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NEW FINITE ELEMENT ITERATIVE METHODS FOR SOLVING

A NONUNIFORM IONIC SIZE MODIFIED

POISSON-BOLTZMANN EQUATION

DEXUAN XIE

Abstract. In this paper, a nonuniform size modified Poisson-Boltzmann equation (SMPBE)
for a protein in a solvent with multiple ionic species in distinct ionic sizes is derived by using a
new electrostatic free energy functional and solution decomposition techniques. It is then proved
to have a unique solution, and the solution satisfies a system consisting of nonlinear algebraic
equations and one Poisson dielectric interface problem. To solve it numerically, two new finite
element iterative schemes are proposed by using nonlinear successive over-relaxation techniques,
along with an improved uniform SMPBE for generating initial iterates. Furthermore, they are
programmed in Python and Fortran as a software package for solving the nonuniform SMPBE,

and numerically tested on a Born ball test model and a protein in a sodium chloride solution and
a sodium chloride and potassium chloride solution. Numerical results confirm the convergence of
the two new iterative schemes and demonstrate the high performance of the new software package.

Key words. Poisson-Boltzmann equation, finite element method, nonlinear successive over-
relaxation, ionic size effects, electrostatics.

1. Introduction

The Poisson-Boltzmann equation (PBE) is one widely used implicit solvent
model for electrostatics of ionic solvated biomolecules [24, 50]. It can produce sol-
vent effects comparable to all-explicit-molecular models [7, 8, 16, 24, 44], and has
been successively applied to the study of ionic solutions, biomolecular structure and
function, catalytic activity, ligand association, protein docking, ion channel mod-
eling, and rational drug design [2, 3, 4, 17, 19, 21, 24, 30, 34, 41, 48, 51, 52, 53].
Many PBE numerical algorithms, software packages, and web servers were devel-
oped in the last decades (see [5, 13, 15, 29, 40, 43, 49, 54] for examples). In the last
five years, we developed PBE finite element solvers and software packages using
our solution decomposition techniques [26, 37, 56, 57, 61], including one web server
(sdpbs.math.uwm.edu) for the calculation of electrostatic solvation and binding free
energies [27].

However, PBE distinguishes ions only by charge, so it may work poorly in appli-
cations that require distinguishing ions by size (e.g. Na+ and K+) [20, 25, 28, 31,
46]. To reflect ionic size effects, several dielectric continuum models were proposed
(see the introduction of [47] for a short review, for example). In this paper, we only
consider one of them — a size modified PBE (SMPBE).

So far, several SMPBE models were proposed as extensions of the early SMPBE
proposed in 1997 [10], and solved numerically by finite difference and finite element
algorithms [11, 14, 36, 42, 63]. One typical SMPBE was studied mathematically
in [33, 35]. But, for SMPBE in the case of a protein in a solvent with multiple
ionic species in distinct ionic sizes, which will be called the nonuniform SMPBE
for clarity, there was only one finite difference algorithm publicly available, which
worked for a case of three ionic species in two different ion sizes [14]. From a brief
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review presented in the supplementation file of [55] it can be seen that this solver
used a simple iteration scheme and did not deal with solution singularity by any
solution decomposition technique. As another approach, a finite element scheme for
solving a size modified Poisson-Nernst-Planck model (SMPNP) was used to solve
the nonuniform SMPBE as the steady state of SMPNP [42].

Recently, we adapted our PBE finite element solver [56] to the numerical solution
of SMPBE in the case of all ions having the same volumetric size, which will be
called the uniform SMPBE [36]. This solver is now publicly available through the
web server: smpbs.math.uwm.edu [59]. The key part of this solver is a solution
decomposition scheme, which overcomes one major difficulty stemming from the
solution singularity. We selected finite element techniques to solve SMPBE since
they can be much more effective than finite difference techniques to deal with the
complicated interface geometries and interface conditions. Based on our uniform
SMPBE work [36, 56, 59], we intend to develop new finite element schemes for
solving the nonuniform SMPBE in this paper.

Before doing so, we need to modify the current nonuniform SMPBE and its
derivation to avoid their drawbacks. In fact, the current nonuniform SMPBE relied
on a volume parameter of a water molecule and was derived from an electrostatic
free energy functional involving the singular electrostatic potential function, the
concentration of water molecules, and the volume of a water molecule [33, 42].
Since water molecules were treated as particles with sizes, various voids occurred
among ions and water molecules, breaking down a size constraint condition required
by the definition of SMPBE. To fix this drawback, a concentration of voids was
introduced in [38]. But, this treatment required the representation of void volumes
in one parameter, which is impossible since voids may have different shapes and
volumes. Using the concentration of water molecules to derive SMPBE also caused
a redundancy problem since the water solution had been treated as a continuum
dielectric. On the other hand, the current electrostatic free energy functional was
singular due to using the singular electrostatic potential function for its definition.
To deal with the singularity issue, a complicated analysis had to be done to prove
the solution existence and uniqueness of SMPBE [33, 34]. Hence, it is necessary
to modify the current SMPBE and its derivation before we construct numerical
algorithms.

To do so, we start with a revisit of the Poisson dielectric model using solution
decomposition techniques. In order to use biochemical data directly in calculation,
the Poisson dielectric model is reconstructed in dimensionless form by using ionic
concentrations in moles per liter, lengths in angstroms, and other related parameters
in SI units. Its solution u is then decomposed into three component functions (G,Ψ,

and Φ̃ as defined in Section 2.2) to deal with the singularity caused by atomic point
charges. As illustrated in [58, see Figure 3, pp. 043304-9], the smaller the mesh size,
the stronger such a singularity becomes. Hence, a solution decomposition technique
becomes essential to overcome such a singular difficulty.

We make three changes to modify the current electrostatic free energy function-
als as the new one in this paper. Firstly, we remove the concentration of water
molecules and the volume of a water molecule to yield a modified size constraint
condition (see (20)). Secondly, the singular potential u is replaced by the compo-

nent function Φ̃ to avoid singularity difficulties. Thirdly, bulk ionic concentrations
are used directly in the ideal gas free energy term. Consequently, from a minimiza-
tion of this new functional we derive a nonuniform SMPBE. Furthermore, we prove
that the nonuniform SMPBE has a unique solution, and the solution satisfies a
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system consisting of nonlinear algebraic equations and the Poisson dielectric model
(see Theorem 2.1). Although our nonuniform SMPBE is slightly different from the
current ones, its derivation and analysis are remarkably different from the current
ones.

