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SUMMARY

The nonlinear multigrid is an efficient algorithm for solving the system of nonlinear equations
arising from the numerical discretization of nonlinear elliptic boundary problems [7],[9]. In this
paper, we present a new nonlinear multigrid analysis as an extension of the linear multigrid
theory presented by Bramble, et al. in [5], [6], and [17]. In particular, we prove the convergence
of the nonlinear V-cycle method for a class of mildly nonlinear second order elliptic boundary
value problems which do not have full elliptic regularity.

INTRODUCTION

Multigrid methods have been used extensively to solve linear systems of equations which arise
in the numerical discretization of linear partial differential equations. We call such multigrid
methods “linear multigrid methods” in this paper. With the development of the linear multigrid
methods, the multigrid technique also has been applied to the numerical solution of nonlinear
boundary value problems. Two important algorithms have been proposed so far. One is Newton-
multigrid iteration, in which a linear multigrid method is used to solve the linear system that
arises from a Newton iterative method [4]. The other one is the nonlinear multigrid method,
which is an extension of the linear multigrid method to the nonlinear case [9]. In literature, it
is also referred to as the Full Approximation Scheme (FAS) by Brandt in [7]. The convergence
of the nonlinear multigrid method was first studied by Hackbusch in [9] and later by Reusken
n [11] and [12]. Hackbusch’s nonlinear multigrid theory is based on his linear multigrid theory,
while Reusken’s analysis is based on the linear multigrid analysis in [3].

Recently, Bramble, et al. have established a new linear multigrid theory [5] [6] [17] that has
generalized the work in [3] and [9] in another way. Using this new multigrid theory, they have
proved the convergence of linear multigrid methods with non-nested spaces or non-inherited
quadratic forms, even with weak or no regularity assumptions. The purpose of this paper is to
extend this new linear multigrid theory to the nonlinear case.

In this paper, we present the framework of our new multigrid theory. In particular, we prove
a basic convergence theorem for the nonlinear V-cycle scheme based on two abstract conditions,
which are referred to as the “smoothing assumption” and the “approximation assumption”.

*This work was supported in part by the National Science Foundation through award number DMS-9105437
at the University of Houston.



We then apply it to show the convergence of the nonlinear V-cycle method with the damped-
Jacobi-Newton smoother for a class of mildly nonlinear second order elliptic boundary value
problems which do not have full elliptic regularity. Moreover, our new approach makes it possible
to analyze the nonlinear multigrid method in more complicated cases, such as, non-nested
spaces, non-inherited quadratic forms, numerical integration, and with weak or no regularity
assumptions. We have shown the convergence of the nonlinear V-cycle method disturbed by
numerical quadratures in [14]. We intend to study other cases in subsequent work.

In comparison to the linear multigrid method, the nonlinear multigrid method has two ad-
ditional parameters. In practice, their choice is an important issue. We investigate this issue
numerically through a model problem in this paper. We note that this model problem, in part,
aids in the understanding of the solution procedures used in the code UHBD [10].

The outline of the remainder of the paper is as follows. In Section 2, we introduce the basic
idea of our nonlinear multigrid analysis. In Section 3, we present a general convergence theorem
of the nonlinear V-cycle method based on two abstract assumptions, the smoothing assumption
and the approximation assumption. In Section 4, we apply the theory of Section 3 to show the
convergence of the nonlinear multigrid method for a class of mildly nonlinear elliptic boundary
value problems. In Section 5, we present numerical experiments with the nonlinear multigrid
method focusing on its two auxiliary parameters.

THE NONLINEAR MULTIGRID METHOD

We consider a nonlinear variational problem coming from a nonlinear elliptic boundary value
problem with domain € as follows: Find v € H , such that
a(u,v) =0 Yv e H, (1)

where H = H() is an abstract Hilbert space with inner product (-,-), and a(-,-) is nonlinear
only with respect to the first variable.
We assume that a(u,v) is H-bounded, that is, there exists a constant C', such that

|a(u, v)] < O+ [lulDlloll - Vu,0 € H,

where ||u|| = 1/(u,u). Using the Riesz representation theorem [1], we then write (1) as

where g : H — H is the nonlinear operator such that
a(u,v) = (g(u),v) Yo e H.

