(r) = 0, r ∈ R3,

Ψ(r) → 0, u1(r) → 0 as |r| → ∞,

(4.6)

subject to the interface conditions

Ψ(s−) = Ψ(s+), ϵp
∂Ψ(s−)

∂n(s)
= ϵ∞

∂Ψ(s+)

∂n(s)
+ (ϵs − ϵ∞)

∂u1(s)

∂n(s)

+ (ϵs − ϵ∞)
∂u0(s)

∂n(s)
+ (ϵ∞ − ϵp)

∂G(s)

∂n(s)
∀ s ∈ Γ.

(4.7)

The third system for solving (Φ̃, u2) is given by

∆Φ̃(r) = 0, r ∈ Dp,

−ϵ∞∆Φ̃(r) + α[Φ̃(r)− u2(r)] =
1
ϵ0

n∑
i=1

qici(r), r ∈ Ds,

−λ2∆u2(r) + u2(r)− Φ̃(r) = 0, r ∈ R3,

Φ̃(r) → 0, u2(r) → 0 as |r| → ∞,

(4.8)

subject to the interface conditions

Φ̃(s−) = Φ̃(s+), ϵp
∂Φ̃(s−)

∂n(s)
= ϵ∞

∂Φ̃(s+)

∂n(s)
+ (ϵs − ϵ∞)

∂u2(s)

∂n(s)
∀ s ∈ Γ. (4.9)

Here α = (ϵs − ϵ∞)/λ2, u0 = G ∗Qλ, and
∂G(s)
∂n(s) can be found as

∂G(s)

∂n(s)
= − 1

4πϵ0ϵp

np∑
j=1

Qj
(s− rj) · n
|s− rj |3

.

Furthermore, we find that u0 can be calculated as a solution of the following

boundary value problem{
−λ2∆u0(r) + u0(r) = G(r) in R3,

u0(r) → 0 as |r| → ∞.
(4.10)

5. Solution Existence and Uniqueness. In this section, we consider the so-

lution existence and uniqueness for (4.4), (4.6), (4.8), and (4.10). For simplicity, we

assume them to be approximated as boundary value problems with the homogeneous

Dirichlet boundary conditions

Φ(s) = 0, Φ̃(s) = 0, Ψ(s) = 0, ui(s) = 0, s ∈ ∂Ω, (5.1)
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where i = 0, 1, 2, ∂Ω denotes the boundary of a sufficiently large spherical domain,

Ω, satisfying Dp ⊂ Ω and Ds = Ω \ (Dp ∪ Γ). The case of inhomogeneous boundary

value problems can be constructed by several numerical techniques (see [16, 23] for

examples) and then treated by standard variation techniques (see [9, pages 137 - 138],

for example). Hence, considering a homogeneous Dirichlet boundary condition here

does not lose any generality.

We start with the derivation of the variational formulation of (4.4) over Ω. We

define the function spaces Vp as

Vp = W 1
p (Ω)×W 1

p (Ω),

where W 1
p (Ω) denotes the usual Sobolev function space [9]. Here we will take p and

p′ to be dual indices, such that (1/p)+ (1/p′) = 1. We choose 1 < p < 3/2 in order to

ensure that the solution (Φ, u) ∈ Vp. This also ensures that 3 < p′ < ∞ so that test

functions in Vp′ are continuous. (Note that working with Sobolev spaces with p ̸= 2 is

technical, so we actually do most of our work with the conventional case p = 2 based

on our solution splitting approach.) We write W 1
p,0(Ω) for the functions in W 1

p (Ω)

that vanish on the boundary of Ω. For any test function vector v˜ = (v1, v2) ∈ Vp′ ,

we multiply the first and second equations of (4.4) with v1, integrate them, and then

add them together to get

− ϵp

∫
Dp

∆Φ(r)v1(r)dr− ϵ∞

∫
Ds

∆Φ(r)v1(r)dr+ α

∫
Ds

(Φ(r)− u(r))v1(r)dr

=
1

ϵ0

∫
Ω

ρ(r)v1(r)dr.

Applying the Green’s first identity to the first two integrals, we can simplify the above

expression as∫
Ω

ϵ(r)∇Φ(r) · ∇v1(r)dr−
∫
Γ

[
ϵp
∂Φ(s−)

∂n(s)
− ϵ∞

∂Φ(s+)

∂n(s)

]
v1(s)ds

+α

∫
Ds

(Φ(r)− u(r))v1(r)dr =
1

ϵ0

∫
Ω

ρv1dr.