We next develop nonlinear iterative schemes for solving the nonuniform SMPBE
using the classic nonlinear SOR (successive over-relaxation) iterative techniques
[45]. The nonlinear SOR method was established in the 1950s to solve a large
scale system of nonlinear algebraic equations arisen from numerical approxima-
tions to nonlinear elliptic boundary value problems [45]. It can be efficient for
solving the nonuniform SMPBE since it can sharply reduce the computation com-
plexity through separating each equation from the others. Each nonlinear algebraic
equation of the nonuniform SMPBE system has the unknown functions — ionic
concentration functions and electrostatic potential function. Based on the finite
element approach, it is approximated as a system of nonlinear finite element equa-
tions with the unknowns being the mesh values of ionic concentration functions and
electrostatic potential function on a mesh of the solvent domain. The equations of
this system are independent each other so that this finite element system becomes
a nonlinear equation of one unknown vector when it is solved numerically by the
nonlinear SOR method. Using this special feature, in this paper, we construct a
new nonlinear SOR-like scheme in vector form, and solve each related nonlinear
equation by a Newton scheme iteratively until a convergence rule is satisfied. Af-
ter the ionic concentration functions are updated, the Poisson dielectric model is
solved by a finite element method to complete one iteration of the nonlinear SOR-
like scheme. We also obtain the SOR-Newton scheme when each related nonlinear
equation is solved by one Newton iteration only. From the nonlinear SOR conver-
gence theory [45] it implies that our two nonlinear SOR schemes can have fast rates
of convergence since the size of a nonuniform SMPBE system is small, typically 3
or 4 for applications involving two or three ionic species.

As iterative methods, our nonlinear SOR-like and SOR-Newton schemes require
initial iterates. A good selection of initial iterate can improve the convergence and
performance of our two schemes significantly. For this purpose, in this paper, we
propose an improved uniform SMPBE by setting the volume of each ion to be the
average of ion volumes. In contrast, in the uniform SMPBE, the ions are set to
have the volume of a water molecule. Clearly, the improved uniform SMPBE can
better approximate the nonuniform SMPBE than the uniform SMPBE so that it
can produce better initial iterates for our two iterative schemes.

We programmed our new nonuniform SMPBE finite element solvers in Python
and Fortran as a software package based on the state-of-the-art finite element library
from the FEniCS project [39], the linear algebra library NumPy (www.numpy.org),
and our PBE and uniform SMPBE program packages [27, 56, 59]. We also extended
our uniform SMPBE program package to make it work for a solvent with any
number of ionic species. We then adapted it to the numerical solution of the
improved uniform SMPBE for the generation of initial iterates. To demonstrate the
performance of the new nonuniform SMPBE software, we did numerical tests on a
Born ball test model and a protein with 892 atoms for a solution of sodium chloride
(NaCl, table salt) and a solution of sodium chloride and potassium chloride (NaCl-
KCl), respectively. Numerical results validated our nonuniform SMPBE, confirmed
the convergence of our two nonlinear SOR schemes, and demonstrated the high
performance of our software package.
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Figure 1. An illustration of a protein region Dp surrounded by a
solvent region Ds with sodium ions (Na+) and chloride ions (Cl−).

The remaining part of the paper is arranged as follows. In Section 2, we con-
struct and analyze the nonuniform SMPBE. In Section 3, we present new nonuni-
form SMPBE finite element solvers. In Section 4, we present an improved uniform
SMPBE. In Section 5, we report the SMPBE program package and numerical re-
sults. Finally, conclusions are made in Section 6.

2. Derivation of the nonuniform SMPBE

In this section, we first derive the Poisson dielectric model and its solution de-
composition as a general framework for developing dielectric continuum models for
protein in ionic solvent. We then derive the nonuniform SMPBE using a new elec-
trostatic free energy functional. Moreover, we prove that the nonuniform SMPBE
has a unique solution, and the solution satisfies a system of nonlinear algebraic
equations and one Poisson dielectric model.

2.1. Poisson dielectric model. Let a protein with np atoms be wrapped by a
molecular surface Γ to form a protein region Dp, and rj and zj denote the position
and charge number of atom j. For a sufficiently large domain Ω (a rectangular box
or a sphere), a water solution region Ds is set as Ds = Ω \ (Dp ∪ Γ), and contains
n different ionic species. We assume that a boundary value function, g, is known
on the boundary ∂Ω of Ω. For example, g is simply set as zero due to the fact that
Φ(r) → 0 as the length |r| → ∞ for r = (x, y, z) ∈ R

3. Other selections of g can be
found in [23, 41]. See Figure 1 for an illustration, and Figures 3 and 4 for examples
of molecular surface Γ and domain Ω.

As usual, we estimate the charge density functions, ρp and ρs, within Dp and
Ds by the expressions

(1) ρp(r) = ec

np
∑

j=1

zjδrj , r ∈ Dp; ρs(r) = ec

n
∑

i=1

Zici(r), r ∈ Ds,

where ci and Zi denote the concentration function and charge number of the i-th
ionic species, respectively, δrj is the Dirac delta distribution at rj , and ec is the
elementary charge. Based on the implicit solvent approach [24, 50] and the clas-
sic linear dielectric theory [18, 22], Dp and Ds are treated as dielectric continuum
media with relative permittivity constants ǫp and ǫs so that the electrostatic po-
tential function Φ within Dp and Ds can be estimated, respectively, by the Poisson
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equations

(2) − ǫ0ǫp∆Φ(r) = ec

np
∑

j=1

zjδrj , r ∈ Dp.

and

(3) − ǫ0ǫs∆Φ(r) = ec

n
∑

i=1

Zici(r), r ∈ Ds,

where ǫ0 is the permittivity of the vacuum.
To merge (2) and (3) together as a dielectric model for estimating Φ in the whole

domain Ω, it is natural to require that Φ is continuous across the interface Γ:

(4) Φ(s−) = Φ(s+), s ∈ Γ,

where Φ(s±) = limt→0+ Φ(s ± tn(s)) with n(s) being the unit outward normal
vector of Dp. From the classic linear dielectric theory [22] it is known that ρp and
ρs induce displacement fields, dp and ds, respectively, as follows:

∇·dp(r) = ρp(r) ∀r ∈ Dp; ∇·ds(r) = ρs(r) ∀r ∈ Ds,

and dp and ds are continuous across the interface Γ:

(5) dp(s
−) · n(s) = ds(s

+) · n(s) ∀s ∈ Γ.

From (2) and (3) we can get that

(6) dp(r) = −ǫ0ǫp∇Φ(r), r ∈ Dp; ds(r) = −ǫ0ǫs∇Φ(r), r ∈ Ds.

Hence, applying (6) to (5) gives the second interface condition

(7) ǫs
∂Φ(s+)

∂n(s)
= ǫp

∂Φ(s−)

∂n(s)
∀s ∈ Γ,

where ∂Φ(s)
∂n(s) = ∇Φ(s) · n(s). Consequently, a combination of the two Poisson

equations (2) and (3) with the interface conditions (4) and (7) results in the Poisson
dielectric model for protein in ionic solvent as follows:

(8)







































−ǫ0ǫp∆Φ(r) = ec

np
∑

j=1

zjδrj , r ∈ Dp,

−ǫ0ǫs∆Φ(r) = ec
n
∑

i=1

Zici(r), r ∈ Ds,

Φ(s−) = Φ(s+), ǫs
∂Φ(s+)
∂n(s) = ǫp

∂Φ(s−)
∂n(s) , s ∈ Γ,

Φ(s) = g(s), s ∈ ∂Ω.

