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a b s t r a c t

In this paper, a new box iterativemethod for solving a class of nonlinear interface problems
is proposed by intermixing linear and nonlinear boundary value problems based on a
special seven-overlapped-boxes partition. It is then applied to the construction of a new
finite element and finite difference hybrid scheme for solving the Poisson–Boltzmann
equation (PBE) — a second order nonlinear elliptic interface problem for computing
electrostatics of an ionic solvated protein. Furthermore, a modified Newton minimization
algorithm accelerated by a multigrid preconditioned conjugate gradient method is
presented to efficiently solve each involved nonlinear boundary value problem. In addition,
the analytical solution of a Poisson dielectric test model with a spherical solute region
containing multiple charges is expressed in a simple series of Legendre polynomials,
resulting in a new PBE test model that works for a large number of point charges. The
new PBE hybrid solver is programmed as a software package, and numerically validated
on the new PBE test model with 892 point charges. It is also compared to a commonly
used finite difference scheme in the accuracy of computing solution and electrostatic
free energy for three proteins with up to 2124 atomic charges. Numerical results on
six proteins demonstrate its high performance in comparison to the PBE finite element
program package reported in Xie (2014).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The classical alternating Schwarz method was introduced by Schwarz in [1] for the purpose of proving the solution
existence and uniqueness of a Poisson boundary value problem in a domain that can be decomposed as the union of two
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Fig. 1. Roles of our seven-overlapped-boxes partition in the development of hybrid nonlinear interface solvers.

‘‘simpler’’ domains. With the development of parallel computer architectures in 1980s, it was extensively re-studied as one
important numerical technique for solving various boundary value problems, known as domain decomposition methods
and preconditioners [2–5]. Its essential idea is to divide a complicated problem into simple subproblems to conquer the
problem. In this paper, we use this idea to construct a new box iterative method for solving a class of nonlinear interface
boundary value problem, which arises frequently from steady state heat diffusion problems with two different diffusion
parameters and electrostatic problems with two different permittivity parameters. As one important application, this new
nonlinear iterative method is used to construct a new finite element and finite difference hybrid scheme to solve the
Poisson–Boltzmann equation (PBE)—a second order nonlinear elliptic interface problem with singular source terms. PBE
has been widely applied to the calculation of electrostatics for protein in ionic solvent [6–11].

The finite element method is a natural choice to deal with a flux interface condition on a complex interface (e.g., a
molecular surface in the case of PBE) [12–16]. But, because of using an interface fitted unstructuredmesh, its implementation
requires a large amount of extra computer memory to store mesh data and the nonzero entries of coefficient matrices. A
system of finite element equations defined on an unstructuredmesh also becomesmuch less efficient to solve than a system
of finite difference equations defined on a Cartesian grid mesh. In fact, a Cartesian grid mesh has simple data structures,
can be generated cheaply, and can lead to standard finite difference stencils. As such, it has been widely used to develop
fast linear and nonlinear iterative schemes including geometric multigrid iterative schemes [17], multigrid preconditioned
Krylov subspacemethods [18], Newtonmultigridmethods [19], andmultigrid preconditioned Newton Krylovmethods [20].
To take advantages of these fast iterative solvers and to reduce the cost of mesh generation, immersed boundary/interface
methods in finite difference formulation [21–25], virtual node methods [26], and immersed finite element methods [27]
have been developed to solve linear interface problems based on uniform Cartesian grid meshes.

We recently proposed a special seven-overlapped-boxes partition to hybridize finite element and finite difference
methods in the numerical solution of a linear interface problem [28]. As illustrated in Fig. 1, we can also use this special box
partition to intermix a nonlinear problem with its linearized problem in the case of solving a nonlinear interface problem.
This observation motivated us to develop the new box iterative method for solving the nonlinear interface problem. That
is, we can restrict the nonlinear interface problem to a much smaller subdomain, the central box, reduce it to a nonlinear
boundary value problem on each neighboring box, and then approximate it as a linear boundary value problem when the
solution is small enough.Moreover, different numerical techniques can be applied to different boxes to turn the box iterative
method into an efficient hybrid nonlinear solver.

As one important application, in this paper, we use this box iterative method to develop a new PBE hybrid solver to
reduce the computing cost of a finite element solution decomposition PBE solver, called SDPB, reported in [29]. In SDPB,
the PBE solution u is constructed as a sum of three functions G, Ψ , and Φ̃ with G being a given function that collects all the
singularity points of u, Ψ a solution of a linear interface problem, and Φ̃ a solution of a nonlinear interface problem (see
(4.3)). Thus, we can apply the new box iterative method to the calculation of Ψ and Φ̃ to yield the new PBE hybrid solver
(see Algorithm 4.1). While SDPBS is adopted to solve each nonlinear interface problem on the central box, we construct an
efficient modified Newton minimization algorithm to solve a nonlinear boundary value problem on each neighboring box
based on the finite difference approach (see Section 5). In particular, the nonlinear boundary value problem is shown to be
equivalent to a nonlinear variational problem with a unique minimizer (see Theorem 5.1), and each Newton equation of
the modified Newtonminimization algorithm is reformulated from a variational form into a linear boundary value problem
(see (5.7)), making it possible to calculate each Newton search direction by a fast finite difference solver—amultigrid V-cycle
preconditioned conjugate gradientmethod (PCG-MG) developed in [28]. Togetherwith a line search scheme for determining
the steplength of each search direction, this modified Newtonmethod, which will be called Newton-PCG-MG for clarity, can
become globally convergent in the calculation of Φ̃ on each neighboring box.

