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A Poisson-Boltzmann Equation Test Model for Protein
in Spherical Solute Region and its Applications

Abstract
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developed but how to verify and compare them re-
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cal solute region, along with its analytical solution. As
application examples, it is then used to verify a PBE
finite element solver and applied to a numerical com-
parison study between a finite element solver and a
finite difference solver. Such a study demonstrates the
importance of retaining the interface conditions in the
development of PBE solvers.
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1. Introduction

The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating protein
electrostatics in ionic solvent [2, 9, 13, 15, 16, 21]. Several PBE numerical solvers and computer program packages
have been developed, and applied to many biomolecular studies and simulations [3, 6, 10, 11, 17, 18], but how to verify
and compare them is still an interesting research topic. So far, the Born ball model [4] was often employed to do such
verification tests in the simplest case of a spherical solute region containing one central charge [8, 20]. The Kirkwood’s
dielectric sphere model [12] was applied to the case of a spherical solute region containing multiple point charges.
However, its calculation is complex and produces truncation errors since its analytical solution is an infinite series in
terms of Legendre’s polynomials. Thus, it works only for a few of point charges. Recently, a finite difference algorithm
called the matched interface and boundary PBE solver (MIBPB) was proposed in [7, 23]. With a special treatment
on the general interface conditions, MIBPB works for the interface jumps and discontinuities too. To validate such a
feature, several test models were constructed for a solute region containing a biomolecule and an irregular interface
between the solute and solvent regions in [7, 23]. However, since analytical solutions are jumpily discontinuous across
the interface, they cannot be used to verify a PBE solver constructed from the continuous interface conditions. Hence,
how to construct a PBE test model with the continuous interface conditions and a solute region containing a biomolecule
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remains an unsolved problem.

In fact, it is difficult to construct such a PBE test model even for a spherical solute region due to solution singularity.
To overcome this difficulty, in this paper, we propose to use solution decomposition techniques to construct PBE test
models. In particular, following what was done in the construction of the Born ball PBE test model, we first construct
a linear Poisson dielectric test model, and then modify it as a nonlinear PBE test model with a spherical solute region
containing a protein. The key step is to split the solution v of the Poisson dielectric test model as a sum of two functions
G and @ with G being a known function (see (8)). Since G collects all the singularity points of u, we can simply select
o as a twice continuously differentiable function within the solute and solvent regions, respectively (see (14)). In this
way, the construction process is remarkably simplified.

In this paper, we construct a PBE test model (see (20)), and find its analytical solution in an algebraic expression for a
protein hosted in a spherical solute region (see (21)). This PBE test model has the same PBE structure with one extra
charge source term. Thus, it can be easily adapted for a PBE verification test. Another important feature of our PBE
test model is that the solution range is allowed to be properly adjusted with a scaling parameter (see (22)). Due to
this feature, our PBE test model works for any protein without causing any blow up problem in the calculation of the
hyperbolic term sinh(u) of PBE. In addition, similar to the PBE solution, its analytical solution has sinqularity at each
atomic position. Thus, different proteins may cause different levels of difficulties in its numerical solution. Hence, it may
be valuable in a robustness comparison study of two different PBE solvers.

As an application example, in this paper, we used it to verify a PBE finite element program package we developed
recently [20] using a protein with 488 atoms. In this study, we particularly constructed three nested quasi uniform
tetrahedral meshes with 3,143, 25,131, and 200,009 vertices, respectively, and made numerical tests using the linear
finite element method. The absolute and relative errors of the numerical solutions were calculated in the [, function
norm. They were reduced almost quarterly as the mesh grid size was almost halved, which match well the finite element
theory [5], and validate this PBE finite element program package.