In the above model, we have used the SI (Systéme International) unit system to
measure potential Φ in volts (V), length in meters (m), and concentration ci in the
number of ions per cubic meter. The parameters ec and ǫ0 are estimated by

ec = 1.602176565× 10−19 C, ǫ0 = 8.854187817× 10−12 F/m,

where C and F denote Coulomb (the unit of electric charge) and Farad (the unit of
capacitance), respectively. See http://physics.nist.gov/cuu/Constants/index.html
for the updating of the physical parameters.

But, in biomolecular simulation, the length unit is angstrom (Å), and ci in moles
per liter (mol/L). Hence, we change the units of ǫ0 and ci as shown below:

(9) ǫ0 F/m =
ǫ0
1010

F/Å, ci mol /L = ci10
3NA/m

3 = 10−27NAci/Å
3
,
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where we have used the unit converters: 1 m = 1010 Å, and 1 L = m3/103, and
the Avogadro number NA = 6.02214129 × 1023, which estimates the number of
ions per mole. Furthermore, the Poisson dielectric model (8) is often rescaled to a
dimensionless form by using the variable change

(10) u =
ec

kBT
Φ,

where kB is the Boltzmann constant, and T is the absolute temperature. In the SI
system, kB = 1.380648813× 10−23 Joule/Kelvin (J/K) at T = 298.15 K. Since 1 V
= 1 J/C, the factor ec

kBT is in 1/V. Thus, u becomes dimensionless. Hence, when

the length unit is in Å, and each ci in mol/L, by (9) and (10), the Poisson dielectric
model (8) can be rescaled to the dimensionless form

(11)



































−ǫp∆u(r) = α
np
∑

j=1

zjδrj , r ∈ Dp,

−ǫs∆u(r) = β
n
∑

i=1

Zici(r), r ∈ Ds,

u(s−) = u(s+), ǫs
∂u(s+)
∂n(s) = ǫp

∂u(s−)
∂n(s) , s ∈ Γ,

u(s) = ĝ(s), s ∈ ∂Ω,

where α, β, and ĝ are defined by

(12) α =
1010e2c
ǫ0kBT

, β =
NAe

2
c

1017ǫ0kBT
, ĝ =

ec
kBT

g.

At T = 298.15, we can estimate α, β, and ec
kBT in the following values:

α ≈ 7042.93990033, β ≈ 4.24135792,
ec

kBT
≈ 38.92174809.

When the solution u is found, we can gain Φ by (10) for energy calculation.

2.2. Solution decomposition. However, the Poisson dielectric model (11) is dif-
ficult to study due to the solution singularity caused by the distributions δrj . To
avoid such a difficulty, we split the solution u in the form

(13) u(r) = G(r) + Ψ(r) + Φ̃(r) ∀r ∈ Ω,

where G is given by

(14) G(r) =
α

4πǫp

np
∑

j=1

zj
|r− rj |

,

Ψ is a solution of the linear interface problem

(15)











∆Ψ(r) = 0, r ∈ Dp ∪Ds,

Ψ(s+) = Ψ(s−), εs
∂Ψ(s+)
∂n(s) = εp

∂Ψ(s−)
∂n(s) + (ǫp − ǫs)

∂G(s)
∂n(s) , s ∈ Γ,

Ψ(s) = ĝ(s)−G(s), s ∈ ∂Ω,

and Φ̃ is a solution of the interface problem

(16)
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



















∆Φ̃(r) = 0, r ∈ Dp,

−ǫs∆Φ̃(r) = β
n
∑

i=1

Zici(r), r ∈ Ds,

Φ̃(s+) = Φ̃(s−), εs
∂Φ̃(s+)
∂n(s) = εp

∂Φ̃(s−)
∂n(s) , s ∈ Γ,

Φ̃(s) = 0, s ∈ ∂Ω.
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Here ∂G(s)
∂n(s) = ∇G(s) · n(s) with ∇G being given by

(17) ∇G(s) = −
α

4πǫp

np
∑

j=1

zj
(s− rj)

|s− rj |3
.

Clearly, G,Ψ, and Φ̃ correspond to the electrostatic contributions from the pro-
tein domain Dp, the interface Γ, and the solvent domain Ds, respectively. Specially,
the sum Ψ + G gives the electrostatic potential for protein in water. Because G
contains all the singular points of u, both Ψ and Φ̃ become well defined without
any singularity.

Following what is done in [57, Theorem 3.2], we can prove that (15) and (16)
have unique solutions for ci ∈ L2(Ω), from which it implies the solution existence
and uniqueness of the Poisson dielectric model (11). Here, ci has been set as zero
in Dp, and L2(Ω) is the function space with the inner product (u, v) =

∫

Ω
uvdr and

the norm ‖v‖ =
√

∫

Ω v2dr.

2.3. Optimal selection of ionic concentrations. Clearly, different selections of
ionic concentration functions may yield different electrostatic potential functions.
To search for an optimal selection that can reflect ionic size effects, we first construct
an ionic size constraint condition.

Let V , Ni, and vi denote the volume of Ds, the number of ions of species i, and
the volume of an ion of species i, respectively. Then, the volume occupied by the
water solution, Vw, can be expressed by

(18) Vw = V −

n
∑

i=1

viNi.

The average volume fraction ξb of the water solution in Ds and the bulk concen-
trations cbi are defined by

ξb = Vw/V, cbi = Ni/V, i = 1, 2, . . . , n.

Dividing by V on the both sides of (18), we find that

(19) ξb = 1−

n
∑

i=1

vic
b
i .

We then generalize (19) as the ionic size constraint condition:

(20) ξ(r) +

n
∑

i=1

vici(r) = 1, r ∈ Ds,

where ξ(r) denotes the volume fraction function of the water solution. Here cbi and
ci have units in the number of ions per Å3 when vi is in Å3.

In molecular calculation, ionic concentrations are usually given in units mol/L.
Thus, for the convenience of calculation, we use (9) to rescale (20) as

(21) ξ(r) = 1− γ
n
∑

i=1

vici(r), r ∈ Ds,

where γ = 10−27NA, which is estimated by

(22) γ ≈ 6.02214129× 10−4.

We next consider an optimal selection of ionic concentrations under the size
constraint condition (21) with c = (c1, c2, . . . , cn) and the bulk concentrations cbi
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for i = 1, 2, . . . , n being given in moles per liter. Using the solution decomposition
(13), we construct a new electrostatic free energy functional, F , as follows:

(23) F (c, Φ̃) = Fes(c, Φ̃) + Fid(c) + Fex(c),

where Fes, Fid, and Fex denote the electrostatic, ideal gas, and excess energies,
respectively, which are defined in the following expressions

Fes(c, Φ̃) =
kBT

2

np
∑

j=1

zjΦ̃(rj) +
kBT

2
γ

n
∑

i=1

Zi

∫

Ds

(Φ̃ + Ψ +G)cidr,

Fid(c) = kBTγ

n
∑

i=1

∫

Ds

ci

(

ln
ci

cbi
− 1

)

dr,

Fex(c) =
kBT

v0

∫

Ds

[

1− γ

n
∑

i=1

vici(r)
][

ln
(

1− γ

n
∑

i=1

vici(r)
)

− 1
]

dr.