To validate a PBE solver, we construct a new PBE test model (see (6.1)) by using the analytical solution of a Poisson
dielectric testmodelwith a spherical solute regionDp containingmultiple charges (see (6.2)). So far, the Born ballmodel [30],
which is a Poisson dielectric test model with one central charge only, was employed to construct a PBE test model [29,31].
The Kirkwood’s dielectric sphere model [32], which is a linearized PBE test model with a spherical Dp containing multiple
point charges, was used to validate thematched interface and boundary PBE solver (MIBPB) [33], but the tests were done by
using only six point charges due to the expensive cost of computing the analytical solution of the Kirkwood’s model, which
is given as a double series of associated Legendre polynomial Pm

n (i.e., a sum from n = 0 to∞ andm = −n to n; see [33, (A6),
(A8) and (A11)]). Although the analytical solution of the Poisson test model can be followed from the Kirkwood’s model as
a special case, to reduce the computing cost, we recalculate it using different techniques, such as superposition principle
and rotational symmetry mapping, and express the analytical solution as a simple series of Legendre polynomials Pn (see
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Theorem 6.1). As a result, a validation test can be done with a large number of point charges on a mesh with a large number
of mesh points.

We programmed our new PBE hybrid solver in Python and Fortran based on the software packages developed in
[28,29]. In particular, we used the PCG-MG program, the box partition and mesh generation program, and the program
for computing G and its gradient vector ∇G from [28], and adopted the software SDPBS from [29] to solve each nonlinear
interface problem on the central box. Note that in SDPB, the PCG using the incomplete LU preconditioning (PCG-ILU) from
the PETSc library [34] has been used to solve each system of finite element equations. We programmed our Newton-PCG-
MG in Fortran without storing any mesh data or coefficient matrices of finite difference systems. We also programmed
the new simple series solution of the Poisson test model in Fortran to quickly calculate its values on a large set of mesh
points. Here a set of charge positions and numbers can be input directly from a PQR file of a protein, which simplifies the
construction of a validation test with a large number of point charges. We converted the Fortran subroutines to Python
modules by the Fortran-to-Python interface generator f2py (http://cens.ioc.ee/projects/f2py2e/).

We validated the new PBE solver on the new PBE test model with 892 point charges from a protein (4PTI) based on three
nested meshes (see Fig. 3). In these tests, the relative errors of numerical solutions were found to reduce from 9.55 × 10−2

to 5.63 × 10−3 as mesh size h was reduced from 0.25 to 0.065, verifying that the new PBE solver has a second order of
convergence rate in terms of hwhen it uses a linear finite element and a second order central finite difference approximation.
Moreover, our Fortran subroutine for computing the analytical solutionwas found to be efficient. For example, it took only
about 40 s to complete the calculation of 136,512 solution values for 892 atoms on one processor of ourMac ProWorkstation
with the 3.7 GHz Quad-Core Intel Xeon E5 and 64 GB memory. Here the series solution was calculated approximately by
only using its first 20 terms, which was found to be large enough for these tests since it resulted in a relative error less than
O(10−4) (see Fig. 4).

To demonstrate the performance of our new hybrid PBE program package, wemade numerical tests for six proteins, and
repeated these tests using SDPB. While the relative errors between the numerical solutions produced by the new PBE solver
and SDPBS were found to be less than 10−7, the total CPU time of SDPBS was reduced by about 58%–70% (see Table 4). These
tests also demonstrated that our newhybrid box iterativemethod had a fast rate of convergence,which took only up to seven
iterations to reduce the errors from O(103) to O(10−8) (see Fig. 6). In addition, they confirmed that our Newton-PCG-MG
retained a quadratic rate of error reductions (see Fig. 7).

Finally, we compared the numerical accuracy of our hybrid solver with that of a traditional finite difference PBE scheme
proposed in [35,36] in the numerical solution of Poisson test model (i.e., the PBE test model (6.1) with κ = 0) and the
calculation of electrostatic solvation free energy (one important application of PBE). This finite difference scheme was
commonly adopted to the popular PBE software packages such asDelPhi [37] and PBEQ [38]. Although the Poisson testmodel
is a special case of PBE, its numerical solution involves the typical algorithm issues occurred in solving PBE. For example,
how to deal with the flux interface condition, and how to overcome the solution singularity induced from the Dirac delta
distributions. Since we know the analytical solution of Poisson test model, we can study these algorithm issues rigorously
in terms of the relative errors of numerical solutions (see (7.1)) and predicted electrostatic solvation free energies (see
(7.4)). To do so, we programmed the traditional finite difference scheme. Note that several improved finite difference PBE
schemes were developed recently by the flux interface condition and solution decomposition techniques [39,40]. To mimic
some convergence behaviors of these improved finite difference PBE schemes, we implemented our SDPBS finite element
solver based on a uniform tetrahedral mesh. Comparison tests were done on these three solvers for three proteins with up
to 2124 atomic charges. Test results (see Table 2) show that our hybrid solver has a much higher accuracy than the other
two solvers in the calculation of numerical solutions and solvation free energy. Interestingly, the finite difference scheme
was found to produce numerical solutions in a low accuracy, and not to guarantee any convergence. Gladly, it was found
to have a satisfactory accuracy in the calculation of electrostatic solvation free energy. Hence, the finite difference scheme
is still valuable in the application problems involving electrostatic solvation energies due to its simplicity and efficiency in
implementation.

The rest of the paper is organized as follows. Section 2 defines the nonlinear interface problem. Section 3 describes the
new nonlinear box iterative method. Section 4 presents the new PBE hybrid solver. Section 5 constructs the Newton-PCG-
MG algorithm. Section 6 presents the new PBE test model and the new series solution of the Poisson test model. Finally, the
new PBE program package and numerical results are reported in Section 7.

2. A class of nonlinear interface problems

Let Ω be a large rectangular box domain, and split into two subdomains, Dp and Ds, with Dp being surrounded by Ds and
Γ denoting the interface between Dp and Ds. We consider a general nonlinear interface problem as follows:

−ϵp1w(r) = fp(r), r ∈ Dp,
−ϵs1w(r) + β(w) = fs(r), r ∈ Ds,

w(s+) = w(s−), ϵs
∂w(s+)

∂n(s)
= ϵp

∂w(s−)

∂n(s)
+ ζ (s), s ∈ Γ ,

w(s) = g(s), s ∈ ∂Ω,

(2.1)

http://cens.ioc.ee/projects/f2py2e/
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(a) Selection of D and Ω7 . (b) The ordering of seven boxes Ωi .

