
Journal of Computational Physics 298 (2015) 636–651
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A new finite element and finite difference hybrid method

for computing electrostatics of ionic solvated biomolecule

Jinyong Ying, Dexuan Xie ∗

Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 November 2014
Received in revised form 10 June 2015
Accepted 24 June 2015
Available online 29 June 2015

Keywords:
Poisson–Boltzmann equation
Finite element method
Finite difference method
Biomolecular electrostatics
Domain decomposition
Multigrid preconditioning
Solvation free energy

The Poisson–Boltzmann equation (PBE) is one widely-used implicit solvent continuum
model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new
finite element and finite difference hybrid method is presented to solve PBE efficiently
based on a special seven-overlapped box partition with one central box containing the
solute region and surrounded by six neighboring boxes. In particular, an efficient finite
element solver is applied to the central box while a fast preconditioned conjugate gradient
method using a multigrid V-cycle preconditioning is constructed for solving a system of
finite difference equations defined on a uniform mesh of each neighboring box. Moreover,
the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central
box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid
PBE solver is programmed in C, Fortran, and Python as a software tool for predicting
electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two
test models with analytical solutions and 12 proteins validate this new software tool, and
demonstrate its high performance in terms of CPU time and memory usage.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Electrostatic interactions are important in understanding the structure and biological function of biomolecules, catalytic
activity, ligand association, and pKa values [1–4]. The Poisson–Boltzmann equation (PBE) is one widely-used implicit solvent
continuum model for calculating electrostatics of biomolecules (protein or nucleic acids) in ionic solvent [5–7]. A lot of work
has been done in the development of PBE numerical solvers and program packages based on finite difference, finite element,
and boundary integral equation approaches [8–13]. The popular PBE program packages and web-based resources, such as
APBS [10], DelPhi [14], PBEQ [12,15], and UHBD [16], have become powerful simulation aides in the study of biomolecular
structure and function, biomolecule-ligand association, ion channel modeling, and computer-aided drug design.

To improve the accuracy of PBE numerical solutions, we recently developed a solution decomposition PBE solver (SDPB)
using finite element and minimization techniques [13]. Instead of solving PBE directly, in SDPB, two other interface prob-
lems — one linear interface problem for � and one nonlinear interface problem for �̃ — are solved to yield a numerical
solution u of PBE as a sum of a given function G with � and �̃. Since G collects all the singularity points of u, both � and
�̃ become twice continuously differentiable within both the solute and solvent regions. Thus, their numerical approxima-
tions can be calculated much more easily and less expensively than directly calculating u, which is singular at each atomic
position r j , to reach a required numerical accuracy. We note that in DelPhi, APBS and PBEQ, a finite difference method

* Corresponding author.
E-mail address: dxie@uwm.edu (D. Xie).
http://dx.doi.org/10.1016/j.jcp.2015.06.016
0021-9991/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2015.06.016
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:dxie@uwm.edu
http://dx.doi.org/10.1016/j.jcp.2015.06.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2015.06.016&domain=pdf

J. Ying, D. Xie / Journal of Computational Physics 298 (2015) 636–651 637
defined on a uniform mesh accelerated by geometric multigrid techniques is the major algorithm for solving PBE directly.
Its mesh size h may become very small to catch the solution behavior of PBE around each singularity point r j , making the
finite difference system too large to be solved due to the memory limitation of computers. Hence, it is critical to solve PBE
indirectly through computing � and �̃.

Another feature of SDPB is to use an unstructured interface fitted tetrahedral mesh to approximate the interface � be-
tween the solute and solvent regions. Such a treatment can yield a numerical solution of PBE in high accuracy in comparison
to the case of a uniform finite difference mesh [17]. However, using an unstructured mesh may cause efficient geometric
multigrid techniques no longer to work, and require extra memory locations to store the mesh data and the nonzero entries
of the coefficient matrix of each involved linear system.

In order to confine the disadvantages while retaining the advantages of SDPB, in this paper, we present a new finite
element and finite difference hybrid method based on the Schwartz domain decomposition approach [18,19]. This new
hybrid PBE solver was motivated from the fact that the linear variational problem for determining the search direction
pk of the modified Newton minimization algorithm from SDPB can be reformulated as a linear elliptic interface boundary
value problem (see Theorem 3.1). From this fact it implies that the modified Newton minimization algorithm can also be
implemented based on the finite difference approach. The only change to be made is to solve the linear interface problems
of � (see (5)) and pk (see (11)) by a finite difference method. To combine the advantages of finite element and finite
difference approaches together, we propose an overlapped box iterative method for solving the linear interface problems
of � and pk based on a special partition of the whole domain � into seven overlapped boxes, in which one central box
contains the solute region D p and is surrounded by the six neighboring boxes (see Fig. 1 for an illustration). Since each
neighboring box is a part of the solvent region Ds only, the corresponding equations of � and pk are reduced to the regular
linear elliptic boundary value problems. Thus, they can be solved by a finite difference method defined on a uniform mesh to
enable the usage of efficient geometric multigrid techniques. To do so, we construct the preconditioned conjugate gradient
(PCG) method using a multigrid V-cycle preconditioning, called PCG-MG, on each neighboring box while adopting the finite
element solver from [13] to solve the interface variational problem on the central box. Using this special overlapped box
iterative method, we modify SDPB as a finite element and finite difference hybrid method for solving PBE, which is expected
to improve the performance of SDPB significantly in terms of CPU time and memory usage.

For a general purpose, in the paper, we describe the overlapped box iterative method for solving a general interface
boundary value problem (see (12)), which contains the interface problems of � and pk as two particular cases. Here the
number of boxes has been set as the smallest number of seven to make the overlapped box iterative method to have a fixed
rate of convergence for a fixed value of relaxation parameters ω, since the convergence rate of an overlapped box iterative
method may decay with the increment of the number of boxes. The central box has been ordered as the 7th box to employ
all the most recent iterates from the six neighboring boxes to update the boundary value function of the interface problem
on the central box. Moreover, we propose a scheme for this new hybrid PBE solver to adaptively generate �, the seven boxes
of �, an interface fitted tetrahedral mesh of the central box, and a uniform mesh of each neighboring box according to a
given PQR file of a biomolecule to be calculated. In this scheme, the same uniform mesh has been applied to the overlapped
part of each box so that the data exchange between any two neighboring boxes can be done easily and efficiently.

We completed the program of our hybrid PBE solver in C, Fortran, and Python. The scheme for the generation of �,
seven boxes, and meshes was programmed in C, along with three new parameters for a user to adjust the size of �, the
size of the central box, and the mesh size h of the uniform mesh. We modified the molecular surface and volumetric mesh
generation program package GAMer [20] to make it work for a rectangular domain. We then applied it to our C program for
the generation of an interface fitted mesh of the central box (see Fig. 2). We programmed the PCG-MG method in Fortran
without storing any mesh data or coefficient matrices of finite difference systems. In the multigrid V-cycle preconditioning,
one forward Gauss–Seidel iteration and one backward Gauss–Seidel iteration were used to define the pre-smoother and
post-smoother, respectively. The coarsest grid equation was solved simply by the successive over-relaxation (SOR) method.
The PCG using the incomplete LU preconditioning (PCG-ILU) from the PETSc library [21] was used to solve each system
of finite element equations on the central box. Furthermore, to speedup calculations, we wrote Fortran subroutines for
calculating the values of G at the mesh nodes of �, and the values of ∇G at the mesh nodes of the central box. All of
the Fortran subroutines and C programs were converted to Python modules by using the Fortran-to-Python interface
generator f2py (http://cens.ioc.ee/projects/f2py2e/) and SWIG (http://www.swig.org), respectively. By using those modules, the
hybrid PBE solver was programmed in Python as a part of the software package SDPB.

To validate our new hybrid PBE solver and program, we made numerical experiments on two test problems with analyt-
ical solutions: One is an interface test model problem proposed in [17], and the other one is the nonlinear Born Ball model
problem used in [13]. Three nested meshes were constructed for these experiments. Numerical results showed that almost
three fourths of the absolute error norms between the numerical and analytical solutions were reduced when the mesh size
was reduced by half, which well validated our new hybrid method and program package.