Here v0 is a size scaling parameter to give Fex an energy unit. For example, we
often set v0 = min1≤i≤n vi in calculation. The excess energy Fex reflects the ionic
size effects caused by the constraint condition (21).

Clearly, by the first Green’s formula, the boundary value problem (16) can be
reformulated as the variational problem:

(24) Find Φ̃ ∈ H1
0 (Ω) such that a(Φ̃, v) = b(v) ∀v ∈ H1

0 (Ω),

where b(v) = β
∑n

i=1 Zi

∫

Ds
civdr, a(u, v) is defined by

(25) a(u, v) = ǫp

∫

Dp

∇u · ∇vdr+ ǫs

∫

Ds

∇u · ∇vdr,

and H1
0 (Ω) = {v ∈ H1(Ω) | v(s) = 0 ∀s ∈ ∂Ω} with H1(Ω) being the normal

Sobolev space of functions with first order weak derivatives [1].
We next define linear operator, L, by

〈Lu, v〉 = a(u, v) ∀v ∈ H1
0 (Ω) for each u ∈ H1

0 (Ω),

so that the variational form (24) can be written in the operator equation

(26) LΦ̃− β

n
∑

j=1

Zjcj = 0.

We now define an optimal c as a solution of the following Poisson dielectric
equation constrained minimization problem:

(27) min{F (c, Φ̃) | (c, Φ̃) satisfies (26) for c ∈ [L2(Ω)]n, Φ̃ ∈ H1
0 (Ω)},

where ci has been set to be zero in Dp and continuous in Ds to ensure ci ∈ L2(Ω).
The main results are reported in Theorem 2.1.

Theorem 2.1. The constrained minimization problem (27) has a unique mini-

mizer, (c, Φ̃), defined implicitly by a system of n+ 1 equations as follows:

(28) ci − cbi



1− γ

n
∑

j=1

vjcj





vi
v0

e−Zi(Φ̃+Ψ+G) = 0, i = 1, 2, . . . , n,

and the operator equation (26). Here γ is given in (22).
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Proof. As what was done in [57], the variational problem (24) can be shown to have
a unique solution, and the solution can be expressed as

(29) Φ̃ = Φ̃(c) with Φ̃(c) = β

n
∑

i=1

ZiL
−1ci,

where L−1 denotes the inverse of linear operator L, which is continuous self-adjoint
positive. Thus, the electrostatic energy Fes can be reformulated as

Fes(c) =
kBT

2

[

np
∑

j=1

zjΦ̃(c)(rj) + γ
n
∑

i=1

Zi

∫

Ds

(Ψ +G)cidr

+βγ

n
∑

i,j=1

ZiZj

∫

Ω

L−1cicjdr
]

.

Recall that u = Φ̃+Ψ+G. We can find the first and second Fréchet derivatives
of Fid, Fes, and Fex as follows:

∂Fid(c)

∂ci
= kBTγ ln

(

ci

cbi

)

,
∂2Fid(c)

∂cj∂ci
=

{

kBT
ci

γ j = i,

0 j 6= i,

∂Fes(c)

∂ci
= kBTγZiu,

∂2Fes(c)

∂cj∂ci
= kBTγβZiZjL

−1,

∂Fex(c)

∂ci
= −kBTγ

vi
v0

ln
(

1− γ

n
∑

k=1

vkck
)

,

∂2Fex(c)

∂cj∂ci
=

kBTγ
2vivj

v0
(

1− γ
n
∑

k=1

vkck
)

.

Combining the above partial derivatives together, we get the first Fréchet deriv-
ative F ′ in the expression

F ′(c)w = kBTγ
n
∑

i=1

∫

Ds

[

Ziu+ ln

(

ci

cbi

)

−
vi
v0

ln
(

1− γ
n
∑

j=1

vjcj
)

]

wi(r)dr,

where w = (w1, w2, . . . , wn) with wi ∈ L2(Ω).
From the stationary equation F ′(c)w = 0 we obtain the n equations:

(30) Ziu+ ln

(

ci

cbi

)

−
vi
v0

ln
(

1− γ

n
∑

j=1

vjcj
)

= 0, i = 1, 2, . . . , n,

from which we obtain the expressions of (28).
Furthermore, we can obtain the second Fréchet derivative F ′′ as below:

F ′′(c)(w,w) = kBTβγ
〈

L−1
n
∑

i=1

Ziwi,
n
∑

i=1

Ziwi

〉

+ kBTγ

n
∑

i=1

∫

Ds

1

ci
(wi(r))

2dr

+
kBT

v0
γ2

∫

Ds

1

1− γ
∑n

i=1 vici

(

n
∑

i=1

viwi

)2

dr.
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From the above expression we see that F ′′(c) is strictly positive for any w 6= 0,
implying that the minimization problem (27) has a unique solution. This completes
the proof. �

Corollary 2.2. Let u = Φ̃ +Ψ+G. If the ion volumes vi = v0 for i = 1, 2, . . . , n,
then each concentration ci can be expressed as an explicit function of u as follows:

(31) ci(r) =
cbie

−Ziu(r)

1 + v0γ
n
∑

j=1

cbje
−Zju(r)

, i = 1, 2, . . . , n.

Specifically, if v0 = 0, the above ci is reduced to the classic Boltzmann distribution

(32) ci(r) = cbie
−Ziu(r), i = 1, 2, . . . , n.

Proof. When vi = v0 for i = 1, 2, . . . , n, the equations of (28) are simplified as

(33) ci = cbi
[

1− v0γ

n
∑

j=1

cj(r)
]

e−Ziu(r), i = 1, 2, . . . , n.

Summarizing the above equations from their both sides gives

n
∑

i=1

ci(r) =
[

1− v0γ

n
∑

j=1

cj(r)
]

n
∑

i=1

cbie
−Ziu(r),

from which we can get

n
∑

i=1

ci(r) =

n
∑

i=1

cbie
−Ziu(r)

1 + v0γ
n
∑

i=1

cbie
−Ziu(r)

.

We substitute the above expression to (33) to gain (31). It is obvious that the
equations of (28) is reduced to (32) when v0 = 0. This completes the proof. �

2.4. The nonuniform SMPBE for protein in ionic solvent. According to
Theorem 2.1, we define the nonuniform SMPBE as a system of n + 1 equations,
which contains one linear interface boundary value problem,

(34)



































−ǫp∆u(r) = α
np
∑

j=1

zjδrj , r ∈ Dp,

−ǫs∆u(r) = β
n
∑

i=1

Zici(r), r ∈ Ds,

u(s−) = u(s+), ǫs
∂u(s+)
∂n(s) = ǫp

∂u(s−)
∂n(s) , s ∈ Γ,

u(s) = ĝ(s), s ∈ ∂Ω,

and n nonlinear algebraic equations:

(35) ci(r) − cbi



1− γ

n
∑

j=1

vjcj(r)





vi
v0

e−Ziu(r) = 0, i = 1, 2, . . . , n.

