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A Poisson-Boltzmann Equation Test Model for Protein
in Spherical Solute Region and its Applications

Abstract
The Poisson-Boltzmann equation (PBE) is one impor-
tant implicit solvent continuum model for calculating
electrostatics of protein in ionic solvent. Several nu-
merical algorithms and program packages have been
developed but how to verify and compare them re-
mains an interesting research topic. In this paper, a
PBE test model is presented for a protein in a spheri-
cal solute region, along with its analytical solution. As
application examples, it is then used to verify a PBE
finite element solver and applied to a numerical com-
parison study between a finite element solver and a
finite difference solver. Such a study demonstrates the
importance of retaining the interface conditions in the
development of PBE solvers.
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1. IntroductionThe Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating proteinelectrostatics in ionic solvent [2, 9, 13, 15, 16, 21]. Several PBE numerical solvers and computer program packageshave been developed, and applied to many biomolecular studies and simulations [3, 6, 10, 11, 17, 18], but how to verifyand compare them is still an interesting research topic. So far, the Born ball model [4] was often employed to do suchverification tests in the simplest case of a spherical solute region containing one central charge [8, 20]. The Kirkwood’sdielectric sphere model [12] was applied to the case of a spherical solute region containing multiple point charges.However, its calculation is complex and produces truncation errors since its analytical solution is an infinite series interms of Legendre’s polynomials. Thus, it works only for a few of point charges. Recently, a finite difference algorithmcalled the matched interface and boundary PBE solver (MIBPB) was proposed in [7, 23]. With a special treatmenton the general interface conditions, MIBPB works for the interface jumps and discontinuities too. To validate such afeature, several test models were constructed for a solute region containing a biomolecule and an irregular interfacebetween the solute and solvent regions in [7, 23]. However, since analytical solutions are jumpily discontinuous acrossthe interface, they cannot be used to verify a PBE solver constructed from the continuous interface conditions. Hence,how to construct a PBE test model with the continuous interface conditions and a solute region containing a biomolecule
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remains an unsolved problem.In fact, it is difficult to construct such a PBE test model even for a spherical solute region due to solution singularity.To overcome this difficulty, in this paper, we propose to use solution decomposition techniques to construct PBE testmodels. In particular, following what was done in the construction of the Born ball PBE test model, we first constructa linear Poisson dielectric test model, and then modify it as a nonlinear PBE test model with a spherical solute regioncontaining a protein. The key step is to split the solution u of the Poisson dielectric test model as a sum of two functions
G and ū with G being a known function (see (8)). Since G collects all the singularity points of u, we can simply select
ū as a twice continuously differentiable function within the solute and solvent regions, respectively (see (14)). In thisway, the construction process is remarkably simplified.In this paper, we construct a PBE test model (see (20)), and find its analytical solution in an algebraic expression for aprotein hosted in a spherical solute region (see (21)). This PBE test model has the same PBE structure with one extracharge source term. Thus, it can be easily adapted for a PBE verification test. Another important feature of our PBEtest model is that the solution range is allowed to be properly adjusted with a scaling parameter (see (22)). Due tothis feature, our PBE test model works for any protein without causing any blow up problem in the calculation of thehyperbolic term sinh(u) of PBE. In addition, similar to the PBE solution, its analytical solution has singularity at eachatomic position. Thus, different proteins may cause different levels of difficulties in its numerical solution. Hence, it maybe valuable in a robustness comparison study of two different PBE solvers.As an application example, in this paper, we used it to verify a PBE finite element program package we developedrecently [20] using a protein with 488 atoms. In this study, we particularly constructed three nested quasi uniformtetrahedral meshes with 3,143, 25,131, and 200,009 vertices, respectively, and made numerical tests using the linearfinite element method. The absolute and relative errors of the numerical solutions were calculated in the L2 functionnorm. They were reduced almost quarterly as the