Fig. 2. An illustration of cubic region D, central box Ω7 , and the ordering of seven overlapped boxes.

where ϵp and ϵs are two positive constants, fp, fs, ζ , and g are continuous functions, β(w) denotes a nonlinear function of w,
n(s) is the unit outward normal vector ofDp,∆ =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
is the Laplace operator for r = (x, y, z), ∂w(s)

∂n(s) = ∇w(s)·n(s)

with ∇ =


∂
∂x ,

∂
∂y ,

∂
∂z


, w(s±) = limt→0+ w(s ± tn), and ∂w(s±)

∂n(s) = limt→0+
∂w(s±tn(s))

∂n(s) .

We assume that the nonlinear interface problem (2.1) has two special properties:

P1. The solution w(r) → 0 as |r| → ∞.
P2. The coefficient function β(w) has the Taylor expansion

β(w) = a0(r) + a1(r)w + O(|w|
2) ∀r ∈ Ds, (2.2)

where a0 and a1 are two continuous functions on Ds.

Clearly, because of P1, there exists a sufficiently large cubic box, D, such that

Dp ⊂ D ⊂ Ω, and |w(r)| ≪ 1 ∀r ∈ Ω \ D. (2.3)

With P2, we then can construct a linear boundary value problem on Ω \ D as follows:
−ϵs1w(r) + a1(r)w = fs(r) − a0(r), r ∈ Ω \ D,

w(s) = q(s), s ∈ ∂D,
w(s) = g(s), s ∈ ∂Ω,

(2.4)

where ∂D denotes the boundary of D, and q is a boundary function on ∂D, which is usually unknown. Even so, the above
linear problem can be valuable in the construction of an iterative scheme for solving the nonlinear interface problem (2.1)
through a proper selection of q as what is done in the next section.

3. The new nonlinear iterative method

In this section, we construct a new box iterative method to solve the nonlinear interface problem (2.1) based on a special
seven-overlapped-boxes partition of Ω proposed in [28]. For simplicity, we assume that Ω is a cubic box with side length
L. We properly select a cubic region D, and partition Ω into seven overlapped boxes Ωi such that

(a) Ωp ⊂ D ⊂ Ω7 ⊂ Ω, (b) Ω \ D =

6
j=1

Ωj, (c) Ω7 \ D =

6
j=1

Ωj ∩ Ω7. (3.1)

As illustrated in Fig. 2,Ω7 is the central box, andΩ7 \D gives the overlapped part ofΩ7 with its six neighboring boxesΩi
for i = 1 to 6. Note that the number of seven is the smallest number to satisfy the partition conditions of (3.1), and ordering
the central box as the 7th box is to fully use the previous updates to solve an interface problem on Ω7.

LetW (k)
i denote the kth iterate on box Ωi, and an initial iterateW (0)

i be given. For k = 0, 1, 2, . . . , we define the new box
iterative method for solving (2.1) by

W (k+1)
i = (1 − ω)W (k)

i + ωWi,k on Ωi for i = 1, 2, . . . , 7, (3.2)
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whereω ∈ (1, 2) is an over-relaxation parameter,Wi,k with i = 1 to 6 is a solution of the nonlinear boundary value problem
on each neighboring box Ωi:

−ϵs1w(r) + β(w) = fs(r) in Ωi,

w(s) = W (k)
j (s) on ∂Ωi ∩ Ωj when ∂Ωi ∩ Ωj ≠ ∅ for j = i + 1 to 7,

w(s) = W (k+1)
j (s) on ∂Ωi ∩ Ωj when ∂Ωi ∩ Ωj ≠ ∅ for j = 1 to i − 1,

w(s) = g(s) on ∂Ωi ∩ ∂Ω,

(3.3)

and W7,k is a solution of the nonlinear interface boundary value problem on the central box Ω7:
−ϵp1w(r) = fp(r) in Dp,
−ϵs1w(r) + β(w) = fs(r) in Ω7 ∩ Ds,

w(s+) = w(s−), ϵs
∂w(s+)

∂n(s)
= ϵp

∂w(s−)

∂n(s)
+ ζ (s) on Γ ,

w(s) = W (k+1)
i (s) on ∂Ω7 ∩ Ωi for i = 1 to 6.

(3.4)

Here, ∂Ωi is the boundary of Ωi, and the updates W (k+1)
i from the six neighboring boxes have been used to update the

boundary value condition on ∂Ω7.
Following what is done in (2.4), we linearize the nonlinear problem (3.3) to yield a linear boundary value problem on

each neighboring box Ωi for i = 1 to 6 as follows:
−ϵs1w(r) + a1(r)w(r) = fs(r) − a0(r) in Ωi,

w(s) = W (k)
j (s) on ∂Ωi ∩ Ωj when ∂Ωi ∩ Ωj ≠ ∅ for j = i + 1 to 7,

w(s) = W (k+1)
j (s) on ∂Ωi ∩ Ωj when ∂Ωi ∩ Ωj ≠ ∅ for j = 1 to i − 1,

w(s) = g(s) on ∂Ωi ∩ ∂Ω.

(3.5)

To adaptively select the linear model (3.5) as a substitute for the nonlinear model (3.3), we propose the following Test
rule 1.

Test rule 1 (Selection of Linear Model (3.5)). Let Wi,a be an average value of W (k)
7 on the boundary ∂Ωi ∩ Ω7. For a set of mesh

points, {rj}Ni
j=1, from ∂Ωi ∩ Ω7, Wi,a is calculated by

Wi,a =
1
Ni

Ni
j=1

|W (k)
7 (rj)| for i = 1, 2, . . . , 6. (3.6)

If Wi,a < η, W (k+1)
i is defined by the linear boundary value problem (3.5); otherwise, the nonlinear problem (3.3) is retained to

define W (k+1)
i . A default value of η is set as 0.1 in our implementation.