We make another assumption on ¢ below:

Al) g is Frechet-differentiable on H, and the derivative of g at u, denoted by Dg(u), is a
symmetric, positive definite, bounded linear operator from H to ilself.

From A1) it follows that Equation (2) has the unique solution u* [16].



Let 4 C H be a neighborhood of u* and F be the image of & under g. Since ¢ satisfies
the above assumptions, the implicit function theorem [1] implies that ¢ : & — F is a homeo-

morphism. Thus, for any f € F, there exists unique u € U, such that the following equation
holds:

g(u) = f. (3)
Hence, we may consider equation (3) in the following.
Let u be an approximate solution of (3). The update u™* of u”'? is defined by

new old

ut =u g,
with ¢ being a correction term satisfying the following correction equation of 1!
)= f. (4)

If ¢ is an exact solution of (4), then a direct method for solving (3) is derived. But solving (4)
is as difficult as solving (3), so we often construct an approximate operator R of ¢! to simplify
the computational work.

glqg+u

In the linear case, the correction equation (4) is often written as

9(q) = f — g(u'), (5)

and the term f — g(u°'?) is often referred to as the residual of u”'®. Clearly, if the operator R is
defined by a linear iterative algorithm, then the linear iteration can be written as follows:

u = w4 RIS~ gu) (6)

A key factor in the new linear multigrid theory in [5], [6] and [17] is the introduction of the
operator R that characterizes the linear multigrid method, so the linear multigrid method can
be expressed in form (6).

However, when ¢ is nonlinear, the correction equation (4) cannot be written as (5). Noting
the important role of the residual term in the context of the multigrid method, we introduce an
“approximate” correction equation of (4) as follows:

g(sg+u) = f+s[f — g(u”)], (7)

where f = g(t), s is a given positive number and @ a given vector. Both s and @ are extra
parameters, compared to the linear multigrid method, and they are chosen so that ¢ approximates
the solution ¢ of (4) in some sense. Hence, the nonlinear multigrid method can be expressed by

u"" = w4 [R(] 4 s[f = g(u™)]) — ] s, (8)

provided that the operator R is defined by the nonlinear multigrid iterative algorithm for solving
g(u) = f. This is the main idea of our nonlinear multigrid analysis.

In the linear case, we can simply set @ = f = 0 and s = 1. Thus, (8) reduces to (6). In
this sense, the nonlinear multigrid method defined by (8) is an extension of the linear multigrid
method.

To define a nonlinear multigrid operator, we need some further notation given below.



Let H be a finite element space with grid size h. Suppose that we have subspaces M} with
inner product (-,-); satisfying

MiycM,C---C M =H.
Set ¢; = ¢, and define the nonlinear operator ¢, : My — M}, by
(ge(u),v)p = a(u,v), Yoe My, k=1,2,---,1—1. (9)
We define a projector Qp : My — My by
(Qru,v)p = (Uy V) g1, Yo € M.

Obviously, gi satisfies Assumption A1), so there exist U and Fj, such that g is a homeo-
morphism between them. Hence, for f; € Fj, we may consider the following equation

gr(u) = fr, (10)

and its solution is denoted by uj.
The smoothing process on M}, is denoted by the operator

St (3 fr) + My — M (11)

satisfying uy = S (uy; fr). We assume that S} is Frechet-differentiable on M. Here m indicates
that S7* may be defined by m steps of a nonlinear relaxation iteration (e.g., the damped-Jacobi-
Newton or the Gauss-Seidel-Newton [13]). Without confusion, we denote S7*(u; fi) as S;"(u).

Denote =, = {( | ( = fk + sk[fe — gr(ur)] for all fr, € My}. Here tig, s and uy are fixed, and
fk = gr(t). We define the nonlinear multigrid operator By on = inductively in the following
algorithm:

Algorithm 1 Given positive integers my, mq and p.