Here α, β, ĝ, and γ are given in (12) and (22). The solution of the nonuniform
SMPBE gives n optimal ionic concentration functions ci for i = 1, 2, . . . , n and one
related electrostatic potential u in the sense of minimizing the electrostatic free
energy functional F of (23).
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Specifically, when all the ionic volumes vi = v0 for i = 1, 2, . . . , n, applying (31)
to (34), we obtain the uniform SMPBE:

(36)











































−ǫp∆u(r) = α
np
∑

j=1

zjδrj , r ∈ Dp,

ǫs∆u(r) + β

n∑

i=1

Zic
b
ie

−Ziu(r)

1+v0γ
n∑

i=1

cb
i
e−Ziu(r)

= 0, r ∈ Ds,

u(s−) = u(s+), ǫs
∂u(s+)
∂n(s) = ǫp

∂u(s−)
∂n(s) , s ∈ Γ,

u(s) = ĝ(s), s ∈ ∂Ω.

Without considering any ionic size effect, we set v0 = 0 to reduce the uniform
SMPBE into the classic PBE:

(37)



































−ǫp∆u(r) = α
np
∑

j=1

zjδrj , r ∈ Dp,

ǫs∆u(r) + β
n
∑

i=1

Zic
b
ie

−Ziu(r) = 0, r ∈ Ds,

u(s−) = u(s+), ǫs
∂u(s+)
∂n(s) = ǫp

∂u(s−)
∂n(s) , s ∈ Γ,

u(s) = ĝ(s), s ∈ ∂Ω.

Hence, the nonuniform SMPBE contains both the uniform SMPBE and the
classic PBE as two special cases.

Clearly, the algebraic equations of (35) is well defined only if

0 ≤ ξ(r) ≤ 1 ∀r ∈ Ds with ξ(r) = 1− γ

n
∑

j=1

vjcj(r).

In fact, it is true that ξ(r) ≤ 1 since all ci ≥ 0. In Physics, it is obvious that ξ ≥ 0
since ξ stands for the volume fraction of the water solution, which is always much
larger than the volume occupied by the ions in Ds. But, in numerical calculation,
negative values of ξ may occur when an initial iterate is a poor approximation to
the solution of SMPBE, causing an iterative process for a numerical solution to
crash.

To ensure that ξ(r) ≥ 0, we present a sufficient condition in Theorem 2.3.

Theorem 2.3. If concentration functions cj satisfy the range constraints

(38) 0 ≤ cj(r) ≤
1

γ
n
∑

i=1

vi

∀r ∈ Ds, j = 1, 2, . . . , n,

then 1− γ
∑n

j=1 vjcj(r) ≥ 0 in Ds.

Proof. Under the conditions of (38), it is clear that

max
1≤j≤n

max
r∈Ω

cj(r) ≤
1

γ
n
∑

i=1

vi

.

Thus, we can get
n
∑

i=1

vici(r) ≤

n
∑

i=1

vimax
r∈Ω

ci(r) ≤ max
1≤i≤n

max
r∈Ω

ci(r)

n
∑

i=1

vi ≤
1

γ
.

Hence, γ
∑n

j=1 vjcj(r) ≤ 1, implying that 1 − γ
∑n

j=1 vjcj(r) ≥ 0. This completes
the proof. �



NEW FINITE ELEMENT SOLVERS FOR NONUNIFORM SMPBE 699

3. New finite element solvers for nonuniform SMPBE

In this section, we construct two new finite element solvers for the nonuniform
SMPBE by the solution decomposition of (13). Since G and Ψ have been calculated

efficiently in [56], we only consider the following system for computing Φ̃ and ci:

(39)















ci − cbiwi

[

1− γ
n
∑

j=1

vjcj
]

vi
v0 e−ZiΦ̃ = 0, i = 1, 2, . . . , n,

LΦ̃− β
n
∑

j=1

Zjcj = 0,

where β is given in (12), and wi = e−Zi(Ψ+G), which has been calculated. In
calculation, the operator equation is solved as the variational problem (24).

Let M denote a Lagrange finite element function space constructed on an inter-
face fitted irregular tetrahedral mesh Ωh of Ω. See Figures 3 and 4 for examples of
our interface triangular meshes and mesh domain Ωh. We assume that M is a finite
dimensional subspace of the Sobolev function space H1(Ω) [12], and each function
ofM is continuous in both Dp and Ds. We also set M0 = {v ∈ M|v = 0 on ∂Ω} as
a subspace of H1

0 (Ω). We then discretize the system (39) as a system of (n+ 1)Nh

finite element equations such that Φ̃ ∈ M0 and ci ∈ M for i = 1, 2, . . . , n. Here
Nh denotes the total number of mesh vertices of Ωh.

To sharply reduce the computer memory requirement, we construct a nonlinear
SOR-like iterative scheme for solving the finite element system in a block form.
Here each block corresponds to one finite element function on M.

Let c̄(k) = (c
(k)
1 , c

(k)
2 , . . . , c

(k)
n , Φ̃(k)) denote the kth iterate of the nonlinear SOR-

like scheme with Φ̃(k) ∈ M0 and c
(k)
i ∈ M. When c̄(0) is given, we update c̄(k) for

k ≥ 0 by the formulas

c
(k+1)
i (r) = c

(k)
i (r) + ω

[

pi(r) − c
(k)
i (r)

]

for i = 1, 2, . . . , n,(40)

Φ̃(k+1)(r) = Φ̃(k)(r) + ω
[

q(r)− Φ̃(k)(r)
]

,(41)

where ω is a relaxation parameter, pi is a solution of the nonlinear equation

(42) gi(p) = 0 with gi(p) = p− ai(r)
[

1− viγp− bi(r)
]vi/v0

,

and q is a solution of the finite element equation: Find q ∈ M0 such that

(43) a(q, v) = β

n
∑

i=1

Zi

∫

Ds

c
(k+1)
i vdr ∀v ∈ M0.

Here, β is given in (12), γ in (22), ai and bi have been calculated via the expressions

(44) ai(r) = cbie
−Zi(Φ̃

(k)+Ψ+G), bi(r) = γ
(

i−1
∑

j=1

vjc
(k+1)
j +

n
∑

j=i+1

vjc
(k)
j

)

,

and the bilinear form a(·, ·) is defined in (25).
We terminate the iteration when the convergence rule is satisfied:

(45) max

{

‖Φ̃(k+1) − Φ̃(k)‖L2(Ω), max
1≤i≤n

‖c
(k+1)
i − c

(k)
i ‖L2(Ω)

}

< τ,

where τ is a convergence tolerance (τ = 10−7 by default).
Each iteration of our nonlinear SOR-like scheme can be well defined as shown in

Theorem 3.1.
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Theorem 3.1. The finite element equation (43) has a unique solution for any
ci ∈ L2(Ω). If p satisfies the constraint conditions

(46) 0 ≤ p ≤
1− bi
viγ

, i = 1, 2, . . . , n,

where bi is given in (44), then each nonlinear equation of (42) has a unique solution.

Proof. Since a(·, ·) is a symmetric bounded bilinear form, the first part of the the-
orem is obviously true [12]. We next find the derivative g′i of gi in the expression

(47) g′i(p) = 1 + γ
v2i
v0

ai(r)
[

1− γvip− bi(r)
]vi/v0−1

, i = 1, 2, . . . , n.