mesh grid size was almost halved, which match well the finite elementtheory [5], and validate this PBE finite element program package.As another application example, we did a comparison study between two PBE finite element and finite difference solvers.The main differences between the finite element and finite difference approaches lie on their different treatments on theDirac delta point charge source terms and the interface conditions between the solute and solvent regions. Hence, forsimplicity, it is sufficient for us to consider the Poisson dielectric test model for such a comparison study. In this study,we considered one commonly used finite difference method, which has been used in the popular PBE software programpackages DELPHI [18], UHBD [6], APBS [1], and CHARMM [10, 11] for the calculation of solvation free energy, pKavalues, and electrostatic forces [2]. Such a finite difference method ignored the interface conditions, and used a uniformCartesian grid with the interface between the solute and solvent regions being roughly approximated as a staircase line.Its numerical solution was reported to have a low accuracy for the Born and Kirkwood’s dielectric sphere models [24].However, none of a comparison test was done with the finite element method for a protein within the solute region. Itis our new test model that makes such a test possible.To do so, we programmed the finite element method for solving the Poisson dielectric test model and a tetrahedralmesh generator for a cubic domain Ω containing the unit spherical ball in Python, Fortran and C++ based on thefinite element library DOLFIN from the FEniCS project [14] and the tetrahedral mesh generator TetGen (http://wias-
berlin.de/software/tetgen/). We also programmed this PBE finite difference method (see [10, 17] for example) usinga linear delta approximation function and the successive over-relaxation (SOR) method [22]. Numerical tests weremade for four proteins with the number of atoms up to 4,173. Three different uniform meshes with grid sizes h =0.129, 0.0784, 0.0494 were used for the finite difference tests. Three tetrahedral meshes were generated from our meshgenerator for the finite element tests such that their numbers of vertices were close to that of the uniform meshes. Sinceeach tetrahedral mesh was unstructured, its mesh size h was defined as the longest edge among all the tetrahedra. Themesh sizes of our three tetrahedral meshes were found to be 0.2851, 0.1656, 0.1137, respectively.Numerical results show that the finite element solutions had a much higher accuracy than the finite difference solutions,and their accuracy was improved significantly as h was decreased. We also observed that the finite difference solutionshad only a very limited accuracy, which could not be improved further through simply decreasing h (see Table 2). Similarnumerical results were reported in [24, Tables 1 and 2] for the finite difference solutions generated from the programpackages PBEQ and APBS in the case of solving the Born and Kirkwood’s dielectric sphere models.Furthermore, we repeated the finite difference tests using a cubic delta approximation function. It was found that theaccuracy of the finite difference solution was close to that using the linear delta approximation function. This indicatesthat the finite difference errors are mainly related to the flux interface condition, which should be considered in order to
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improve the solution accuracy of a PBE finite difference solver. Such efforts were done in [7, 23, 24].Finally, we repeated the numerical tests on one small mesh for the four protein test cases by using the quadratic finiteelement method. It was found that the accuracy of the finite element solution was sharply reduced. In this case, thequadratic finite element method involved about 260,000 mesh nodes, but its solution accuracy was close to the onegenerated by the linear finite element method on the mesh with 551,368 vertices. These tests showed a potentialapplication of a higher order finite element method in solving PBE in order to avoid the difficulties of generating a largefinite element mesh with a high quality.The paper is organized as follows. In Section 2, we review the PBE model, the Poisson dielectric model and the Bornball PBE test model. In Section 3, we present the new Poisson dielectric and PBE test models. In Section 4, the newPBE test model is used to verify a PBE finite element program package. In Section 5, the new Poisson dielectric testmodel is applied to a comparison study, and finally, we make conclusions in Section 6.
2. PBE model and Born ball PBE test modelIn this section, we introduce the PBE model and the Poisson dielectric model. We then show how the Born ball PBEtest model is obtained. Let Dp be a bounded solute region surrounded by the solvent region Ds such that the wholespace R3 satisfies the partition