Substituting the interface conditions of (4.5) to the above expression gives∫
Ω

ϵ(r)∇Φ(r) · ∇v1(r)dr+ α

∫
Ds

(Φ(r)− u(r))v1(r)dr

−(ϵs − ϵ∞)

∫
Γ

∂u(s)

∂n(s)
v1(s)ds =

1

ϵ0

∫
Ω

ρ(r)v1(r)dr ∀v1 ∈ W 1
p′,0(Ω).

(5.2)

Note that the interface Γ is a complex molecular surface of a protein in our applica-

tion, which may cause difficulties in a calculation of the surface integral
∫
Γ

∂u(s)
∂n(s)v1(s)ds.

To avoid such difficulties, we use the Green’s first identity and the third equation of
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(4.4) to reformulate the surface integral as∫
Γ

∂u(s)

∂n(s)
v1(s)ds = −

∫
Ds

∆u(r)v1(r)dr−
∫
Ds

∇u(r) · ∇v1(r)dr

=
1

λ2

∫
Ds

(Φ(r)− u(r))v1(r)dr−
∫
Ds

∇u(r) · ∇v1(r)dr.

(5.3)

By the above expression, (5.2) becomes the one without any surface integral term:∫
Ω

ϵ(r)∇Φ(r) ·∇v1(r)dr+(ϵs− ϵ∞)

∫
Ds

∇u(r) ·∇v1(r)dr =
1

ϵ0

∫
Ω

ρ(r)v1(r)dr. (5.4)

The variational formulation of the third equation of (4.4) can be easily obtained

in the form

λ2

∫
Ω

∇u(r) · ∇v2(r)dr+

∫
Ω

(u(r)− Φ(r))v2(r)dr = 0 ∀v2 ∈ W 1
p′,0(Ω). (5.5)

Adding (5.4) to (5.5) and setting ϕ˜ = (Φ, u), we obtain the variational formulation

of (4.4) as follows:

a(ϕ˜, v˜) = l(v˜) ∀v˜ ∈ W 1
p′,0(Ω)×W 1

p′,0(Ω), (5.6)

where a(ϕ˜, v˜) and l(v˜) are bilinear and linear forms as defined by

a(ϕ˜, v˜) =
∫
Ω

ϵ(r)∇Φ(r) · ∇v1(r)dr+ (ϵs − ϵ∞)

∫
Ds

∇u(r) · ∇v1(r)dr

+ λ2

∫
Ω

∇u(r) · ∇v2(r)dr+

∫
Ω

(u(r)− Φ(r))v2(r)dr

(5.7)

and

l(v˜) = 1

ϵ0

 np∑
j=1

Qjv1(rj) +
n∑

i=1

qi

∫
Ds

ci(r)v1(r)dr

 . (5.8)

Here the definition (2.1) of ρ has been applied to the derivation of l(v˜). The first

summation term of (5.8) is clearly well defined since v1 is continuous in Dp.

Similarly, we set that ϕ˜1 = (Ψ, u1), ϕ˜2 = (Φ̃, u2), and V = H1
0 (Ω) ×H1

0 (Ω), and

then obtain the variational formulations of (4.6) and (4.8) as follows:

find ϕ˜1 ∈ V such that a(ϕ˜1, v˜) = ℓ1(v˜) ∀v˜ ∈ V, (5.9)

and

find ϕ˜2 ∈ V such that a(ϕ˜2, v˜) = ℓ2(v˜) ∀v˜ ∈ V, (5.10)

where ℓ1(v˜) and ℓ2(v˜) are two linear forms as defined by

ℓ1(v˜) = (ϵ∞ − ϵs)

∫
Ds

∇u0(r) · ∇v1(r)dr+ (ϵp − ϵ∞)

∫
Ds

∇G(r) · ∇v1(r)dr (5.11)
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and

ℓ2(v˜) = 1

ϵ0

n∑
i=1

qi

∫
Ds

ci(r)v1(r)dr. (5.12)

Obviously, the variational problem of (4.10) with a homogenous Dirichlet bound-

ary condition can be obtained in the form

find u0 ∈ H1
0 (Ω) such that a0(u0, w) = ℓ0(w) ∀w ∈ H1

0 (Ω), (5.13)

where ℓ0 and a0 are linear and bilinear forms as defined by

ℓ0(w) =

∫
Ω

G(r)w(r)dr, a0(u0, w) = λ2

∫
Ω

∇u0 · ∇wdr+

∫
Ω

u0wdr. (5.14)

We show the solution existence and uniqueness in the following theorem.