We further demonstrated the performance of our new hybrid PBE solver for 12 proteins (the number of atoms up to
11,439) in terms of CPU time and memory usage. Numerical results showed that our new hybrid PBE solver took the
same number of modified Newton iterations to satisfy the iteration termination rule as SDPB did. This confirms that the
new hybrid PBE solver retains the convergence rate of SDPB. Due to the efficiency of our special overlapped box iterative
method, the new hybrid PBE solver was found to improve the performance of SDPB significantly. In these numerical tests,
the total CPU time of SDPB was reduced by 55% to 73%. For example, for a protein with PDB ID 2LZX on a mesh with

http://cens.ioc.ee/projects/f2py2e/
http://www.swig.org

638 J. Ying, D. Xie / Journal of Computational Physics 298 (2015) 636–651
535,400 vertices, the total CPU time was reduced from about 127 seconds to about 34 seconds on one core of a Mac Pro
workstation with 3.7 GHz Quad-Core Intel Xeon E5 processor, which included the mesh generation time.

Finally, as an application, we calculated the electrostatic solvation free energy E for 12 proteins using the new hybrid
PBE solver. To demonstrate the numerical behavior of our hybrid method in such a calculation, we constructed five different
meshes with the numbers of mesh nodes from about 75,000 to 1.3 million for four proteins. We also did the calculation
using other two commonly-used molecular surfaces — solvent-accessible surface (SAS) and solvent-excluded surface (SES),
which resulted in two more bumpy interfaces than the one generated from GAMer so that PBE became more difficult
to solve numerically. In these tests, the values of E were found to be toward a limit with the increment of the number
of mesh nodes. These further verified the convergence and robustness of the new hybrid PBE solver. In these tests, the
numerical solution of PBE was also found to have significant changes in some areas of a molecular surface when the mesh
was refined from a coarse mesh to a fine mesh. This indicates that using a large mesh to solve PBE may be critical since it
can reveal some important details of the PBE solution that are hidden in the coarse mesh. Hence, it is important to develop
a numerical PBE algorithm and program package that can work well for a large biomolecule on a large mesh. In the future,
we plan to further improve the efficiency and capability of our hybrid PBE solver to make it a powerful tool for predicting
the electrostatic solvation free energy for a large biomolecule on a large mesh domain.

The remaining part of this paper is organized as follows: In Section 2, we define the PBE model and its solution de-
composition. In Section 3, we briefly review the finite element PBE solver used in SDPB. In Section 4, we present our new
overlapped box iterative method. In Section 5, we describe the new hybrid PBE solver. Finally, the numerical results are
reported in Section 6.

2. PBE and solution decomposition

Let � be a sufficiently large bounded domain of R3 satisfying

� = D p ∪ Ds ∪ �,

where D p denotes a solute region hosting a protein biomolecule with np atoms, Ds denotes a solvent region, and � is the
interface between D p and Ds . Under the implicit solvent approach, both D p and Ds are treated as continuum media with
dielectric constants εp and εs , respectively. For a symmetric 1:1 ionic solvent (i.e., a salt solution with sodium (Na+) and
chloride (Cl−) ions), the electrostatic potential u (in unit kB T /ec) can be predicted by the following PBE boundary value
problem:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−εp�u(r) = α

np∑
j=1

z jδr j , r ∈ D p,

−εs�u(r) + κ̄2 sinh(u(r)) = 0, r ∈ Ds,

u(s+) = u(s−), εs
∂u(s+)
∂n(s) = εp

∂u(s−)
∂n(s) , s ∈ �,

u(s) = g(s), s ∈ ∂�,

(1)

where r j and z j are the position and charge number of the jth atom, respectively, g is a boundary function (e.g., g can be
set as zero for a sufficiently large domain), ∂� denotes the boundary of �, δr j is the Dirac delta distribution at point r j ,
n(s) is the unit outward normal vector of D p , and α and κ̄ are two constants, which are defined by

α = 1010e2
c /(ε0kB T) and κ̄2 = 2 · 10−17e2

c N A Is/(ε0kB T),

in the SI units and the length unit having been transferred to angstrom (Å). Here, ec , ε0, kB , T and N A are the electron
charge, the permittivity of vacuum, the Boltzmann constant, the absolute temperature, and the Avogadro number, respec-
tively, and Is is the ionic strength in mole/liter. For T = 298.15, and Is = 0.1, we can get

α = 7042.940010604046, κ̄2 = 0.8482715968170331. (2)

From the PBE solution decomposition proposed in [13], the solution u of (1) can be constructed by

u = G + � + �̃, (3)

where G is given by

G(r) = α

4πεp

np∑
j=1

z j

|r − r j| , (4)

� is a solution of the linear interface boundary value problem⎧⎪⎪⎨
⎪⎪⎩

��(r) = 0, r ∈ D p ∪ Ds,

�(s+) = �(s−), s ∈ �,

εs
∂�(s+)
∂n(s) = εp

∂�(s−)
∂n(s) + (εp − εs)

∂G(s)
∂n(s) , s ∈ �,

�(s) = g(s) − G(s), s ∈ ∂�,

(5)

J. Ying, D. Xie / Journal of Computational Physics 298 (2015) 636–651 639
and �̃ is a solution of the nonlinear interface boundary value problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

��̃(r) = 0, r ∈ D p,

−εs��̃(r) + κ̄2 sinh(�̃ + � + G) = 0, r ∈ Ds,

�̃(s+) = �̃(s−), εs
∂�̃(s+)
∂n(s) = εp

∂�̃(s−)
∂n(s) , s ∈ �,

�̃(s) = 0, s ∈ ∂�.

(6)

Here ∂G(s)
∂n(s) = ∇G · n with ∇G being given by

∇G(r) = − α

4πεp

np∑
j=1

z j
r − r j

|r − r j|3 . (7)

As shown in [13,22], both � and �̃ are continuous in the whole domain �, and twice continuously differentiable
within D p and Ds . Thus, (5) and (6) are well defined, and can be solved numerically by the finite element and finite
difference methods. From (3) it also implies that the PBE solution u has singularity points at the atomic positions r j for
j = 1, 2, . . . , np , which causes difficulties in solving equation (1) directly. In fact, to catch the singular behavior of u, a mesh
around each singularity point r j must be dense enough, which may lead to a finite difference/finite element system with a
huge number of unknowns, increasing the cost of computations sharply. In addition, solving (1) directly by a finite element
or finite difference method needs to approximate each singular distribution δ j as a discrete delta function δh(r − r j). This
may further reduce the numerical accuracy. Hence, using (3) is critical in solving PBE.

3. Finite element PBE solver

By the solution decomposition (3), an effective finite element PBE solver has been proposed in [13]. Its main part is a
modified Newton minimization algorithm for solving (6) for �̃, which we review in this section for clarity.

Let M denote a finite element function space as a subspace of the usual Sobolev function space H1(�), and � have
been computed on M. To solve (6) by the minimization algorithm, the interface boundary value problem (6) is reformulated
as the following minimization problem:

J (�̃) = min
v∈M0

J (v), (8)

where M0 = {v ∈M | v = 0 on ∂�}, which is a subspace of the Sobolev function space H1
0(�), and J is defined by

J (v) = 1

2
a(v, v) + κ̄2

∫
Ds

cosh(� + G + v)dr

with a(u, v) being a bilinear functional given by

a(u, v) = εp

∫
D p

∇u · ∇vdr + εs

∫
Ds

∇u · ∇vdr.