0) B1 = gl_l N

For each (x € =) with k > 1, there exists an fr € My such that (, = fr + se[fr — gr(ug)].
We define Bi(Cx) in terms of By_1 as follows:

1) Pre-smoothing : vy = S (uk; fx).

2) Coarse grid correction: vy = vy + r — uk—17
Sk—1
where q, is defined by (12).
¢ = Gi-1 + [Bk—l(fk—1 + e [frot — gr-1(qia)]) — ﬂk_l} /S5_1, (12)

fori=1,2,---.p. Here qo = tp_y, and

froor = fror + Sh—1Qu=1[fr — gr(v1)]. (13)

3) Post-smoothing :
Bi(Cr) = su[S5" (v2s fi) — we] + . (14)



We note that Algorithm 1 using up = up = 0, sp = 1, and p = 1 reduces to the linear
multigrid algorithm described in [5], [6] and [17] provided that g is linear.

THE CONVERGENCE ANALYSIS

In our nonlinear multigrid analysis, we need a new inner product by(u,v) defined by
bp(u,v) = (Dgr(up)u,v)g, VYu,v € M.

From Assumption A1) we see that by(u,v) is symmetric, positive definite.
With this new inner product, we define an orthogonal operator P : My, 1 — My by

bk(Pku,v) = bk_H(u,v) Yo € Mk
From the definitions of ), and P, an important equality follows:
Qk—ngk(u};) = ng—l(u};_l)Pk—lv k= 1727"'7l' (15)

Using the nonlinear multigrid operator By, we define the nonlinear multigrid method as
follows:

wl™ = p(ul) G =0,1,2,-, (16)
with the operator ¢y, : M — M} being defined by

nlur) = up + [Bel i+ sulfe — g(w)]) — i) /5. (17)
Noting that gx(tx) = fr and Sy (T fk) = wuy for 1 = 1,2, we can show by induction that
Bi(fr) = . (18)

Thus, the scheme (16) is consistent in the sense that u} is a fixed point of the sequence {u7}.
A fundamental recurrence relation with respect to the nonlinear multigrid operators By is
given in the following theorem.

Theorem 1 The fundamental recurrence relation for the nonlinear multigrid operators By,

defined by Algorithm 1, is

I — DBy(fi)Dgr(up) = DSP*(up){I —[I = (I = DBi—i(fue1) Dgii (in—r))’] (19)
Dgi—1(tig—1) ™" Dgr—r(uj_y ) Peoa } DS (u),

where k= 1,2,--- 1, and u} is a solution of gip(ug) = fr on M.

Proof. Using (14), we immediately get the following equality:

it (Bl sl an(on)]) = i) fox = S22 (57 () + LI e qan)

Sk—1



The expression (13) of fr_1(u) follows
Fr-1(uf) = frea. (21)
Then, by the induction and (18), we can show that
qi(uy) = gy, for 1 =0,1,2,--- p. (22)

Thus, differentiating with respect to ug at uj on both sides of the equality (20), and using (22),
we get .
I'= DBi(fr) Dgr(uy) = DS (up)[DSE™ (ui) + Dap(uz)/se-1]. (23)
Here the operations are based on the calculus in Hilbert space [1].
Using (21) and (22), we see that

D;(u}) = [T = DBy (fre1) Dgr (tr-1)] Dgi—1 (u}) + DBi_y (fio1) D fror (u).
In addition, with (13) and (15),
Dfr-1(up) = —sp-1Qr—1Dgr(uy) DSY (uy,) = —sp—1Dgr—1(uj_y) Pe—1 DSP" (uy).  (24)

Hence,

Day(ui) = {1 + [I = DBys(fr-1) Do (itr-1)] + - - (25)
+ [I-— DBk—l(fk—l){)gk—l(ﬂk—l)]p_l}DBk—l(]Ek—l)ka—l(u};)
= [[ - ([ - DBk—l(fk—l)DNgk—l(ﬁk—l))p]ng—l(ﬁk—l)_lka—l(U};)
= _Sk—l[] - ([ - DBk—l(fk—1)ng—1(ﬂk—1))p]ng—1(ﬁk—1)_1ng—1(Uz_l)Pk—1DS?(UZ)-

Therefore, the equality (19) follows by substituting (25) into (23). O

The schemes (16) with p = 1 and 2 are often used in practice. We refer to them as the
V-cycle and the W-eyele methods, respectively. In this paper, we only consider the convergence
of the nonlinear V-cycle method. The discussion of the other cases is similar.

