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The nonlocal dielectric approach has been studied for more than forty years but only 
limited to water solvent until the recent work of Xie et al. (2013) [20]. As the development 
of this recent work, in this paper, a nonlocal modified Poisson–Boltzmann equation 
(NMPBE) is proposed to incorporate nonlocal dielectric effects into the classic Poisson–
Boltzmann equation (PBE) for protein in ionic solvent. The focus of this paper is to present 
an efficient finite element algorithm and a related software package for solving NMPBE. 
Numerical results are reported to validate this new software package and demonstrate its 
high performance for protein molecules. They also show the potential of NMPBE as a better 
predictor of electrostatic solvation and binding free energies than PBE.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The nonlocal dielectric approach started from Dogonadze and Kornyshev’s early investigation around 1970s to reflect 
polarization correlations of water molecules or the spacial-frequency dependence of a dielectric medium in an electrostatic 
continuum model [1–4]. Since then, many studies were done but only limited to the water solvent, and did not involve 
any biomolecule due to lack of effective numerical schemes [5–14]. This situation was changed about ten years ago when 
Hildebrandt et al. reformulated a linear nonlocal dielectric model for protein in water approximately as a system of coupled 
partial differential equations (PDEs) [15], and solved it numerically by a boundary element algorithm [16] and an explicit 
jump immersed interface method [17].

Recently, by different techniques than the ones used by Hildebrandt et al., a typical linear nonlocal dielectric model, 
called the Fourier–Lorentzian nonlocal model, was novelly reformulated as two coupled PDEs, resulting in a fast finite 
element solver [18]. These reformulation techniques were then applied to the construction of a linear nonlocal dielectric 
model for protein in water [19], and a nonlocal Poisson dielectric model for protein (or other biomolecules) in ionic solvent 
[20]. Moreover, an effective solution decomposition scheme was proposed in [20] to solve the nonlocal Poisson dielectric 
model without involving any singularity difficulty. Since this nonlocal Poisson dielectric model depends on a set of ionic 
concentration functions, different selections of ionic concentration functions may lead to different nonlocal dielectric models. 
In this sense, this work has established a general framework for us to develop nonlocal dielectric models and related 
numerical schemes.

The Poisson–Boltzmann equation (PBE) is one widely-used dielectric continuum model for protein in ionic solvent 
[21–27]. It is actually produced from the classic Poisson dielectric model through constructing the ionic concentration 
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functions by the Boltzmann distribution functions [28,29]. Similarly, we can use the Boltzmann distribution functions to 
generate a nonlinear nonlocal dielectric model from the nonlocal Poisson dielectric model. For clarity, such a new model 
will be referred to as a nonlocal modified Poisson–Boltzmann equation (NMPBE) since it not only includes PBE as a special 
case but also can be directly obtained by simply adding nonlocal terms to PBE. Due to the reflection of the spacial-frequency 
dependence of a dielectric medium, NMPBE is expected to improve the quality of PBE in the prediction of electrostatics of 
an ionic solvated protein and in some difficult applications such as rational drug design and ion channel study [30,22,31,32]. 
But, to explore the applications of NMPBE, we need efficient and effective numerical algorithms and software packages for 
solving NMPBE.

NMPBE is turned out to be very difficult and expensive to solve due to its solution singularity caused by point charge 
terms, its strong nonlinearity caused by exponential nonlinear terms, and its nonlocal convolution terms. Fortunately, in the 
last five years, we developed numerical techniques and software packages to solve PBE and several linear nonlocal dielectric 
models [27,33,18,20,19]. We also developed a biomolecular interface-fitted tetrahedral mesh generator called GAMer-II as an 
extension of the molecular surface and volumetric mesh generation program package reported in [34]. This previous work 
provides a strong foundation for us to develop NMPBE numerical algorithms and software packages.

In this paper, we start with an overview on the derivation of our nonlocal Poisson dielectric model. We then use the 
solution decomposition scheme proposed in [20] to split the NMPBE solution as a sum of three functions: G , � , and �̃ (see 
(22)) with G being a given function that collects all the solution singular points. As a result, both � and �̃ become twice 
continuously differentiable within the solvent and solute regions. Hence, they can be computed numerically without any 
singularity difficulty. Since an efficient finite element algorithm for computing � was given in [20], one major job to do in 
this paper is to develop numerical algorithms for solving the nonlinear nonlocal interface problem that defines �̃ (see (25)).

For clarity, we present our NMPBE finite element solver for a protein in a symmetric 1:1 ionic solution while it works 
for an ionic solution containing any number of ionic species. Especially, we well deal with a possible solution “blow-up” 
problem caused by the exponentially nonlinear terms according to the function truncation strategy from [27]. We also find 
the analytical expression of the convolution of G (see (35)), and use it to improve the numerical accuracy of the algorithm 
for computing �̃ reported in [20]. We next reformulate the nonlinear nonlocal interface problem as a nonlinear variational 
problem (see (40)), and obtain a Taylor expression (see Theorem 4.1) to yield a new Newton-type iterative algorithm for 
computing �̃ in a variational form.

Typically, a Newton algorithm for solving a nonlinear and nonlocal dielectric model can be very costly due to each New-
ton iteration involving the calculation of two convolutions — one for each Newton iterate and the other one for each Newton 
search direction (see (45)). The novelty of our new modified Newton algorithm lies on the fact that we find an effective 
recursive formula (see (48)) to update one convolution quickly while treating the other convolution as a unknown function. 
In this way, each Newton iteration can be done efficiently without any direct calculation of convolutions. Consequently, the 
costs of computing �̃ can be reduced sharply, resulting in an efficient NMPBE finite element solver.

Since the modified Newton iterative method converges locally [35], its convergence and performance strongly depend on 
the selection of an initial iterate. In this paper, we construct a good initial iterate from a linear nonlocal interface problem 
(see (32)). We also construct another initial iterate by using a PBE finite element solution (see (55)). This is plausible 
since NMPBE is a nonlocal variant of PBE, whose solution may be close to the PBE solution. Furthermore, to define an 
approximate boundary value function for NMPBE, we propose a nonlocal Debye–Hückel equation (see (36)), and obtain its 
analytical solution expression (see (36)). Our nonlocal Debye–Hückel equation can be regarded as an extension of the well 
know Debye–Hückel equation (see (38)), whose analytical solution is often employed as a boundary value function of PBE. 
Similarly, the analytical solution of our nonlocal Debye–Hückel equation can be selected as a boundary value function of 
NMPBE.

To validate NMPBE numerical solutions, we construct a nonlinear nonlocal Born test model (see (57)), which has the 
same analytical solution as the nonlocal point charge Born model given in [19, Page 181, Model A]. Because of an artificial 
charge source term, the parameters of this Born test model lose their physical senses. One of them can be simply used to 
adjust the solution range to avoid the solution “blow-up” problem. Its different values may lead to different validation tests.

We programmed our NMPBE numerical algorithm in Python, Fortran, and C++ based on the finite element library
DOLFIN [36] and our PBE and linear nonlocal model program packages reported in [27,20]. With the Born test model, we 
numerically validated this NMPBE software package (see Fig. 1). Our NMPBE solver was also verified to retain a quadratic 
rate of convergence in terms of mesh size for a linear finite element method (see Table 2). We then made numerical ex-
periments on twelve proteins with the number of atoms up to 11439 to demonstrate the high performance of our NMPBE 
software package (see Table 3). Numerical results showed that our modified Newton iterative method converged fast (see 
Table 4). For example, in the case of a protein (PDB ID 1A7M) with 2803 atoms, the residual norm of a system of nonlinear 
finite element equations was reduced from O (106) to O (10−7) in a total number of 31 iterations. The total CPU time for 
this test example was only about 1 minute on one 3.7 GHz Intel Xeon E5 processor of a Mac Pro workstation.

As an application, we revisited the calculation of electrostatic solvation and binding free energies from the point view of 
solution decomposition, resulting in the new formulas for computing electrostatic solvation and binding free energies (see 
(62) and (64)). We then calculated the electrostatic solvation free energy for the twelve protein molecules and the elec-
trostatic binding free energy for a DNA-drug complex studied chemically in [37]. Numerical results showed the significant 
differences between the PBE and NMPBE in such calculations. Interestingly, the electrostatic solvation free energy generated 
by NMPBE was found to be an increasing function of the nonlocal parameter λ when λ is greater than 2 (see Fig. 2). This 
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promising feature signifies the potential of NMPBE to become a better predictor than PBE in the calculation of solvation 
and binding free energies. In these tests, the binding free energy change rates computed by NMPBE matched the chemical 
experimental data given in [37] in a much higher accuracy than the ones computed by PBE. Finally, we calculated the elec-
trostatics of a peptide-RNA complex, which was studied in [23], and the electrostatics of the peptide and RNA components. 
A comparison of the electrostatics in one binding site before the binding with that after the binding (see Fig. 6) further 
demonstrated the potential of NMPBE in the study of binding properties.

The remaining sections of the paper are outlined as follows. In Section 2, we present an overview on the derivation of our 
nonlocal Poisson dielectric model. In Section 3, we describe NMPBE and its solution decomposition scheme. In Section 4, we 
present the NMPBE finite element solver for the case of a symmetric 1:1 ionic solution. In Section 5, we report the NMPBE 
program package, numerical results, and application examples. The conclusions are made in Section 6.

2. The derivation of our nonlocal Poisson dielectric model

In this section, we present an overview on the derivation of our nonlocal Poisson dielectric model for a protein (or other 
biomolecules such as RNA and DNA) in an ionic solvent based on our previous work [18,20,19].

We start with the case of the whole space R3 full of water. Water is a typical dielectric medium. Each water molecule 
reacts as a dipole under an electrostatic field, e, to yield a dielectric charge density γ (r). Together with a fixed charge 
density ρ(r), the electric field e can be estimated by Gauss’s law in the differential form

ε0∇·e(r) = γ (r) + ρ(r) for r = (x, y, z) ∈ R3, (1)

where ε0 is the permittivity of the vacuum, and ∇ =
(

∂
∂x , ∂

∂ y , ∂
∂z

)
.