As another application example, we did a comparison study between two PBE finite element and finite difference solvers.
The main differences between the finite element and finite difference approaches lie on their different treatments on the
Dirac delta point charge source terms and the interface conditions between the solute and solvent regions. Hence, for
simplicity, it is sufficient for us to consider the Poisson dielectric test model for such a comparison study. In this study,
we considered one commonly used finite difference method, which has been used in the popular PBE software program
packages DELPHI [18], UHBD [6], APBS [1], and CHARMM [10, 11] for the calculation of solvation free energy, pK,
values, and electrostatic forces [2]. Such a finite difference method ignored the interface conditions, and used a uniform
Cartesian grid with the interface between the solute and solvent regions being roughly approximated as a staircase line.
Its numerical solution was reported to have a low accuracy for the Born and Kirkwood’s dielectric sphere models [24].
However, none of a comparison test was done with the finite element method for a protein within the solute region. It
is our new test model that makes such a test possible.

To do so, we programmed the finite element method for solving the Poisson dielectric test model and a tetrahedral
mesh generator for a cubic domain Q containing the unit spherical ball in Python, Fortran and C++ based on the
finite element library DOLFIN from the FEniCS project [14] and the tetrahedral mesh generator TetGen (http://wias-
berlin.de/software/tetgen/). We also programmed this PBE finite difference method (see [10, 17] for example) using
a linear delta approximation function and the successive over-relaxation (SOR) method [22]. Numerical tests were
made for four proteins with the number of atoms up to 4,173. Three different uniform meshes with grid sizes h =
0.129,0.0784, 0.0494 were used for the finite difference tests. Three tetrahedral meshes were generated from our mesh
generator for the finite element tests such that their numbers of vertices were close to that of the uniform meshes. Since
each tetrahedral mesh was unstructured, its mesh size h was defined as the longest edge among all the tetrahedra. The
mesh sizes of our three tetrahedral meshes were found to be 0.2851, 0.1656, 0.1137, respectively.

Numerical results show that the finite element solutions had a much higher accuracy than the finite difference solutions,
and their accuracy was improved significantly as h was decreased. We also observed that the finite difference solutions
had only a very limited accuracy, which could not be improved further through simply decreasing h (see Table 2). Similar
numerical results were reported in [24, Tables 1 and 2] for the finite difference solutions generated from the program
packages PBEQ and APBS in the case of solving the Born and Kirkwood’s dielectric sphere models.

Furthermore, we repeated the finite difference tests using a cubic delta approximation function. It was found that the
accuracy of the finite difference solution was close to that using the linear delta approximation function. This indicates
that the finite difference errors are mainly related to the flux interface condition, which should be considered in order to
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improve the solution accuracy of a PBE finite difference solver. Such efforts were done in [7, 23, 24].

Finally, we repeated the numerical tests on one small mesh for the four protein test cases by using the quadratic finite
element method. It was found that the accuracy of the finite element solution was sharply reduced. In this case, the
quadratic finite element method involved about 260,000 mesh nodes, but its solution accuracy was close to the one
generated by the linear finite element method on the mesh with 551,368 vertices. These tests showed a potential
application of a higher order finite element method in solving PBE in order to avoid the difficulties of generating a large
finite element mesh with a high quality.

The paper is organized as follows. In Section 2, we review the PBE model, the Poisson dielectric model and the Born
ball PBE test model. In Section 3, we present the new Poisson dielectric and PBE test models. In Section 4, the new
PBE test model is used to verify a PBE finite element program package. In Section 5, the new Poisson dielectric test
model is applied to a comparison study, and finally, we make conclusions in Section 6.