Setting p = 1 in (19), we immediately get a fundamental recursion relation of the V-cyele:

I = DBy(fr) Dgr(uj)
= DS ()l = DBy (frm1) Dgi (up_y) Peoa ] DS (). (26)
From the definition of by(-,-), it follows that the inequality by(u,w) < by_i(u,u) may not hold
for some u € My_y. Thus, operator I — DBy(fr)Dgr(u;) may be negative with respect to the

inner product by(-,-). To show the convergence of the V-cycle, it is sufficient to prove that there
exists a constant ny in [0, 1), independent of hy, such that

(7 — DBy(fi) D), )] < mibuu, ), Y € M. (27)
The following two basic assumptions are made to show (27):

Da(uf)ul?
bk (1 = Peci)u,u)] < Cé(%
I Dgs(uiyulli

Ak

Vbp(u,u)' =P, Yu € My, (28)

< Csbi([T — DS;(U};)]U,U), Yu € My, (29)



where Ay is the largest eigenvalue of Dgy(u3), and 0 < 3 < 1. (28) and (29) are referred to as
“the regularity and approximation assumption” and “the smoothing assumption”, respectively.
The following theorem provides an estimation for a value of the parameter n;.

Theorem 2 Let By, be defined by Algorithm 1 with p =1 and m; = mg = m. Assume that
a) Assumptions (28) and (29) hold.

b) The smoothing process ST is formed by m steps of the nonlinear relaxation method Sk,
such that DSy (uy) is symmetric and non-negative with respect to inner product by(-,-), and

DS () = [DSk(up)]™.

¢) The auxiliary vector ty = uj.
Then there exist two constants, independent of hy,

k
M((k) 2%
Nk, mﬁ—l—./\/l(k) ana 1,2 ( + (Qm)ﬁ )

such that
Me.2bi (1, 1) < bp([I — DBy(fi) Dgr(ui)]u, u) < npabp(u,u),  Yu € M. (30)
Furthermore, if m is sufficiently large, then the estimate (27) holds with
i = max{|neal, [me2l} < 1.

Here M(k) is a positive constant related to Cg,Cs,m, 3 and k. [ts detail expression can be
found in Theorem 1 of [5].

Proof. With bi(DS"(uf)u,v) = bp(u, DSJ*(uz)v), (26) and the definition of Py_q, we have

bir([1 — DBk(fk)ngN(UZ)]uau) = by (1 — Pr—1) DS (ug)u, DSY™ (up)u)
+op—1 ([ = D By—1(fr—1) Dgr-1(uz_y )] Pre1 DSF (up)u, Pooa DSY (uy)u).

We now show (30) by induction on k. For k = 1, we have B, = ¢g;' and @; = u}. Thus,
[b1([7 = DBy (f1) Dgs (u;)]u, )| = 0.
Suppose (30) holds for k — 1. We first prove the right hand side of (30). By induction,

bu([1 — DBi(fi) Dai(uf)]u, )

(I = Prer ) DSE" (g Juy DS (up)ue) + mr—1,1b-1 (Prmy DSE (g Juy Py DSE (uip)u)
(I = Prer ) DSE" (g Juy DS (up)u) + mp—r 1 bk ( Py DS (g )u, DS (up)u)

(1= it )bi((1 — Py ) DS (wf )ty DSF (i )u) + s by (DSF (), DST (w7 ).