When p satisfies condition (46), it is clear that gi and g′i are well defined, and g′i > 0.
Thus, gi is an increasing function. Clearly,

lim
p→0+

gi(p) = −ai(1− bi)
vi/v0 < 0, gi(p) → 1 as p →

(

1− bi
viγ

)−

.

Hence, each equation of (42) has a unique solution. �

Because each equation of (42) is nonlinear, we solve it by the Newton scheme:

(48) p
(j+1)
i (r) = p

(j)
i (r)−

gi(p
(j))

g′i(p
(j))

, j = 0, 1, 2, 3, . . . ,

for each interior mesh vertex of the mesh Ωh∩Ds. Here the initial iterate p
(0)
i = c

(k)
i .

We terminate the Newton iteration and set pi = p
(j+1)
i for defining c

(k+1)
i by

(40) when the convergence rule is satisfied:

(49) ‖p
(j+1)
i − p

(j)
i ‖ ≤ τp,

where τp is a convergence tolerance, and ‖ · ‖ denotes the Euclidean vector norm
on the mesh vertices of the mesh domain Ωh ∩Ds. By default, we set τp = 10−5.

As a special case, we simply set pi = p
(1)
i to yield the SOR-Newton method:

c
(k+1)
i (r) = c

(k)
i (r) − ω

gi(c
(k)
i )

g′i(c
(k)
i )

for i = 1, 2, . . . , n,(50)

Φ̃(k+1)(r) = Φ̃(k)(r) + ω
[

q(r) − Φ̃(k)(r)
]

.(51)

For clarity, we summarize the above schemes in Algorithm 1.

Algorithm 1 (The nonuniform SMPBE finite element solver). Let (c1, c2, . . . , cn, u)
be a numerical solution of the nonuniform SMPBE model (34) defined on a La-
grange finite element space M ⊂ H1(Ω). It is calculated in four steps:

Step 1: Calculate G via (14) and ∇G via (17) on M.
Step 2: Find Ψ by the finite element solver from [56].

Step 3: Solve the nonlinear system (39) for (c1, c2, . . . , cn, Φ̃) by the nonlinear
SOR-like (or SOR-Newton) iterative scheme as follows:

(1) Initialization: Set k = 0 and select Φ̃(0) and c
(0)
i for i = 1, 2, . . . , n.

(2) Calculate the updates c
(k+1)
i for i = 1, 2, . . . , n by (40) (or (50)).

(3) Calculate Φ̃(k+1) by (41), where (43) is solved on M0.

(4) Convergence test: If (45) holds, set Φ̃ ≈ Φ̃(k+1) and ci ≈ c
(k+1)
i for

i = 1, 2, . . . , n; otherwise, set k := k + 1, and return to (2).
Step 4: Construct u by the solution decomposition:

u(r) = Φ̃(r) + Ψ(r) +G(r) on M.
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4. A good selection of initial iterates

As nonlinear iterative methods, our nonlinear SOR-like and SOR-Newton schemes
rely on a proper selection of initial iterate c̄(0) for its convergence. To derive a good
initial iterate, we consider a uniform ionic size case as follows:

vi = v̄ with v̄ =
1

n

n
∑

j=1

vj , i = 1, 2, . . . , n.

By the binomial series (1 + x)m = 1+mx+O(x2) for |x| < 1, we can obtain


1− γ

n
∑

j=1

vjcj(r)





vi/v0

≈ 1− γ
v̄2

v0

n
∑

j=1

cj(r) ∀r ∈ Ds,

so that each nonlinear algebraic equation of (39) is approximated by

(52) ci − cbiwi

[

1− γ
v̄2

v0

n
∑

j=1

cj(r)
]

e−ZiΦ̃ = 0, i = 1, 2, . . . , n.

We then can solve the above system for ci to get that

(53) ci =
cbiwie

−ZiΦ̃(r)

1 + γ v̄2

v0

n
∑

j=1

wjcbje
−ZjΦ̃

, i = 1, 2, . . . , n.

Substituting (53) to (16), we obtain a nonlinear interface boundary value problem

for computing Φ̃ as follows:

(54)



































∆Φ̃(r) = 0, r ∈ Dp,

ǫs∆Φ̃(r) + β

n∑

i=1
Zic

b
iwi(r)e

−ZiΦ̃(r)

1+γ v̄2

v0

n∑

i=1

cb
i
wi(r)e−ZiΦ̃(r)

= 0, r ∈ Ds,

Φ̃(s+) = Φ̃(s−), εs
∂Φ̃(s+)
∂n(s) = εp

∂Φ̃(s−)
∂n(s) , s ∈ Γ,

Φ̃(s) = 0, s ∈ ∂Ω.

The above problem can be solved via our uniform SMPBE finite element solver [59]

to yield an initial iterate Φ̃(0). We then calculate the initial iterates c
(0)
i by

(55) c
(0)
i (r) =

cbie
−Zi(Φ̃

(0)+Ψ+G)

1 + γ v̄2

v0

n
∑

j=1

cbje
−Zj(Φ̃(0)+Ψ+G)

, i = 1, 2, . . . , n.

Here, β is given in (12), and γ in (22).

5. Numerical results

We programmed Algorithm 1 as a software package, called nuSMPBE, in Python
based on the state-of-the-art finite element library from the FEniCS project [39],
the linear algebra library NumPy (http://www.numpy.org), and our PBE and uni-
form SMPBE program packages [27, 56, 59]. As a derived class, nuSMPBE inherits
the parameters and methods from our PBE and uniform SMPBE software pack-
ages. Thus, a molecular surface-fitted tetrahedral mesh can be directly generated
from nuSMPBE for each input PQR file of a protein. Here a PQR file is a mod-
ified protein data bank (PDB) file to include the hydrogen atoms (or some other
atoms), the atomic charge numbers, and atomic radii that are missed in a PDB file
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downloaded from the protein data bank (http://www.rcsb.org). It can be generated
from the PDB2PQR web server (http://nbcr-222.ucsd.edu/pdb2pqr 2.1.1/).

As usual, we treat each ion as a hard spherical ball with radius ai to get

(56) vi =
4π

3
a3i , i = 1, 2, . . . , n.

There are several selections of ionic radii [9, 11, 63]. In our tests, we used the ionic
radii from one classic textbook for Physical Chemistry [9, Table 11.3, page 330]. We
also selected the bulk concentrations cbi according to the electroneutrality condition

(57)

n
∑

i=1

Zic
b
i = 0,

and calculated the ionic strength Is by the formula Is = 1
2

∑n
i=1(Zi)

2cbi . Here Is
and cbi are given in mol/L.

Furthermore, we used the linear order of finite element method, and solved each
related finite element equation via the preconditioned conjugate gradient method
using incomplete LU preconditioning from the PETSc library [6] with the relative
or the absolute residual norm being less than 10−8.

For the purpose of demonstrating the convergence and performance of our new
SMPBE finite element solvers, we did numerical tests for a symmetric 1:1 ionic
solvent in which the table salt (NaCl) dissolves into sodium ions (Na+) and chloride
ions (Cl−) in water. In these tests (n = 2), c1 and c2 denoted the concentrations
of Na+ and Cl−, respectively, Z1 = 1, Z2 = −1, a1 = 0.95 Å, and a2 = 1.81 Å.
According to (57), we set cb1 = cb2 = Is.