To avoid the difficulty of calculating γ , the classic linear dielectric theory (see [38,39] for example) has been established 
based on the basic relationships

(a) d(r) = ε0ε(r)e(r); (b) p(r) = ε0χ(r)e(r); (c) e(r) = −∇�(r), (2)

where d and p denote the displacement and polarization fields, which are defined by

(a) ∇·d(r) = ρ(r); (b) − ∇·p(r) = γ (r), (3)

ε(r) is the dielectric permittivity function, χ(r) is the susceptibility function, and � is the electrostatic potential function. 
Applying (2a) and (2c) to (3a) gives the classic Poisson dielectric model:

−∇·(ε(r)∇�(r)) = 1

ε0
ρ(r) ∀r ∈R3 and �(r) → 0 as |r| → ∞. (4)

Experimental data [40] has verified Debye’s ansatz that the relationships (2a) and (2b) depend on temporal frequency ν . 
Since ν is proportional to spatial wave number ξ for plane waves, the ν-dependent relationships can be imitated in the 
Fourier wavevector space as follows:

(a) d̂(ξ) = ε0ε̂(ξ )̂e(ξ); (b) p̂(ξ) = ε0χ̂ (ξ )̂e(ξ), (5)

where ε̂(ξ), χ̂ (ξ), d̂(ξ), p̂(ξ), and ê(ξ) denote the Fourier transforms of ε(r), χ(r), d(r), p(r) and e(r), respectively. The 
inverse Fourier transform and the convolution property of the Fourier transform lead to the nonlocal electrostatic relation-
ships:

(a) d(r) = ε0

∫
R3

ε(r − r′)e(r′)dr′; (b) p(r) = ε0

∫
R3

χ(r − r′)e(r′)dr′. (6)

Applying (6a) and (2c) to (3a), we obtain the nonlocal Poisson dielectric equation:

−∇·
∫
R3

ε(r − r′)∇�(r′)dr′ = 1

ε0
ρ(r) ∀r ∈R3 and �(r) → 0 as |r| → ∞. (7)

Following Debye’s temporal frequency dependent function [40] and [41, page 100], we set ̂ε(ξ) in the expression

ε̂(ξ) = ε∞ + εs − ε∞
1 + λ2|ξ |2 , (8)

where εs and ε∞ are the static and optic values corresponding to |ξ | = 0 and |ξ | → ∞, respectively, εs > ε∞ , and λ is 
a parameter for characterizing the polarization correlations of water molecules or the spacial-frequency dependence of a 
dielectric medium in a more general sense [42]. Note that the function ε̂(ξ) of (8) is intended to reflect nonlocal response 
in the case of zero momentum [43,44]. The scalar parameter λ can also be generalized as a matrix to reflect the anisotropy 
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property of a dielectric. Currently, a value of λ was mainly determined from experiments. For example, it was found to vary 
from 3 to 25 for different ionic solvents [18, Figure 2.1] and [16,45].

We then do the inverse Fourier transform on the both sides of (8) to yield the commonly-used kernel function

ε(r) = ε∞δ + (εs − ε∞)Q λ(r) with Q λ(r) = e−|r|/λ

4πλ2|r| , (9)

where δ denotes the Dirac-delta distribution at the origin. Applying the above expression to (7), we obtain the Fourier–
Lorentzian nonlocal model for the water solvent:{ −ε0

[
ε∞��(r) + (εs − ε∞)∇· ∫

R3 Q λ(r − r′)∇�(r′)dr′] = ρ(r), r ∈ R3,

�(r) → 0 as |r| → ∞.
(10)

A fast finite element algorithm for solving the above model can be found in [18].
Note that Q λ is also a Yukawa-type kernel [15,46] since it satisfies the equation

−λ2�Q λ(r) + Q λ(r) = δ, r ∈R3.

Hence, doing the convolution of � on the both sides of the above equation and using the multiplication property of convo-
lution, we can find that the convolution � ∗ Q λ satisfies the equation

−λ2�w(r) + w(r) − �(r) = 0, r ∈ R3. (11)

Here the convolution � ∗ Q λ is defined by

(� ∗ Q λ)(r) =
∫
R3

Q λ(r − r′)�(r′)dr′.

We next consider an extension of the nonlocal Poisson dielectric model (7) to the case of a protein molecule (or other 
biomolecules such as RNA and DNA) in an ionic solvent — a water solution containing n different ionic species. To do so, 
we decompose the whole space R3 as follows:

R3 = D p ∪ Ds ∪ �,

where D p , Ds , and � denote a protein region, a solvent region, and an interface between D p and Ds , respectively. Based 
on the continuum implicit solvent approach [26], D p and Ds are treated as continuum dielectric media with two different 
dielectric constants εp and εs (or called relative permittivity constants), respectively. We then set ε as a function of two 
variables r and r′ (see [19] for details) in the expression

ε(r, r′) = ε(r)δr′ + κ(r)Q λ(r − r′), (12)

where δr′ denotes the Dirac-delta distribution at r′ ∈ R3, which is defined by 〈δr′ , v〉 = v(r′) for any test function v , and 
ε(r) and κ(r) are defined by

ε(r) =
{
εp, r ∈ D p,

ε∞, r ∈ Ds,
κ(r) =

{
0, r ∈ D p,

εs − ε∞, r ∈ Ds.

Since both ε and κ are two piecewise functions, the nonlocal Poisson model (7) has to be redefined as an interface 
problem in order to make sense in differential equations.

To do so, we first use the classic linear dielectric theory [39] to get the interface conditions

�(s−) = �(s+), d(s−) · n(s) = d(s+) · n(s) ∀s ∈ �, (13)

where n(s) denotes the unit outward normal vector of D p , �(s±) = limt→0+ �(s ± tn(s)), and d(s±) = limt→0+ d(s ± tn(s)). 
We then apply (2c) and (12) to (6a) to gain the expressions of d in D p and Ds , respectively, as follows:

d(r) =
{

ε0εp∇�(r), r ∈ D p,

ε0ε∞∇�(r) + ε0(εs − ε∞)
∫
R3 Q λ(r − r′)∇�(r′)dr′, r ∈ Ds.

(14)

When a three-dimensional molecular structure of the protein and a concentration function ci of the ith ionic species are 
given, the charge density ρ can be estimated by

ρ(r) =

⎧⎪⎪⎨⎪⎪⎩
ec

np∑
j=1

z jδr j , r ∈ D p,

ec

n∑
Zici(r), r ∈ Ds,

(15)
i=1
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where np is the number of atoms of the protein, r j and z j denote the position and charge number of atom j, respectively, 
Zi is the charge number of ionic species i, and ec is the elementary charge. With (3a), (13), (14), and (15), from (7) we can 
obtain the nonlocal Poisson dielectric model for protein in ionic solvent proposed in [20] as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−εp��(r) = ec
ε0

np∑
j=1

z jδr j , r ∈ D p,

−ε∞��(r) − (εs − ε∞)∇· ∫
R3 Q λ(r − r′)∇�(r′)dr′ = ec

ε0

n∑
i=1

Zici(r), r ∈ Ds,

�(s−) = �(s+), εp
∂�(s−)
∂n(s) = ε∞ ∂�(s+)

∂n(s) + (εs − ε∞)
∫
R3 Q λ(s − r′)∇�(r′)dr′ · n(s), s ∈ �,

�(r) → 0 as |r| → ∞,

(16)

where ∂�(s)
∂n(s) = ∇�(s) · n(s). By (11) and the multiplication property of convolution, the above interface problem can be 

further simplified as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−εp��(r) = ec
ε0

np∑
j=1

z jδr j , r ∈ D p,

−ε∞��(r) + εs−ε∞
λ2 [�(r) − (� ∗ Q λ)(r)] = ec

ε0

n∑
i=1

Zici(r), r ∈ Ds,

�(s−) = �(s+), εp
∂�(s−)
∂n(s) = ε∞ ∂�(s+)

∂n(s) + (εs − ε∞)
∂(�∗Q λ)(s)

∂n(s) , s ∈ �,

�(r) → 0 as |r| → ∞.

(17)

The remaining issue is how to select ionic concentration functions ci for i = 1, 2, . . . , n to yield a particular nonlocal dielec-
tric model for estimating the electrostatic potential � of an ionic solvated protein.

3. A nonlocal modified Poisson–Boltzmann equation

Clearly, different selections of ionic concentration functions {ci} may lead to different nonlocal dielectric continuum mod-

els. Note that the Boltzmann distribution function, ci(r) = Mie
− Zi ec

kB T �(r)
for i = 1, 2, . . . , n, has been known to be an optimal 

selection in the sense of minimizing a traditional electrostatic free energy [28,29]. Here, Mi denotes a bulk concentration of 
the ith ionic species, kB is the Boltzmann constant, and T is the absolute temperature. Hence, we can apply it to (17) to 
yield a nonlinear nonlocal dielectric continuum model as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−εp��(r) = ec
ε0

np∑
j=1

z jδr j , r ∈ D p,

−ε∞��(r) + εs−ε∞
λ2 (� − � ∗ Q λ) − ec

ε0

n∑
i=1

Zi Mie
−Zi

ec
kB T � = 0, r ∈ Ds,

�(s−) = �(s+), εp
∂�(s−)
∂n(s) = ε∞ ∂�(s+)

∂n(s) + (εs − ε∞)
∂(�∗Q λ)(s)

∂n(s) , s ∈ �,

�(r) → 0 as |r| → ∞.

(18)

Clearly, setting ε∞ = εs reduces the above model to the classic PBE model:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−εp��(r) = ec
ε0

np∑
j=1

z jδr j , r ∈ D p,

−εs��(r) − ec
ε0

n∑
i=1

Zi Mie
−Zi

ec
kB T � = 0, r ∈ Ds,

�(s−) = �(s+), εp
∂�(s−)
∂n(s) = εs

∂�(s+)
∂n(s) , s ∈ �,

�(r) → 0 as |r| → ∞.

(19)

In other words, the nonlocal dielectric model (18) can be regarded as a modification of PBE with the nonlocal terms being 
added to (19). Hence, we call it the nonlocal modified Poisson–Boltzmann equation (NMPBE) for clarity.

In the SI (Le Système International d’Unités) units, � is measured in volts, and the values and units of physical parame-
ters ε0, ec , T , and kB are given in Table 1. In biomolecular simulation, length is measured in angstroms (Å), and Mi is given 
in cb

i moles per liter. Thus, λ has a value in angstroms, and Mi is converted to a number density by

Mi = N Acb
i /liter = 103N Acb

i /m3 = 10−27N Acb
i /Å

3
,

where cb is a nonnegative scalar number, and N A = 6.02214129 × 1023 is the Avogadro number.
i
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Table 1
Some physical parameters of the NMPBE model (18) in SI units.

Parameter Value Unit (abbr.) Name

ε0 8.854187817 × 10−12 Farad/Meter (F/m) Permittivity of vacuum
ec 1.602176565 × 10−19 Coulomb (C) Elementary charge
T 298.15 Kelvin (K) Absolute temperature
kB 1.380648813 × 10−23 Joule/Kelvin (J/K) Boltzmann constant

To simplify the analysis and calculation, we can use the variable change

u = ec

kB T
�, (20)

to transform the NMPBE model (18) into the dimensionless form⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−εp�u(r) = 1010e2
c

ε0kB T

np∑
j=1

z jδr j , r ∈ D p,

−ε∞�u + εs−ε∞
λ2 [u − (u ∗ Q λ)] − 10−17 N A e2

c
ε0kB T

n∑
i=1

Zicb
i e−Zi u = 0, r ∈ Ds,

u(s−) = u(s+), εp
∂u(s−)
∂n(s) = ε∞ ∂u(s+)

∂n(s) + (εs − ε∞)
∂(u∗Q λ)(s)

∂n(s) , s ∈ �,

u(r) → 0 as |r| → ∞.