IIVAN



By (28), (29) and the generalized arithmetic mean inequality,

br((1 = Per) DS} (i )u, DSY" (up)u)

[ Dgi (u*) DSE (ug)ullk
Ak

[ Dgi(ui) DSE (ug)ullk
Ak

__5
ClBriCsbi((I — DSi(up)) DSE™ (upyu, u) + (1= B)ry, =" br( DS (uy)u, DS (uy )u)]

IN

Ca( ) bk( DS (uiJu, DS (ug)u)' =

+ (1= B)r TP bu( DS (up ), DSY (uj)u)]

IN

Cg[ﬁrk

IN

< RO S bul(1 = DS () + (1= By b DS} (i, DS )]
Combining the above inequalities gives
belll — DBy (o) Dgi ) )
< (1= ne—10)C3(0 — 5)7“;% + Mr—1,1]bp(DSE™ (u Ju, )
+(1 — 77k_1,1)0505%7“kbk([[ — DS (ui)]u, u).

Now, with the same proof as that in the proof of Theorem 1 of [5], we have that

__B_
(1— 77k—1,1)05(1 — B, T 4 e < Mpa

and 5
(1 - 77k—1,1)0505%7“k < Nk1-

This completes the proof of the right hand side of (30).
We next prove the left hand side of (30). From the spectral properties of DSk (uj), it follows

Combining (31) and assumptions (28) and (29) gives
—br((I' = Prey) DS (w ), DS} (u Ju)

C3C5 s 8 o s
< Gy [b((1 = DSZ™ () yu, )| b DS (ui Ju, DST (g Jur)
C2C¢ o200
= (an)i (i (w, w) — bi( DSy (uj)u, DS (up)u)]” by(u, u)' = < (an )Sﬁbk@,u),

where we have used the following inequality (which is similar to (3.16) in [5]):
1
be([1 = DS, (00)) DSE™ () ) < b1 = DSE (0, ).

2o \* . . .
Let 7, = (1 + (2’;)%) . By the induction assumption, we have

b1 ([T = DBy (frot) Dgrmr (wioy )y w) > (1= 7o) by (0, w),
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which can be written as

—b—1([I = DBy ( fr1) Dgpor (wj_y)Ju,u) < =iy b1 (u, ).

Then, from the above inequalities, we obtain

—be([T = DBy(fx) Dgp(ui)]u, u)
= —be((I = Pe1) DSE (up)u, DSY (up)u)

—bp1 ([T = DBy (fae1) Dot (Wi )| Pecy DST (i )u, Pooy DSP (uf)u)
< =bk((I = Pee ) DS (up)u, DSE (u)u) — np—12bk(Pomy DS (g )u, DS (ug)u)
= —Thabe((1 = Pocy) DS (i Ju, DST (g )u) — me—r 2be(DSY! (g Ju, DSY! (u)u)
( C208

Tk—lw + Th1 — 1) by(u,u) = (15 — 1)bi(u, u) = —np2bi(u, u).

The proof of the left hand side of (30) is completed. O
With Theorem 2, we now can obtain a convergence theorem of the nonlinear V-cycle.

Theorem 3 Let {ui} be a sequence of iterative values of the nonlinear multigrid V-cycle algo-
rithm, and let uj be a solution of equation gr(u) = fr. If the assumptions in Theorem 2 hold,
and m is sufficiently large, then there exists a constant oy with 0 < o < 1, independent of grid
size hy, and a neighborhood O(u}, €x) of uy, such that all wj € O(u}, ex),

™ = willon < onlluf, = willon 5 =0,1,2,---,

when the initial guess u$) € O(u}, e). Here ||« ||px, the induced norm from by(-,-), is defined by
[l s = (e, ).

Proof. Clearly, from Theorem 2 it follows that

|bx([1 — D Byo( fi) Dgi(u)]u, u)| "
bi(u, ) -

IT — DBy(fr) Dgr(ui)||sx = sup

For a given positive number 4, satisfying oy = 0 +nr < 1, the differentiability of ¢y at u} gives
that there exists a neighborhood of u}, O(us, €x) = {ug : ||ur — ui||pr < €k}, such that

[0k (ur) — Prluy) — Dr(up)(ur — wp)llop < Okl — ugllsr,

where uy € O(uj, €x), € is a positive number, and ¢, is defined in (17). Thus
[k () — uilloe = lleow(ue) — Lr(ui)llon
< |[9n(ur) = Pr(uz) — Deow(up)(ue = wp)|los + | D (up) (s — ui)llon
< (0 + | DY (up) o) [k — uillos < orllue — uillo s |
Hence, by induction, for any u{ € O(u}, €x), we can easily show that uj € O(uj, e;), and

Juft' = willon < oullug — wille G =10,1,2,--.