The new box iterative method is said to be convergent if it satisfies 7
i=1

∥W (k+1)
i − W (k)

i ∥2 ≤ ϵ, (3.7)

where ∥ · ∥ is the Euclidean norm, and ϵ is set as 10−7 by default.
For clarity, we summary our new box iterative method in Algorithm 3.1.

Algorithm 3.1 (The New Box Iterative Method for Nonlinear Interface Problem (2.1)). The new box iterative method defined
in (3.2) can be implemented in the following five steps:

Step 1. Select a cubic region D and construct seven overlapped boxes, Ωi for i = 1, 2, . . . , 7, to satisfy (3.1).
Step 2. Set k = 0 and select the initial iterateW (0)

7 = 0.
Step 3. CalculateW (k+1)

i for i = 1 to 6 according to Test rule 1.
Step 4. Solve the nonlinear interface problem (3.4) forW (k+1)

7 .
Step 5. Check convergence: If the termination rule (3.7) holds, output {W (k+1)

i }
7
i=1 as a numerical solution of (2.1); otherwise,

increase k by 1 and go back to Step 3.

Since our new box iterative method is a special alternating Schwarz method, its convergence can be followed directly
from the standard domain decomposition theory [41,42]. Because of using only seven regular boxes, it has a fast rate of
convergence. Its computing costs can be further reduced through properly selecting the over-relaxation parameter ω and
the linearized model (3.5). Moreover, it can be implemented by hybrid techniques. For example, we can turn it into a finite
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(a) Ω7,h with h = 0.25. (b) Ω7,h with h = 0.125. (c) Ω7,h with h = 0.0625.

Fig. 3. Cross-section views (on the xy-plane) of the three nested meshes of the central box Ω7 for validation tests on the new PBE hybrid solver. Here the
solute region Dp is marked in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Relative error EN of the partial sum SN of the series solution of the Poisson model (6.2) with 892 point charges on the mesh with h = 0.25 and
120,887 mesh points. Here SN is a sum of the first N terms of the series solution of (6.5).

element and finite difference hybrid solver by selecting a fast finite element algorithm to solve each interface problem and
a fast finite difference algorithm to solve each linear/nonlinear boundary value problem. In this case, the interface problem
(3.4) can be reformulated as a nonlinear variational problem in the form

Find w ∈ H1(Ω7) subject to w = W (k+1)
i on ∂Ω7 ∩ Ωi for i = 1 to 6 such that

b(w, v) = l(v) ∀v ∈ H1
0 (Ω), (3.8)

where H1(Ω) and H1
0 (Ω) are two regular Sobolev function spaces [43], b(w, v) is defined by

b(w, v) = ϵp


Dp

∇w · ∇vdr + ϵs


Ds∩Ω7

∇w · ∇vdr +


Ds∩Ω7

β(w)v(r)dr,

and l(v) is a linear functional defined by

l(v) =


Γ

ζ (s)v(s)ds +


Ds∩Ω7

fs(r)v(r)dr +


Dp

fp(r)v(r)dr.

To simplify the data exchange between a finite element solver on the central box Ω7 and a finite difference solver on
each neighboring box, a hybrid mesh of Ω7 is constructed (see Fig. 3 for example) such that the uniform tetrahedral mesh
part (for the overlapped part Ω7 \ D) shares the same mesh points from the uniform finite difference meshes of the six
neighboring boxes. Consequently, the data exchange can be carried out easily and efficiently.
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4. Application in solving Poisson–Boltzmann equation

As one important application of Algorithm 3.1, in this section, we develop a new finite element and finite difference
hybrid algorithm to solve a dimensionless PBE model as follows:

−ϵp1Φ(r) = α

np
j=1

zjδ(r − rj), r ∈ Dp,

−ϵs1Φ(r) + κ2 sinh(Φ(r)) = 0, r ∈ Ds,

Φ(s+) = Φ(s−), ϵs
∂Φ(s+)

∂n(s)
= ϵp

∂Φ(s−)

∂n(s)
, s ∈ Γ ,

Φ(s) = g(s), s ∈ ∂Ω,

(4.1)

where Dp hosts a protein molecule with np atoms, rj and zj are the position and charge number of the jth atom, α and κ are
two physical constants, and δ(r − rj) denotes the Dirac delta distribution at charge position rj. In this case, Dp and Ds are
called the protein and solvent regions, respectively, which are treated as two different dielectric media, and ϵp and ϵs are
two corresponding permittivity constants.

When length is measured in angstroms (1angstrom = 10−10 m), α and κ have the following values:

α =
1010e2c
ϵ0kBT

, and κ2
= 2

10−17e2cNAIs
ϵ0kBT

, (4.2)

where ec, ϵ0, kB, NA, and Is are the electron charge, the permittivity of vacuum, the Boltzmann constant, the Avogadro
number, and the ionic strength, respectively. Here Is is measured in mole/liter. The solution Φ of PBE gives the electrostatic
potential function (in units kBT/ec) of an electrostatic field caused by a biomolecule (such as a protein molecule) in a
symmetric 1:1 ionic solvent (e.g., a salt solution with sodium (Na+) and chloride (Cl−) ions).

As shown in our previous work [29], the PBE solution Φ can be constructed by

Φ = G + Ψ + Φ̃, (4.3)

where G is given by

G(r) =
α

4πϵp

np
j=1

zj
|r − rj|

, (4.4)

Ψ is a solution of the linear interface boundary value problem
1Ψ (r) = 0, r ∈ Dp ∪ Ds,

Ψ (s+) = Ψ (s−), ϵs
∂Ψ (s+)

∂n(s)
= ϵp

∂Ψ (s−)

∂n(s)
+ (ϵp − ϵs)

∂G(s)
∂n(s)

, s ∈ Γ ,

Ψ (s) = g(s) − G(s), s ∈ ∂Ω,

(4.5)

and Φ̃ is a solution of the nonlinear interface boundary value problem

1Φ̃(r) = 0, r ∈ Dp,

−ϵs1Φ̃(r) + κ2 sinh(Φ̃ + Ψ + G) = 0, r ∈ Ds,

Φ̃(s+) = Φ̃(s−), ϵs
∂Φ̃(s+)

∂n(s)
= ϵp

∂Φ̃(s−)

∂n(s)
, s ∈ Γ ,

Φ̃(s) = 0, s ∈ ∂Ω.