R3 = Dp ∪ Ds ∪ Γ,where Γ denotes the interface between Dp and Ds. We assume that Dp hosts a biomolecule (e.g., a protein) consistingof np atoms, and is immersed in a symmetric 1:1 ionic solvent containing only sodium (N+
a ) and chloride (Cl−) ions (asalt solution). In this case, the PBE model is defined by

−εp∆u = α
np∑
j=1 zjδrj inDp,

−εs∆u+ κ2 sinh(u) = 0 inDs,

u(s−) = u(s+), εp
∂u(s−)
∂n(s) = εs

∂u(s+)
∂n(s) on Γ,

u(r)→ 0 as |r| → ∞,
(1)

where u is a dimensionless electrostatic potential function, εp and εs are two dielectric constants, α and κ2 are twoPBE constants, zj and rj are the charge number and position vector of the jth atom, respectively, and δrj is the Diracdelta distribution at rj . In SI units, α and κ2 are given by
α = e2

c
ε0kBT , κ2 = 2Is 103NAe2

c
ε0kBT , (2)

where ec is the elementary charge, ε0 is the vacuum permittivity, Is denotes the ionic strength, NA is the Avogadro’snumber, kB is the Boltzmann constant, and T is the absolute temperature.Clearly, setting κ = 0 reduces the PBE model to the Poisson dielectric model

−εp∆u(r) = α
np∑
j=1 zjδrj inDp,

−εs∆u(r) = 0 inDs,

u(s−) = u(s+), εp
∂u(s−)
∂n = εs

∂u(s+)
∂n on Γ,

u(r)→ 0 as |r| → ∞.
(3)

For a spherical region Dp containing one central charge zec , the Poisson dielectric model becomes the Born ball model
−εp∆u = αzδ in Dp,
−εs∆u = 0 in Ds,

u(s−) = u(s+), εp
∂u(s−)
∂n = εs

∂u(s+)
∂n on Γ,

u(r)→ 0 as |r| → ∞,
(4)
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where δ is the Dirac delta distribution at the origin, Dp, Ds and Γ are set as
Dp = {r∣∣ |r| < a}, Ds = {r∣∣ |r| > a}, Γ = {r∣∣ |r| = a},

with a given radius a > 0, and the analytical solution u can be found in the form
u(r) =


αz4πa

( 1
εs
− 1
εp

)+ αz4πεp|r| in Dp,
αz4πεs|r| in Ds.

(5)
The Born ball PBE test model can then be constructed as follows:

−εp∆u = αzδ inDp,
−εs∆u+ κ2 sinh(u) = ρs(r) inDs,

u(s−) = u(s+), εp
∂u(s−)
∂n(s) = εs

∂u(s+)
∂n(s) on Γ,

u(r)→ 0 as |r| → ∞,
(6)

where ρs(r) is defined by
ρs(r) = κ2 sinh( αz4πεs|r|

) for r ∈ Ds.

Obviously, when ρs = 0, the above test model is reduced to the Born ball PBE model. Hence, ρs can be regarded as anextra charge function added to the PBE model. It is clear that the analytical solution of the Born ball PBE test model(6) is given in (5). In calculation, u is treated as a unknown function while ρs is a given source function. Hence, theBorn ball PBE test model is a nonlinear elliptic interface problem, which can be used to verify a PBE solver.
3. Our new PBE test modelIn this section, we follow the construction of the Born ball PBE test model to construct our new PBE test model for aprotein hosted in a spherical solute region Dp. The key step is to obtain a Poisson dielectric test model with a givenanalytical solution. To do so, we construct a Poisson dielectric test model in the form

−εp∆u(r) = α
np∑
j=1 zjδrj inDp,

−εs∆u(r) = fs(r) inDs,

u(s−) = u(s+), εp
∂u(s−)
∂n = εs

∂u(s+)
∂n on Γ,

u(r)→ 0 as |r| → ∞,
(7)

where fs is a function to be determined, which can be regarded as extra charges added to the Poisson dielectric model(3). We intend to find an analytical solution of the Poisson dielectric test model through properly selecting fs.It is difficult to search for a solution of (7) directly due to the solution singularities caused by the Dirac delta distributions
{δrj }

np
j=1. To avoid such a difficulty, we split the solution u of (7) as a sum of the functions G and ū,

u = ū+ G, (8)
where ū is the solution of the elliptic interface problem

−εp∆ū(r) = 0 inDp,
−εs∆ū(r) = fs(r) inDs,

ū(s−) = ū(s+), εp
∂ū(s−)
∂n(s) = εs

∂ū(s+)
∂n(s) + (εs − εp)∂G(s)

∂n(s) on Γ,
ū(r)→ 0 as |r| → ∞,

(9)
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and G is given by
G(r) = α4πεp

np∑
j=1

zj
|r− rj |

, (10)
which collects all the singular points of the solution u. Here ∂G(s)