(21)

However, the solution of (21) is singular at each atomic position r j due to Dirac-delta distributions δr j . To avoid such a 
singularity difficulty, we use the solution decomposition proposed in [20] to construct the NMPBE solution as

u(r) = �(r) + �̃(r) + G(r) ∀r ∈R3, (22)

where G is given by

G(r) = 1010e2
c

4πε0εpkB T

np∑
j=1

z j

|r − r j| , (23)

� is a solution of the linear nonlocal interface problem⎧⎪⎪⎨⎪⎪⎩
��(r) = 0, r ∈ D p,

−ε∞��(r) + εs−ε∞
λ2 (� − � ∗ Q λ) = − εs−ε∞

λ2 (G − G ∗ Q λ), r ∈ Ds,

�(s−) = �(s+), εp
∂�(s−)
∂n(s) − ε∞ ∂�(s+)

∂n(s) = (εs − ε∞)
∂(�∗Q λ)(s)

∂n(s) + g�(s), s ∈ �,

�(r) → 0 as |r| → ∞,

(24)

and �̃ is a solution of the nonlinear nonlocal interface problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

��̃(r) = 0, r ∈ D p,

−ε∞��̃ + εs−ε∞
λ2 (�̃ − �̃ ∗ Q λ) − 10−17 N Ae2

c
ε0kB T

n∑
i=1

Zicb
i e−Zi(�+G)e−Zi�̃ = 0, r ∈ Ds,

�̃(s−) = �̃(s+), εp
∂�̃(s−)
∂n(s) − ε∞ ∂�̃(s+)

∂n(s) = (εs − ε∞)
∂(�̃∗Q λ)(s)

∂n(s) , s ∈ �,

�̃(r) → 0 as |r| → ∞.

(25)

Here g� is defined by

g�(s) = (εs − ε∞)
∂(G ∗ Q λ)(s)

∂n(s)
+ (ε∞ − εp)

∂G(s)

∂n(s)
. (26)

Clearly, the equations of (24) and (25) imply that � and �̃ are twice continuously differentiable within the protein and 
solvent regions D p and Ds . Hence, they can be solved numerically by either a finite difference method or a finite element 
method.

4. The NMPBE finite element solver for symmetric 1:1 ionic solution

In this section, we present a NMPBE finite element solver for a symmetric 1:1 ionic solution (e.g., a salt solution con-
taining sodium (Na+) and chloride (Cl−) ions). We choose this case not only for simplicity of presentation but also for its 
wide application in biomolecular simulation and bioengineering application. This solver can be extended to the general case 
in which a solution contains any number of ionic species.
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In the case of a symmetric 1:1 ionic solution, we have that n = 2, Z1 = 1, Z2 = −1, and cb
1 = cb

2 = Is with Is denoting 
the ionic solvent strength [27]. Thus, (21) can be simplified as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−εp�u(r) = 1010e2
c

ε0kB T

np∑
j=1

z jδr j , r ∈ D p,

−ε∞�u(r) + εs−ε∞
λ2 [u(r) − (u ∗ Q λ)(r)] + κ2 sinh(u(r)) = 0, r ∈ Ds,

u(s−) = u(s+), εp
∂u(s−)
∂n(s) = ε∞ ∂u(s+)

∂n(s) + (εs − ε∞)
∂(u∗Q λ)(s)

∂n(s) , s ∈ �,

u(r) → 0 as |r| → ∞,

(27)

where κ2 is defined by

κ2 = 2
10−17N Ae2

c

ε0kB T
Is. (28)

With a bounded domain, �, satisfying that D p ⊂ �, we define a boundary value problem by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−εp�u(r) = 1010e2

c
ε0kB T

np∑
j=1

z jδr j , r ∈ D p,

−ε∞�u(r) + εs−ε∞
λ2 [u(r) − (u ∗ Q λ)(r)] + κ2 sinh(u) = 0, r ∈ Ds,

u(s−) = u(s+), εp
∂u(s−)
∂n(s) = ε∞ ∂u(s+)

∂n(s) + (εs − ε∞)
∂(u∗Q λ)(s)

∂n(s) , s ∈ �,

u(s) = g(s), s ∈ ∂�,

(29)

where Ds = � \ (D p ∪ �), ∂� is the boundary of �, g is a boundary value function, and κ is defined in (28). The solution 
of the above boundary value problem is then constructed by the solution decomposition formula (22) with � and �̃ being 
the solutions of the following two boundary value problems:⎧⎪⎪⎨⎪⎪⎩

��(r) = 0, r ∈ D p,

−ε∞��(r) + εs−ε∞
λ2 (� − � ∗ Q λ) = − εs−ε∞

λ2 (G − G ∗ Q λ), r ∈ Ds,

�(s−) = �(s+), εp
∂�(s−)
∂n(s) − ε∞ ∂�(s+)

∂n(s) = (εs − ε∞)
∂(�∗Q λ)(s)

∂n(s) + g�(s), s ∈ �,

�(s) = g(s) − G(s), s ∈ ∂�,

(30)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
��̃(r) = 0, r ∈ D p,

−ε∞��̃(r) + εs−ε∞
λ2 (�̃ − �̃ ∗ Q λ) + κ2 sinh(�̃ + � + G) = 0, r ∈ Ds,

�̃(s−) = �̃(s+), εp
∂�̃(s−)
∂n(s) − ε∞ ∂�̃(s+)

∂n(s) = (εs − ε∞)
∂(�̃∗Q λ)(s)

∂n(s) , s ∈ �,

�̃(s) = 0, s ∈ ∂�.

(31)

Here g� has been defined in (26), and the boundary values function of (31) has been set to zero for the purpose of 
simplifying the calculation of �̃. It has been proved that both (30) and (31) are well posed in [47].

Clearly, when u is small enough, the nonlinear boundary value problem (31) can be linearized as⎧⎪⎪⎪⎨⎪⎪⎪⎩
��̃l(r) = 0, r ∈ D p,

−ε∞��̃l(r) + εs−ε∞
λ2 (�̃l − �̃l ∗ Q λ) + κ2�̃l(r) = −κ2 [G(r) + �(r)] , r ∈ Ds,

�̃l(s−) = �̃l(s+), εp
∂�̃l(s−)
∂n(s) − ε∞ ∂�̃l(s+)

∂n(s) = (εs − ε∞)
∂(�̃l∗Q λ)(s)

∂n(s) , s ∈ �,

�̃l(s) = 0, s ∈ ∂�,

(32)

whose solution can be selected as an initial guess to the solution of the nonlinear problem (31).

4.1. Scheme for computing �

Let M be a Lagrange finite element function space defined on a tetrahedral mesh of � such that M ⊂ H1(�) and each 
function of M is continuous. We then set

M0 = {v ∈ M | v = 0 on ∂�} ⊂ H1
0(�).

Here H1(�) and H1
0(�) are two usual Sobolev function spaces [48]. The convolutions of � , g , and G with Q λ will be 

denoted by u1, ĝ , and Ĝ , respectively.
A finite element solution, � , of the boundary value problem (30) can be found from solving the linear variational 

problem: Find φ = (�, u1) ∈M ×M satisfying �(s) = g(s) − G(s) and u1(s) = ĝ(s) − Ĝ(s) for all s ∈ ∂� such that
˜
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a(φ˜, v˜) = �1(v˜) ∀v˜= (v1, v2) ∈ M0 ×M0, (33)

where �1(v˜) = (ε∞ − εs) 
∫

Ds
∇ Ĝ(r) · ∇v1(r)dr + (εp − ε∞) 

∫
Ds

∇G(r) · ∇v1(r)dr, and

a(φ˜, v˜) = εp

∫
D p

∇� · ∇v1dr + ε∞
∫
Ds

∇� · ∇v1dr + (εs − ε∞)

∫
Ds

∇u1 · ∇v1dr

+ λ2
∫
�

∇u1 · ∇v2dr +
∫
�

(u1 − �)v2dr. (34)

In [20], an algorithm was proposed to solve (33) with Ĝ being calculated approximately as a solution of a boundary 
value problem. To improve this algorithm, using [19, Corollary A.1, Page 192], we can obtain the expression of Ĝ as

Ĝ(r) = 1010e2
c

4πε0εpkB T

np∑
j=1

z j
1 − e−|r−r j |/λ

|r − r j| . (35)

We then can find the analytical expression of ∇ Ĝ . Thus, we can calculate both Ĝ and ∇ Ĝ analytically in the algorithm 
for solving � . Consequently, a more accurate numerical solution can be produced from our implementation than the one 
reported in [20].

4.2. Selection of boundary value functions

How to select the boundary value function g and its convolution ĝ is a research issue by itself. One simple selection is 
to set g = ĝ = 0 for a sufficiently large domain � based on the fact that u(r) → 0 and (u ∗ Q λ)(r) → 0 as |r| → ∞.

In the case of PBE, g is commonly set as an analytical solution of the Debye–Hückel equation [31,49]. We extended this 
selection to the nonlocal case by constructing a nonlocal Debye–Hückel equation as follows:

−ε∞�u(r) + εs − ε∞
λ2

[u(r) − (u ∗ Q λ)(r)] + κ2u(r) = 1010e2
c

ε0kB T

np∑
j=1

z jδr j , r ∈ R3, (36)

where u(r) → 0 as |r| → ∞, and κ is given in (28). We then obtain its solution u and convolution û = u ∗ Q λ as follows:

u(r) = 1010e2
c

4πε∞(τ2 − τ1)ε0kB T

np∑
j=1

z j

|r − r j|
(
τ2e−η1|r−r j | − τ1e−η2|r−r j |

)
,

û(r) = 1010e2
c τ1τ2

4πε∞(τ2 − τ1)ε0kB T

np∑
j=1

z j

|r − r j|
(

e−η1|r−r j | − e−η2|r−r j |
)

,

(37)

where τ1, τ2, η1, and η2 are defined in terms of ξ = √
(κ2λ2 + εs)2 − 4ε∞λ2κ2 as follows:

τ1 = κ2λ2 + εs − 2ε∞ − ξ

2(εs − ε∞)
, τ2 = κ2λ2 + εs − 2ε∞ + ξ

2(εs − ε∞)
, η1 = 1

λ

√
κ2λ2 + εs + ξ

2ε∞
, η2 = 1

λ

√
κ2λ2 + εs − ξ

2ε∞
.