2. PBE model and Born ball PBE test model

In this section, we introduce the PBE model and the Poisson dielectric model. We then show how the Born ball PBE
test model is obtained. Let D, be a bounded solute region surrounded by the solvent region D; such that the whole
space R3 satisfies the partition

R*=D,UD,UT,

where [ denotes the interface between D, and D,. We assume that D, hosts a biomolecule (e.g., a protein) consisting
of n, atoms, and is immersed in a symmetric 1:1 ionic solvent containing only sodium (N;) and chloride (C[7) ions (a
salt solution). In this case, the PBE model is defined by

p
—eAu =« ZZ/(S’/ in D,
j=1
—eAu 4 k?sinh(u) =0 in D, (M
_ du(s™) du(s™)
— + —
u(sT)=u(s"), e ) €s n() onl,
ulr) =0 as |r| — oo,

where u is a dimensionless electrostatic potential function, €, and €, are two dielectric constants, a and k* are two
PBE constants, z; and r; are the charge number and position vector of the jth atom, respectively, and &, is the Dirac
delta distribution at r;. In Sl units, @ and «? are given by

e? 5 103N €2

= ¢ =2/, — A 2
a €0kBT’ o EokBT ( )

where e, is the elementary charge, € is the vacuum permittivity, /s denotes the ionic strength, N, is the Avogadro’s
number, kg is the Boltzmann constant, and T is the absolute temperature.
Clearly, setting k = 0 reduces the PBE model to the Poisson dielectric model

np

—e,Au(r) = O(ZZjé.—j in D,
j=1
—eAu(r) =0 in D, 3)
_ du(s™) du(st)
— + —
uisT) =uls"), an €s on onl,
u(r) =0 as |r] — oo.

For a spherical region D, containing one central charge ze,, the Poisson dielectric model becomes the Born ball model

—,Au = azo in D,
—eAu=0 in Dy,
u(s”) = u(s?), epaua(: ) = gsaua(z ) onT, 4
ulr) =0 as |r| — oo,
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where ¢ is the Dirac delta distribution at the origin, D,, D, and I are set as
D, = {r| Ir| < a}, D= {r| [r| >a}, T = {r| [r| = a},

with a given radius @ > 0, and the analytical solution u can be found in the form

£(1_1)+L n D,

u(r) = 4710?2 & 6 4mep|r| (5)

m n Ds-

The Born ball PBE test model can then be constructed as follows:

—,Au = azo in D,

—e,Au 4 «? sinh(u) = pq(r) in D,
~ du(s™) du(s™) (6)

= ), = & I,
u(sT)=u(s"), € on(s) € on(s) on
u(r)—»0 as |r| — oo,

whe eFS(l) s del’ ed tl_’l
Ps\F) = K~ Sl —_— f() re 1)5
() ‘1€5|||

Obviously, when p; = 0, the above test model is reduced to the Born ball PBE model. Hence, p; can be regarded as an
extra charge function added to the PBE model. It is clear that the analytical solution of the Born ball PBE test model
(6) is given in (5). In calculation, u is treated as a unknown function while p. is a given source function. Hence, the
Born ball PBE test model is a nonlinear elliptic interface problem, which can be used to verify a PBE solver.

3. Our new PBE test model

In this section, we follow the construction of the Born ball PBE test model to construct our new PBE test model for a
protein hosted in a spherical solute region D,. The key step is to obtain a Poisson dielectric test model with a given
analytical solution. To do so, we construct a Poisson dielectric test model in the form

—e,Au(r) = O(szérl in D,
j=1
—esAu(r) = fy(r) in D, 7)
_ du(s™) du(s™)
— (st —
u(sT)=u(s"), € am - oy " I,
ulr) =0 as |r| — oo,

where f; is a function to be determined, which can be regarded as extra charges added to the Poisson dielectric model
(3). We intend to find an analytical solution of the Poisson dielectric test model through properly selecting f..