∂n(s) can be found in the expression
∂G(s)
∂n(s) = − α4πεp

np∑
j=1 zj

(s− rj ) · n
|s− rj |3 . (11)

Thus, the problem becomes how to construct a solution ū of the elliptic interface problem (9). Note that ū is twicecontinuously differentiable within Dp and Ds, respectively, provided that fs is a continuous function. Hence, we canconstruct ū using the following expression
ū(r) =

 0 for r ∈ Dp,

c(r) sin( |r|2a2 − 1) for r ∈ Ds,
(12)

where c(r) is a twice continuously differentiable function to be determined to satisfy the elliptic interface problem (9).By expression (12), it is easy to verify that ū satisfies
ū(s−) = ū(s+) = 0, εp

∂ū(s−)
∂n(s) = 0 ∀ s ∈ Γ.

We then use the facts s · s = |s|2 = a2 and n(s) = s
a to find that

εs
∂ū(s+)
∂n(s) = εs∇ū(s+) · n(s) = 2

a2 εsc(s)s · s
a = 2

aεsc(s).
Thus, the second interface condition of (9) gives the equation of c:

0 = 2
aεsc(s) + (εs − εp)∂G(s)

∂n(s) on Γ,
from which we obtain the expression of c on the interface Γ:

c(s) = a(εp − εs)2εs ∂G(s)
∂n(s) = α(εs − εp)8πεpεs

np∑
j=1

zj (s− rj ) · s
|s− rj |3 ∀s ∈ Γ.

Hence, we can set c(r) in the expression
c(r) = α(εs − εp)8πεpεs

np∑
j=1

zj (r− rj ) · r
|r− rj |3 ∀r ∈ Ds. (13)

Applying the above expression of c to (12) yields the expression of ū:
ū(r) =


0 for r ∈ Dp,

α(εs − εp)8πεpεs sin( |r|2a2 − 1) np∑
j=1

zj (r− rj ) · r
|r− rj |3 for r ∈ Ds.

(14)
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It is clear that the above ū satisfies the first equation and the two interface conditions of (9), and approaches zero as
|r| → ∞. It also satisfies the second equation of (9) by setting the function fs in the form

fs(r) = −εs∆ū(r).
This provs that the function ū of (14) is a solution of the elliptic interface problem (9) with the above selection of fs.We next need to calculate ∆ū(r) to get the expression of fs. A direct calculation of ∆ū(r) is intricate due to the complicatedexpression (14) of ū(r). To avoid this difficulty, we start with (12) to get an expression of fs in terms of c:
fs(r) = −εs[ sin( |r|2a2 − 1)∆c(r)+ 4

a2 cos( |r|2a2 − 1)∇c(r) ·r+ 6c(r)
a2 cos( |r|2a2 − 1)− 4|r|2c(r)

a4 sin( |r|2a2 − 1)]. (15)
We then use the fact that ∆G = 0 in Ds to obtain that

∆c(r) = 0 ∀r ∈ Ds. (16)
Furthermore, we find that

∇c(r) · r = α(εs − εp)8πεpεs
np∑
j=1 zj

((2r− rj ) · r
|r− rj |3 −

3[(r− rj ) · r]2
|r− rj |5

)
. (17)

Applying (16) and (17) to (15) gives the expression of fs:
fs(r) =α(εp − εs)4πa2εp

np∑
j=1 zj

[ cos( |r|2a2 − 1) 7|r|2 − 5r · rj
|r− rj |3 − sin( |r|2a2 − 1) 2|r|2(|r|2 − r · rj )

a2|r− rj |3
−6 cos( |r|2a2 − 1) (|r|2 − r · rj )2

|r− rj |5
]

∀r ∈ Ds.