The analytical expressions of (37) can be used to construct the boundary value functions g and ĝ .
Specially, when ε∞ = εs , the nonlocal Debye–Hückel equation (36) can be reduced to the traditional Debye–Hückel 

equation

−εs�u(r) + κ2u(r) = 1010e2
c

ε0kB T

np∑
j=1

z jδr j , r ∈R3. (38)

Furthermore, we can get that τ1 → 1, τ2 → +∞, η1 → κ/
√

εs , and η2 → 1/λ as ε∞ → εs . Thus, the analytical solution of 
(38) can be followed from (37) in the expression

u = 1010e2
c

4πεsε0kB T

np∑
j=1

z j

|r − r j|e
− κ√

εs
|r−r j |

. (39)

Here we have omitted the details of calculation due to the length.
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4.3. A modified Newton method for computing �̃

We suppose that U = G + � is given before the calculation of �̃. The nonlinear nonlocal boundary value problem (31)
can be reformulated as the nonlinear variational problem:

Find �̃ ∈ M0 such that b(�̃, v) = 0 ∀v ∈ M0, (40)

where b(�̃, v) is defined by

b(�̃, v) = εp

∫
D p

∇�̃(r) · ∇v(r)dr + ε∞
∫
Ds

∇�̃(r) · ∇v(r)dr

+ (εs − ε∞)

∫
Ds

∇(�̃ ∗ Q λ) · ∇vdr + κ2
∫
Ds

sinh(�̃ + U )vdr.
(41)

In [47], the nonlinear problem (40) has been proved to have a unique solution.
The following theorem sets up a base for constructing a Newton-like iterative method.

Theorem 4.1. Let b(�̃, v) be defined in (41) on a finite element space M0 ⊂ H1
0(�). For each given v ∈ M0 , b(�̃, v) is Fréchet 

differentiable at �̃ ∈M0 , and its Fréchet derivative b′(�̃, v; p) at p ∈M0 is given by

b′(�̃, v; p) = εp

∫
D p

∇p(r) · ∇v(r)dr + ε∞
∫
Ds

∇p(r) · ∇v(r)dr

+ (εs − ε∞)

∫
Ds

∇(p ∗ Q λ) · ∇vdr + κ2
∫
Ds

p(r)v(r) cosh(�̃ + U )dr.
(42)

Moreover, b(� + p, v) has the Taylor expansion

b(�̃ + p, v) = b(�̃, v) + b′(�̃, v; p) + O (‖p‖2
H1(�)

). (43)

Proof. Set ϕ(t) = b(�̃ + tp, v) for a real number t . Its first and second derivatives, denoted by ϕ′ and ϕ′′ respectively, can 
be found as follows:

ϕ′(t) = εp

∫
D p

∇p · ∇vdr + ε∞
∫
Ds

∇p · ∇vdr + (εs − ε∞)

∫
Ds

∇(p ∗ Q λ) · ∇vdr + κ2
∫
Ds

pv cosh(�̃ + U + tp)dr,

ϕ′′(t) = κ2
∫
Ds

ppv sinh(�̃ + U + tp)dr.

Since ϕ(t) is twice continuously differentiable at t = 0, Taylor’s Theorem follows that there exists a number θ between 0 
and 1 such that

ϕ(1) = ϕ(0) + ϕ′(0) + 1

2
ϕ′′(θ). (44)

Since �̃, U , p ∈M0, �̃+ U + θ p is continuous for any θ ∈ (0, 1). Thus, there exists a constant, C , independent of p, such 
that ∣∣∣∣∣∣∣

∫
Ds

p(r)p(r)v(r) sinh(�̃ + U + θ p)dr

∣∣∣∣∣∣∣ ≤ C‖p‖2
H1(�)

.

Clearly, ϕ(1) = b(�̃ + p, v), ϕ(0) = b(�̃, v), and ϕ′(0) = b′(�̃, v; p). With (44), we get

|b(� + p, v) − b(�, v) − b′(�̃, v; p)|
‖p‖H1(�)

≤ C‖p‖H1(�),

from which we get

lim‖p‖ 1 →0

|b(� + p, v) − b(�, v) − b′(�̃, v; p)|
‖p‖ 1

= 0,

H (�) H (�)
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implying that b(�, v) is Fréchet differentiable, and b′(�̃, v; p) is its Fréchet derivative. Hence, (43) is followed from (44). 
This completes the proof. �

We now define the modified Newton iterative method for solving (40) as a sequence, {�̃(k)}, by induction. Suppose that 
an initial guess �̃(0) is given. When the kth iterate �̃(k) is known, and ‖p‖H1(�) is sufficiently small, by (43), we get

b(�̃(k) + p, v) ≈ b(�̃(k), v) + b′(�̃(k), v; p), k = 0,1,2, . . . ,

from which we obtain the Newton equation in the linear variational problem:

Find pk ∈ M0 such that b′(�̃(k), v; pk) = −b(�̃(k), v) ∀v ∈ M0. (45)

With the above solution pk , we define �̃(k+1) by

�̃(k+1) = �̃(k) + ωk pk for k = 0,1,2, . . . , (46)

where ωk is a steplength determined by a line search algorithm such that �̃(k+1) is a better approximation than �̃(k) in the 
following sense:

‖F (�̃(k+1))‖ ≤ ‖F (�̃(k))‖, k = 0,1,2, . . . .

Here we have written the finite element equation (40) in the vector form

F (�̃) = 0 with F = (b(�̃,ϕ1),b(�̃,ϕ2), . . . ,b(�̃,ϕNh )),

with Nh being the total number of interior mesh nodes and ϕi denoting the ith basis function of M0. Thus, ‖F (�̃(k))‖ is a 
residual norm of the above system defined by

‖F (�̃(k))‖ =
⎡⎣ Nh∑

i=1

|b(�̃(k),ϕi)|2
⎤⎦1/2

. (47)

In the line search algorithm, we always start with ωk = 1.
However, each Newton equation of (45) is very expensive to solve due to its two convolution terms: pk ∗ Q λ and �̃(k) ∗

Q λ . To speedup its numerical solution, we set

qk = pk ∗ Q λ, ζ (k) = �̃(k) ∗ Q λ,

and treat qk as an unknown function. Doing the convolution with Q λ on the both sides of (46), we obtain the recursive 
formula for computing the sequence {ζ (k)}:

ζ (k+1) = ζ (k) + ωkqk for k = 0,1,2, . . . , (48)

where ζ (0) is an initial guess to be given (see Section 4.3 for a selection).
To determine qk , we observe that qk satisfies the finite element equation,

λ2
∫
�

∇qk(r) · ∇v(r)dr +
∫
�

(qk(r) − pk(r))v(r)dr = 0 ∀v ∈ M0. (49)

We then use the above fact to modify the Newton equation (45) as a variational system without involving any convolution 
as follows:

Find p˜k = (pk,qk) ∈ M0 ×M0 such that A(p˜k, v˜) = L(v˜) ∀v˜∈ M0 ×M0, (50)

where A(p˜k, v˜) and L(v˜) are defined by

A(p˜k, v˜) = εp

∫
D p

∇pk(r) · ∇v1(r)dr + ε∞
∫
Ds

∇pk(r) · ∇v1(r)dr

+ (εs − ε∞)

∫
Ds

∇qk(r) · ∇v1(r)dr + λ2
∫
�

∇qk(r) · ∇v2(r)dr,

+
∫

(qk(r) − pk(r))v2(r)dr + κ2
∫

pk v1 cosh(�̃(k) + U )dr,
� Ds
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L(v˜) = − [
(εs − ε∞)

∫
Ds

∇ζ (k) · ∇v1dr + εp

∫
D p

∇�̃(k)(r) · ∇v1(r)dr

+ ε∞
∫
Ds

∇�̃(k)(r) · ∇v1(r)dr + κ2
∫
Ds

v1 sinh(�̃(k) + U )dr
]
.

Consequently, we can solve each modified Newton equation of (50) by a fast numerical algorithm, resulting in an efficient 
modified Newton iterative method.

From [20] it can be inferred that the modified Newton equation (50) has a unique solution so that our modified Newton 
iterative method is well defined.

In the calculation of A(·, ·) and L(·), the hyperbolic functions sinh and cosh may become huge when the iterates �̃(k)

are far away from the solution, which may cause a solution “blow-up” problem. Following what was done in [27], we use 
the following modified hyperbolic functions to simply deal with this problem:

ŝinh(u) =
⎧⎨⎩ sinh(u) if |u| < τ,

sinh(τ ) if u ≥ τ ,

− sinh(τ ) if u ≤ −τ ,

ĉosh(u) =
{

cosh(u) if |u| < τ,

cosh(τ ) if |u| ≥ τ ,
(51)

where τ is a truncation parameter (τ = 85 by default, which was set according to our numerical experience [27]).
Finally, we control the convergence of the modified Newton iterative algorithm using the termination rule

‖�̃(k+1) − �̃(k)‖ < σ and ‖ζ (k+1) − ζ (k)‖ < σ, (52)

where σ is a convergence tolerance (σ = 10−7 by default).
In conclusion, we have defined the modified Newton iterative method for solving the nonlinear nonlocal boundary value 

problem (31) as a sequence of pair iterates, �̃(k) and ζ (k) , which are defined by (46) and (48), respectively, with pk and qk
being a solution of the linear variational system (50).

4.4. Selection of initial iterates

The efficiency of the modified Newton iterative method strongly depends on a selection of initial iterates �̃(0) and ζ (0) . 
For a weak ionic solvent, we may set �̃(0) = ζ (0) = 0 since setting �̃ = 0 leads to a solution of a nonlocal dielectric model 
for biomolecule in water (i.e., (29) using Is = 0).

Another selection is to set

�̃(0) = �̃l, ζ (0) = ul, (53)

where �̃l and ul satisfy the linear variational system: Find �̃l˜ = (�̃l, ul) ∈M0 ×M0 such that

a(�̃l˜ , v˜) + κ2
∫
Ds

�̃l v1dr = −κ2
∫
Ds

U v1dr ∀v˜= (v1, v2) ∈ M0 ×M0. (54)

Here a(·, ·) has been defined in (34). The above variational system is a modification of the weak form of the linear nonlocal 
model (32) to avoid the calculation of convolutions.

We can also construct an initial iterate from a finite element solution, u P B E , of PBE as follows. Since NMPBE is a modifi-
cation of PBE, u P B E may be close to u. Thus, using (22) and u P B E = G + �P B E + �̃P B E , we can get

�̃ ≈ �̃P B E + �P B E − �.

Hence, we can construct an initial guess �̃(0) by

�̃(0) = �̃P B E + �P B E − �. (55)

To calculate the convolution ζ (0) fast, we set

ζ (0) = w, (56)

where w ∈M0 is a finite element solution of the following variational problem:

λ2
∫
�

∇w · ∇vdr +
∫
�

w vdr =
∫
�

�̃(0)(r)v(r)dr ∀v ∈ M0.