In a nonlinear multigrid algorithm, the following equations have been used on My for k < [:

gk (v) = fi + sl fe — gr(uf)], (32)

and
91 () = i + 58 Qi frar — grgr (1)), (33)

where ui is the j-th iterate of the nonlinear multigrid method, and vy is the iterative value after
the pre-smoothing step of the nonlinear multigrid algorithm. Hence, to ensure that a nonlinear
multigrid algorithm is well-defined, we should show that the solution of either (32) or (33) lies
in the neighborhood O(u}, ¢x) given in Theorem 3.

Theorem 4 Let O(uj, €) be a neighborhood of uy. Assume that
(a) There exists a constant C such that for all u € My ||Dg;" (u)|[px < C.
(b) The auxiliary vector Gy satisfies ty, € O(uj, €x/2).

k , when r £ 0, otherwise, s, = 0. Here

€
2Cr

(¢) The auxiliary value sy satisfies sy <

r = max{|[fr — ge(w) bk, |QrlFrrr — g1 ()]s}

, and vy is the iterative value after the pre-smoothing.

Then, the solution of either (32) or (33) lies in the neighborhood O(uj, €y).

Proof. We only show that the solution of (32) lies in O(uj, ex). The proof for (33) is similar.
Set rr. = fr — gr(ui), and w = gi ' (fr + spre). W rp =0, then w = @y € O(uf, ex). If rp # 0,
with assumptions (a) to (c), we have

lw = willoe = llgi" (fx + skrx) — villo

g (f + skri) = dillog + | — uf o
gz (x4 sere) = g (Fi)llow + itk — i llok
sll Dgi " () llogllrellon + Nl — willsx
sEClrilloe + || — uplloe < €x/2 + €x/2 = €y,

IN

IAINA

ie. w € O(uj, ex). We complete the proof of Theorem 4. [
AN APPLICATION

In this section, as an application of the theory in Section 3, we consider the convergence of the
nonlinear V-cyele for solving the second order elliptic, mildly nonlinear boundary value problem

_V(avu)+B($vu = (l‘), in €,
{ u =0, on 0f), (34)

where Q is a bounded, Lipschitz, polyhedral domain in R?, a € W'*(Q), o > C, > 0 a.e. on
Q, and f € L*(N).

10



Let Dy B denote the derivative of B(-,-) with respect to the second variable. We make the
following assumptions on Dy B in this section.
A2) DyB(x,u) is continuous in  x R, and there exist constants Cy and Cy such that

0 < 02 S DQB(J?,U) S Cl.

A3) Dy B(x,u) satisfies a Lipschitz condition: there exists a constant [, independent of u
and v, such that
| Dy B(x,u) — DyB(x,v)] < Lju — v, (35)

for all (z,u), (z,v) on a subset of Q x R.
Let H = H}(Q) be the Sobolev space [2]. The weak form of (34) is thus: Find u € H , such
that
a(u,v) = (f,v)re, Yve H (36)

where

alu,v) = /Q[onqu—l—B(x,u)v]dx, and (f,v)r2 = /Qf(:zj)v(:zj)dx (37)

Let My be a set of piecewise linear functions with respect to a quasi-uniform triangulation
Fi on  of size hy in the usual sense [8]. We assume that there is a constant ¢ , independent of
k, such that hy_y < chy, and these triangulations should be nested in the sense that any triangle
in F;_; can be written as a union of triangles of Fj.

The finite element discretization for (36) on each My, is as follows: Find uy € My, such that

a(ukvv) = (va)L27 Vv € My ’ (38)

where k=1,2,--- 1.

Based on Theorem 39.12 in [16], we assume that

A4) Equations (36) and (38) have unique solutions u* and 1y, respectively. For u* € H'*?(Q)
with 8 € (0, 1], there exists a constant ¢, independent of hy, such that

[ — |1 < chf, (39)

where k =1,2,--- .1, and || - ||; is the usual norm in Sobolev space H' [2].