We also did tests on a molten salt (NaCl + KCl) solution [32]. In these tests, c1,
c2, and c3 represented the concentrations of Na+, Cl−, and K+, respectively. To
satisfy (57), we set cb1 = 3Is/4,, c

b
2 = Is, and cb3 = Is/4. The radius of a potassium

ion (K+) was set as a3 = 1.33 Å.
In these numerical tests, we set the boundary value function ĝ = 0 for simplicity.

The purpose of these tests is to demonstrate the convergence and performance of our
nonlinear SOR-like scheme (i.e., each nonlinear equation was solved by the Newton
method until the convergence rule (49) was satisfied) and our SOR-Newton scheme
(i.e., each nonlinear equation was solved by one Newton iteration only). All the
numerical tests were done on our Mac Pro Workstation with 3.7 GHz Quad-Core
Intel Xeon E5 processor and 64 GB memory.

5.1. Validation tests on a Born ball model. We construct a Born ball test
model with Dp = {r | |r| < a}, Ω = {r | |r| < A}, Γ = {r | |r| = a}, and
Ds = {r | a < |r| < A}, where a and A are two positive numbers satisfying A > a,
and Ds contains the table salt solution (i.e., n = 2, Z1 = 1, Z2 = −1, a1 = 0.95,
a2 = 1.81, and cb1 = cb2 = Is). One point charge, zec, is placed in the center
of Dp to yield an electrostatic potential and two concentration functions that are
spherically symmetric. It is this physical property that makes the Born ball test
model valuable for validating either a dielectric continuum model or a numerical
solver, in the case of not knowing any analytical solution.

In the numerical tests, we set a = 17, A = 51, z = 10, Is = 0.2, and ω = 0.45.
We then constructed three nested interface fitted tetrahedral meshes with 3134,
25131, and 200009 vertices to validate the convergence of nonuniform SMPBE finite
element solutions. Here, the nonlinear SOR-like iterative scheme was used to solve
the nonuniform SMPBE. All the values of the electrostatic potential function u and
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Figure 2. Convergence tendency of the electrostatic potential
function u and ionic concentration functions c1 (for sodium ions
in the blue color) and c2 (for chloride ions in the red color) pro-
duced by our nonlinear SOR-like iterative scheme for the Born
ball model with a positive central charge, 10ec, on three nested
irregular meshes. Here Nh is the number of mesh vertices.

two concentration functions c1 (for sodium ions) and c2 (for chloride ions) on the
mesh vertices were plotted along the x-axis in Figure 2.

From Figure 2 it can be seen that the numerical solutions of c1, c2, and u kept the
spherical symmetry well. As expected in physics, the concentrations of sodium and
chloride ions (c1 and c2) decrease and increase, respectively, when mesh vertices
move from the boundary ∂Ω to the interface Γ due to the positive central point
charge number, z = 10. As the number of mesh vertices was increased from 3134
to 200009, the ranges of ionic concentration functions c1 and c2 were decreased
monotonically while the range of potential function u was increased monotonically,
as shown in the numbers marked on the y-axis, indicating the convergence of the
finite element solutions to the exact solution of the nonuniform SMPBE.

5.2. Convergence and performance. We made tests on a protein (PDB ID:
4PTI) with 892 atoms to demonstrate the convergence and performance of our
nonlinear SOR-like and SOR-Newton schemes. In these tests, two different molec-
ular surfaces, called the solvent-excluded surface (SES) and Gaussian surface, were
selected for defining the interface Γ between the protein and solvent regions. By
our software nuSMPBE with the default mesh parameter values, SES and Gaussian
interface fitted irregular tetrahedral meshes were generated with 24969 and 67582
mesh vertices, respectively. As shown in Figure 3, SES is much more irregular and
bumpier than Gaussian surface. Thus, the SES mesh resulted in a good test case
for us to check the robustness of our nonlinear SOR-like and SOR-Newton schemes.
A part of the SES mesh domain Ωh is displayed in Figure 4.

In the tests, the bulk concentrations were set as cb1 = 0.1 and cb2 = 0.1. Two
initial iterates and the SES and Gaussian mesh domains were used in the tests.
The numerical results were reported in Tables 1 and 2 and Figure 5. Here Ite.
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Figure 3. A solvent excluded molecular surface (left) [60] and
a Gaussian molecular surface (right) [62] for a protein (PBE ID:
4PTI) for the numerical tests reported in Tables 1 and 2.

Figure 4. An interface fitted irregular tetrahedral mesh domain
Ωh with 24969 mesh vertices for the protein (PBE ID: 4PTI) with
892 atoms. Here one corner of the cubic domain is removed to
display the mesh surrounding the protein. A cross-section of the
mesh domain is displayed in the right plot.

denotes the total number of iterations satisfying the convergence rule (45), CPU
is the computer time spent for solving the nonuniform SMPBE system, and Nh is
the total number of mesh vertices of Ωh. In these tests, the convergence tolerance
of (45) was set as τ = 10−7.

Tables 1 and 2 show that the two finite element solvers worked efficiently, and
the initial iterates generated from the improved uniform SMPBE (54) significantly
enhanced the two solvers in both convergence and performance in comparison to the
cases using the simple zero initial iterate in solving for Φ̃. Here the CPU time data
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Table 1. A comparison of the performance of our nonlinear SOR-
like scheme with that of our SOR-Newton scheme for the protein
(PDB ID: 4PTI) in the case of using initial iterate Φ̃(0) = 0.

(1) Performance with Nh = 24969 and Φ̃(0) = 0 (in minutes)
The nonlinear SOR scheme (40) The SOR-Newton scheme (50)
ω 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2
Ite. 368 194 132 Fail 502 255 171 128
CPU 1.64 1.17 0.81 2.22 1.12 0.90 0.62

(2) Performance with Nh = 67582 and Φ̃(0) = 0 (in minutes)
The nonlinear SOR scheme (40) The SOR-Newton scheme (50)
ω 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2
Ite. 378 193 128 Fail 418 208 144 120
CPU 9.42 4.86 3.21 10.42 5.19 3.53 2.73

Table 2. A comparison of the performance of our nonlinear SOR-
like scheme with that of our SOR-Newton scheme for the protein
(PDB ID: 4PTI) in the case of using an initial iterate Φ̃(0) defined
by a numerical solution of the improved uniform SMPBE (54).