(4.6)

Obviously, Algorithm 3.1 can be applied to the calculation ofΨ and Φ̃ , and the related nonlinear boundary value problem
on a neighboring box Ωi for i = 1 to 6 can be approximated by the linear boundary value problem:

−ϵs1Φ̃(r) + κ2Φ̃(r) = −κ2(Ψ + G), r ∈ Ωi,

Φ̃(s) = Φ̃
(k)
j (s) on ∂Ωi ∩ Ωj when ∂Ωi ∩ Ωj ≠ ∅ for j = i + 1–7,

Φ̃(s) = Φ̃
(k+1)
j (s) on ∂Ωi ∩ Ωj when ∂Ωi ∩ Ωj ≠ ∅ for j = 1 to i − 1,

Φ̃(s) = 0 on ∂Ωi ∩ ∂Ω

(4.7)

provided that |Φ̃ +Ψ +G| ≪ 1 on the neighboring box Ωi. Consequently, we obtain a new box iterative method for solving
PBE as defined in Algorithm 4.1:
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Algorithm 4.1 (The New PBE Box Iterative Method). Let a diameter d of a ball that circumscribesDp be given. The PBE solution
Φ can be constructed in the following five steps:

Step 1. Set the boundary value function g = 0 (by default), select D and Ω as two cubic domains with side lengths being 2d
and 10d (by default), respectively, and construct the seven overlapped boxes Ωi for i = 1, 2, . . . , 7 to satisfy (3.1).

Step 2. Calculate G on each box and ∇G on Ω7.
Step 3. Solve the linear interface problem (4.5) forΨ by Algorithm 3.1 using fp = 0, fs = 0, ζ (s) = (ϵp −ϵs)

∂G(s)
∂n(s) , and β = 0.

Step 4. Solve the nonlinear interface problem (4.6) for Φ̃ by Algorithm 3.1 using fp = 0, fs = 0, β = κ2 sinh(Φ̃ + Ψ + G),
and ζ (s) = 0. Here, (3.5) is replaced by (4.7), andWi,a is computed by

Wi,a =
1
Ni

Ni
j=1

Φ̃(k)
7 (rj) + Ψ (rj) + G(rj)

 for i = 1, 2, . . . , 6.

Step 5. Construct Φ by the solution decomposition Φ = G + Ψ + Φ̃ .

In the numerical implementation of Algorithm 4.1, we generate the interface Γ , a value of diameter d, an interface-
matched tetrahedral mesh of Ω7, and a uniform mesh of each neighboring box Ωi from the mesh generation programs
developed in [29,28]. We then adopt the software SDPBS developed in [29] to solve each nonlinear interface problem onΩ7.
Each linear boundary value problem on a neighboring box is solved numerically by the software PCG-MG developed in [28]
such that the relative residual norm is less than 10−8. To solve each nonlinear boundary value problem on a neighboring
box, we develop a Newton-PCG-MG algorithm as described in the next section. In this way, from Algorithm 4.1 it yields a
new finite element and finite difference hybrid PBE solver.

5. A new Newton-PCG-MGmethod

In this section, we present a new Newton-PCG-MGmethod for solving a nonlinear boundary value problem arising from
Step 4 of Algorithm 4.1. For a general purpose, we consider the following nonlinear boundary value problem

−b1u(r) + c sinh(u + ϕ) = f (r) in Ω,
u(s) = g(s) on ∂Ω,

(5.1)

where f , ϕ, and g are three given functions, b and c are two positive constants, and Ω is a rectangular box. The following
theorem can be regarded as a theoretical base for us to construct Newton-PCG-MG.

Theorem 5.1. The solution u of the nonlinear boundary value problem (5.1) is a unique minimizer of the nonlinear functional J
on the function space V = u + H1

0 (Ω)

J(u) = min{J(v) | v ∈ V }, (5.2)

where u ∈ C2(Ω), u(s) = g(s) for s ∈ ∂Ω , and J is defined by

J(v) =
b
2


Ω

∇v · ∇vdr + c


Ω

cosh(v + ϕ)dr −


Ω

f vdr ∀v ∈ V . (5.3)

Here C2(Ω) is a function space consisting of functionswith continuous second derivatives, andH1
0 (Ω) is a regular Sobolev function

space [43].

Proof. Let J ′(u) and J ′′(u) denote the first and second Fréchet-derivative of J at u, which are linear and bilinear continuous
functionals on H1

0 (Ω), respectively. They can be found as follows:

J ′(u)v = b


Ω

∇u · ∇vdr + c


Ω

sinh(u + ϕ)vdr −


Ω

f vdr ∀v ∈ H1
0 (Ω),

and

J ′′(u)(p, v) = b


Ω

∇p · ∇vdr + c


Ω

cosh(u + ϕ)pvdr ∀p, v ∈ H1
0 (Ω).

We then can obtain a second order Taylor expansion of J in the form

J(u + v) = J(u) + J ′(u)v +
1
2
J ′′(ξ)(v, v) ∀v ∈ H1

0 (Ω), (5.4)

where ξ ∈ V is given between u and u + v.
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Clearly, J ′′(w)(v, v) > 0 for any w ∈ V and v ≠ 0. Since u is a solution of (5.1), it is easy to get that J ′(u)v = 0, which
gives the weak form of (5.1) as follows:

Find u ∈ V such that

b


Ω

∇u∇vdr + c


Ω

sinh(u + ϕ)vdr =


Ω

f vdr ∀v ∈ H1
0 (Ω).