Theorem 5.1. Let the interface Γ be of class C2, and ci ∈ L2(Ω) for i =

1, 2, · · · , n. If λ is sufficiently large, then the weak forms (5.6), (5.9), (5.10), and

(5.13) have unique solutions (Φ, u), (Ψ, u1), (Φ̃, u2), and u0. Moreover, the solution

(Φ, u) of (5.6) can be calculated by the solution splitting formulas

Φ(r) = Ψ(r) + Φ̃(r) +G(r) ∀r ∈ Ω, (5.15)

and

u(r) = u0(r) + u1(r) + u2(r) ∀r ∈ Ω, (5.16)

where G is given in (3.2).

Proof. It suffices to show that the form a(ϕ˜, v˜) in (5.7) is coercive and that the

forms ℓ0, ℓ1, and ℓ2 are linear bounded functionals in H1
0 (Ω) (i.e., ℓi in the dual space

H1
0 (Ω)

′). First we prove coercivity.

Let ϵmin = min{ϵ∞, ϵp}, v˜ = (v1, v2), and |v| be the seminorm of v defined by

|v| =
(∫

Ω

|∇v(r)|2 dr
)1/2

,

which is a norm on H1
0 (Ω) (see (5.18) below). Then

a(v˜, v˜) ≥ ϵmin|v1|2 + λ2|v2|2

+ (ϵs − ϵ∞)

∫
Ds

∇v1 · ∇v2 dr−
∫
Ω

v1 v2 dr.
(5.17)

By the Cauchy-Schwarz inequality,∣∣∣∣∫
Ds

∇v1 · ∇v2 dr

∣∣∣∣ ≤ 1

2

(
δ|v1|2 +

1

δ
|v2|2

)
for any δ > 0. Picking δ = ϵmin/(ϵs − ϵ∞), we find

(ϵs − ϵ∞)

∣∣∣∣∫
Ds

∇v1 · ∇v2 dr

∣∣∣∣ ≤ 1

2

(
ϵmin|v1|2 + λ2|v2|2

)
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for any λ ≥ (ϵs − ϵ∞)/
√
ϵmin. From (5.17), we conclude that

a(v˜, v˜) ≥ 1

2

(
ϵmin|v1|2 + λ2|v2|2

)
−
∫
Ω

v1 v2 dr.

By Poincaré’s inequality, ∫
Ω

v2 dr ≤ CΩ |v|2 (5.18)

for all v ∈ H1
0 (Ω). Combining this with the Cauchy-Schwarz inequality,∣∣∣∣∫

Ω

v1 v2 dr

∣∣∣∣ ≤ 1

2

(
δCΩ|v1|2 +

CΩ

δ
|v2|2

)
for any δ > 0. Choosing δ = ϵmin/2CΩ, we find∣∣∣∣∫

Ω

v1 v2 dr

∣∣∣∣ ≤ 1

4

(
ϵmin|v1|2 +

4C 2
Ω

ϵmin
|v2|2

)
.

Thus we conclude that

a(v˜, v˜) ≥ 1

4

(
min{ϵ∞, ϵp}|v1|2 + λ2|v2|2

)
for λ ≥ max{ϵs − ϵ∞, 2CΩ}√

min{ϵ∞, ϵp}
,

where v1, v2 ∈ H1
0 (Ω). This completes the proof of coercivity.

Now we discuss the boundedness of the forms ℓi, i = 0, 1, 2. The only term of

concern occurs in the last expression in ℓ1. But we are assuming that the points rj

are in the complement of the closure of the set Ds (that is, in the interior of the

protein domain Dp), and so G is actually a smooth, bounded function on the closure

of Ds. The terms involving G itself in ℓ0 and the first integral in the definition of ℓ1

may require some care in implementation. However, G ∈ Lp(Ω) for p < 3, and indeed

∇G ∈ Lp(Ω) for p < 3/2. Thus all of the forms ℓi are well defined on H1
0 (Ω). This

completes the proof of solution existence and uniqueness for (5.9), (5.10), and (5.13).