It is difficult to search for a solution of (7) directly due to the solution singularities caused by the Dirac delta distributions
{5,/.}721‘ To avoid such a difficulty, we split the solution u of (7) as a sum of the functions G and &,

u=0+G, (8)

where @ is the solution of the elliptic interface problem

—e,An(r) =0 inD,,
o) one) ot )
- R uis ) u(s S
Us) =0T g T S i & T @ Gae) O
a(r)—0 as |r| — oo,
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and G is given by
a z
G(r) = Y ——. (10)

aG(s)

which collects all the singular points of the solution u. Here ns)

can be found in the expression

aG(s) @ Z" /_(s—r/-)~n. 1)

Thus, the problem becomes how to construct a solution @ of the elliptic interface problem (9). Note that & is twice
continuously differentiable within D, and D, respectively, provided that f; is a continuous function. Hence, we can
construct & using the following expression

0 forre D,,
Ir|?

c(r) sin ( p ) forr € Ds,

a(r) =

(12)

where ¢(r) is a twice continuously differentiable function to be determined to satisfy the elliptic interface problem (9).
By expression (12), it is easy to verify that & satisfies

du(s™)

asT)=a(sT)=0, ¢ an(s)

=0 Vsel.

We then use the facts s - s = |s|> = a? and n(s) = £ to find that

T a

da(s*)
& an(s)

2 2
=¢eVi(st) -n(s) = Eesc(s)& % = Eesc(s).

Thus, the second interface condition of (9) gives the equation of c:

[o5)

G(s)
on(s)

2
0= Eesc(s) + (65 — €p) onl,

from which we obtain the expression of ¢ on the interface I":

ale, — &) 0G(s)  ale; — €,) " z(s—r))-s

cls) = 2€s on(s) 8re,e€s p s —r? Vsl

Hence, we can set ¢(r) in the expression
<) aée;re :P) Z/|(:: :j|)3 - e D 13)
p€s j
Applying the above expression of ¢ to (12) yields the expression of &:
0 forre D,,
p
o) = a(se;epeip) (':TLZ B ) 5- Z/|(:_ :;?3 " forr e D.. (1)
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It is clear that the above @ satisfies the first equation and the two interface conditions of (9), and approaches zero as
[r| = oo. It also satisfies the second equation of (9) by setting the function f in the form
fo(r) = —esAa(r).

This provs that the function @ of (14) is a solution of the elliptic interface problem (9) with the above selection of f,.
We next need to calculate Aa(r) to get the expression of f;. A direct calculation of Ai(r) is intricate due to the complicated
expression (14) of &(r). To avoid this difficulty, we start with (12) to get an expression of f; in terms of c:

fs(r):—es[sin(|a|2 )A c(r)+ 1 cos(|;|2 —1) Vc(r)-r—i—%cos (%—1)—%sln (|:7—|22—1) ] (15)

We then use the fact that AG = 0 in D, to obtain that

Ac(r)=0 Vre D.. (16)
Furthermore, we find that
= " 2r—ri)- 3M(r —r:) - 2
vc(r) r= w Z/' ( ( r rj)3 r _ [(r r/) 5r] ) ) (17)
mepes [r —r;] [r—r;]

Applying (16) and (17) to (15) gives the expression of f;:

s 2 7 2_5 . 2 2 2 2 _ vy
fs( _Cf(fp G)ZZJI:COS(H )7|I‘| i —sin(%—1) 7“' (|r| r r/)

4ma? r—r)3 alr —r;?
Ir =l Ir =l (8)
2 2 _r.r)?
—6 cos | l M Vr e D;.
@ [r—r;
We are now in the position to construct our new PBE test model. With f; being given in (18) and U(r) by
a <z ales — €p) [r|? 2 zi(r—r)-r
= : in|— —1 = 19
ulr) 4re, Z [r—rj| * 8re,es > ( a? ) Z [r—r? (19
j=1 j=1
we construct our new PBE test model as follows:
p
—eAu(r) =a)  zd, in D,,
j=1
—e,Au(r) 4 «? sinh(u(r)) = £,(r) + k* sinh(U(r)) in D;, (20)
_ du(s™) du(st)
= + = r
u(sT)=u(s"), e n(s) €s n(s) onl,
u(r) =0 as |r| — oo.