The modified Newton minimization algorithm is then defined as a sequence of iterates, {�̃(k)}, as follows:

�̃(k+1) = �̃(k) + λk pk, k = 0,1,2, . . . , (9)

where �̃(0) is an initial guess, λk is a step length, and pk is a search direction satisfying the Newton equation in the
variational form: Find pk ∈M0 such that

J ′′(�̃(k))(pk, v) = − J ′(�̃(k))v ∀v ∈ M0, (10)

where J ′(�̃) is the first Fréchet-derivative of J at �̃, which is a linear continuous functional on H1
0(�) defined by

J ′(�̃)v = a(�̃, v) + κ̄2
∫
Ds

sinh(� + G + �̃)vdx ∀v ∈ H1
0(�),

and J ′′(�̃) is the second Fréchet-derivative of J at �̃, which is a bilinear continuous functional on H1
0(�) defined by

J ′′(�̃)(p, v) = a(p, v) + κ̄2
∫
Ds

cosh(� + G + �̃)pvdx ∀p, v ∈ H1
0(�).

In the implementation, the initial iterate �̃(0) can be selected as zero or a solution of a linearized equation of (6) [23].
A upper bound of 85 is set by default for truncating the value of the sum � + G + �̃(k) to avoid the possible overflow

640 J. Ying, D. Xie / Journal of Computational Physics 298 (2015) 636–651
problem of hyperbolic terms. Each Newton equation of (10) is solved numerically by the PCG-ILU with the absolute and
relative residue errors less than a given tolerance (10−10 by default).

In the following theorem, we show that (10) can be reformulated as an interface boundary value problem.

Theorem 3.1. Let V = H1
0(�) ∩ C2(D p) ∩ C2(Ds). If p ∈ V , then the variation problem (10) is equivalent to the boundary value

problem

−�p(r) = ��̃(r), r ∈ D p, (11a)

−εs�p(r) + κ̄2 cosh(� + G + �̃)p = εs��̃ − κ̄2 sinh(� + G + �̃), r ∈ Ds, (11b)

p(s+) = p(s−), εs
∂ p(s+)

∂n(s)
− εp

∂ p(s−)

∂n(s)
= εp

∂�̃(s−)

∂n(s)
− εs

∂�̃(s+)

∂n(s)
, s ∈ �, (11c)

p(s) = 0, s ∈ ∂�, (11d)

where �̃ is a given function of V , � is a given solution of (5), and G is defined in (4).

Proof. We only show the derivation of (11) from the variational form (10) since the proof of the converse is easy. For any
v ∈ H1

0(�) satisfying v = 0 on Ds and v ∈ C
∞
0 (D p), from (10) we can get∫

D p

(�p + ��̃)vdr = 0 ∀v ∈C
∞
0 (D p),

from which it implies equation (11a).
Next, for any v ∈ H1

0(�) satisfying v = 0 on D p and v ∈ C
∞
0 (Ds), (10) can be reduced to the form

εs

∫
Ds

∇p · ∇vdr + κ̄2
∫
Ds

cosh(u)pvdr = −εs

∫
Ds

∇�̃ · ∇vdr − κ̄2
∫
Ds

sinh(u)vdr,

where u = G + � + �̃. By Green’s identity, the above equality can be reformulated as

−εs

∫
Ds

�pvdr + κ̄2
∫
Ds

cosh(u)pvdr = εs

∫
Ds

��̃vdr − κ̄2
∫
Ds

sinh(u)vdr,

from which we can obtain equation (11b).
Furthermore, applying the Green’s identity to the two terms of a(·, ·) for v ∈ H1

0(�) in D p and Ds , respectively, we can
reformulate (10) as∫

�

[
εp

∂ p(s−)

∂n
− εs

∂ p(s+)

∂n

]
vds − εp

∫
D p

�pvdr −
∫
Ds

[
εs�p − κ̄2 cosh(u)p

]
vdr

=
∫
�

[
εs

∂�̃(s+)

∂n
− εp

∂�̃(s−)

∂n

]
vds + εp

∫
D p

��̃vdr +
∫
Ds

[
εs��̃ − κ̄2 sinh(u)

]
vdr.

Applying (11a) and (11b) to the above identity leads to the interface condition (11c). The boundary condition (11d) is
natural because of p ∈ V . This completes the proof. �

With Theorem 3.1, we can generate the search direction pk by using a finite difference solver too. This motivates us
to develop a hybrid method to combine the advantages of finite element and finite difference methods together in the
numerical solution of PBE.

4. An overlapped box iterative method

The performance of the finite element PBE solver SDPB relies on that of an iterative scheme for solving the two linear
interface boundary problems (5) and (11). To improve it, in this section, we present an overlapped box iterative method for
computing � and pk . Clearly, both (5) and (11) are two special cases of the following interface boundary value problem:⎧⎪⎪⎨

⎪⎪⎩
−εp�w(r) = f p(r), r ∈ D p,

−εs�w(r) + β(r)w = f s(r), r ∈ Ds,

w(s+) = w(s−), εs
∂ w(s+)
∂n(s) = εp

∂ w(s−)
∂n(s) + ζ(s), s ∈ �,

w(s) = g(s), s ∈ ∂�,

(12)

J. Ying, D. Xie / Journal of Computational Physics 298 (2015) 636–651 641
Fig. 1. Our special partition of the domain � into seven overlapped boxes �i for i = 1 to 7. Plot (a) illustrates the positions and ordering numbers of the
seven boxes. Plots (b) displays a view of the box partition from the left hand side. Plot (c) gives a view of the central box �7 and its neighboring boxes on
the cross-section generated by the half cutting. Here the overlapping parts are not exposed in Plots (b) and (c) for clarity.

where f p , f s , β , ζ and g are given functions, and β is nonnegative. For a general purpose, we describe the overlapped box
iterative method for solving (12).

Let � be a cubic domain. For a given biomolecule region D p , we select a cubic box D , and then partition � into seven
overlapped boxes �i for i = 1, 2, · · · , 7 with �7 being the central box satisfying that

D p ⊂ D ⊂ �7, � \ D = ∪6
j=1� j.

The position and ordering index of each box are illustrated in Fig. 1. Clearly, �7 \ D gives the overlapped part of �7 with
its six neighboring boxes.

Following the Schwartz domain decomposition scheme [24], we define the overlapped box iterative method for solving
(12) by

w(k)
i = (1 − ω)w(k−1)

i + ωw̄i on �i for i = 1,2, · · · ,7, (13)

where k = 1, 2, · · ·, w(0)
i is an initial iterate, ω ∈ (1, 2) is the over-relaxation parameter, w̄i with i = 1 to 6 denotes a solution

of the elliptic boundary value problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−εs�w(r) + β(r)w = f s(r) in �i,

w(s) = w(k−1)
j (s) on ∂�i ∩ � j if ∂�i ∩ � j �= ∅ for j = i + 1 to 7,

w(s) = w(k)
j (s) on ∂�i ∩ � j if ∂�i ∩ � j �= ∅ for j = 1 to i − 1,

w(s) = g(s) on ∂�i ∩ ∂�,

(14)

and w̄7 is a solution of the elliptic interface boundary value problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−εp�w(r) = f p(r) in D p,

−εs�w(r) + β(r)w = f s(r) in �7 ∩ Ds,

w(s+) = w(s−), εs
∂ w(s+)
∂n(s) = εp

∂ w(s−)
∂n(s) + ζ(s) on �,

w(s) = w(k)
j (s) on ∂�7 ∩ � j for j = 1 to 6.

(15)

Here ∂�i denotes the boundary of �i . Note that the updates w(k)
i from the six neighboring boxes have been employed

in the construction of boundary condition on ∂�7 to yield a good boundary value function. In numerical test, we use the
following simple termination rule:√√√√ 7∑

i=1

||w(k)
i − w(k−1)

i ||2 ≤ ε, (16)

where || · || is the Euclidean norm, and ε is set as 10−7 by default.

5. The finite element and finite difference hybrid PBE solver

In principle, different numerical methods can be applied to different boxes. Specially, in this section, we construct an
efficient finite element scheme for solving the interface boundary problem (15) and a fast finite difference scheme for
solving the boundary value problem (14). Moreover, we obtain a scheme and a program for generating the domain �, the
seven overlapped boxes {�i}7

i=1, an interface fitted tetrahedral mesh of �7, and a uniform finite difference mesh of �i for
i = 1 to 6. Applying this special overlapped box method to the numerical calculation of � and pk , we modify the finite
element PBE solver SDPB of [13] as a finite element and finite difference hybrid PBE solver.