The solution splitting formulas (5.15) and (5.16) can follow from Theorem 3.1

and the definitions of u and ui for i = 0, 1, 2.

Finally, the proof of existence of Φ in W 1
p (Ω) for 1 < p < 3/2 follows from the

fact that G ∈ W 1
p (Ω) and H1(Ω) ⊂ W 1

p (Ω), together with the corresponding spaces

satisfying boundary conditions. Uniqueness corresponds to the case G = 0 for which

the arguments in H1(Ω) suffice.

6. A fast algorithm and numerical examples. According to Theorem 5.1,

in this section, we construct a fast algorithm for solving the nonlocal Poisson dielectric

model (5.6). The outline of our new algorithm is presented in Algorithm 1. Here all

the variational problems (5.9), (5.10), and (5.13) are given in the standard form so

that they can be easily programmed for their numerical solutions based on the finite

element program library DOLFIN [1].

Algorithm 1. Let ci be given for i = 1, 2, . . . , n. The solution Φ of the variational

problem (5.6) (i.e., the weak solution of the nonlocal model (2.2)) is calculated in the

following steps:
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Step 1. Solve the Poisson-like equation (5.13) for u0.

Step 2. Solve the nonlocal Poisson-like interface problem (5.9) for Ψ.

Step 3. Solve the nonlocal Poisson-like interface problem (5.10) for Φ̃.

Step 4. Find the weak solution Φ by the solution splitting formula (5.15).

To test our new algorithm for a protein in an ionic solvent, which contains only

sodium (N+
a ) and chloride (Cl−) ions (i.e., n = 2, q1 = ec, and q2 = −ec), we set the

ionic concentration functions c1 and c2 by the following expressions:

ci(r) =
Me−βqiw(r)

1 + 2τM cosh(βecw(r))
, r ∈ Ds, i = 1, 2, (6.1)

where τ denotes the volume occupied by each ion or each water molecule, M denotes

an average concentration for both sodium and chloride ions, ec denots the elementary

charge, β = 1/(kBT ) with kB being the Boltzmann constant and T being the absolute

temperature, and w is a given function satisfying a classical LPBE with uniform size

effect [22], which is defined as follows:
−∇ · (ϵp∇w(r)) =

1

ϵ0

np∑
i=1

Qiδri , r ∈ Dp,

−∇ · (ϵs∇w(r)) +
2Mβe2c

ϵ0(1 + 2τM)
w(r) = 0, r ∈ Ds,

w(s) = 0, s ∈ ∂Ω.

(6.2)

In (6.1), ci satisfies the volume constraint condition c0+c1+c2 = 1/τ . Here c0 denotes

the concentration function of water molecules, from which it implies that each ci is a

bounded positive function. With such a selection of ci, the nonlocal Poisson model

(2.2) can be regarded as a nonlocal LPBE model.

We implemented Algorithm 1 for solving the nonlocal LPBE model as a Python

program package based on the finite element library DOLFIN [1]. To generate a tetra-

hedral finite element mesh for a protein represented in a PQR file, we adapted and

converted the molecular surface and volumetric mesh generation program package

GAMer [38] to a Python module by using SWIG (http://www.swig.org). The mesh data

can be generated from GAMer within our package and then used to produce a DOLFIN

mesh object and a domain partition for Dp and Ds. It is also saved in the XML format

– one mesh format recognized by DOLFIN. In our tests, each linear algebraic system

arising from a finite element approximation to the weak form (5.9), (5.10), or (5.13)

was solved numerically by using a linear iterative solver GMRES with an incomplete

LU preconditioning from the PETSc library [3], which is a part of DOLFIN. Here the

two iterative termination parameters, relative tolerance and absolute tolerance, were

set as 10−10.

Our package contains a special construction of finite element interpolation func-

tions for G and ∇G. It is known that the interpolant Gh of G has the expression

Gh(r) =

N∑
i=1

G(ri)ξi(r) with G(ri) =
1

4πϵ0ϵp

np∑
j=1

Qj

|ri − rj |
∀r ∈ Ω, (6.3)
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where ξi denotes a base function of a finite element function space V at the ith mesh

node ri of a mesh, and N is the total number of mesh nodes. To speed up the

calculation of mesh values {G(ri)}Ni=1, which requires Nnp multiplications, we wrote

a Fortran program for computing the mesh values of G and ∇G, and converted it as

a Python function via f2py [26]. We then constructed Gh directly as follows:

1. Set Gh ∈ V via DOLFIN’s statement: Gh = Function(V ).

2. Use Fortran program to compute G(ri), and return these values as array GA.

3. Update Gh via DOLFIN’s statement: Gh.vector()[:] = GA.

The interpolant of ∇G can be constructed similarly.