Clearly, the analytical solution of our new PBE test model is the same as that of the Poisson dielectric test model (7).
It is given in the expression

Z/' .
_° % inD,,
ulr) =4 4me, ]; [r —r;] g (21)
U(r) in D;.
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We observe that the solution u of our PBE test model (20) can be expressed as
u(r) = ad(r) req, (22)

where { denotes the solution of the nonlinear problem (20) using @ = 1. In this relationship, the constant a can be
treated as a scaling parameter, with which we can properly adjust the solution range of our new PBE test model to
avoid a potential blow up problem in the calculation of the hyperbolic term sinh(u).

In fact, the two extra charge terms f, and «?sinh(U(r)) may cause (20) to have a much larger solution range than
the corresponding PBE model. Because of these two extra charge terms, the two PBE constants o and « lost their
original physical meanings. With a proper selection of @, our new PBE test model can work stably in its numerical
implementation for any given protein.

Our new PBE test model (20) can be conveniently applied to the verification of a PBE numerical solver or a PBE
program package, since in numerical tests, we only need to modify the parts of the solver or package that are related to
the extra charge terms f; and k2 sinh(U(r)).

4. Verification of a PBE finite element program package

As an application example, in this section, we use the PBE test model (20) to verify a PBE finite element program
package developed in [20]. In the tests, the unbounded solvent region Ds was truncated as

D = {rla < |r| < A},
to modify (20) as a boundary value problem with the Dirichlet boundary condition
u(s) = U(s) on dQ),

where a and A are two given positive numbers, 0Q denotes the boundary of the bounded domain Q = {r| |r| < A}, and
U is the analytical solution of (20), which has been given in (19). By the PBE finite element algorithm [20], the solution
u of this PBE test model using the above Dirichlet boundary condition on Q was split as

u(r) = Gr) + W) + ()  Vreq, (23)

where G is defined by (10), W is the solution of the linear interface problem

A¥(r) =0 in D, U D
_ oW (s7) oW(s™) dG(s)
— + — _
PE)=%60 e 50e =% ane & T P ane) (24)
W(s) = U(s) — G(s) on 9Q),
and ® is the solution of the nonlinear interface problem
Ad(r)=0 in D,
—e,AD(r) + k2 sinh(W(r) 4+ ®(r) = ps(r) in D,
S ad(s™) ad(s*) (25)
— + —
®(s7) = P(s™), ) € ns) €s an(s) onl,
d(s) =0 on 0Q).

Here W = G + W, V¥ has been computed before solving (25), and ps is defined by

ps(r) = £,(r) + & sinh(U(r)).
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(a) 3,143 vertices (b) 25,131 vertices (c) 200,009 vertices

Fig 1: Cross-section views of the three nested tetrahedral meshes used for verification of the PBE finite element
program package [20]. Here the meshes of solute region D, are coloured in red.

To solve the above equations of (24) and (25) by the finite element method, they are reformulated as variational
problems so that their interface conditions can be naturally treated. Furthermore, a modified Newton minimization
scheme is developed to efficiently solve the nonlinear variational problem of ® as a variational minimization problem.
All the related linear variational problems are solved efficiently by the preconditioned conjugate gradient (PCG) method
with incomplete LU preconditioning. See [20] for the details.

We wrote a program for computing the extra charge term p, and exact solution u. A few of modifications were then made on
the PBE finite element program package [20], making it to work for numerically testing our PBE test model. We also wrote
a tetrahedral mesh generator based on the tetrahedral mesh generator TetGen (http://wias-berlin.de/software/tetgen/)
and the mesh function Sphere () from the FEniCS project [14]. In the numerical tests, we used

a=17, A=51, =20, &=7854 a=1 «k*=0.8482715835384875,

and a protein with 488 atoms (PDB ID 2LZX), which was downloaded from the Protein Data Bank (http://www.rcsb.org).
Here the value of k> wad produced by using (2) with T = 298.15 and /; = 0.1. As required by the PBE finite
element program package, we converted the PDB file of 2LZX to a PQR file using the software tool PDB2PQR
(http:/lwww.poissonboltzmann.org/pdb2pqr). Our tetrahedral mesh generator was used to generate three nested tetra-
hedral meshes with 3,143, 25,131, and 200,009 vertices, respectively, whose mesh sizes were halved. One cross-section
view of each mesh was displayed in Figure 1 to demonstrate these three meshes. Three finite element solutions were
then calculated by the linear finite element method. Their relative and absolute errors were reported in Table 1.