(18)

We are now in the position to construct our new PBE test model. With fs being given in (18) and U(r) by
U(r) = α4πεp

np∑
j=1

zj
|r− rj |

+ α(εs − εp)8πεpεs sin( |r|2a2 − 1) np∑
j=1

zj (r− rj ) · r
|r− rj |3 , (19)

we construct our new PBE test model as follows:


−εp∆u(r) = α
np∑
j=1 zjδrj inDp,

−εs∆u(r) + κ2 sinh(u(r)) = fs(r) + κ2 sinh(U(r)) inDs,

u(s−) = u(s+), εp
∂u(s−)
∂n(s) = εs

∂u(s+)
∂n(s) on Γ,

u(r)→ 0 as |r| → ∞.
(20)

Clearly, the analytical solution of our new PBE test model is the same as that of the Poisson dielectric test model (7).It is given in the expression
u(r) =


α4πεp

np∑
j=1

zj
|r− rj |

inDp,

U(r) inDs.
(21)
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We observe that the solution u of our PBE test model (20) can be expressed as
u(r) = αû(r) r ∈ Ω, (22)

where û denotes the solution of the nonlinear problem (20) using α = 1. In this relationship, the constant α can betreated as a scaling parameter, with which we can properly adjust the solution range of our new PBE test model toavoid a potential blow up problem in the calculation of the hyperbolic term sinh(u).In fact, the two extra charge terms fs and κ2 sinh(U(r)) may cause (20) to have a much larger solution range thanthe corresponding PBE model. Because of these two extra charge terms, the two PBE constants α and κ lost theiroriginal physical meanings. With a proper selection of α , our new PBE test model can work stably in its numericalimplementation for any given protein.Our new PBE test model (20) can be conveniently applied to the verification of a PBE numerical solver or a PBEprogram package, since in numerical tests, we only need to modify the parts of the solver or package that are related tothe extra charge terms fs and κ2 sinh(U(r)).
4. Verification of a PBE finite element program packageAs an application example, in this section, we use the PBE test model (20) to verify a PBE finite element programpackage developed in [20]. In the tests, the unbounded solvent region Ds was truncated as

Ds = {r|a < |r| < A},

to modify (20) as a boundary value problem with the Dirichlet boundary condition
u(s) = U(s) on ∂Ω,

where a and A are two given positive numbers, ∂Ω denotes the boundary of the bounded domain Ω = {r| |r| < A}, and
U is the analytical solution of (20), which has been given in (19). By the PBE finite element algorithm [20], the solution
u of this PBE test model using the above Dirichlet boundary condition on Ω was split as

u(r) = G(r) + Ψ(r) + Φ̃(r) ∀r ∈ Ω, (23)
where G is defined by (10), Ψ is the solution of the linear interface problem


∆Ψ(r) = 0 inDp ∪ DsΨ(s−) = Ψ(s+), εp

∂Ψ(s−)
∂n(s) = εs

∂Ψ(s+)
∂n(s) + (εs − εp)∂G(s)

∂n(s) on Γ,Ψ(s) = U(s)−G(s) on ∂Ω, (24)
and Φ̃ is the solution of the nonlinear interface problem


∆Φ̃(r) = 0 inDp,

−εs∆Φ̃(r) + κ2 sinh(W (r) + Φ̃(r)) = ρs(r) inDs,Φ̃(s−) = Φ̃(s+), εp
∂Φ̃(s−)
∂n(s) = εs

∂Φ̃(s+)
∂n(s) on Γ,Φ̃(s) = 0 on ∂Ω.

(25)

Here W = G + Ψ, Ψ has been computed before solving (25), and ρs is defined by
ρs(r) = fs(r) + κ2 sinh(U(r)).
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(a) 3,143 vertices (b) 25,131 vertices (c) 200,009 vertices
Fig 1: Cross-section views of the three nested tetrahedral meshes used for verification of the PBE finite elementprogram package [20]. Here the meshes of solute region Dp are coloured in red.
To solve the above equations of (24) and (25) by the finite element method, they are reformulated as variationalproblems so that their interface conditions can be naturally treated. Furthermore, a modified Newton minimizationscheme is developed to efficiently solve the nonlinear variational problem of Φ̃ as a variational minimization problem.All the related linear variational problems are solved efficiently by the preconditioned conjugate gradient (PCG) methodwith incomplete LU preconditioning. See [20] for the details.We wrote a program for computing the extra charge term ρs and exact solution u. A few of modifications were then made onthe PBE finite element program package [20], making it to work for numerically testing our PBE test model. We also wrotea tetrahedral mesh generator based on the tetrahedral mesh generator TetGen (http://wias-berlin.de/software/tetgen/)and the mesh function Sphere() from the FEniCS project [14]. In the numerical tests, we used