642 J. Ying, D. Xie / Journal of Computational Physics 298 (2015) 636–651
Fig. 2. A cross section of a tetrahedral mesh of �7 on the xy-coordinate plane for a protein with PDB ID 2LZX. D p is colored in red, and the overlapped
part �7 \ D in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5.1. Domain partition and mesh generation scheme and program

Let a cubic region of D be given in the form D = ∏3
i=1(ai, bi) with each side length bi − ai = L for i = 1, 2, 3. We define

the mesh size h and two other mesh parameters τ and η satisfying τ < η by

h = L/2n, τ = 2mh, η = μL/2, (17)

where n, m, and μ are positive integers to be input by a user (n = 3, m = 2, and μ = 4 by default) according to the memory
limit of a computer and a demanded accuracy of PBE numerical solution. Using them, we construct a cubic domain of � on
which PBE is to be calculated and the seven boxes �i as follows:

� =
3∏

i=1

(ai − η,bi + η), �7 =
3∏

i=1

(ai − τ ,bi + τ),

�1 = (a1 − η,b1 + η) × (a2 − η,b2 + η) × (a3 − η,a3),

�2 = (a1 − η,b1 + η) × (a2 − η,a2) × (a3 − τ ,b3 + τ),

�3 = (a1 − η,a1) × (a2 − τ ,b2 + τ) × (a3 − τ ,b3 + τ),

�4 = (b1,b1 + η) × (a2 − η,b2 + τ) × (a3 − τ ,b3 + τ),

�5 = (a1 − η,b1 + η) × (b2,b2 + η) × (a3 − τ ,b3 + τ),

�6 = (a1 − η,b1 + η) × (a2 − η,b2 + η) × (b3,b3 + η).

We also construct a uniform finite difference mesh of � \ D with mesh nodes (xi, y j, zk) being defined as

xi = a1 − η + ih, y j = a2 − η + jh, zk = a3 − η + kh,

from which a uniform finite difference mesh of each box �i with i = 1 to 6 is produced. Furthermore, we construct a hybrid
mesh of �7 — an unstructured tetrahedral mesh on D to well approximate the interface � and a uniform tetrahedral mesh
on the overlapped part �7 \ D with the six neighboring boxes. In particular, the uniform mesh is simply made from the
uniform finite difference mesh located on the overlapped part �7 \ D of the central box �7 through cutting each cubic grid
cell into six tetrahedra. Clearly, any two neighboring boxes have been set to share the same mesh nodes on their overlapped
parts. Hence, the data exchange between them can be done simply and efficiently.

We programmed the above scheme in C. In this program, a PQR file of a biomolecule is required as an input file.
It can be generated from a PDB file of the biomolecule, which can be downloaded from the Protein Data Bank (PDB)
(http://www.rcsb.org/), by the program tool PDB2PQR [25]. We made a modified version of the molecular surface and vol-
umetric mesh generation program package GAMer [20] to enable it to work for both a spherical domain and a rectangular
box domain. We then used it to generate a cubic region of D and an interface fitted tetrahedral mesh of �7. See Fig. 2 for
a mesh of �7 generated from this program.

5.2. The finite element solver

Let M7 ⊂ H1(�7) be a linear finite element function space based on a tetrahedral mesh of �7. We reformulate the
interface boundary value problem (15) into the following finite element variational problem:

http://www.rcsb.org

J. Ying, D. Xie / Journal of Computational Physics 298 (2015) 636–651 643
Find w̄7 ∈ M7 with w̄7 = w(k)
i on ∂�7 ∩ �i for i = 1 to 6 such that

b(w̄7, v) = l(v) ∀v ∈ M7,0, (18)

where M7,0 = {v ∈M7 | v = 0 on ∂�7}, b(w, v) is a symmetric bilinear functional defined by

b(w, v) = εp

∫
D p

∇w · ∇vdr + εs

∫
Ds∩�7

∇w · ∇vdr +
∫

Ds∩�7

β(r)w(r)v(r)dr,

and l(v) is a linear functional defined by

l(v) =
∫
�

ζ(s)v(s)ds +
∫

Ds∩�7

f s(r)v(r)dr +
∫

D p

f p(r)v(r)dr.

Based on the finite element library DOLFIN [26], we wrote a finite element program in Python for solving (18) ap-
proximately using the PCG-ILU from the PETSc library [21]. Here both the relative and absolute residue error parameters
are set as 10−8.

5.3. The finite difference solver

Based on a uniform mesh of each box �ν with mesh size h and ν = 1 to 6, we approximate the boundary value problem
(14) as a system of second-order centered finite difference equations as follows: For i = 1 to Nν,1 − 1, j = 1 to Nν,2 − 1,
and k = 1 to Nν,3 − 1,

εs

h2
(6wi, j,k − wi+1, j,k − wi−1, j,k − wi, j+1,k − wi, j−1,k − wi, j,k+1 − wi, j,k−1) + βi, j,k wi, j,k = f s,i, j,k, (19)

where Nν,1, Nν,2, and Nν,3 denote the numbers of partitions on the x, y, z-axes, respectively, wi, j,k denotes a numerical
value of w at the mesh node (xi, y j, zk), f s,i, j,k = f s(xi, y j, zk), βi, j,k = β(xi, y j, zk), and the boundary values are set at
i = 0, Nν,1; j = 0, Nν,2; or k = 0, Nν,3. The finite difference system (19) is clearly symmetric positive definite. It can be
optimally solved by PCG-MG in the sense that the total number of flops required to solve (19) is proportional to the total
number of unknowns. In our multigrid V-cycle method, the pre and post smoothers are defined by one forward and one
backward Gauss–Seidel iteration, respectively, the prolongation operator is the trilinear interpolation, and its adjoint is set
as the restriction operator (i.e., the standard full weight operator [27]). Since the coarsest mesh only has a small number
of mesh nodes, the coarsest gird equation is simply solved by the SOR method with its residual vector has norm less than
10−10. The PCG-MG iteration does not stop until the relative residual norm of the finite difference system (19) is less than
or equal to 10−8 by default.

We programmed the above PCG-MG in Fortran without using any extra array to store mesh data or the coefficient
matrix A of the linear system (19). In the program, the values of a function on the uniform mesh of each finite difference
box were stored by a three dimensional array. Thus, the product of the coefficient matrix A with a vector of d, which is the
only operation of PCG that is related to A, is stored as a three dimensional array, Ad, and implemented by the following
triple loop: For i = 1 to Nν,1 − 1, j = 1 to Nν,2 − 1, and k = 1 to Nν,3 − 1,

(Ad)i, j,k = εs

h2
(6di, j,k − di+1, j,k − di−1, j,k − di, j+1,k − di, j−1,k − di, j,k+1 − di, j,k−1) + βi, j,kdi, j,k,

where the values of di, j,k on the boundary mesh nodes have been set as zero.

5.4. New hybrid PBE solver

Our new finite element and finite difference hybrid PBE solver is a modification of the finite element PBE solver SDPB of
[13]. For clarity, we describe it in Algorithm 1.

Algorithm 1. Let our special overlapped box iterative method be defined in (13) with the PCG-MG algorithm for solving a
finite difference system of (14) on a uniform mesh of box �i for i = 1 to 6 and the PCG-ILU algorithm for solving a finite
element system of (15) on an interface fitted tetrahedral mesh of the central box �7. The finite element and finite difference
hybrid PBE solver is defined in five steps:

Step 1. Generate D , �, �i for i = 1 to 7, a uniform mesh of � \ D , and an interface fitted tetrahedral mesh of �7 according
to an input PQR file of a biomolecule to be calculated.