For clarity, we summarize the framework of our NMPBE finite element solver in Algorithm 1. Here we have set the 
initial guess constructed from PBE as a default choice since it was found to result in better performance than the other two 
choices in our numerical tests (see Table 4 in Section 5.2 for example).
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Algorithm 1 (NMPBE finite element solver for symmetric 1:1 ionic solution). Let u be a finite element solution of the NMPBE 
model (29). It is calculated in the following six steps:

Step 1. Calculate G , Ĝ , ∇G , and ∇ Ĝ via formulas (23) and (35).
Step 2. Set the boundary value functions g and ĝ (by default, g = ĝ = 0).
Step 3. Solve the linear variational system (33) for � .
Step 4. Select the initial iterates �̃(0) and ζ (0) (by default, use (55) and (56)).
Step 5. Solve the nonlinear variational problem (40) for �̃ by our modified Newton iterative method with the iteration 

termination rule (52).
Step 6. Find u by the solution decomposition: u = �̃ + � + G .

5. Program package and numerical results

We developed a NMPBE program package according to Algorithm 1 in Python, Fortran, and C++ based on the finite el-
ement library DOLFIN [36], our PBE program package SDPBS [27,33], and our nonlocal linearized PBE software package 
[20]. Fortran subroutines were written for calculating G , Ĝ , ∇G , and ∇ Ĝ and converted as Python modules by the Fortran-
to-Python interface generator f2py (http://cens.ioc.ee/projects/f2py2e/). We adopted the molecular surface fitted tetrahedral 
mesh generator GAMer-II from SDPBE to the NMPBE program package for generating a finite element tetrahedral mesh �h
of a cubic (or spherical) domain �. A PQR file of a protein is an input file for implementation. It can be generated from a 
PDB file of the protein by using the program tool PDB2PQR (http://www.poissonboltzmann.org/pdb2pqr/) [50]. A PDB file can 
be downloaded from the Protein Data Bank (http://www.rcsb.org/).

In the numerical experiments, we used the parameters εp = 2, εs = 80, ε∞ = 1.8, T = 298.15, Is = 0.1, the physical con-
stants of Table 1, τ = 85 for the “blow-up” test, and σ = 10−7 for the convergence test of (52). Each related linear algebraic 
system was solved approximately either by GMRES (for an unsymmetrical system) or by the preconditioned conjugate gra-
dient method (for a symmetrical system) from the PETSc library (http://www.mcs.anl.gov/petsc). Here, the relative residue 
error and the absolute residue error were set as 10−8, and the incomplete LU preconditioning was used. All the numerical 
experiments were made on one 3.7 GHz Intel Xeon E5 processor of Mac Pro with 64 GB of 1866 MHz memory.

5.1. Validation tests

To validate our NMPBE numerical solutions, we modify a nonlocal point charge Born model given in [19, Page 181, 
Model A] as the following nonlinear nonlocal Born test model:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−εp�u(r) = αzδ in D p,

−ε∞�u + εs − ε∞
λ2 [u − (u ∗ Q λ)(r)] + κ2 sinh(u(r)) = f (r) in Ds,

u(s−) = u(s+), εp
∂u(s−)
∂n(s) = ε∞ ∂u(s+)

∂n(s) + (εs − ε∞)
∂(u∗Q λ)(s)

∂n(s) on �,

u(r) = g(s) on ∂�,

(57)

where α is a constant, z is a charge number, D p = {r | |r| < a}, � = {r | |r| = a}, and f is given by

f (r) = κ2 sinh(g(r)) with g(r) = αz

4πεpεs|s|
[
εp − (ε∞ − εs)b1eμ(a−|r|)] .

From [19, Pages 182–183] we can obtain the analytical solution of (57):

u(r) =
{

αz
4πεp

(
1
|r| + 1

aεs
[εp − εs − (ε∞ − εs)b1]

)
in D p,

αz
4πεpεs|r|

[
εp − (ε∞ − εs)b1eμ(a−|r|)] in Ds,

(58)

and its convolution û = u ∗ Q λ in the expression

û(r) = αz

4πεpεs|r|
(
εp − ε∞b1eμ(a−|r|)) , r ∈ Ds, (59)

where μ and b1 are defined by

μ = 1

λ

√
εs

ε∞
, b1 = aεs + λ(εp − εs) sinh a

λ

[a√
ε∞εs + λ(ε∞ − εs)] sinh a

λ
+ aεs cosh a

λ

.

The Born test model (57) is particularly suitable for verification tests. From the solution expression (58) it can be seen 
that the solution u is proportional to α. Thus, the relative error Er = ‖u − uh‖/‖u‖ of a finite element solution uh becomes 
independent of α, where ‖ · ‖ is the norm of the function space L2(�). This property is valuable for validation tests. In fact, 
because of the extra charge term f , the parameter α loses its physical sense. Instead, it mainly plays a role of controlling the 

http://cens.ioc.ee/projects/f2py2e/
http://www.poissonboltzmann.org/pdb2pqr/
http://www.rcsb.org/
http://www.mcs.anl.gov/petsc
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Fig. 1. Validation of our NMPBE solver and program package by the Born test model (57). Left Plot: Relative errors of the finite element solutions in terms 
of α and the order of the finite element method (FEM). Right Plot: A comparison of the finite element solutions (in blue circle) with the analytical solution 
(in red dash line).

Table 2
Errors and convergence order of the NMPBE solver for the Born test model (57) on the three nested tetrahedral meshes. 
Here, Nh denotes the number of mesh nodes, and the order ϒk of convergence rate is estimated via formula (60).

Nh hmax hmin ‖u − uh‖/‖u‖ ‖u − uh‖ L2 order ϒk

2,260 1.732 0.073 6.65 × 10−3 1.03 × 10−3 −
17,717 1.049 0.020 1.78 × 10−3 2.71 × 10−4 1.9263

139,993 0.579 0.010 4.41 × 10−4 6.96 × 10−5 1.9611

solution range of (57). Hence, with this property, we can do many validation tests using different values of α. In addition, 
the NMPBE package can be easily adapted to solve (57). The only change to the package is to add the extra charge term ∫

Ds
f v1dr to the right hand side of the modified Newton equation (50). Therefore, the Born test model (57) is a good one 

for verifying a NMPBE solver.
We made numerical tests using λ = 15, a = 1.0, � = {r | |r| < 10}, α = 1, 20, 50, 100, and 200, and a zero initial guess 

based on a tetrahedral mesh with 2955 vertices from [27]. The convolution ĝ of g was set by ĝ = û with û being given in 
(59). The first, second, and third order finite element methods were applied to the numerical solution of (57), resulting three 
linear systems with 5910, 47044, and 158118 unknowns, respectively. To achieve a higher numerical accuracy, each linear 
algebraic system from the first and second order finite element methods was solved by the LU factorization method while 
the ones from the cubic finite element method were still solved by the GMRES with ILU preconditioning due to memory 
limitation.

Fig. 1 reports the numerical results of our validation tests. From the left plot we can see that the relative errors Er had 
almost the same value for different α, verifying that Er is independent of α. Moreover, the relative errors Er were reduced 
almost one order as the order of the finite element method was increased by one. For example, in the case of α = 200, 
it was found that Er = 2.34702 × 10−2, 2.56656 × 10−3, and 2.72852 × 10−4 for the first, second, and third order finite 
element methods, respectively. These results well matched the finite element theory [48].

The right plot of Fig. 1 compares the quadratic finite element solution uh with the analytical solution u. Here, α = 1, and 
the solution values were plotted in terms of the x-coordinate of the mesh vertices (except the ones with zero x coordinates) 
according to the vertex ordering in which the magnitudes of vertices decrease on [−10, 0] and increase on [0, 10]. From 
this plot it can be seen that uh almost matched u. These test results well validated our NMPBE solver and program package.

Furthermore, we constructed three nested tetrahedral meshes for a = 1 and a cubic domain � = [−3, 3]3 such that their 
mesh sizes hk ≈ hk−1/2 for k = 2, 3. Here h1 is a mesh size of the initial mesh with 2262 mesh nodes. We then estimated 
the convergence order of a linear finite element method approximately by

ϒk = ln(‖u − uhk‖2/‖u − uhk−1‖2)/ ln(hk/hk−1), k = 2,3. (60)

In calculation of ϒk , we simply set as hk/hk−1 = 1/2. Since the three tetrahedral meshes of � were unstructured, we 
calculated hmax and hmin as the maximum and minimum of all the diameters of tetrahedra, respectively. The numerical 
results were reported in Table 2.

From Table 2 we can see that ϒk approached 2 as the mesh size decreased. This shows that our NMPBE solver can well 
retain a quadratical convergence rate of the linear finite element method in terms of mesh size [48].

5.2. Performance tests for proteins

To demonstrate the performance of our NMPBE finite element program package in terms of computer CPU time, we made 
numerical experiments on twelve protein molecules downloaded from the protein data bank. The PQR files of these proteins 
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Table 3
Performance of the NMPBE program package for the twelve proteins.

PDB ID (np , Nh) CPU time for five major parts of NMPBE (in seconds) Total 
time 
(min.)

Solve �
by (33)

Solve �̃(0)

by (55)
Solve �̃
by (40)

Find G , Ĝ ,
∇G , ∇ Ĝ

Generate 
mesh

2LZX (488, 39644) 2.17 10.98 48.59 1.93 8.80 1.21
1AJJ (513, 55566) 3.60 22.86 99.40 2.17 12.51 2.35
1FXD (811, 58754) 4.04 25.59 87.51 3.63 13.32 2.24
1HPT (852, 22492) 1.09 9.38 24.54 1.47 6.48 0.72
4PTI (892, 67669) 4.65 20.79 104.69 5.96 14.66 2.52
1SVR (1433, 30634) 1.64 16.76 38.25 3.34 8.57 1.14
1A63 (2065, 38337) 2.23 16.62 48.08 6.02 12.00 1.42
1CID (2783, 32852) 1.86 20.22 45.57 6.95 10.45 1.43
1A7M (2803, 34502) 1.95 14.02 47.14 7.35 10.94 1.36
2AQ5 (6024, 62026) 4.31 43.28 112.60 28.40 20.47 3.49
1F6W (8243, 23803) 1.16 13.30 35.02 14.91 16.50 1.35
1C4K (11439, 32436) 1.85 22.90 60.19 28.22 23.84 2.30

Table 4
A comparison of the performance of the new modified Newton iterative method using an initial iterate �̃(0) constructed from PBE (see (55) and (56)) with 
that from a linear nonlocal problem as given in (53). Here, PBE was solved by our PBE program package [27], and the residual norm ‖F (�̃(k))‖ has been 
defined in (47).

PDB ID Start ‖F (�̃(0))‖ Final ‖F (�̃(k))‖ Iteration Time (min.)