Hence, from the Taylor expansion (5.4) it implies that

J(u) ≤ J(v) ∀v ∈ V ,

which follows that u is a minimizer of J over the function space V . �

We now define the modified Newton minimization method for solving (5.2) by

u(k+1)
= u(k)

+ λkpk, k = 0, 1, 2, . . . , (5.5)

where u(0) is a given initial guess, λk is a step length determined by a line search algorithm to satisfy the condition

J(u(k+1)) ≤ J(u(k)), or ∥J ′(u(k+1))∥ ≤ ∥J ′(u(k))∥,

and pk is a search direction satisfying the Newton bilinear variational form

Find pk ∈ H1
0 (Ω) such that J ′′(u(k))(pk, v) = −J ′(u(k))v ∀v ∈ H1

0 (Ω). (5.6)

Since u ∈ C2(Ω) ∩ H1(Ω), the above Newton variational form can be easily reformulated as a linear boundary value
problem in the differential form

−b1p + c cosh(u(k)
+ ϕ)p = b1u(k)

− c sinh(u(k)
+ ϕ) + f in Ω,

p(s) = 0 on ∂Ω.
(5.7)

Hence, the modified Newton minimization method (5.5) can also be implemented by finite difference techniques.
In Algorithm 4.1, we approximate each Newton equation of (5.7) as a system of second order finite difference equations

based on a uniform mesh of each neighboring box Ωi for i = 1 to 6, which can be written in the matrix form

H(u(k)
i )P = F(u(k)

i ), k = 0, 1, 2, . . . , (5.8)

where P is a vector with components being the numerical values of p at interior mesh points, H(u(k)
i ) is a coefficient matrix

of the finite difference system, F(u(k)
i ) is a vector with each component being a second order finite difference approximation

to the function at the right hand side of Eq. (5.7) at each interior mesh point, and ϕ = G + Ψ .
Clearly, F(ui) = 0 gives a system of nonlinear finite difference equations, which approximates the nonlinear boundary

value problem (5.1) on each neighboring box Ωi for i = 1 to 6.
Wemodify themodified Newtonminimizationmethod (5.5) as a newNewton-PCG-MG algorithm for solving a nonlinear

boundary value problem on each neighboring boxΩi for i = 1 to 6when each linear system of (5.8) is solved approximately
by the PCG-MG program until its relative residual is less than 10−8. Here the Newton-PCG-MG iterative sequence, {u(k+1)

i },
is required to satisfy the convergence rule

∥F(u(k+1)
i )∥ < ϵ or ∥u(k+1)

i − u(k)
i ∥ < ϵ, (5.9)

where ϵ is a convergence tolerance (ϵ = 10−7 by default).

6. A new PBE test model with multiple charges

To validate a PBE solver, in this section, we present a PBE test model as follows:

−ϵp1Φ(r) = α

np
j=1

zjδ(r − rj), r ∈ Dp,

−ϵs1Φ(r) + κ2 sinh(Φ) = κ2 sinh(u(r)), r ∈ Ds,

Φ(s+) = Φ(s−), ϵs
∂Φ(s+)

∂n(s)
= ϵp

∂Φ(s−)

∂n(s)
, s ∈ Γ ,

Φ(s) = u(s) on ∂Ω,

(6.1)
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where Dp = {r | |r| < a}, Γ = {r | |r| = a}, Ds = Ω \ (Dp ∪ Γ ), and u is a solution of the following Poisson test model
−ϵp1u(r) = ρ(r) for |r| < a,
−ϵs1u(r) = 0, for |r| > a,

u(s+) = u(s−), ϵs
∂u(s+)

∂n(s)
= ϵp

∂u(s−)

∂n(s)
for |s| = a,

u(r) → 0 as |r| → ∞,

(6.2)

where ρ(r) = α
np

j=1 zjδ(r− rj). Because of ‘‘excess’’ charge term added to the solvent region Ds, the two parameters α and
κ lost their physical meaning. Hence, they can be selected as the parameters for controlling the solution range.

The solution u of the PBE test model is presented in the following theorem.

Theorem 6.1. The analytical solution u of the Poisson test model (6.2) is given by

u(r) = α

np
j=1

zjuj(r), (6.3)

where uj has the analytical expression

uj(r) =


1

4πϵp|r|
+

1
4πa


1
ϵs

−
1
ϵp


, r ∈ Dp,

1
4πϵs|r|

, r ∈ Ds

if |rj| = 0 (i.e., a charge at the origin), (6.4)

and the series expression

uj(r) =


1

4πϵp|r − rj|
+

∞
n=0

Aj,n|r|nPn


rj · r
|rj||r|


, r ∈ Dp,

∞
n=0

Bj,n
1

|r|n+1
Pn


rj · r
|rj||r|


, r ∈ Ds

if |rj| ≠ 0. (6.5)

Here, Pn denotes the Legendre polynomial of degree n, and Aj,n and Bj,n are defined by

Aj,n =
(ϵp − ϵs)(n + 1)|rj|n

4πϵpa2n+1[nϵp + (n + 1)ϵs]
, Bj,n =

(2n + 1)|rj|n

4π [nϵp + (n + 1)ϵs]
. (6.6)

Proof. By the superposition principle, we can express the solution u of (6.2) in the form of (6.3) with uj being the solution
of the test model (6.2) using ρ(r) = δ(r − rj). Under the spherical coordinate system, rj is expressed as

rj = (|rj| sinφj cos θj, |rj| sinφj cos θj, |rj| cosφj) for θj ∈ [0, 2π ] and φj ∈ [0, π].

Let r̃j = (0, 0, |rj|) and ũj denote the solution of (6.2) using ρ(r) = δ(r − r̃j). We can find uj by the formula

uj(r) = ũj(Ojr),

where Oj is a rotation operator that maps rj to r̃j. Hence, the problem becomes to find ũj(r′) with r′ = Ojr.
Since ũj(r′) is rotationally symmetric, we can follow the procedure suggested in [44, Section 4.4] to find ũj in the series

expressions

ũj(r′) =


1

4πϵp|r′ − r̃j|
+

∞
n=0

Aj,n|r′|nPn(cos⟨r̃j, r′⟩), r′ ∈ Dp,

∞
n=0

Bj,n|r′|−n−1Pn(cos⟨r̃j, r′⟩), r′ ∈ Ds,

(6.7)

where ⟨r̃j, r′⟩ denotes the angle between r̃j and r′. Clearly, cos⟨r̃j, r′⟩ can be calculated by

cos⟨r̃j, r′⟩ =
r̃j · r′

|r̃j||r′|
for j = 1, 2, . . . , np.