a = 17, A = 51, εp = 2.0, εs = 78.54, α = 1, κ2 = 0.8482715835384875,
and a protein with 488 atoms (PDB ID 2LZX), which was downloaded from the Protein Data Bank (http://www.rcsb.org).Here the value of κ2 wad produced by using (2) with T = 298.15 and Is = 0.1. As required by the PBE finiteelement program package, we converted the PDB file of 2LZX to a PQR file using the software tool PDB2PQR(http://www.poissonboltzmann.org/pdb2pqr). Our tetrahedral mesh generator was used to generate three nested tetra-hedral meshes with 3,143, 25,131, and 200,009 vertices, respectively, whose mesh sizes were halved. One cross-sectionview of each mesh was displayed in Figure 1 to demonstrate these three meshes. Three finite element solutions werethen calculated by the linear finite element method. Their relative and absolute errors were reported in Table 1.

Mesh Data Absolute Error Relative ErrorMesh # Vertices # Tetrahedra √∫Ω |uh − u|2dr
√ ∫Ω |uh−u|2dr∫Ω |u|2drMesh 1 3,143 18,591 1.96133 3.65904× 10−1Mesh 2 25,131 148,728 0.477399 9.23066× 10−2Mesh 3 200,009 1,189,824 0.150239 2.91177× 10−2

Table 1: The absolute and relative errors of the finite element solutions uh of the PBE test model (20) for the Proteinwith PDB ID 2LZX and 488 atoms on three different tetrahedral meshes. Here u is the analytical solutiongiven in (21), and uh denotes a numerical solution of the linear finite element method.
From Table 1 it can be seen that the absolute and relative errors were reduced almost quarterly when the mesh sizeswere almost reduced by half. These results reflect the convergence properties of the linear finite element method [5].Hence, they well verify the PBE finite element program package.
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(a) 32,639 vertices (b) 139,967 vertices (c) 554,745 vertices
Fig 2: Cross-section views of the three tetrahedral meshes used in comparison tests between the finite element andfinite difference methods. Here the solute region Dp is marked in red.
5. Finite Difference Method via Finite Element MethodAs another application, in this section, we use the Poisson dielectric test model (7) to do a comparison study betweenthe finite element and finite difference methods. For the sake of simplifying a construction of the finite difference method,we selected a cubic domain Ω = [−2, 2]× [−2, 2]× [−2, 2] to modify (7) as a boundary value problem with the Dirichletboundary condition

u(s) = U(s) on ∂Ω,
where U has been given in (19). Because of (8), we only need to solve the following boundary value problem

−εp∆ū(r) = 0 inDp,
−εs∆ū(r) = fs(r) inDs,

ū(s−) = ū(s+), εp
∂ū(s−)
∂n = εs

∂ū(s+)
∂n + (εs − εp)∂G(s)

∂n(s) on Γ,
ū(s) = V (s) on ∂Ω,

(26)

where V denotes the analytical solution of (9), which has been given in (14).We wrote a finite element program for solving the test problem (26) based on the finite element library DOLFIN from the
FEniCS project [14]. Here our mesh generation program was used to generate tetrahedral meshes for numerical tests.We also wrote a finite difference program for solving the Poisson dielectric test model (7) following the PBE finitedifference scheme used in the PBE finite difference program packages DELPHI [17, 18] and CHARMM [10, 11]. Thatis, the flux interface condition was ignored to simply approximate the Poisson dielectric test model (7) as a system ofsecond order central finite difference equations as follows:

εi+ 12 ,j,kui+1,j,k + εi− 12 ,j,kui−1,j,k + εi,j+ 12 ,kui,j+1,k + εi,j− 12 ,kui,j−1,k + εi,j,k+ 12 ui,j,k+1 + εi,j,k− 12 ui,j,k−1
−
(
εi− 12 ,j,k + εi+ 12 ,j,k + εi,j− 12 ,k + εi,j+ 12 ,k + εi,j,k− 12 + εi,j,k+ 12