By PBE By (53) By PBE By (53) By PBE By (53) By PBE By (53)

2LZX 3.32 × 103 4.10 × 1015 6.85 × 10−7 6.24 × 10−7 28 54 0.99 1.86
1AJJ 2.07 × 108 3.58 × 1017 4.46 × 10−7 5.95 × 10−7 33 58 2.03 3.15
1FXD 6.47 × 104 8.44 × 1015 7.54 × 10−7 5.96 × 10−7 28 55 1.89 3.01
1HPT 2.03 × 104 2.56 × 1018 9.18 × 10−7 7.69 × 10−7 29 59 0.56 0.94
4PTI 5.87 × 105 1.55 × 1017 4.44 × 10−7 5.24 × 10−7 29 57 2.09 3.82
1SVR 4.60 × 105 1.14 × 1025 7.57 × 10−7 9.93 × 10−7 29 75 0.92 1.95
1A63 2.54 × 105 6.90 × 1017 9.77 × 10−7 8.22 × 10−7 27 54 1.08 1.61
1CID 1.31 × 105 2.96 × 1028 7.84 × 10−7 1.20 × 10−6 33 83 1.10 2.07
1A7M 2.07 × 106 4.43 × 1023 6.33 × 10−7 7.56 × 10−7 31 74 1.02 2.04
2AQ5 2.87 × 107 1.50 × 1021 7.40 × 10−7 7.41 × 10−7 35 62 2.60 3.77
1F6W 1.60 × 108 1.41 × 1021 2.48 × 10−6 3.39 × 10−6 39 69 0.81 1.22
1C4K 3.95 × 107 1.09 × 1022 7.60 × 10−6 7.88 × 10−6 45 83 1.38 1.84

were determined by using PDB2PQR under the CHARMM forcefield. Each finite element tetrahedral mesh was generated 
from our GAMer-II with the default parameter values except two parameters: DomainRatio = 2 and DIM_SCALE = 1.5 (see 
[33, Appendix] for their definitions). Such a mesh setting resulted in a medium-resolution mesh, which was suitable not 
only for our performance tests but also for the applications discussed in Sections 5.3 and 5.4. The PDB ID, the number np
of atoms, and the number Nh of mesh nodes were listed in Table 3. We used λ = 15 for all the tests.

Table 3 reports the CPU time distributions for the five main parts of our NMPBE program package. The linear equation 
of (33) was solved efficiently in about 1 to 5 seconds by the GMRES using the ILU preconditioning, showing the high 
efficiency of the linear iterative solver. The nonlinear finite element equation (40) was solved by our modified Newton 
iterative method using the initial iterate defined from the PBE solution as given in (55). Here, the numerical solutions of 
(33) and each modified Newton equation of (50) had the relative and absolute residue errors being less than 10−8. The total 
CPU time included the time for generating the mesh in an range from 0.72 to 3.49 minutes for these proteins with up to 
11439 atoms, demonstrating the high performance of our NMPBE software package.

Table 4 reports the performance of our modified Newton iterative method for solving the nonlinear nonlocal variational 
problem (40) when the initial iterate �̃(0) was set by PBE (see (55) and (56)) or by a linear nonlocal problem as given in 
(53). Here the CPU time includes the one spent on the calculation of �̃(0) . These numerical results demonstrate that our 
new modified Newton iterative method is efficient, and can converge fast. They also show that the initial iterate constructed 
by PBE can significantly improve the performance of the modified Newton iterative method using an initial guess as given 
in (53). For example, in the case of 1SVR (a protein with 1433 atoms) on a mesh with 30634 mesh nodes, which led to 
a nonlinear algebraic system with about 61268 (i.e., 30634 × 2) unknowns, by the PBE constructed initial iterate, the CPU 
time of computing �̃ was reduced from about 1.95 minutes to 0.92 minute while the number of iterations was reduced 
from 75 to 29. Hence, the initial iterates constructed by PBE can be a default choice for our NMPBE software package.

5.3. Electrostatic solvation free energy calculation

The electrostatic solvation free energy �Eele is one dominant part of the solvation free energy, which describes the 
free energy required to transfer a biomolecule from a solvent state to the vacuum state. In the implicit solvent continuum 
dielectric approach, it is commonly estimated in kilojoules per mole (kJ/mol) by
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�Eele = N A

1000

1

2

∫
�

ρ f (r)(�sol − �vac)(r)dr, (61)

where N A is the Avogadro number, �sol and �vac denote the electrostatic potential functions in the solvent and vacuum 
states, respectively, and ρ f denotes the fixed charge density function. For ρ f = ec

∑np

j=1 z jδr j , we can use (20) and the 
solution decomposition (22) to reformulate (61) as a new formula for computing �Eele :

�Eele = N AkB T

1000

1

2

np∑
j=1

z j(� + �̃)(r j), (62)

where � and �̃ are defined by (30) and (31), respectively. By this new formula, the electrostatic solvation free energy �Eele
can be calculated without any singularity difficulty.

With (62), we calculated the values of �Eele for the twelve protein molecules from the previous subsection for λ =
0.05, 0.1, 0.2, 0.5, 1, 2, 3, . . . , 10, 15, 20, 25, . . . , 70 to check the behaviors of �Eele as λ → 0 or λ → ∞. As a comparison, 
we also did the calculation via our PBE program package [27]. The results are reported in Fig. 2.

Fig. 2 shows that the electrostatic solvation energy difference �Eele can be a bounded increasing function of the nonlocal 
parameter λ when λ > 2. Its upper bound was indicated by a horizontal asymptote. Interestingly, �Eele becomes a decreas-
ing function of λ for 0 < λ < 2, and can approach the case of PBE as λ → 0. This important feature may make NMPBE 
to become a better predictor than the classic PBE model in the calculation of electrostatic solvation free energy through a 
proper selection of λ.

From Fig. 2 we also see that �Eele becomes less sensitive to the selection of λ when λ is large enough (e.g., λ > 35). 
Our test results suggest that a good selection range for λ is from 10 to 30, which is consistent with the studies given in [5, 
Table 1] and [45,16], in which a typical λ-range of 10 to 20 Å was suggested.

Fig. 3 shows the numerical behavior of our NMPBE solver in the calculation of �Eele with respect to mesh size. The tests 
were done for three different protein molecules on five different meshes. The number of mesh vertices was marked out on 
the horizontal line axis for each mesh. As the numbers of vertices was increased from about 34,000 to 760,000, the value 
of �Eele varied smoothly, reflecting the convergent feature of our algorithm. This indicates that our solver can work well on 
a large scale mesh so that it can yield numerical solutions in high accuracy.

5.4. Binding free energy calculation

Binding free energy calculation is another important application of a dielectric continuum model. PBE has been an 
important tool to do so, and has been applied to many bioengineering applications (such as computer-aided drug design) 
[51,23,52]. As an initial application of our NMPBE, we made tests on a DNA-drug complex (PDB ID 1D86) using the PQR 
files from [53]. The salt dependence of the binding constants for 1D86 was studied chemically in [37, Table 3].

Let E(X, Is) denote an electrostatic free energy of molecule X in a solvent with the ionic strength Is ∈ (0, 1). To study 
the salt dependence of a complex C consisting of molecules A and B , a binding free energy, Eb , is defined by

Eb(Is) = E(C, Is) − E(A, Is) − E(B, Is). (63)

In binding free energy calculation, E(X, Is) is set as the free energy from the water state to the salt solution state. Since 
the sum of G and � gives the potential in the water state, with (20) and the solution decomposition (22), we can obtain a 
new formula for computing E(X, Is) in the expression

E(X, Is) = C
2

np∑
j=1

z j�̃X,Is (r j), (64)

where C = N AkB T /4184, and �̃X,Is denotes a solution of the nonlinear nonlocal problem (40) for molecule X in a solvent 
with ionic strength Is . By the constant 4.184, the unit of E is transformed to kilocalorie per mole (kcal/mol) from kJ/mol.

By variable change ξ = log10 Is (or ξ = ln Is), the binding free energy Eb can be transformed as a linear function of ξ
with the slope m on an interval [a1, a2] of ξ :

Eb = mξ + b, a1 ≤ ξ ≤ a2,

where m can be estimated experimentally in a chemical laboratory [54].
To estimate the slope m computationally, we select a steplength, τ > 0, to construct a set of numbers, ξ j = a1 + jτ for 

j = 0, 1, 2, . . . , l, with l being the largest number satisfying a1 + lτ ≤ a2. We next calculate a set of binding energies, Eb(Is, j), 
with Is, j = 10ξ j for j = 0, 1, 2, . . . , l. The slope m is then estimated as the slope of a best fitted line determined by a linear 
regression program using the set of computed binding energies. We can also simply estimate the slope m by the arithmetic 
average:

ρ̃ = 1

l

l∑ Eb(Is, j) − Eb(Is, j−1)

τ
. (65)
j=1
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Fig. 2. The electrostatic solvation energy �Eele (defined in (62)) as a function of the nonlocal parameter λ (in Å) for the twelve proteins reported in Table 4. 
Here the PBE case was calculated by our PBE software package [27].

For the DNA-drug complex, a scaled slope, ms , defined by using ξ = ln Is , was determined chemically as ms ≈ −1.51 in 
[37, Table 3]. Using the formula m = −ms N AkB T /(4184 log10 e), we got m ≈ 2.06 kcal/mol.

In our numerical tests, we set a1 = −1.5, a2 = −0.1 (i.e., 0.0316 ≤ Is ≤ 0.7943), τ = 0.1, and l = 14. In the tests for the 
DNA-drug complex, λ was set as 10, 11, . . . , 18, and the three tetrahedral meshes had 57663, 62643, and 54797 vertices for 
the complex, DNA, and drug, respectively. We then estimated the slope m, and repeated the tests using our PBE program 
package [27]. The main results were reported in Figs. 4 and 5.

Fig. 4 shows that the arithmetic average ρ̃ of the slope can be an increasing function of λ. The best computed value 
2.102 of ρ̃ , which was reached at λ = 13, almost matches the experimental value of 2.06.

Fig. 5 compares the binding free energies computed by NMPBE and our PBE software package in best fitted lines. The 
slopes of the best fitted lines by NMPBE were closer to the experimental slope values than the ones by PBE, indicating that 
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Fig. 3. Numerical stability of NMPBE solver in calculation of solvation free energy with respect to mesh size.

Fig. 4. The slope average ρ̃ computed by NMPBE as a function of λ (in Å) for the DNA-drug complex. Here ρ̃ is calculated by (65).

Fig. 5. A comparison of the computed binding free energies by NMPBE with those by our PBE package [27] in best fitted lines for the DNA-drug complex.

NMPBE has improved the quality of PBE in the prediction of binding free energy. Since the deviations of all the best fitted 
lines were small, the binding energy data generated by NMPBE or PBE matched the experimental observation — The binding 
energy Eb is a linear function of ξ with ξ = log10 Is for Is ∈ [0.0316, 0.7943].