Step 2. Calculate the mesh node values of G on � and ∇G on �7 according to (4) and (7), respectively.
Step 3. Solve the linear interface problem (5) for � by our special overlapped box iterative method.
Step 4. Solve the nonlinear interface problem (6) for �̃ by the modified Newton minimization scheme defined in (9) with

pk being calculated by our special overlapped box iterative method and the iteration termination rule being given
by ‖�̃(k+1) − �̃(k)‖ ≤ ε . Here ε = 10−7 by default.

Step 5. Construct a numerical solution u of PBE by the solution decomposition u = G + � + �̃.

644 J. Ying, D. Xie / Journal of Computational Physics 298 (2015) 636–651
To speedup the solution process, we programmed the second step of Algorithm 1 as a Fortran subroutine. Using the
Fortran-to-Python interface generator f2py (http://cens.ioc.ee/projects/f2py2e/), we converted this Fortran subroutine and
ones for PCG-MG to Python modules. We also converted the C programs for domain and mesh generation into a Python
module by SWIG (http://www.swig.org). With these modules, we programmed Algorithm 1 in Python, and added it to SDPB
as another PBE solver. The parameters for defining our hybrid method were also added to the parameter file of the software
package SDPB, including the one for selecting the new hybrid PBE solver.

6. Numerical tests

In this section, we report the numerical experiments we made using our new Python program of Algorithm 1. In these
numerical tests, two test models with analytical solutions were used to validate our special overlapped box iterative method
and hybrid PBE solver, respectively. Performance comparisons were then done between the new hybrid program and SDPB
for 12 proteins. As an application of the hybrid PBE solver, we finally calculated the electrostatic solvation free energy, and
tested the numerical behavior of the hybrid PBE solver in terms of different mesh sizes. For simplicity, all the numerical
tests were done by using εp = 2.0, εs = 80.0, Is = 0.1, and the default values of other parameters (except the parameters m,
n, μ of (17)) on one processor of a Mac Pro Workstation with the 3.7 GHz Quad-Core Intel Xeon E5 and 64 GB memory.

6.1. Validation tests for the overlapped box iterative method

To validate our overlapped box iterative method, we consider the following interface boundary value problem⎧⎪⎪⎨
⎪⎪⎩

��(r) = 0 in D p,

−εs��(r) = f s(r) in Ds,

�(s−) = �(s+), εp
∂�(s−)
∂n(s) = εs

∂�(s+)
∂n(s) + (εs − εp)

∂G(s)
∂n(s) on �,

�(s) = U (s) on ∂�,

(20)

where D p = {r | |r| < a}, � = {r | |r| = a}, � = (−A, A)3 is a cubic domain, Ds = � − D p − �, G is given in (4), f s is given by

f s(r) = α(εp − εs)

4πa2εp

np∑
j=1

z j

[(
7|r|2 − 5r · r j

|r − r j|3 − 6
(|r|2 − r · r j)

2

|r − r j|5
)

cos

(|r|2 − a2

a2

)

− 2|r|2(|r|2 − r · r j)

a2|r − r j|3 sin

(|r|2 − a2

a2

)]
,

and U is given by

U (r) = α(εs − εp)

8πεpεs
sin

(|r|2 − a2

a2

) np∑
j=1

z j
(r − r j) · r

|r − r j|3 .

The analytical solution of (20) is that �(r) = 0 for r ∈ D p and �(r) = U (r) for r ∈ Ds [17].
In numerical tests, we set α = 1.0, a = 1, and A = 3. The charge numbers z j and atomic positions r j were obtained from

a PQR file of a protein with the PDB ID 2LZX, which has 488 atoms (i.e., np = 488). Here we divided r j by 17 to rescale it
into the unit spherical region D p . The structure of this protein was preserved within the unit ball.

Furthermore, we set D = (−1.5, 1.5)3, τ = 0.375, and η = 1.5, from which we obtained the seven boxes �i for i = 1 to 7.
Next, we generated three nested meshes of �, denoted by �h j for j = 1, 2, 3, whose total numbers of mesh nodes were
found to be 7515, 57,515, 448,773, respectively. In the region � \ D , we got the mesh sizes of the three uniform meshes as
follows:

h1 = 0.375, h2 = h1/2 = 0.1875, and h3 = h2/2 = 0.09375.

The corresponding three unstructured tetrahedral meshes of �7, denoted by �7,h j for j = 1, 2, 3, had 3933, 30,839, and
243,069 vertices, respectively. The mesh size h j of the unstructured mesh �7,h j is defined as the largest edge length among
all the tetrahedra, which was found to be h1 = 0.7389, h2 = 0.4058, and h3 = 0.2307. Fig. 3 displays cross section views of
these three nested tetrahedral meshes. The numerical results were reported in Table 1. Here the absolute error Ea between
the analytical solution � and numerical solution �h is defined by

Ea(�) =
√√√√∫

�7

|�(r) − �h(r)|2dr +
∑

r j∈(�−�7)h

h3[�(r j) − �h(r j)]2, (21)

where r j denotes the jth mesh node of a uniform finite difference mesh on � \ �7.
From Table 1 it can be seen that the absolute error Ea of our special overlapped box iterative method was reduced

about three fourths when the mesh size h was reduced by a half, resulting in a second order of convergence rate almost.

http://cens.ioc.ee/projects/f2py2e/
http://www.swig.org

J. Ying, D. Xie / Journal of Computational Physics 298 (2015) 636–651 645
Fig. 3. Cross section views of the three nested tetrahedral meshes �7,h j for j = 1, 2, 3 of the central box �7. Here the spherical protein region D p is colored
in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Convergence of our special overlapped box iterative method for solving the test model (20).

Mesh of � Number of mesh nodes Absolute error Ea of (21) Order of convergence

�h1 7515 0.3248
�h2 57,515 0.0791 2.037
�h3 448,773 0.0199 1.991

These test results confirm the convergence rate of our new overlapped box iterative method as what is expected from the
mathematical theory. Hence, our hybrid program is well validated.

6.2. Validation tests for the hybrid PBE solver

To validate the hybrid PBE solver, we made numerical experiments on the following nonlinear Born Ball model:⎧⎪⎪⎨
⎪⎪⎩

−εp�u = αzδ, in D p

−εs�u + κ̄2 sinh u = f s, in Ds

u(s+) = u(s−), εs
∂u(s+)
∂n(s) = εp

∂u(s−)
∂n(s) on �

u(r) = αz
4πεs|r| on ∂�,

(22)

where α = 7042.94, f s(r) = κ̄2 sinh(αz
4πεs|r|), D p = {r | |r| < 1}, � = {r | |r| = 1}, � = (−6, 6)3, and Ds = � − D p − �. The

analytical solution of (22) is given by

u =
{

αz
4πa (1

εs
− 1

εp
) + αz

4πεp |r| in D p,
αz

4πεs|r| in Ds.
(23)

In the numerical tests, we set D = (−2, 2)3, τ = 1, η = 4, and z = 1, which gave �7 = (−3, 3)3. The over-relaxation
parameter ω of our overlapped box iterative method was set as 1.275 and 1.21 in solving (5) for � and (11) for pk ,
respectively. The initial iterate �̃(0) was selected as a numerical solution of a new linearized equation of (6) [23]. Using the
mesh sizes h1 = 0.25, h2 = h1/2, and h3 = h2/2, we constructed three nested meshes �hi with the total numbers of mesh
nodes were 120,887, 940,247, 7,412,989, respectively, including 18,863, 145,223, 1,136,605 mesh nodes from the meshes
of �7.

Table 2 reports the average errors of the numerical solutions uh , the numbers of the modified Newton iterations, and
the average numbers of PCG-MG iterations on each finite difference box, PCG-ILU iterations on the finite element box �7,
and overlapped box iterations on the domain �. Each average number of iterations was calculated by

1

K

K∑
j=1

n j, (24)

where n j denotes the total number of iterations determined by an iteration termination rule in solving the jth linear system,
and K is the total number of linear systems solved to yield a numerical solution of PBE.