Mesh Data Absolute Error | Relative Error

Mesh |# Vertices|# Tetrahedra|~/ [ |up — ul?dr \/%
Mesh 1| 3,143 18,591 1.96133 3.65904 x 10~
Mesh 2| 25,131 148,728 0.477399 9.23066 x 102
Mesh 3| 200,009 1,189,824 0.150239 2.91177 x 1072

Table 1: The absolute and relative errors of the finite element solutions uj, of the PBE test model (20) for the Protein
with PDB ID 2LZX and 488 atoms on three different tetrahedral meshes. Here u is the analytical solution
given in (21), and u,, denotes a numerical solution of the linear finite element method.

From Table 1 it can be seen that the absolute and relative errors were reduced almost quarterly when the mesh sizes
were almost reduced by half. These results reflect the convergence properties of the linear finite element method [5].
Hence, they well verify the PBE finite element program package.
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(a) 32,639 vertices (b) 139,967 vertices (c) 554,745 vertices

Fig 2: Cross-section views of the three tetrahedral meshes used in comparison tests between the finite element and
finite difference methods. Here the solute region D, is marked in red.

5. Finite Difference Method via Finite Element Method

As another application, in this section, we use the Poisson dielectric test model (7) to do a comparison study between
the finite element and finite difference methods. For the sake of simplifying a construction of the finite difference method,
we selected a cubic domain Q =[—2,2] x [-2,2] x [-2, 2] to modify (7) as a boundary value problem with the Dirichlet
boundary condition

u(s) = U(s) on 0Q),

where U has been given in (19). Because of (8), we only need to solve the following boundary value problem

—e,An(r) =0 inD,,
a—_e(sA)U(f) =afs((r) ) G in D;,
a(s™ i(s™ s
Ton "% on TlEeT @G g onh
a(s) = V(s) on 9Q,

asT)=a(st), € (26)

where V' denotes the analytical solution of (9), which has been given in (14).

We wrote a finite element program for solving the test problem (26) based on the finite element library DOLFIN from the
FEniCS project [14]. Here our mesh generation program was used to generate tetrahedral meshes for numerical tests.
We also wrote a finite difference program for solving the Poisson dielectric test model (7) following the PBE finite
difference scheme used in the PBE finite difference program packages DELPHI [17, 18] and CHARMM [10, 11]. That
is, the flux interface condition was ignored to simply approximate the Poisson dielectric test model (7) as a system of
second order central finite difference equations as follows:

€ir 1 jalirtjk T €1 plicnjk + €1 g Uitk T €51 Uitk + € 1 Uijkrr + € 1 Uik

e 2 L.
- (ezf%./‘,k teitkt et ettt t Ei,j,k+17) Uijk = h*fij (27)

where i,j,k = 0,1,2,...,N, h = 4/N, u;;« denotes a numerical value of the solution u(x, y,z) at the grid node
(Xi yj, z¢) with x; = =2+ ih, y; = =2 + jh, and zx = =2 + kh, €l ik = e(—2+ (i + %)h,—Z + jh, =2 + kh) for the
dielectric function €(r) with r = (x, y, z) € Q, the other discrete values of € are defined similarly, and f;;, denotes the
value of the function f(r) at the grid node (x;, y;, z). Here €(r) and f(r) are defined by

np
Vr € D, ay ziop(r—r;) Vre D,
e(r):{ep "EY and A = 2_z%(r =) »

e, Vre D, =
fs(r) Vr € Ds,
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where d;(r — r;) denotes an approximation of the Dirac delta distribution 6,,. By an approximate delta function ¢ [19,
Table 1, Page 512], g, is set as