Finally, we studied the electrostatics on a binding site for a peptide-RNA complex. We got the PQR file of this complex 
and the PQR files of its peptide and RNA parts from the APBS website (http://www.poissonboltzmann.org). We also knew from 
[23] that the seventh residue Arg7 (Arginine) of the peptide bound with the eighth base G8 (guanine) of RNA. Hence, this 
peptide-RNA complex is a good example for us to compare the electrostatics predicted by NMPBE before the binding with 
that after the binding. In our NMPBE tests on this complex, we used λ = 19, Is = 0.1, and the three tetrahedral meshes with 
57072, 41960, and 47970 vertices for the peptide-RNA complex, the peptide, and the RNA, respectively. To clearly display 
the electrostatics at the binding site, the peptide and RNA parts were plotted in ribbon on the left and right plots in Fig. 6(A) 
and (B), respectively, along with the binding site being marked out by a molecular structure of Arg7 or G8 on each plot.

http://www.poissonboltzmann.org
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Fig. 6. A comparison of electrostatics predicted by NMPBE before the binding (Figure (A)) with that after the binding (Figure (B)) on the surfaces of the 
RNA and peptide parts of a peptide-RNA complex given in [23]. Here, the seventh residue Arg7 of the peptide bound with the eighth base G8 of the RNA, 
Arg7 and G8 are plotted in molecular structure to mark out this binding site, and the blue, red, and white patches represent positive, negative, and neutral 
electrostatics, respectively. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Figs. 6(A) and 6(B) display the cases before and after the binding, respectively. From Fig. 6(A) we can see that NMPBE 
produced negative electrostatics (in red patches) on the binding site of RNA, and positive electrostatics (in blue patches) on 
the binding site of peptide. After the binding, as shown in Fig. 6(B), the electrostatics produced by NMPBE became almost 
neutral (in white patches) at the binding site. These test results well matched the experimental observation — Arg7 bound 
with G8 due to their hydrogen bonds [23, Figure 1]. They further demonstrate the value of NMPBE in the study of binding 
properties.

6. Conclusions

In this paper, we have presented an efficient finite element numerical algorithm and a related program package for solv-
ing a nonlinear nonlocal dielectric model, called the nonlocal modified PBE (NMPBE). In order to overcome the difficulties 
of solution singularity caused by atomic charges, we constructed the algorithm according to the solution decomposition in 
which the NMPBE solution is split as a sum of three functions G , � , and �̃. We then proposed a novel modified Newton 
iterative algorithm for solving the nonlinear and nonlocal boundary value problem that defines �̃, together with two good 
initial iterates constructed from a linear NMPBE model and the PBE solution. We also proposed a nonlocal Debye–Hückel 
equation and obtained its analytical solution and its convolution function, which can be used to construct a non-trivial 
boundary value function for NMPBE. In addition, we obtained an analytical expression of the convolution of G , and used 
it to improve the numerical accuracy for computing � . Moreover, numerical results on a nonlinear nonlocal Born ball test 
model and various proteins were reported. They not only validated our NMPBE numerical algorithms and program package 
but also demonstrated the efficiency of our new modified Newton iterative algorithm and the high performance of our 
NMPBE software package. Finally, the application test results on proteins, a peptide-RNA complex, and a DNA-drug complex 
showed the potential of NMPBE as a better predictor of electrostatic solvation and binding free energies than PBE.

We noted that several other variants of PBE were developed recently to remedy the weaknesses of PBE caused by ignor-
ing ionic size effects and polarization correlations among water molecules. They include the size modified PBE models [55,
28], the dipolar Poisson–Boltzmann–Langevin models [56–58], a generalized PBE model by differential geometry [59], a gen-
eralized PBE model by ionic concentration functions [60,61], and the Poisson–Fermi model [62–64]. NMPBE stands for our 
initial efforts to incorporate polarization correlations into the improvement of PBE. In the future, we plan to further im-
prove it to reflect ionic size effects or other important physical/chemical effects in our calculation of electrostatic potential 
energies.

Acknowledgement

This work was partially supported by the National Science Foundation, USA, through grant DMS-1226259.

References

[1] The Chemical Physics of Solvation. Part A: Theory of Solvation, R.R. Dogonadze, E. Kálmán, A.A. Kornyshev, J. Ulstrup (Eds.), Studies in Physical and 
Theoretical Chemistry, vol. 38, Elsevier Science Ltf, Amsterdam, 1985.

[2] R.R. Dogonadze, A.A. Kornyshev, Polar solvent structure in the theory of ionic solvation, J. Chem. Soc. Faraday Trans. 2: Mol. Chem. Phys. 70 (1974) 
1121–1132.

[3] A.A. Kornyshev, A.I. Rubinshtein, M.A. Vorotyntsev, Model nonlocal electrostatics. I, J. Phys. C, Solid State Phys. 11 (1978) 3307.
[4] A. Kornyshev, G. Sutmann, Nonlocal dielectric saturation in liquid water, Phys. Rev. Lett. 79 (1997) 3435–3438.
[5] M. Basilevsky, D. Parsons, An advanced continuum medium model for treating solvation effects: nonlocal electrostatics with a cavity, J. Chem. Phys. 

105 (9) (1996) 3734–3746.

http://refhub.elsevier.com/S0021-9991(16)30253-4/bib6469656C65637472696331393835s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib6469656C65637472696331393835s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib646F676F6E61647A6531393734706F6C6172s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib646F676F6E61647A6531393734706F6C6172s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib6B6F726E7973686576313937386D6F64656Cs1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib506879735265764C6574742E37392E33343335s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib7265663A6E6F6E6C6F63656C656374726F73746174636176697479s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib7265663A6E6F6E6C6F63656C656374726F73746174636176697479s1


D. Xie, Y. Jiang / Journal of Computational Physics 322 (2016) 1–20 19
[6] M. Basilevsky, D. Parsons, Nonlocal continuum solvation model with exponential susceptibility kernels, J. Chem. Phys. 108 (1998) 9107–9113.
[7] M. Basilevsky, D. Parsons, Nonlocal continuum solvation model with oscillating susceptibility kernels: a nonrigid cavity model, J. Chem. Phys. 108 

(1998) 9114–9123.
[8] P. Bopp, A. Kornyshev, G. Sutmann, Static nonlocal dielectric function of liquid water, Phys. Rev. Lett. 76 (1996) 1280–1283.
[9] S. Buyukdagli, T. Ala-Nissila, Microscopic formulation of nonlocal electrostatics in polar liquids embedding polarizable ions, Phys. Rev. E 87 (2013) 

063201.
[10] A. Kornyshev, G. Sutmann, Nonlocal dielectric function of water: how strong are the effects of intramolecular charge form factors?, J. Mol. Liq. 82 

(1999) 151–160.
[11] J. Rottler, B. Krayenhoff, Numerical studies of nonlocal electrostatic effects on the sub-nanoscale, J. Phys. Condens. Matter 21 (25) (2009) 255901.
[12] A. Rubinstein, S. Sherman, Influence of the solvent structure on the electrostatic interactions in proteins, Biophys. J. 87 (3) (2004) 1544–1557.
[13] B. Sahin, B. Ralf, Nonlocal and nonlinear electrostatics of a dipolar coulomb fluid, J. Phys. Condens. Matter 26 (28) (2014) 285101.
[14] L. Scott, M. Boland, K. Rogale, A. Fernández, Continuum equations for dielectric response to macro-molecular assemblies at the nano scale, J. Phys. A, 

Math. Gen. 37 (2004) 9791–9803.
[15] A. Hildebrandt, R. Blossey, S. Rjasanow, O. Kohlbacher, H.-P. Lenhof, Novel formulation of nonlocal electrostatics, Phys. Rev. Lett. 93 (10) (2004) 108104.
[16] A. Hildebrandt, R. Blossey, S. Rjasanow, O. Kohlbacher, H. Lenhof, Electrostatic potentials of proteins in water: a structured continuum approach, 

Bioinformatics 23 (2) (2007) e99–e103.
[17] S. Weggler, V. Rutka, A. Hildebrandt, A new numerical method for nonlocal electrostatics in biomolecular simulations, J. Comput. Phys. 229 (11) (2010) 

4059–4074.
[18] D. Xie, Y. Jiang, P. Brune, L. Scott, A fast solver for a nonlocal dielectric continuum model, SIAM J. Sci. Comput. 34 (2) (2012) B107–B126.
[19] D. Xie, H. Volkmer, A modified nonlocal continuum electrostatic model for protein in water and its analytical solutions for ionic Born models, Commun. 

Comput. Phys. 13 (1) (2013) 174–194.
[20] D. Xie, Y. Jiang, L. Scott, Efficient algorithms for a nonlocal dielectric model for protein in ionic solvent, SIAM J. Sci. Comput. 35 (6) (2013) B1267–B1284.
[21] N.A. Baker, Poisson–Boltzmann methods for biomolecular electrostatics, Methods Enzymol. 383 (2003) 94–118.
[22] F. Fogolari, A. Brigo, H. Molinari, The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology, J. Mol. Recognit. 15 (6) 

(2002) 377–392.
[23] C. García-García, D. Draper, Electrostatic interactions in a peptide-RNA complex, J. Mol. Biol. 331 (1) (2003) 75–88.
[24] F. Fogolari, G. Esposito, P. Viglino, H. Molinari, Molecular mechanics and dynamics of biomolecules using a solvent continuum model, J. Comput. Chem. 

22 (15) (2001) 1830–1842.
[25] P. Kollman, et al., Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models, Acc. Chem. 

Res. 33 (12) (2000) 889–897.
[26] B. Roux, T. Simonson, Implicit solvent models, Biophys. Chem. 78 (1999) 1–20.
[27] D. Xie, New solution decomposition and minimization schemes for Poisson–Boltzmann equation in calculation of biomolecular electrostatics, J. Comput. 

Phys. 275 (2014) 294–309.
[28] B. Li, Continuum electrostatics for ionic solutions with non-uniform ionic sizes, Nonlinearity 22 (4) (2009) 811–833.
[29] D. Xie, J. Li, A new analysis of electrostatic free energy minimization and Poisson–Boltzmann equation for protein in ionic solvent, Nonlinear Anal., 

Real World Appl. 21 (2015) 185–196.
[30] N. Baker, Improving implicit solvent simulations: a Poisson-centric view, Curr. Opin. Struct. Biol. 15 (2005) 137–143.
[31] B. Lu, Y. Zhou, M. Holst, J. McCammon, Recent progress in numerical methods for the Poisson–Boltzmann equation in biophysical applications, Commun. 

Comput. Phys. 3 (5) (2008) 973–1009.
[32] C.L. Vizcarra, S.L. Mayo, Electrostatics in computational protein design, Curr. Opin. Chem. Biol. 9 (2005) 622–626.
[33] Y. Jiang, Y. Xie, J. Ying, D. Xie, Z. Yu, SDPBS web server for calculation of electrostatics of ionic solvated biomolecules, Mol. Based Math. Biol. 3 (2015) 

179–196.
[34] Z. Yu, M. Holst, Y. Cheng, J. McCammon, Feature-preserving adaptive mesh generation for molecular shape modeling and simulation, J. Mol. Graph. 