Note that |r′| = |r|, |r′ − r̃j| = |r− rj|, and ⟨r̃j, r′⟩ = ⟨rj, r⟩. Hence, from (6.7) we can obtain uj in the series expression (6.5).
This completes the proof. �
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Table 1
Validation test results on our new PBE hybrid solver for the PBE test model (6.1) with a unit ball Dp containing 892 point charges from a protein (4PTI).
Here, Iter. denotes the number of iterations for the PBE hybrid solver satisfying the termination rule (3.7), and Ehj is the relative error defined in (7.1).

Mesh size h Number of mesh points In the l2 norm In the l∞ norm Iter.
On Ω On Ω7 Ehj Ehj/Ehj+1 Ehj Ehj/Ehj+1

h1 = 0.25 120887 18863 9.55 × 10−2 1.79 × 10−2 8
h2 = h1/2 (0.125) 940247 145223 2.29 × 10−2 4.170 5.38 × 10−3 3.33 8
h3 = h2/2 (0.0625) 7 412989 1136605 5.63 × 10−3 4.067 1.81 × 10−3 2.97 8

7. Program package and numerical results

We programmed Algorithm 4.1 and the Newton-PCG-MG scheme in Python and Fortran based on the program
packages we developed in [28,29]. In particular, we adopted the PBE finite element package SDPBS from [29] to solve each
nonlinear interface problem on the central boxΩ7, and reused the PCG-MGprogram, the programs for generating the seven-
boxes partition and the interface-fitted unstructured mesh of Ω7, and the program for calculating G and ∇G from [28]. We
also programmed the analytical solution of the Poisson testmodel (6.2) inFortran. TheFortranprogramswere converted
to Python modules via the Fortran-to-Python interface generator f2py to directly use in Python programs. The usage of
our new PBE program package is similar to that of SDPB, see [29] for details.

For simplicity, we did all the numerical tests with ϵp = 2, ϵs = 80, T = 298.15, Is = 0.1, which gave

α ≈ 7042.94001, κ2
≈ 0.84827,

according to the expressions of (4.2), and the default values of other parameters. The tests were done on one processor of
our Mac Pro Workstation with the 3.7 GHz Quad-Core Intel Xeon E5 and 64 GB memory.

7.1. Validation tests

To validate our new PBE hybrid solver, wemade numerical experiments on the PBE test model (6.1) usingΩ = (−6, 6)3,
a = 1, D = (−2, 2)3, Ω7 = (−3, 3)3, α = 1, and 892 charges coming from a protein with the PDB ID 4PTI. The atomic
positions rj were rescaled to the unit ballDp such that |rj| ≤ 0.8 for j = 1, 2, . . . , 892. The relaxation parameterω was set as
1.275 for computingΨ and 1.225 for computing Φ̃ . We constructed three nested uniformmeshes withmesh sizes h = 0.25,
0.125, and 0.0625 for eachneighboring box, and three nested finite elementmeshes of the central boxΩ7, which have 18863,
145223, and 1136605 mesh points, respectively. As illustrated in Fig. 3, each mesh of Ω7 consists of an unstructured mesh
of D to fit the interface, and a uniform mesh of Ω7 \ D (the overlapped part of Ω7 with its six neighboring boxes) with the
same mesh size as the one of a neighboring box finite difference mesh to simplify the data exchanges between Ω7 and its
neighboring boxes. By a ‘‘regular’’ subdivision (i.e., edge midpoints are connected by new edges), we constructed the three
nested tetrahedral meshes of Ω7 with the largest diameters of tetrahedra being 0.7974, 0.4883, and 0.2809, respectively.

In the tests, we calculated the series solution using its partial sum SN , which is a sum of the first N terms of the series
solution given in (6.5). We used N = 20 since it was found to be large enough for these validation tests as indicated in Fig. 4.
Here, as an example, we displayed the relative errors of SN on the mesh with h = 0.25 from N = 5, 6, . . . , 20. The series
solution vector U was calculated by using N = 100, which was accurate enough for these tests according to our numerical
experiments. From this figure it can also been seen that our simple series expression had a geometric rate of convergence.

We calculated the relative error, Eh, by the formula

Eh =
∥U − Uh∥

∥U∥
, (7.1)

whereU andUh denote the two vectors of series solution and numerical solution values of the PBE testmodel (6.1) at interior
mesh points, respectively. In these validation tests, we calculated the relative error using both l2 and l∞ vector norms. The
results were reported in Table 1.

From Table 1 it can be seen that the relative error in the l2 vector norm was reduced to one fourth when the mesh size
h was decreased by half, which showed that our new PBE box iterative method had a second order of convergence rate in
terms of h. In the case of l∞ norm, the numerical convergence order was about 1.6. These error orders matched well with
the finite element theory [43, Page 217]. The total number of iterations was eight for these three nested meshes, implying
that the new box iterative method had a fast rate of convergence independent of mesh size h. These numerical tests well
validated our new PBE hybrid solver and its program package.

7.2. Comparison tests with other solvers

To simplify the comparison of our PBE hybrid schemewith a PBE finite difference scheme proposed in [35], we considered
the Poisson test model, which is defined by (6.1) with κ = 0. We programmed this finite difference scheme in Fortran
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Table 2
A comparison of our new hybrid solver using an interface-fitted tetrahedral mesh with the finite difference and finite element solvers using a uniform
Cartesian mesh Ωh in the case of solving the Poisson test model: (6.1) with κ = 0, Ω = (−2, 2)3 , Dp = {r | |r| < 1}, α = 7042.94, ϵp = 2, ϵs = 80, and
point charges from three proteins (1D3X, 1AZQ, 1TC3). Here, Eh is defined in (7.1) in the case of l2 norm, and E solv

h is defined in (7.4). We also calculated Eh
by (7.2) for the two finite element solvers.