We solve equation (38) by the nonlinear multigrid V-cyele scheme with the smoother ST
defined by m steps of the damped-Jacobi-Newton iteration. To prove its convergence, using
Theorem 3, we only need to verify Assumptions (29) and (28).

We first prove Assumption (29) for the smoother S7* below.

Let {¢;}*, be a natural nodal basis for My, where n;, = dimM,. Apparently, we may
consider the following equation on My: For fr € My, find up € M}, such that

(gk(uk)799y)k = (fkﬁ‘ol/)k? v = 1727' Ty N,

with g being defined by

(gr(ur), v)r = alug, v) = (f,v)r2, Vv € M. (40)

11



Let ui be the j-th iterate of the damped-Jacobi-Newton iteration using a damping parameter
f, expressed as follows:

ult = g + Ri(up) [ fr — g ()],
where the linear operator Ri(u) : My — M, is defined by

a -1
- ‘92 gk ¥i, Pi (Ua%)k% Yo € M.
Ouy.; .

Since S} (u) = u + Rp(u)(fr — gx(u)), and
DSy(uy) =T — Ry(uy) D (uy), (41)

we have

DS{ (uz) = [I = Ri(u) Dy (up)]™ = [DSg(uf)]”

Clearly, DS} (u}) is symmetric, so Assumption b) of Theorem 2 holds. From (41) we see that the
Jacobi-Newton iteration has a similar form as the damped-Jacobi method in [17]. Therefore,
using the same argument as in [17], we can show that Assumption (29) is satisfied by the
damped-Jacobi-Newton iteration.

We next verify Assumption (28). Let ¢ be defined by

(9(u),v) = a(u,v) = (f,v)re, Vve H. (42)
It is easy to show that Dg(w), defined by

(Dg(w)u,v) = / a7 usy v+ DyB(a,w)uv)de, Yvé H,
Q

is symmetric, positive definite on H.
Hence, from (40) it follows that Dg(w) is a symmetric, positive definite operator on M.
Thus, the bilinear form on M, x M

bk(uvv) = (ng(w)uvv)kv \V/U,U € Mkv (43)

is symmetric, positive definite.
For simplicity, we let Ay = Dgi(u}), and define a family of norms as follows:

Ioll7 s = (Afv, v)i, Vv € My,

where r is a positive number. In addition, we note that ||v|lox is equivalent to ||v|[zz and
ol e = llls,-

We now can show that Assumption (28) holds in the following theorem. The proof of this
theorem can be found in [15].

Theorem 5 Let My be the space of continuous piecewise linear functions with respect to a
quasi-uniform triangulation, and let uj, be the solution of equation gr(u) = fr in My. Assume

that (A1) to (A4) hold, and that the solution U of the variational problem
be(U,v) = (F,v)r2, Vve (44)
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Figure 1: A comparison of a nonlinear V-cycle  Figure 2: Dependency of the convergence rate

and a linear V-cycle. Here ---: the linear V- of the nonlinear V-cyele on the auxiliary vector.
cycle method for solving (46) with b =0, +++: Here 4+ + 4 : 0y =0, — U = Qkui’j_l, ——
the nonlinear V-cycle method for solving (46)  — : @ = SP(0), -+ : @ = 0.5, h = 0=,
with a =b=1, and h = 5. and a = b =1 in (46).

is in H'*P(Q) for some 3 € (0,1], and satisfies
[0\l 1+ < Cl[F|| o1 (45)

for some positive constant C, independent of F'. Then, there exists a constant C such that

[ Dgi(wi)ull

=i
) bk(u,u)l_g, Yu € Mk,
Ak

|be((1 — Pr—y)u,u)| < C (

where i, is the largest eigenvalue of Dgy(uj).