From Table 2 it can be seen that the errors were reduced from 7.55 ×10−4 to 7.66 ×10−5 while the number of modified
Newton iterations was only up to 10 as the mesh size h was decreased from 0.25 to 0.0625. These results validated the
numerical solutions generated from our hybrid PBE program and indicated that our modified Newton iterations retained the
fast rate of convergence. As what the multigrid theory claims, the average number of PCG-MG iterations was found to be
around 7 in three different mesh sizes, confirming our PCG-MG method to have a convergence rate independent of mesh
size h. Furthermore, PCG-ILU for solving each system of finite element equations on the central box �7 was found to be
very efficient. In fact, we also used the PCG using an algebraic multigrid preconditioning from the PETSc library to solve

646 J. Ying, D. Xie / Journal of Computational Physics 298 (2015) 636–651
Table 2
Convergence performance of our finite element and finite difference hybrid PBE solver for the nonlinear Born test model (22). Here the number of iterations
(iter.) for PCG-MG, PCG-ILU, and the box iterative method is an average number defined in (24).

Mesh
of �

Number Nh of
mesh nodes

Average error
‖u − uh‖l2(�)/Nh

PCG-MG iter.
on �i (i �= 7)

PCG-ILU iter.
on �7

Box method
iter. on �

Modified Newton
iter. for finding �̃

�h1 120,887 7.55 × 10−4 7.16 ≈ 7 7.3 ≈ 7 12.2 ≈ 12 7
�h2 940,247 1.69 × 10−4 7.17 ≈ 7 12.5 ≈ 13 11.7 ≈ 12 10
�h3 7,412,989 7.66 × 10−5 7.33 ≈ 7 22.5 ≈ 23 12.4 ≈ 12 9

Table 3
Some basic information on the 12 proteins used for numerical tests. Here, N�7 and N� denote the numbers of mesh nodes on �7 and �, respectively, np

is the number of atoms, and ρ = 100N�7 /N�%.

Index PDB ID np Cubic region D = (a1,b1;a2,b2;a3,b3) N�7 N� Percentage ρ

1 2LZX 488 (−16.5,17.0;−16.1,17.4;−16.1,17.4) 39,896 535,400 7.5%
2 1AJJ 513 (−8.8,28.9;−11.4,26.3;−15.7,21.9) 42,817 538,321 8.0%
3 1FXD 811 (−12.5,31.4;−24.8,19.1;−13.6,30.3) 45,345 540,849 8.4%
4 1HPT 852 (−14.8,31.7;−13.7,32.9;−5.7,40.8) 47,716 543,220 8.8%
5 4PTI 892 (−7.8,38.4;−2.3,43.9;−18.6,27.6) 45,825 541,329 8.5%
6 1SVR 1433 (−24.8,27.3;−30.4,21.7;−24.5,27.6) 54,666 550,170 9.9%
7 1A63 2065 (−29.9,37.0;−34.3,32.6;−33.9,33.0) 62,506 558,010 11.2%
8 1CID 2783 (−47.2,27.9;0.6,75.8;−4.8,70.3) 62,870 558,374 11.3%
9 1A7M 2803 (−43.3,40.0;−41.0,42.3;−40.6,42.8) 68,415 563,919 12.1%

10 2AQ5 6024 (−21.5,50.6;17.0,89.1;−15.0,57.1) 82,317 577,821 14.2%
11 1F6W 8243 (−38.7,47.7;−37.9,48.5;−21.1,65.3) 79,182 574,686 13.8%
12 1C4K 11,439 (19.2,135.1;−26.9,88.9;−16.5,99.4) 77,607 573,111 13.5%

Fig. 4. Molecular surfaces generated from the Gaussian blurring approach [20] for three proteins (PDB ID 1HPT, 1A63, and 1C4K) with their molecular
structures given in solid lines.

each linear system of �7. It was found to take more CPU time than PCG-ILU although its number of iterations was smaller
and independent of h.

6.3. Performance for protein cases

We made numerical tests on 12 proteins to demonstrate the performance of our hybrid PBE program in terms of CPU
time. The PDB files of these proteins were downloaded from the PDB website and then converted to PQR files by the tool
PDB2PQR with the CHARMM force field. From our program a cubic region D was generated for each protein as listed in
Table 3.

We then set μ = 4, m = 3, and n = 4 to get �, �i for i = 1 to 7, the mesh size h, the finite difference mesh of � \ D ,
and the interface fitted tetrahedral mesh of �7. Here, each interface � was generated by our modified version of GAMer
based on the Gaussian blurring approach [20]. It was found to be close to a molecular structure as demonstrated in Fig. 4
for three protein molecules (1HPT, 1A63, and 1C4K). Additionally, the over-relaxation parameter ω of our overlapped box
iterative method was set to 1.215 and 1.015 in solving (5) for � and (11) for pk , respectively. The boundary value function g
and an initial iterate �̃(0) were set as zero for simplicity. As comparison, we used SDPB to repeat all the calculations based
on the same meshes used by the hybrid solver.

Table 4 compares the performance of the new hybrid PBE solver (Hybrid) with that of SDPB in terms of CPU time. In the
case of Hybrid, the construction of a finite element (FE) mesh and the calculation of ∇G were done on �7 only. Hence, they
took less CPU time than the case of SDPB. Due to the efficiency of the overlapped box iterative method, the total CPU time
was sharply reduced by about 55% to 73%. In the tests of these 12 proteins, the same numbers of modified Newton iterations
were found for both Hybrid and SDPB, which were 17, 21, 19, 14, 15, 21, 46, 17, 15, 26, 25, and 46, respectively, indicating

J. Ying, D. Xie / Journal of Computational Physics 298 (2015) 636–651 647
Table 4
A comparison of the performance of our new hybrid PBE solver (Hybrid) with that of the finite element PBE solver SDPB proposed in [13] in computer CPU
runtime measured in seconds.

PDB ID
(# mesh nodes)

Find FE mesh Find G & ∇G Find � Find �̃ Total time

Hybrid SDPB Hybrid SDPB Hybrid SDPB Hybrid SDPB Hybrid SDPB

2LZX (535,400) 5.15 10.68 2.27 4.79 4.67 13.65 22.36 97.31 34.71 127.24
1AJJ (538,321) 5.59 11.03 2.43 5.08 4.97 13.7 27.92 123.47 41.19 154.09
1FXD (540,849) 6.05 11.49 3.85 8.05 5.19 13.81 26.26 107.23 41.71 141.39
1HPT (543,220) 7.01 12.49 4.06 8.48 4.86 14.36 18.16 83.18 34.48 119.33
4PTI (541,329) 6.68 12.34 4.22 9.00 5.13 14.05 19.00 85.42 35.43 121.66
1SVR (550,170) 9.18 14.72 7.02 14.55 5.78 14.50 30.60 122.82 53.14 167.44
1A63 (558,010) 12.47 18.31 10.32 21.28 6.45 14.36 83.54 293.54 113.56 347.85
1CID (558,374) 12.72 18.41 13.96 28.75 6.39 15.14 26.38 101.7 60.42 164.87
1A7M (563,919) 12.91 18.45 14.33 28.92 7.03 15.43 24.42 91.76 59.67 155.41
2AQ5 (577,821) 23.87 29.34 32.24 63.57 8.99 15.84 56.1 163.71 123.18 273.35
1F6W (574,686) 27.19 32.99 43.43 87.07 8.59 15.07 51.1 164.07 132.92 300.13
1C4K (573,111) 39.48 45.17 60.23 120.82 8.33 15.31 89.51 275.1 201.01 457.31

Fig. 5. The CPU time speedup S p produced by our hybrid PBE solver using the data of Table 4.

that the modification we made on SDPB did not affect the convergence rate of SDPB but accelerated the calculation of �
and pk significantly.