)
ui,j,k = h2fi,j,k , (27)

where i, j, k = 0, 1, 2, . . . , N , h = 4/N , ui,j,k denotes a numerical value of the solution u(x, y, z) at the grid node(xi, yj , zk ) with xi = −2 + ih, yj = −2 + jh, and zk = −2 + kh, εi+ 12 ,j,k = ε(−2 + (i + 12 )h,−2 + jh,−2 + kh) for thedielectric function ε(r) with r = (x, y, z) ∈ Ω, the other discrete values of ε are defined similarly, and fi,j,k denotes thevalue of the function f (r) at the grid node (xi, yj , zk ). Here ε(r) and f (r) are defined by
ε(r) = {εp ∀r ∈ Dp,

εs ∀r ∈ Ds,
and f (r) =


α

np∑
j=1 zjδh(r− rj ) ∀r ∈ Dp,

fs(r) ∀r ∈ Ds,

9
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where δh(r − rj ) denotes an approximation of the Dirac delta distribution δrj . By an approximate delta function φ [19,Table 1, Page 512], δh is set as
δh(r) = 1

h3φ(x/h)φ(y/h)φ(z/h). (28)
In numerical tests, we used the linear approximate delta function

φ(x) = {1− |x| 0 ≤ |x| < 1,0 |x| > 1. (29)
and the cubic approximate delta function

φ(x) =


1− 12 |x| − |x|2 + 12 |x|3 0 ≤ |x| < 1,1− 116 |x|+ |x|2 − 16 |x|3 1 ≤ |x| < 2,0 2 ≤ |x|. (30)
We solved the finite difference system (27) by the SOR method [17, 22] using the Dirichlet boundary condition

u(s) = U(s) s ∈ ∂Ω, (31)
where U is given in (19). In the numerical tests, we set N = 31, 51, and 81, which gave the grid size h = 0.1290, 0.0784,and 0.0494, respectively.Four proteins represented in PDB IDs 2LZX, 1UCS, 1AQ5, and 1HB8 were downloaded from the Protein Data Bankfor our numerical tests. Their 488, 997, 2292, and 4173 fixed point charges were relocated into the unit ball region Dpthrough scaling their atomic positions, respectively. Three tetrahedral meshes were generated from our mesh generationprogram for the finite element numerical tests. Each of them had an almost same number of vertices as the number ofmesh nodes of the corresponding finite difference uniform mesh. Since it was unstructured, its grid size h (defined asthe longest edge of all the tetrahedra) was found to be 0.2851, 0.1656, and 0.1137, respectively, which was much largerthan the corresponding mesh size of the finite difference method. One cross-section view was displayed in Figure 2 todemonstrate these three meshes.To compare the solution accuracy, we calculated the relative error Ere according to the formula

Ere =
√√√√( N∑

i=1 |u(ri)− uh(ri)|2)/ N∑
i=1 |u(ri)|2, (32)

where u and uh denote the analytic and numerical solutions, respectively, and ri denotes the ith grid node. Numericalresults are report in the Table 2.From Table 2 it can be seen that the finite element method was much more accurate than the finite difference methoddefined in (27). In particular, such a finite difference method had only a low accuracy due to its ignoring the fluxinterface condition, whose relative errors might not to be reduced even the mesh size h was decreased from 0.129 to0.0494. Similar numerical results were reported in [24, Tables 1 and 2] for the finite difference solutions generatedfrom the program packages PBEQ and APBS in the case of solving the Born and Kirkwood’s dielectric sphere models.Correspondingly, the finite element method was convergent, whose relative errors were found to be reduced as h wasdecreased in all the numerical tests.We also found from Table 2 that the relative errors of the finite difference method of (27) might not be reduced whenthe linear approximate delta function (29) was replaced by a more accurate cubic approximate delta function (30). Thisimplies that the ignorance of the flux interface condition was one major factor that affects the accuracy of the finitedifference method. Hence, to improve the accuracy of a finite difference method, it is essential to consider the fluxinterface condition. Such efforts were done in [7, 23, 24].
10
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Protein Finite Difference Method of (27) Finite Element Method(#Atoms) h #Vertices Ere,1 Ere,2 h #Vertices Ere0.1290 32,768 5.27× 10−2 5.50× 10−2 0.2851 32,639 1.47× 10−22LZX 0.0784 140,608 5.31× 10−2 5.21× 10−2 0.1656 139,967 9.70× 10−3(488) 0.0494 551,368 4.67× 10−2 4.54× 10−2 0.1137 554,745 7.10× 10−3
0.1290 32,768 3.71× 10−1 3.82× 10−1 0.2851 32,639 6.22× 10−21UCS 0.0784 140,608 5.42× 10−1 5.53× 10−1 0.1656 139,967 4.13× 10−2(997) 0.0494 551,368 5.38× 10−1 5.55× 10−1 0.1137 554,745 2.25× 10−2
0.1290 32,768 1.06× 10−1 1.05× 10−1 0.2851 32,639 3.49× 10−21AQ5 0.0784 140,608 9.00× 10−2 9.27× 10−2 0.1656 139,967 2.24× 10−2(2292) 0.0494 551,368 1.06× 10−1 1.09× 10−1 0.1137 554,745 1.45× 10−2
0.1290 32,768 1.16× 10−1 1.28× 10−1 0.2851 32,639 3.47× 10−21HB8 0.0784 140,608 1.70× 10−1 1.62× 10−1 0.1656 139,967 2.11× 10−2(4173) 0.0494 551,368 2.93× 10−1 2.93× 10−1 0.1137 554,745 1.29× 10−2