Model. 26 (8) (2008) 1370–1380.
[35] J. Nocedal, S. Wright, Numerical Optimization, 2nd edition, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2006.
[36] A. Logg, G.N. Wells, J. Hake, DOLFIN: a C++/Python finite element library, in: Automated Solution of Differential Equations by the Finite Element 

Method, in: Lect. Notes Comput. Sci. Eng., vol. 84, Springer, Heidelberg, 2012, pp. 173–225, Ch. 10.
[37] K.J. Breslauer, D.P. Remeta, W.-Y. Chou, R. Ferrante, J. Curry, D. Zaunczkowski, J.G. Snyder, L.A. Marky, Enthalpy-entropy compensations in drug-DNA 

binding studies, Proc. Natl. Acad. Sci. 84 (24) (1987) 8922–8926.
[38] P. Debye, Polar Molecules, Dover, New York, 1945.
[39] D. Griffiths, Introduction to Electrodynamics, 3rd edition, Prentice Hall, New Jersey, 1999.
[40] U. Kaatze, R. Behrends, R. Pottel, Hydrogen network fluctuations and dielectric spectrometry of liquids, J. Non-Cryst. Solids 305 (1) (2002) 19–28.
[41] M. Basilevsky, G. Chuev, Nonlocal solvation theories, in: B. Mennucci, R. Cammi (Eds.), Continuum Solvation Models in Chemical Physics: From Theory 

to Applications, Wiley, 2008, pp. 94–109.
[42] H. Yada, M. Nagai, K. Tanaka, The intermolecular stretching vibration mode in water isotopes investigated with broadband terahertz time-domain 

spectroscopy, Chem. Phys. Lett. 473 (4–6) (2009) 279–283.
[43] O. Dolgov, D. Kirzhnits, E. Maksimov, On an admissible sign of the static dielectric function of matter, Rev. Mod. Phys. 53 (1) (1981) 81–94.
[44] A.C. Maggs, R. Everaers, Simulating nanoscale dielectric response, Phys. Rev. Lett. 96 (23) (2006) 230603.
[45] A. Hildebrandt, Biomolecules in a structured solvent: a novel formulation of nonlocal electrostatics and its numerical solution, PhD thesis, Saarlandes 

University, Saarbrücken, Germany, February 2005.
[46] A. Kornyshev, A. Nitzan, Effect of overscreening on the localization of hydrated electrons, Z. Phys. Chem. 215 (6) (2001) 701–715.
[47] L.R. Scott, D. Xie, Analysis of a nonlocal Poisson–Boltzmann equation, Technical Report TR-2016-01, University of Chicago, 2016.
[48] S. Brenner, L. Scott, The Mathematical Theory of Finite Element Methods, 3rd edition, Springer-Verlag, New York, 2008.
[49] W. Rocchia, Poisson–Boltzmann equation boundary conditions for biological applications, Math. Comput. Model. 41 (10) (2005) 1109–1118.
[50] T. Dolinsky, J. Nielsen, J. McCammon, N. Baker, PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations, Nucleic 

Acids Res. 32 (suppl 2) (2004) W665.
[51] C. Bertonati, B. Honig, E. Alexov, Poisson–Boltzmann calculations of nonspecific salt effects on protein-protein binding free energies, Biophys. J. 92 (6) 

(2007) 1891–1899.
[52] D. Sitkoff, K.A. Sharp, B. Honig, Accurate calculation of hydration free energies using macroscopic solvent models, J. Phys. Chem. 98 (7) (1994) 

1978–1988.
[53] M.O. Fenley, R.C. Harris, B. Jayaram, A.H. Boschitsch, Revisiting the association of cationic groove-binding drugs to DNA using a Poisson–Boltzmann 

approach, Biophys. J. 99 (3) (2010) 879–886.
[54] G.S. Manning, The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides, Q. Rev. Biophys. 

11 (02) (1978) 179–246.

http://refhub.elsevier.com/S0021-9991(16)30253-4/bib7265663A6E6F6E6C6F636F6E74696E6469656C73757363657074s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib7265663A6E6F6E6C6F636F6E746D6F646E6F6E72696769636176s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib7265663A6E6F6E6C6F636F6E746D6F646E6F6E72696769636176s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib4E6F6E6C6F63616C5468656F727931s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib50687973526576452E38372E303633323031s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib50687973526576452E38372E303633323031s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib4E6F6E6C6F63616C5468656F727936s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib4E6F6E6C6F63616C5468656F727936s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib726F74746C6572323030396E756D65726963616Cs1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib727562696E737465696E32303034696E666C75656E6365s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib536168696E3A323031346161s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib6C72734249426669s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib6C72734249426669s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib506879735265764C6574742E39332E313038313034s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib68696C64656272616E647432303037656C656374726F737461746963s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib68696C64656272616E647432303037656C656374726F737461746963s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib576567676C65723230313034303539s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib576567676C65723230313034303539s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib786965323031316E6F6E6C6F63616Cs1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib7869655F766F6C6B6D657232303131s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib7869655F766F6C6B6D657232303131s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib7869652D6E6F6E6C6F63616C2D736F6C76657232303132s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib62616B657232303033706F6973736F6Es1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib666F676F6C61726932303032706F6973736F6Es1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib666F676F6C61726932303032706F6973736F6Es1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib70726F7465696E5F726E6132303035s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib666F676F6C617269323030316D6F6C6563756C6172s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib666F676F6C617269323030316D6F6C6563756C6172s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib6B6F6C6C6D616E3230303063616C63756C6174696E67s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib6B6F6C6C6D616E3230303063616C63756C6174696E67s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib726F75783939s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib78696550424532303133s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib78696550424532303133s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib426F4C693230303961s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib5869654C6932303134s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib5869654C6932303134s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib62616B657232303035s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib4D6343616D6D6F6E50424572656976657732303038s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib4D6343616D6D6F6E50424572656976657732303038s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib56697A636172726132303035s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib534450425332303135s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib534450425332303135s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib79753230303866656174757265s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib79753230303866656174757265s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib6E6F636564616C626F6F6Bs1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib646F6C66696E32303132s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib646F6C66696E32303132s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib627265736C6175657231393837656E7468616C7079s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib627265736C6175657231393837656E7468616C7079s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib7265663A6465627965s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib67726966666974687331393939696E74726F64756374696F6Es1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib7265663A6869646964617461s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib426173696C6576736B7932303038s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib426173696C6576736B7932303038s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib59616461496E7465726D6F6C6563756C6172s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib59616461496E7465726D6F6C6563756C6172s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib446F6C676F7631393831s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib4D6167677332303036s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib48696C64656272616E647454686573697332303035s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib48696C64656272616E647454686573697332303035s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib7265663A687964726F656C6563746F6Es1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib53636F747458696532303135s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib6272656E6E657253636F7474s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib726F636368696132303035706F6973736F6Es1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib646F6C696E736B793230303470646232707172s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib646F6C696E736B793230303470646232707172s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib486F6E696732303037504245s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib486F6E696732303037504245s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib7369746B6F6666313939346163637572617465s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib7369746B6F6666313939346163637572617465s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib66656E6C65793230313072657669736974696E67s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib66656E6C65793230313072657669736974696E67s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib6D616E6E696E67313937386D6F6C6563756C6172s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib6D616E6E696E67313937386D6F6C6563756C6172s1


20 D. Xie, Y. Jiang / Journal of Computational Physics 322 (2016) 1–20
[55] I. Borukhov, D. Andelman, H. Orland, Steric effects in electrolytes: a modified Poisson–Boltzmann equation, Phys. Rev. Lett. 79 (3) (1997) 435.
[56] P. Koehl, M. Delarue, AQUASOL: an efficient solver for the dipolar Poisson–Boltzmann–Langevin equation, J. Chem. Phys. 132 (6) (2010) 064101.
[57] P. Koehl, F. Poitevin, H. Orland, M. Delarue, Modified Poisson–Boltzmann equations for characterizing biomolecular solvation, J. Theor. Comput. Chem. 

13 (03) (2014) 1440001.
[58] P. Koehl, H. Orland, M. Delarue, Beyond the Poisson–Boltzmann model: modeling biomolecule-water and water–water interactions, Phys. Rev. Lett. 

102 (8) (2009) 087801.
[59] G.-W. Wei, Multiscale, multiphysics and multidomain models I: basic theory, J. Theor. Comput. Chem. 12 (08) (2013).
[60] D. Chen, Modeling and computation of heterogeneous implicit solvent and its applications for biomolecules, Mol. Based Math. Biol. 2 (1) (2014).
[61] B. Li, J. Wen, S. Zhou, Mean-field theory and computation of electrostatics with ionic concentration dependent dielectrics, Commun. Comput. Phys. 

14 (1) (2016) 249–271.
[62] M.Z. Bazant, B.D. Storey, A.A. Kornyshev, Double layer in ionic liquids: overscreening versus crowding, Phys. Rev. Lett. 106 (2011) 046102.
[63] C.D. Santangelo, Computing counterion densities at intermediate coupling, Phys. Rev. E 73 (4) (2006) 041512.
[64] G. Tresset, Generalized Poisson–Fermi formalism for investigating size correlation effects with multiple ions, Phys. Rev. E 78 (6) (2008) 061506.

http://refhub.elsevier.com/S0021-9991(16)30253-4/bib626F72756B686F7631393937737465726963s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib6B6F65686C3230313061717561736F6Cs1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib6B6F65686C323031346D6F646966696564s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib6B6F65686C323031346D6F646966696564s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib6B6F65686C323030396265796F6E64s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib6B6F65686C323030396265796F6E64s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib776569323031336D756C74697363616C65s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib6368656E323031346D6F64656C696E67s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib6C69323031346D65616Es1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib6C69323031346D65616Es1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib506879735265764C6574742E3130362E303436313032s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib73616E74616E67656C6F32303036636F6D707574696E67s1
http://refhub.elsevier.com/S0021-9991(16)30253-4/bib747265737365743230303867656E6572616C697A6564s1

	A nonlocal modiﬁed Poisson-Boltzmann equation and ﬁnite element solver for computing electrostatics of biomolecules
	1 Introduction
	2 The derivation of our nonlocal Poisson dielectric model
	3 A nonlocal modiﬁed Poisson-Boltzmann equation
	4 The NMPBE ﬁnite element solver for symmetric 1:1 ionic solution
	4.1 Scheme for computing Ψ
	4.2 Selection of boundary value functions
	4.3 A modiﬁed Newton method for computing Φ̃
	4.4 Selection of initial iterates

	5 Program package and numerical results
	5.1 Validation tests
	5.2 Performance tests for proteins
	5.3 Electrostatic solvation free energy calculation
	5.4 Binding free energy calculation

	6 Conclusions
	Acknowledgement
	References