Fig. 5 displays the CPU time speedup S p as a function of the protein ordering index. Here S p was calculated as the ratio
of the CPU times spent by SDPB and our new hybrid solver according to the data of Table 4. The ordering indices were set
in Table 3, in which we also listed the number of mesh points within �7 and its percentage ρ of the total number of mesh
points of domain �. From this figure we can see that the speedup S p varied with the percentage ρ . It was reduced from
3.74 to 2.2 for the total CPU time when ρ was increased from 7.5% to 14.2%. In these tests, we used the same parameter
values to construct a uniform mesh of the region � \ D for each protein for simplicity of implementation, causing the
increment of ρ when the size of region �7 became larger for a larger protein.

Furthermore, a large amount of memory locations was saved clearly by the new program package. For example, in the
case of 2LZX, about 1 GB was saved by only counting the mesh data storage. Hence, our hybrid PBE solver not only speeds
up the numerical solution of PBE but also can be applied to a larger biomolecule in a larger solvent region than SDPB.

6.4. Electrostatic solvation free energy calculation

One important application of PBE is to predict the electrostatic solvation free energy of a biomolecule. According to the
solution decomposition (3), we can estimate the electrostatic solvation energy E by the formula

E = N A

4184
· kB T

2

np∑
z j

(
�(r j) + �̃(r j)

)
in kilocalorie per mole (kcal/mol). (25)
j=1

648 J. Ying, D. Xie / Journal of Computational Physics 298 (2015) 636–651
Fig. 6. Solvation free energies calculated by our hybrid PBE solver. Here the numbers on the x-axis are the numbers of mesh nodes used for calculation.

Fig. 7. A comparison of the Gaussian surface with the solvent-accessible surface (SAS) in Plot (b) and the solvent-excluded surface (SES) in Plot (c) for the
protein with the PDB ID 2LZX. Here, the triangle meshes indicate the Gaussian surface, and the solid lines of Plot (a) represent a molecular structure of the
protein.

In calculation, the numerical solutions �h and �̃h are found from solving (5) and (6) to obtain an approximation Eh of E
based on a mesh �h of �. A convergent and numerically stable PBE solver is expected to yield a sequence of Eh that may
vary around E but in a small range as h → 0.

To study the numerical behavior of our new hybrid PBE solver, we constructed five different meshes for each of the four
selected proteins considered in the previous subsection. The numbers of mesh nodes of these five meshes are displayed in
Fig. 6 as the labeling numbers of the x-axis for each protein. They have been arranged in the increasing ordering from about
75,000 to 1,384,000. Each new mesh was constructed by adding new mesh nodes/tetrahedra to the current mesh, and the
triangular surface mesh of the interface � was kept without any change. Here the triangular surface mesh was generated
from our hybrid program with enough mesh nodes as a good approximation of �. We calculated the values of Eh using the
hybrid PBE solver and plotted them in Fig. 6.

From Fig. 6 it can be seen that Eh varied in a small range toward a limit as the number of mesh nodes was increased,
indicating a convergence tendency of our hybrid PBE solver. These test results also well demonstrate the numerical stability
of our hybrid PBE solver.

Furthermore, in Table 5, we compared the electrostatic solvation free energies calculated by using the Gaussian surface
with the ones by using two other commonly-used molecular surfaces — the solvent-accessible surface (SAS) and solvent-
excluded surface (SES) for 12 proteins. In these tests, the SAS and SES were generated by a free software program called
EDTSurf [28]. A comparison of these three different surfaces was given in Fig. 7 for the protein represented in the PDB ID
2LZX, showing that the shapes of these three surfaces are nearly similar but both SAS and SES are more bumpy than the
Gaussian surface. Since the surface triangulations of SAS and SES generated from EDTSurf had much more mesh points
than the surface triangulations of the Gaussian surface from GAMer, we used m = 2 and n = 3 for the tests of using SAS
and SES while retaining m = 3 and n = 4 for the case of using Gaussian surface. From Table 5 it can be seen that the

J. Ying, D. Xie / Journal of Computational Physics 298 (2015) 636–651 649
Fig. 8. A comparison of electrostatic solvation free energies calculated by our hybrid PBE solver using the interface � defined by SAS with that by SES for
protein (2LZX) on different meshes. Here numbers on the x-axis are the numbers of mesh nodes.

Fig. 9. A comparison of the PBE solution u calculated by our hybrid PBE solver on a coarse mesh with 75,042 mesh nodes with that on a fine mesh with
1,113,438 mesh nodes on a molecular surface of the protein with PDB ID 2LZX. (For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)

free energy values generated by using SAS and Gaussian surface were close due to the small differences between the SAS
and the Gaussian surface (see Plot (b) of Fig. 7). Because of a significant difference between SES and SAS (or the Gaussian
surface), as shown in Plot (c) of Fig. 7, it was unsurprised to see that there existed big differences between the solvation
free energies by SES and SAS.

Besides, to show the convergence behavior of our new hybrid solver in the case of using SAS and SES, we constructed
two sets of tetrahedra meshes of �7 by Tetgen [29], respectively, for the protein with PDB ID 2LZX. Each set consisted
of five meshes. The solvation free energies were then calculated by our hybrid PBE solver, and reported in Fig. 8. Here the
number of mesh nodes of each mesh was labelled on the x-axis. In spite of the bumpy surfaces of SAS and SES, the solvation
free energies were found to vary stably, in a small range from −213 to −211 for the case of SAS and −360 to −356 for the
case of SES.

Finally, in Fig. 9, we compared the PBE numerical solution uh calculated by using the coarsest mesh with that by the
finest mesh for the protein with PDB ID 2LZX. The values of uh were displayed on the molecular surface in different colors.
From this plot we can see that some values of uh were changed significantly (as marked out in two yellow dashed squares)
due to the mesh being refined. This indicates that solving PBE in a higher accuracy on a larger mesh may be critical for
some applications, from which we may discover some new areas of the molecular surface on which the PBE solution u
varies intensively.

650 J. Ying, D. Xie / Journal of Computational Physics 298 (2015) 636–651
Table 5
Electrostatic solvation free energies E calculated by our hybrid PBE solver using the interface � defined by the Gaussian surface, the solvent-accessible sur-
face, or the solvent-excluded surface. Here, N�7 and N� are the numbers of mesh points within the central box �7 and the whole domain �, respectively,
and E is in units [kcal/mol].

Protein
PDB ID

Number
of atoms

Gaussian surface Solvent-accessible surface Solvent-excluded surface

E N�7 N� E N�7 N� E N�7 N�

2LZX 488 −214.872 39,896 535,400 −211.57 33,598 97,606 −355.918 38,349 102,357
1AJJ 513 −312.754 42,817 538,321 −328.148 37,465 101,473 −598.918 44,624 108,632
1FXD 811 −1332.21 45,345 540,849 −1323.75 51,679 115,687 −1741.69 61,977 125,985
1HPT 852 −120.527 47,716 543,220 −126.853 54,672 118,680 −419.945 66,331 130,339
4PTI 892 −330.939 45,825 541,329 −339.317 53,049 117,057 −648.255 66,752 130,760
1SVR 1433 −287.214 54,666 550,170 −299.047 78,803 142,811 −810.147 91,109 155,117
1A63 2065 −479.341 62,506 558,010 −507.616 113,817 177,825 −1245.5 132,977 196,985
1CID 2783 −312.622 62,870 558,374 −333.671 125,473 189,481 −1038.81 157,081 221,089
1A7M 2803 −468.621 68,415 563,919 −500.275 132,500 196,508 −1117.43 160,942 224,950
2AQ5 6024 −905.338 82,317 577,821 −986.396 229,570 293,578 −2540.78 175,222 239,230
1F6W 8243 −946.924 79,182 574,686 −1040.58 240,096 304,104 −2944.56 217,372 281,380
1C4K 11,439 −3213.46 77,607 573,111 −3293.37 200,296 264,304 −6292.98 260,303 324,311

Acknowledgements

This work was partially supported by the National Science Foundation, USA, through grant DMS-1226259, and the UWM
Research Growth Initiative. The authors appreciated the anonymous reviewers’ valuable comments.