On(r) = %¢(X/h)¢(y/h)¢(2/h)‘ (28)

In numerical tests, we used the linear approximate delta function

=Xl 0< X <1,
o) = {O |x] > 1. @)

and the cubic approximate delta function

1—%|X|—|X|2+%|X|3 0< x] <1,
P(x)=11— %|X| +|x|? — %|x|3 1< x| <2, (30)
0 2 < |x|.

We solved the finite difference system (27) by the SOR method [17, 22] using the Dirichlet boundary condition
u(s) = Ul(s) s € 0Q, (31)

where U is given in (19). In the numerical tests, we set N = 31,51, and 81, which gave the grid size h = 0.1290, 0.0784,
and 0.0494, respectively.

Four proteins represented in PDB IDs 2LZX, 1UCS, 1AQ5, and 1THB8 were downloaded from the Protein Data Bank
for our numerical tests. Their 488, 997, 2292, and 4173 fixed point charges were relocated into the unit ball region D,
through scaling their atomic positions, respectively. Three tetrahedral meshes were generated from our mesh generation
program for the finite element numerical tests. Each of them had an almost same number of vertices as the number of
mesh nodes of the corresponding finite difference uniform mesh. Since it was unstructured, its grid size h (defined as
the longest edge of all the tetrahedra) was found to be 0.2851, 0.1656, and 0.1137, respectively, which was much larger
than the corresponding mesh size of the finite difference method. One cross-section view was displayed in Figure 2 to
demonstrate these three meshes.

To compare the solution accuracy, we calculated the relative error E,. according to the formula

N N
Ere= (Z Ju(r) — uh(rf)P) /3 lule), (32)
i=1 i=1

where u and uj, denote the analytic and numerical solutions, respectively, and r’ denotes the ith grid node. Numerical
results are report in the Table 2.

From Table 2 it can be seen that the finite element method was much more accurate than the finite difference method
defined in (27). In particular, such a finite difference method had only a low accuracy due to its ignoring the flux
interface condition, whose relative errors might not to be reduced even the mesh size h was decreased from 0.129 to
0.0494. Similar numerical results were reported in [24, Tables 1 and 2] for the finite difference solutions generated
from the program packages PBEQ and APBS in the case of solving the Born and Kirkwood's dielectric sphere models.
Correspondingly, the finite element method was convergent, whose relative errors were found to be reduced as h was
decreased in all the numerical tests.

We also found from Table 2 that the relative errors of the finite difference method of (27) might not be reduced when
the linear approximate delta function (29) was replaced by a more accurate cubic approximate delta function (30). This
implies that the ignorance of the flux interface condition was one major factor that affects the accuracy of the finite
difference method. Hence, to improve the accuracy of a finite difference method, it is essential to consider the flux
interface condition. Such efforts were done in [7, 23, 24].
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Protein Finite Difference Method of (27) Finite Element Method
(#Atoms) h ‘#Vertices Eren ‘ Ere2 h  |#Vertices E e

0.1290| 32,768 [5.27 x 1072|5.50 x 10~2{[0.2851| 32,639 |1.47 x 10~2
2LZX  ||0.0784| 140,608 [5.31 x 1072|5.21 x 1072{|0.1656| 139,967 |9.70 x 103
(488) 1/0.0494| 551,368 [4.67 x 1072|4.54 x 1072{[0.1137| 554,745 |7.10 x 103

0.1290| 32,768 [3.71 x107"|3.82 x 107"{[0.2851| 32,639 [6.22 x 102
1UCS {|0.0784| 140,608 [5.42 x 10~1(5.53 x 10~"||0.1656| 139,967 [4.13 x 102
(997) {|0.0494| 551,368 |5.38 x 10~"|5.55 x 10~ ||0.1137| 554,745 |2.25 x 102