All the numerical tests were made on one 2.3 GHz Intel Core i7 processor of a

MacBook Pro with 8 GB 1600 MHz DDR3 memory.

Remark: One commonly used way to construct Gh in DOLFIN is to use the

statement

Gh = interpolate(G,V ),

where G can be an object of DOLFIN’s complex user-defined JIT-compiled Expression

with a C++ program section for calculating the mesh values of G [1]. However, in our

numerical tests, it was found to be much less efficient than our special construction.

6.1. One ionic Born ball in water solvent. To validate our program package

and demonstrate the advantage of Algorithm 1 in improving the accuracy of numerical

solutions, we made numerical experiments on a nonlocal point charge Born model with

a known analytical solution [36, Page 181]. Here an ion with a point charge q in pure

water is modeled as a sphere with radius a < 1, and the point charge is located at

the center of the sphere. Thus, we have that ρ = qδ, Dp = {r ∈ R3 | |r| < a}, and
all ci = 0, from which it implies that (Φ̃, u2) = (0, 0). The analytical solution (Φ, u)

of such a nonlocal Poisson dielectric model (4.4) is given in [36, Pages 182-183], from

which we find the analytical expressions of u0, Ψ, and u1 as follows:

u0(r) =
q

4πϵ0ϵp|r|
(1− e−|r|/λ),

Ψ(r) =

{
q

4πaϵ0ϵpϵs
[ϵp − ϵs − (ϵ∞ − ϵs)b1] , |r| < a,

q
4πϵ0ϵpϵs|r|

[
ϵp − ϵs − (ϵ∞ − ϵs)b1e

µ(a−|r|)] , |r| > a,
(6.4)

and

u1(r) =


q

4πϵ0ϵp

(
b2
|r| sinh

|r|
λ +

ϵp−ϵs−(ϵ∞−ϵs)b1
aϵs

)
, |r| ≤ a,

q
4πϵ0ϵpϵs|r|

(
ϵp − ϵs − ϵ∞b1e

µ(a−|r|) + ϵse
− |r|

λ

)
, |r| > a,

(6.5)

where µ, b1, and b2 are three constants as given by

µ =
1

λ

√
ϵs
ϵ∞

, b1 =
[aϵs + λ(ϵp − ϵs) sinh

a
λ ]

[a
√
ϵ∞ϵs + λ(ϵ∞ − ϵs)] sinh

a
λ + aϵs cosh

a
λ

,
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and

b2 =
[a
√
ϵ∞ϵs + λ(ϵ∞ − ϵs)− aϵs]e

− a
λ + λ(ϵs − ϵp)

[a
√
ϵ∞ϵs + λ(ϵ∞ − ϵs)] sinh

a
λ + aϵs cosh

a
λ

.

Using the above analytical solutions, we set Ω to be the unit ball with the origin as

the center, and constructed “accurate” inhomogenous Dirichlet boundary conditions

on the spherical surface ∂Ω = {s ∈ R3 | |s| = 1}.
In the numerical tests, we set a = 0.1, q = 1, ϵ0 = 1, ϵp = 2, ϵs = 78.54, ϵ∞ = 1.8,

and λ = 15. A nonuniform tetrahedral mesh of the unit spheric domain Ω that

contains domain Dp as a small ball with radius a = 0.1 was generated by using GAMer

[38], which contains 2955 vertices and 17357 tetrahedra. The smallest and largest grid

sizes are 0.015 and 0.585, respectively. Here the origin point was excluded as a vertex

of the mesh to avoid the singular point of function G(r) = q/(4πϵ0ϵp|r|).
As comparison, we also solved the variational problem (5.6) directly without using

our solution splitting formula. Here the DOLFIN’s function PointSource was used to

deal with the difficulty caused by the Dirac delta distribution. In this case, the jth

component of the right-hand side vector of a finite element algebraic linear system

is given in the form q
ϵ0
ϕj,h(0, 0, 0), where ϕj,h denotes the j-th finite element basis

function, implying that the right-hand side vector has at most four nonzero entries,

since only one tetrahedra contains the origin point (0, 0, 0). Clearly, an approximation

error has been produced in this PointSource treatment since the distribution source

term δrj (v) is approximated within a finite element space spanned linearly by the base

functions ϕj,h, lowering the accuracy of a finite element solution.