Table 2: Comparison of the solution accuracy of the finite difference method with that of the linear finite elementmethod for solving the Poisson dielectric test model (7). Here, Ere,1 and Ere,2 denote the relative errors of thefinite difference method using the linear and cubic approximate delta functions (29) and (30), respectively, themesh grid size h of the finite element method is defined as the longest edge among all the tetrahedra of amesh, and the relative error Ere is defined in (32).
From Table 2 we further noted that even with the grid size h = 0.2851, the finite element method still produced a muchsmaller relative error than the finite difference method using the grid size h = 0.0494. This suggests that the finiteelement method may take less computer CPU time than the finite difference method of (27) to generate a numericalsolution with the same accuracy requirement.Finally, we repeated the numerical tests on the mesh with 32,639 vertices by the quadratic finite element method. Inthis case, the number of mesh nodes was increased to 259,998, but the relative errors of the finite element solutions forthe four protein cases were sharply reduced to 0.0047, 0.0248, 0.0135, and 0.0133, respectively, which were close to theones generated by the mesh with 551,368 vertices. Currently, generating a large finite element mesh costs much morecomputer CPU time than solving a finite element equation. A higher order finite element method may make it possibleto generate a highly accurate PBE numerical solution on a small mesh while reducing the total computer CPU time.
6. ConclusionsIn this paper, we have presented a PBE test model and its analytical solution construction process as well as itsapplications. This model retains the PBE structure except of one extra charge source term, and its analytical solutionhas a concise algebraic expression. Thus, it can be easily adapted to a PBE program package for verification tests. Likethe PBE solution, the analytical solution of our PBE test model satisfies the continuous interface conditions and hassingularity at each atomic position. Different proteins may cause different levels of difficulties in the numerical solutionof our PBE test model. Because of this feature, our PBE test model is valuable not only in a verification test of a PBEsolver/program package but also in a robustness comparison study of two different PBE solvers. Furthermore, we haveshown in the paper that the solution range of our PBE test model can be simply adjusted with a scaling parameter.Hence, our PBE test model can work stably for any protein without causing any blow up problem in its computerimplementation.To demonstrate the application of our PBE and Poisson dielectric test models, in this paper, we have reported thenumerical results made from verification tests on one PBE finite element program package that we developed recently,and from comparison tests between a finite element solver and a finite difference solver that ignores the flux continuousinterface condition. To carry out these numerical tests, we wrote a tetrahedral mesh generation program, a program ofa finite element solver, and a program of this finite difference solver.Currently, a PBE solver/program package was mainly verified by the simple Born and Kirkwood’s dielectric spheremodels. Several test models that worked for protein were constructed for validating the MIBPB algorithms but suitable
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only for interface jumps and discontinuities. Since the interface conditions of PBE are mostly continuous, it is importantto have a PBE test model that works for protein while preserving the continuous interface conditions. Our PBE testmodel is the first of such models. We expect it to be particularly valuable in the numerical study of PBE numericalalgorithms and program packages.
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