NUMERICAL EXPERIMENTS

In this section, we present numerical experiments with the nonlinear multigrid method for
solving the following model problem [10]:

{—<um+uw>+bsmh<au> = finQ=(0,1)x(0,1), (46)

u = 0 on 09,

where a and b are positive numbers. The right hand side term f of (46) is chosen such that
u = sin7xsin my is the solution.
The discretization equation of (46) is defined by the five-point stencil with Ay = 1/2% (1 <

k < ). The smoothing process S}' consists of m steps of the Gauss-Seidel-Newton iteration.
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Figure 3: The relation of the relative residual of the nonlinear V-cycle with parameter s; at the
12th V-cycle iteration. This figure shows that as sj is around 1, the nonlinear V-eyele has an

almost same convergent rate. Here h = 61—4, and ¢ =b=1 in (46).

We set my = my = m for all grid levels and the coarsest grid size hy = % for all of our numerical
examples. Besides, the full-weighting restriction operator @y, [9], was used, and only one step of
the Gauss-Seidel-Newton iteration was applied to get the solution of the equation on the coarsest
grid M;. The initial guess u) = 0 and the relative residual stopping criterion were taken for
all the numerical experiments, which were implemented on a KSRl supercomputer with single
precision, which is equal to the regular double precision.

We compared the performance of the nonlinear V-cyecle with the linear V-cyele method. The
linear V-cycle case was obtained from the nonlinear V-cycle program by setting b = 0 in (46).
Thus, a Poisson equation was solved by the linear V-cycle method. From Figure 1 we see that
the nonlinear multigrid method is as efficient as the linear multigrid method. We checked the
dependency of the convergence rate of the nonlinear multigrid method on its two parameters @
and s;. We used three different values of @ in the experiments.

1) @, = 0 on all grid levels;

2) = S7(0), i.e. Uy is defined by m steps of the Gauss-Seidel-Newton iteration with zero
initial guess. Clearly, by increasing m, we can make @y approach to the exact solution gi(u) = fj
as closely as desired. 4

3) tp = Qpuyy,, where uy}, denotes the iterative value after the pre-smoothing step of the
V-cycle. We call this type of @ Brandt’s choice because it was first used by Brandt in [7].
Figure 2 shows that if @y is properly close to the solution of g, = fi, the convergence rate of
the V-cycle will be almost the same. Otherwise, the nonlinear V-cycle may be divergent. For
example, from this figure we see that the V-cycle with @), = 0.5 was divergent.

For fixed uy = 0, we also made experiments with different values of s;. Figure 3 shows that
it is satisfactory to let s, be around 1.

Finally, we checked the influence of the a and b in (46) on the convergence of the nonlinear
V-cycle method. The numerical results are reported in Tables 1 to 3. Here we used four different

L and m; = my = 1 for all of these numerical experiments. We also used a = 1.0,

ﬁk,h:a
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b = 1.0 and a = 3.0 in Table 1, Table 2 and Table 3, respectively. The notation — in the
tables means that the V-cyele is divergent. From these tables we see that: 1) When 0 < a < 3
and 0 < b < 10, ur = 0 is the simplest choice; 2) Brandt’s choice worked for 0 < a < 6 and
0 < b < 100; and 3) the nonlinear V-cycle with @ = S7*(0) using large m can lead to conver-
gence for a pair of @ and b for which the nonlinear V-cyecle with Brandt’s choice is divergent.

Table 1: The performance of the nonlinear V-cycle as the b in (46) becomes larger.

The Total number of Iterations

b up =0 | up = Qku?j—l U, = S%(O) U, = S%O(O)
10 13 14 13 14
30 40 13 14 13
100 — 12 35 13

Table 2: The performance of the nonlinear V-cycle as the a in (46) becomes larger.

The number of Iterations
a ﬂk =0 ﬂk = Qkui’j_l ﬂk = S%(O) ﬂk = S%O(O)
0.001 14 14 14 14
2.0 13 14 14 14
3.0 32 14 14 15
6.0 — 12 — 30
7.0 — — — 20

Table 3: The performance of the nonlinear V-cycle for solving (46) with large a and b.

The number of Iterations

b ﬂk =0 ﬂk = Qku?j—l ﬂk = S%(O) ﬂk = S%O(O)

0.01 14 14 14 14

1.0 32 14 14 15

20.0 — 12 — 16
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