References

[1] B. Honig, A. Nicholls, Classical electrostatics in biology and chemistry, Science 268 (1995) 1144–1149.
[2] M. Neves-Petersen, S. Petersen, Protein electrostatics: a review of the equations and methods used to model electrostatic equations in biomolecules —

applications in biotechnology, Biotechnol. Annu. Rev. 9 (2003) 315–395.
[3] C.L. Vizcarra, S.L. Mayo, Electrostatics in computational protein design, Curr. Opin. Chem. Biol. 9 (2005) 622–626.
[4] P. Ren, J. Chun, D.G. Thomas, M.J. Schnieders, M. Marucho, J. Zhang, N.A. Baker, Biomolecular electrostatics and solvation: a computational perspective,

Q. Rev. Biophys. 45 (04) (2012) 427–491.
[5] F. Fogolari, A. Brigo, H. Molinari, The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology, J. Mol. Recognit. 15 (6)

(2002) 377–392.
[6] B. Lu, Y. Zhou, M. Holst, J. McCammon, Recent progress in numerical methods for the Poisson–Boltzmann equation in biophysical applications, Commun.

Comput. Phys. 3 (5) (2008) 973–1009.
[7] L. Xiao, C. Wang, R. Luo, Recent progress in adapting Poisson–Boltzmann methods to molecular simulations, J. Theor. Comput. Chem. 13 (3) (2014)

1430001 (19 pages).
[8] A.H. Boschitsch, M.O. Fenley, A fast and robust Poisson–Boltzmann solver based on adaptive Cartesian grids, J. Chem. Theory Comput. 7 (5) (2011)

1524–1540.
[9] D. Chen, Z. Chen, C. Chen, W. Geng, G. Wei, MIBPB: a software package for electrostatic analysis, J. Comput. Chem. 32 (4) (2011) 756–770.

[10] N.A. Baker, D. Sept, S. Joseph, M. Holst, J.A. McCammon, Electrostatics of nanosystems: application to microtubules and the ribosome, Proc. Natl. Acad.
Sci. USA 98 (18) (2001) 10037–10041.

[11] B. Lu, X. Cheng, J. Andrew McCammon, “New-version-fast-multipole-method” accelerated electrostatic calculations in biomolecular systems, J. Comput.
Phys. 226 (2) (2007) 1348–1366.

[12] W. Im, D. Beglov, B. Roux, Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poisson–Bolztmann equation,
Comput. Phys. Commun. 111 (1998) 59–75.

[13] D. Xie, New solution decomposition and minimization schemes for Poisson–Boltzmann equation in calculation of biomolecular electrostatics, J. Comput.
Phys. 275 (2014) 294–309.

[14] W. Rocchia, E. Alexov, B. Honig, Extending the applicability of the nonlinear Poisson–Boltzmann equation: multiple dielectric constants and multivalent
ions, J. Phys. Chem. B 105 (2001) 6507–6514.

[15] S. Jo, M. Vargyas, J. Vasko-Szedlar, B. Roux, W. Im, PBEQ-solver for online visualization of electrostatic potential of biomolecules, Nucleic Acids Res.
36 (suppl. 2) (2008) W270–W275.

[16] M.E. Davis, J.D. Madura, B.A. Luty, J.A. McCammon, Electrostatics and diffusion of molecules in solution: simulations with the University of Houston
Browian dynamics program, Comput. Phys. Commun. 62 (1991) 187–197.

[17] Y. Jiang, J. Ying, D. Xie, A Poisson–Boltzmann equation test model for protein in spherical solute region and its applications, Mol. Based Math. Biol. 2
(2014) 86–97, open Access.

[18] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev. 34 (4) (1992) 581–613.
[19] J. Xu, J. Zou, Some nonoverlapping domain decomposition methods, SIAM Rev. 40 (4) (1998) 857–914.
[20] Z. Yu, M. Holst, Y. Cheng, J. McCammon, Feature-preserving adaptive mesh generation for molecular shape modeling and simulation, J. Mol. Graph.

Model. 26 (8) (2008) 1370–1380.
[21] S. Balay, J. Brown, K. Buschelman, W. Gropp, D. Kaushik, M. Knepley, L. McInnes, B. Smith, H. Zhang, PETSc Web page, http://www.mcs.anl.gov/petsc,

2012.
[22] D. Xie, J. Li, A new analysis of electrostatic free energy minimization and Poisson–Boltzmann equation for protein in ionic solvent, Nonlinear Anal.,

Real World Appl. 21 (2015) 185–196.
[23] J. Li, D. Xie, A new linear Poisson–Boltzmann equation and finite element solver by solution decomposition approach, Commun. Math. Sci. 13 (2)

(2015) 315–325.
[24] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003.
[25] T. Dolinsky, J. Nielsen, J. McCammon, N. Baker, PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations, Nucleic

Acids Res. 32 (suppl. 2) (2004) W665.

http://refhub.elsevier.com/S0021-9991(15)00402-7/bib686F6E69673935s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib706574657273656E32303033s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib706574657273656E32303033s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib56697A636172726132303035s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib72656E3230313262696F6D6F6C6563756C6172s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib72656E3230313262696F6D6F6C6563756C6172s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib666F676F6C61726932303032706F6973736F6Es1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib666F676F6C61726932303032706F6973736F6Es1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib4D6343616D6D6F6E50424572656976657732303038s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib4D6343616D6D6F6E50424572656976657732303038s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib7869616F32303134726563656E74s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib7869616F32303134726563656E74s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib626F73636869747363683230313166617374s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib626F73636869747363683230313166617374s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib6368656E323031316D69627062s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib62616B65723031s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib62616B65723031s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib6C75323030376E6577s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib6C75323030376E6577s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib5042455131393938s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib5042455131393938s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib78696550424532303133s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib78696550424532303133s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib64656C7068693031s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib64656C7068693031s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib6A6F3230303870626571s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib6A6F3230303870626571s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib756862643931s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib756862643931s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib59695F58696532303134s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib59695F58696532303134s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib4A5F58755F737562737061636531393932s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib787531393938736F6D65s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib79753230303866656174757265s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib79753230303866656174757265s1
http://www.mcs.anl.gov/petsc
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib5869654C6932303134s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib5869654C6932303134s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib4C692D58696532303134s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib4C692D58696532303134s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib7361616432303033697465726174697665s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib646F6C696E736B793230303470646232707172s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib646F6C696E736B793230303470646232707172s1

J. Ying, D. Xie / Journal of Computational Physics 298 (2015) 636–651 651
[26] J. Hoffman, J. Jansson, A. Logg, G. Wells, et al., Dolfin, URL: http://www.fenics.org/dolfin.
[27] U. Trottenberg, C.W. Oosterlee, A. Schuller, Multigrid, Academic Press, 2000.
[28] D. Xu, Y. Zhang, Generating triangulated macromolecular surfaces by Euclidean distance transform, PLoS ONE 4 (12) (2009) e8140.
[29] H. Si, TetGen, a Delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Softw. 41 (2) (2015) 11:1–11:36.

http://www.fenics.org/dolfin
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib74726F7474656E62657267323030306D756C746967726964s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib78753230303967656E65726174696E67s1
http://refhub.elsevier.com/S0021-9991(15)00402-7/bib73693230313574657467656Es1

	A new ﬁnite element and ﬁnite difference hybrid method for computing electrostatics of ionic solvated biomolecule
	1 Introduction
	2 PBE and solution decomposition
	3 Finite element PBE solver
	4 An overlapped box iterative method
	5 The ﬁnite element and ﬁnite difference hybrid PBE solver
	5.1 Domain partition and mesh generation scheme and program
	5.2 The ﬁnite element solver
	5.3 The ﬁnite difference solver
	5.4 New hybrid PBE solver

	6 Numerical tests
	6.1 Validation tests for the overlapped box iterative method
	6.2 Validation tests for the hybrid PBE solver
	6.3 Performance for protein cases
	6.4 Electrostatic solvation free energy calculation

	Acknowledgements
	References