0.1290| 32,768 |1.06 x 10~"{1.05 x 10~"{/0.2851| 32,639 |3.49 x 102
1AQ5 {|0.0784| 140,608 |9.00 x 1072|9.27 x 10~2|[0.1656| 139,967 |2.24 x 102
(2292) |/0.0494| 551,368 [1.06 x 10~ [{1.09 x 10~1{/0.1137| 554,745 [1.45 x 102
0.1290| 32,768 [1.16 x 10~'({1.28 x 10-1{/0.2851| 32,639 |3.47 x 102
1HB8 {|0.0784| 140,608 |1.70 x 10~"|1.62 x 10~ ||0.1656| 139,967 [2.11 x 102
(4173) ||0.0494| 551,368 |2.93 x 10~1(2.93 x 10~ {[0.1137| 554,745 [1.29 x 102

Table 2: Comparison of the solution accuracy of the finite difference method with that of the linear finite element
method for solving the Poisson dielectric test model (7). Here, E,.1 and E,., denote the relative errors of the
finite difference method using the linear and cubic approximate delta functions (29) and (30), respectively, the
mesh grid size h of the finite element method is defined as the longest edge among all the tetrahedra of a
mesh, and the relative error E,. is defined in (32).

From Table 2 we further noted that even with the grid size h = 0.2851, the finite element method still produced a much
smaller relative error than the finite difference method using the grid size h = 0.0494. This suggests that the finite
element method may take less computer CPU time than the finite difference method of (27) to generate a numerical
solution with the same accuracy requirement.

Finally, we repeated the numerical tests on the mesh with 32,639 vertices by the quadratic finite element method. In
this case, the number of mesh nodes was increased to 259,998, but the relative errors of the finite element solutions for
the four protein cases were sharply reduced to 0.0047, 0.0248, 0.0135, and 0.0133, respectively, which were close to the
ones generated by the mesh with 551,368 vertices. Currently, generating a large finite element mesh costs much more
computer CPU time than solving a finite element equation. A higher order finite element method may make it possible
to generate a highly accurate PBE numerical solution on a small mesh while reducing the total computer CPU time.

6. Conclusions

In this paper, we have presented a PBE test model and its analytical solution construction process as well as its
applications. This model retains the PBE structure except of one extra charge source term, and its analytical solution
has a concise algebraic expression. Thus, it can be easily adapted to a PBE program package for verification tests. Like
the PBE solution, the analytical solution of our PBE test model satisfies the continuous interface conditions and has
singularity at each atomic position. Different proteins may cause different levels of difficulties in the numerical solution
of our PBE test model. Because of this feature, our PBE test model is valuable not only in a verification test of a PBE
solver/program package but also in a robustness comparison study of two different PBE solvers. Furthermore, we have
shown in the paper that the solution range of our PBE test model can be simply adjusted with a scaling parameter.
Hence, our PBE test model can work stably for any protein without causing any blow up problem in its computer
implementation.

To demonstrate the application of our PBE and Poisson dielectric test models, in this paper, we have reported the
numerical results made from verification tests on one PBE finite element program package that we developed recently,
and from comparison tests between a finite element solver and a finite difference solver that ignores the flux continuous
interface condition. To carry out these numerical tests, we wrote a tetrahedral mesh generation program, a program of
a finite element solver, and a program of this finite difference solver.

Currently, a PBE solver/program package was mainly verified by the simple Born and Kirkwood's dielectric sphere
models. Several test models that worked for protein were constructed for validating the MIBPB algorithms but suitable
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only for interface jumps and discontinuities. Since the interface conditions of PBE are mostly continuous, it is important
to have a PBE test model that works for protein while preserving the continuous interface conditions. Our PBE test
model is the first of such models. We expect it to be particularly valuable in the numerical study of PBE numerical
algorithms and program packages.
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