(1) Performance with Nh = 24969 and Φ̃(0) defined by (54) (in minutes)
The nonlinear SOR scheme (40)

ω 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Ite. 327 173 118 89 71 59 50 43 39 Fail
CPU 1.51 0.98 0.77 0.59 0.47 0.36 0.32 0.28 0.26

The nonlinear SOR-Newton scheme (50)
Ite. 502 255 171 128 102 84 72 62 55 Fail
CPU 2.24 1.15 0.89 0.66 0.53 0.44 0.39 0.34 0.30

(2) Performance with Nh = 67582 and Φ̃(0) defined by (54) (in minutes)
The nonlinear SOR scheme (40)

Ite. 306 162 109 83 65 54 46 40 35 32
CPU 7.66 4.26 2.94 2.28 1.83 1.45 1.25 1.11 0.99 0.92

The nonlinear SOR-Newton scheme (50)
Ite. 363 180 117 89 70 59 49 42 36 33
CPU 9.28 4.70 3.11 2.29 1.80 1.53 1.27 1.04 0.92 0.86

did not include the time spent on the calculation of initial iterates defined by (54)
and (55) (i.e., solving the improved uniform SMPBE), which were about 3 and 12
seconds, respectively, on the meshes with 24969 and 67582 vertices. With an initial
iterate generated from our improved uniform SMPBE, the two finite element solvers
worked with a larger relaxation parameter of ω and a faster rate of convergence.
For example, the SOR-Newton scheme using ω = 0.5 took only 33 iterations in
about 0.86 minutes to find the solution of the nonuniform SMPBE system (39),

which consists of Φ̃ and the two ionic concentrations c1 and c2, on an irregular
mesh of 67582 mesh vertices.

Figure 5 displays the convergence behavior of our nonlinear SOR-like and SOR-
Newton schemes for the protein (4PTI) case. From it we see that the SOR-Newton
scheme can have a rate of convergence close to the nonlinear SOR-like scheme.
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Figure 5. A comparison of the convergence of the nonlinear SOR-
like scheme with that of the SOR-Newton scheme for the protein
(4PTI) using two different initial iterates. Here the iterative error

equals max{‖Φ̃(k+1)− Φ̃(k)‖L2(Ω),max1≤i≤n ‖c
(k+1)
i − c

(k)
i ‖L2(Ds)}.

Figure 5 also confirms the importance of selecting a good initial iterate in the
implementation of our nonlinear SOR-like and SOR-Newton schemes.

Figure 6 displays the color mapping of the electrostatic potential u and the
concentrations, c1 for Na+ and c2 for Cl−, predicted by our nonlinear SOR-like
scheme on a cross section of the mesh domain Ωh with 67582 mesh vertices. From
the figure it can be seen that the predicted values of c1 and c2 match reasonably
to the distribution of u and the charge neutrality condition (57). In the area
accumulated with the anions (Cl−), cations (Na+) were repelled away, causing the
electrostatic potential u to have positive values.

Table 3. Performance of our nonlinear SOR-like and SOR-
Newton schemes for solving the nonlinear system (39) for the pro-
tein (4PTI) in the NaCl-KCl solution.

Scheme ω Ite. CPU (in minutes)
Born ball test model on mesh with Nh = 200009
SOR-like 0.45 24 1.69

SOR-Newton 0.45 26 1.81
Protein (4PTI) on mesh with Nh = 24969

SOR-like 0.42 129 1.04
SOR-Newton 0.42 93 0.51

Protein (4PTI) on mesh with Nh = 67582
SOR-like 0.45 36 0.88

SOR-Newton 0.45 37 0.89

solving the nonlinear system (39)
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(a) Electrostatic potential u in Ds (b) u in Dp, Ds, and cross section mesh

(c) Concentration c1 of Na+ (d) Concentration c2 of Cl−

Figure 6. Color mappings of u, c1, and c2 onto a cross section of
mesh domain Ωh on the yz coordinate plane. Here, c1 = c2 = 0 in
the protein region Dp (in the white color), and the mapping of u
has been rescaled to the range [−5, 5] to increase the color contrast.

5.3. Performance for protein in NaCl-KCl solution. We did tests on a NaCl-
KCl solution using Is = 0.2, cb1 = 0.15, cb2 = 0.2, cb3 = 0.05 (in mol/L), a1 = 0.95,
a2 = 1.81, and a3 = 1.33 (in Å). The numerical solution of the nonuniform SMPBE
(34) gave four functions — one electrostatic potential u and three concentrations:
c1 for sodium ions (Na+), c2 for chloride ions (Cl−), and c3 for potassium ions
(K+). We used the nonlinear SOR-like scheme (40) and the SOR-Newton scheme
(50) to solve the nonlinear system (39) in the cases of the Born ball test model and
the protein (4PTI). The test results were reported in Table 3, demonstrating that
these two schemes worked efficiently.

We finally plotted the electrostatic potential function u and three ionic concen-
tration functions from the Born ball test model in Figure 7. From this figure it can
be seen that the four numerical functions of u and ci for i = 1, 2, 3 kept the spherical
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Figure 7. The electrostatic potential u (on the left plot) and the
ionic concentrations c1, c2, and c3 (on the right plot) of sodium
ions Na+, chloride ions Cl−, and potassium ions K+ produced
by the nonlinear SOR-like scheme for the Born ball test model
with central charge 10ec in the NaCl-KCl solution. Here the bulk
concentrations cb1 = 0.15, cb2 = 0.2, cb3 = 0.05 mol/L.

symmetry of the Born ball test model solution. The concentration c1 of Na+ ions
has the same pattern as the concentration c3 of K

+ while its values are almost three
times larger than the values of c3 because the bulk concentration cb1 = 3cb3. These
test results partially validated the numerical results generated from our SOR-like
iterative scheme.

6. Conclusions

We have presented two new nonuniform SMPBE finite element solvers using
solution decomposition and nonlinear SOR iterative techniques, and programmed
them as a software package for a protein in a solvent with multiple ionic species
in distinct sizes. Their mathematical and numerical properties have been studied
theoretically and numerically. We also proposed an improved uniform SMPBE,
and used it to produce good initial iterates for our two new iterative schemes —
the nonlinear SOR-like scheme and the SOR-Newton scheme. Numerical results on
a Born ball test model and a protein in NaCl and NaCl-KCl solutions validated
the new nonuniform SMPBE finite element solvers, and demonstrated the high
performance of the new software package.

Furthermore, we have presented a new derivation of the nonuniform SMPBE,
along with a detailed discription of a general Poisson dielectric model. This part of
the paper is particularly valuable for us to study SMPBE models. Because of using
solution decomposition techniques and a new electrostatic free energy functional,
our new derivation and analysis of the nonuniform SMPBE have avoided the draw-
backs of the traditional derivations and analyses caused by using the traditional
electrostatic free energy functional that involves the singular electrostatic potential
function, the concentration of water molecules, and the volume of a water molecule.
Our new derivation has yielded a new nonuniform SMPBE. The difference between
our new nonuniform SMPBE and the current ones can be seen from a comparison
of our equilibrium equation (30) with the one given in [42, eq. (25) on page 2479]
or the one given in [33, eq. (3.4) on page 819].

Our nonuniform SMPBE software package will be a valuable tool for us to study
the effects of nonuniform ion sizes on the structure and function of a protein mol-
ecule and on the electrostatic solvation and binding free energies. It also enables
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us to carry out various validation tests by using experiment data from chemical
and biological laboratories. Moreover, we can use it do comparison tests with other
SMPBE solvers (e.g., the one from [14]), and to address some questions arisen from
the current SMPBE studies such as the one from [55] on the differences between
SMPBE and a PBE Stern layer correction model. These research issues will be
studied in our sequential papers.
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