Table 6.1: Comparison of the accuracy of the finite element solution Φh calculated

via Algorithm 1 with that calculated via PointSource. The numbers in parentheses

are the number of mesh nodes in the kth order finite element method (FEM).

FEM Via Algorithm 1 Via PointSource

Order k ∥Φ− Φh∥ ∥Φ− Φh∥/∥Φ∥ ∥Φ− Φh∥ ∥Φ− Φh∥/∥Φ∥
1 (2955) 5.849× 10−4 4.611× 10−3 1.106× 10−2 8.718× 10−2

2 (23522) 4.760× 10−5 3.752× 10−4 5.643× 10−3 4.448× 10−2

3 (79059) 8.250× 10−6 6.503× 10−5 4.204× 10−3 3.314× 10−2

The numerical results are reported in Table 6.1. Here the absolute error ∥Φ−Φh∥
and relative error ∥Φ− Φh∥/∥Φ∥ are defined by

∥Φ− Φh∥ =

√∫
Ω

|Φ(r)− Φh(r)|2dr,
∥Φ− Φh∥

∥Φ∥
=

√∫
Ω
|Φ(r)− Φh(r)|2dr∫

Ω
|Φ(r)|2dr

,

where Φh denotes the finite element solution. From Table 6.1 it can be seen that the

finite element solution calculated via Algorithm 1 has a higher order of accuracy than

the one calculated directly via PointSource. The numerical results not only validate
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(a) A mesh cross section around BPTI (b) A molecular surface mesh of BPTI

Fig. 6.1: Two views of the tetrahedral finite element mesh with 69,982 vertices gen-

erated by GAMer [38] for protein BPTI represented in the PDB file 4PTI.

our program package but also confirm a well-known finite element theoretical result

— the accuracy degree increases with the increment of the degree of the finite element

approximation (see [9, Theorem 5.4.8, page 137] for example).

The reason why Algorithm 1 can lead to a higher solution accuracy can be ex-

plained as follows. In Algorithm 1, we only computed Ψh, and then set Φh = Ψh+G.

Since Φ = Ψ+G, the finite element error Φ− Φh is actually equal to Ψ−Ψh:

Φ− Φh = (Ψ +G)− (Ψh +G) = Ψ−Ψh.

Hence, the effect of the singular part G on the accuracy of numerical solution Φh has

been completely eliminated within Algorithm 1.

6.2. Performance for protein in ionic solvent. To demonstrate the perfor-

mance of our program package, we made numerical tests on three proteins represented

in the PDB files 4PTI,1CID, and 2AQ5. The PDB files can be downloaded from the

Protein Data Bank (PDB) (http://www.rcsb.org/). The protein represented in the

PDB file 4PTI is also referred to as BPTI (Bovine Pancreatic Trypsin Inhibitor). Us-

ing the program package PDB2PQR (http://www.poissonboltzmann.org/pdb2pqr/)

[11], we converted each PDB file into a PQR file, which contain atomic coordinates,

charges, radii, and the hydrogen atoms missed in the PDB file. Each PQR file was

then used as an input file for our Python program package. A finite element mesh

was made by using GAMer for a spherical domain Ω containing a protein. The protein

and mesh data are listed in Table 6.2. As a mesh demonstration, two views of the

finite element mesh around protein BPTI are displayed in Figure 6.1.



Efficient Algorithm for Nonlocal Dielectric Model 17

Table 6.2: Protein and mesh data used in numerical tests.

Protein #Atoms Spherical domain radius #vertices #tetrahedra

4PTI 892 436Å 69, 982 433, 124

1CID 2783 711Å 116, 591 721, 815

2AQ5 6062 697Å 158, 908 986, 334

Table 6.3: Performance of our program package for solving the nonlocal LPBE model

for three proteins represented in the PDB files 4PTI, 1CID, and 2AQ5.

CPU time (seconds) Percentage out of total time

4PTI 1CID 2AQ5 4PTI 1CID 2AQ5

Solve (5.13) for u0 10.72 19.77 28.30 21.18% 16.96% 11.51%

Solve (5.9) for Ψ 9.59 17.61 27.56 18.96% 15.10% 11.22%

Solve (5.10) for Φ̃ 9.92 18.67 40.90 19.61% 16.01% 16.64%

Calculate c1 & c2 2.17 3.82 6.42 4.28% 3.28% 2.61%

Find Gh & (∇G)h 1.40 7.02 20.58 2.76% 6.02% 8.37%

Generate mesh 16.60 49.45 121.62 32.81% 42.40% 49.48%

Total time (minutes) 0.84 1.94 4.10

In numerical tests, we set τ = 150 Å3, M = 0.1 Mol/L, and T = 298.15 K. The

other constants ϵp, ϵs, ϵ∞, and λ were the same as for the Born ball case. The Dirichlet

boundary conditions were set for Φ̃ and Ψ as follows:

Φ̃(s) = 0, Ψ(s) = −G(s) ∀s ∈ ∂Ω.

Such settings guarantee Φ(s) = 0 on ∂Ω. They are made because the values of G on

∂Ω are reduced much slowly than that of Φ as |s| → ∞. They are still too large to

be ignored for the spherical domains Ω given in Table 6.2.

Figure 6.2 compares the solution Φ of the nonlocal LPBE model (i.e., (2.2) with

ci being given in (6.1)) with the solution w(r) of the local LPBE model defined in

(6.2) in two different views. Here both Φ and w were generated from our Python

program for protein BPTI. From it we can see that the solution of the nonlocal LPBE

model is significantly different from that of the local LPBE model.

Furthermore, Figure 6.3 display the finite element solutions of the nonlocal LPBE

model for BPTI, which were generated from the three different meshes with 44572,

69982, and 106299 vertices, respectively. From Figure 6.3 it can be seen that the finite

element solutions display similar patterns on the molecular surface, showing a good

example of convergence of our new numerical scheme defined in Algorithm 1.

Table 6.3 reports the performance of our program package for proteins represented
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(a) On the molecular surface of BPTI (b) Contour surfaces of solutions for BPTI

Fig. 6.2: A comparison of the solution Φ of the nonlocal LPBE model with the solution

w of the local LPBE model (6.2) for protein BPTI represented in the PDB file 4PTI

based on the mesh with 69,982 vertices. In Figure (b), the two contour surfaces (in

red) are defined by equations w(r) = −1.5V and Φ(r) = −1.5V , respectively, and the

backbone of BPTI is represented in green. The figures were made by using VMD [18].

Fig. 6.3: Finite element solutions of the nonlocal LPBE models generated from three

different tetrahedral meshes for protein BPTI.

in the PDB files 4PTI, 1CID, and 2AQ5. From it we can see that each related nonlocal

problem, (5.13), (5.9), (5.10), or (6.2), can be efficiently solved by the iterative solver

GMRES from the PETSc library [3]. For example, for a protein molecule (PDB ID

2AQ5) with 6062 atoms on a mesh with 158,908 vertices, a linear finite element

solution of a system of two PDEs was found in about 41 seconds while the nonlocal

LPBE model was solved in about 4 minutes. Furthermore, numerical tests show that

our direct construction of interpolants Gh and (∇G)h is very efficient. For example,

as shown in Table 6.3, constructing both Gh and (∇G)h took only 1.41 seconds in the

case of 4PTI. These numerical results demonstrate a high efficiency of our program

package in solving the nonlocal LPBE model.

The data in Tables 6.2 and 6.3 provide information regarding the scaling of our

algorithms and implementation. In terms of total execution time, the scaling with

respect to protein size (number of atoms) is actually sublinear. On the other hand,
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the dependence of time on mesh size (either vertices or tetrahedra) is quadratic.

From Table 6.3 it can be seen that mesh generation is still the bottleneck in

our application. We also noticed that the percentage of time for computing the

interpolants Gh and (∇G)h might be further increased when the number np of atoms

becomes huge. Hence, we may need a more efficient mesh generator for our Python

package and study a variant of the fast multipole or tree code method [12, 14] to

accelerate the calculation of Gh and (∇G)h. Finally, since FEniCS executes in parallel

and uses PETSc in part to achieve scalability, we plan to develop a version of our

program package suitable for large scale parallel computation in the future.
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