Finite difference solver on Ωh Finite element solver on Ωh Our hybrid solver
h Nh Eh in l2 norm E solv

h Eh E solv
h hmax Nh Eh E solv

h

l2 norm l∞ norm l2 norm l∞ norm

Protein (1D3X): 756 atoms and analytical solvation free energy △E = −36115.4 kcal/mol

0.16 15625 0.327 0.012 0.251 0.291 0.165 1.11 5577 0.1093 0.0307 0.0184
0.083 117649 0.302 0.008 0.141 0.177 0.083 0.63 44948 0.0263 0.0091 0.0047
0.042 912673 0.174 0.004 0.070 0.097 0.038 0.34 358719 0.0069 0.0028 0.0012
Protein (1AZQ): 1603 atoms and analytical solvation free energy △E = −7090.24 kcal/mol

0.16 15625 0.219 0.0216 0.195 0.317 0.243 1.11 5577 0.0966 0.0495 0.0264
0.083 117649 0.286 0.0126 0.102 0.173 0.116 0.63 44948 0.0230 0.0154 0.0063
0.042 912673 0.239 0.0067 0.049 0.089 0.053 0.34 358719 0.0058 0.0046 0.0018
Protein (1TC3): 2124 atoms and analytical solvation free energy △E = −101 769 kcal/mol

0.16 15625 0.142 0.0087 0.226 0.325 0.171 1.11 5577 0.0991 0.0345 0.0190
0.083 117649 0.086 0.0085 0.120 0.161 0.083 0.63 44948 0.0238 0.0099 0.0049
0.042 912673 0.103 0.0046 0.058 0.078 0.038 0.34 358719 0.0060 0.0027 0.0013

based on a uniformCartesian gridmesh. That is, the Poisson testmodelwas treated as a second-order elliptic boundary value
problemwith the jump coefficient functions, and then discretized by using the seven-point finite difference stencil without
considering any interface condition. Furthermore, each Dirac-delta functional δ(r − rj) was approximated as a piecewise
linear interpolation function, δh(r), [36,45]. We solved each finite difference linear system by our PCG-MG scheme. We also
implemented our SDPBS finite element solver based on a uniform tetrahedral mesh. This program was intended to mimic a
PBE finite difference scheme whose construction involved the interface conditions and solution decomposition techniques.

We made numerical experiments on these three solvers for the Poisson test model using Ω = (−2, 2)3, a = 1,
α = 7042.94, and the point charges from three proteins (with PDB ID 1D3X, 1AZQ, and 1TC3), which have 756, 1603,
and 2124 atoms, respectively. The relative error Eh were calculated by formula (7.1) in the l2 norm for the three solvers. We
further calculated the relative errors for the two finite element solvers using the formula:

Eh =
∥Ψ − Ψh∥∞

∥Ψ ∥∞

with Ψ = U − G, (7.2)

since G is given in (4.4) analytically, and each numerical solution of the Poisson model only involves the calculation of Ψ . In
(7.2), Ψ and Ψh are the two vectors of series solution and numerical solution values of (4.5) at the interior mesh points of a
mesh of domain Ω , respectively.

One important application of PBE is to predict the electrostatic solvation free energy, △E, of a protein in a solvent.
According to the solution decomposition (4.3), we can estimate △E by the formula

△E =
NA

4184
·
kBT
2

np
j=1

zj

Ψ (rj) + Φ̃(rj)


in kilocalorie per mole (kcal/mol). (7.3)

For the Poisson test model, we have Φ̃ = 0, and can find the analytical value of △E from the series solution (6.3). Hence, the
relative error, E solv

h , of a numerical solvation free energy value, △Eh, can be calculated by the formula

E solv
h =

|△Eh − △E|

|△E|
. (7.4)

In these tests, an initial guess of zero was used, the iteration was terminated when the relative residue norm was less
than 10−5, the series solutions and solvation free energies were calculated by using the first 20 terms, each finite difference
systemwas solved by our PCG-MGmethod, and each finite element systemwas solved by the PCG-ILU from scientific library
PETSc. The numerical results were reported in Table 2. Here, Ωh denotes a uniform mesh of Ω , Nh is the total number of
mesh points, and hmax denotes the maximum of all the diameters of tetrahedra for an unstructured tetrahedral mesh of Ω .

From Table 2 we can see that the finite difference solver had a much lower accuracy than our hybrid solver in the
calculation of numerical solutions. Even on a small mesh with only 5577 mesh points, our finite element solver produced
more accurate numerical solutions than the finite difference method on a large mesh of 912,673 mesh points. This implies
that our hybrid solver can have better performance than the finite difference method in both CPU time and computer
memory if the same numerical accuracy is required for the both solvers. Gladly, from Table 2 we also see that the finite
difference solver had a satisfactory accuracy in the calculation of electrostatic solvation free energy. Hence, it can be valuable
for the application problems that involve solvation free energies due to its simplicity and efficiency in implementation.
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Fig. 5. Numbers of Newton-PCG-MG (dash line) andNewton-PCG-ILU (solid line) iterations for each iteration of the newbox iterativemethod in computing
Φ̃ . Here cross indicates that the nonlinear problem has been substituted to the linear problem (4.7).

Table 3
Some protein and mesh data used in the numerical tests. Here, np is the number of atoms, NΩ7 and NΩ denote the numbers
of mesh points on Ω7 and Ω , respectively, and ρ̂ is the percentage defined by ρ̂ = 100NΩ7/NΩ%.

PDB ID np Cube D = (a1, b1; a2, b2; a3, b3) NΩ7 NΩ ρ̂

1CBN 642 (−28.3, 46.9; −27.9, 47.2; −30.4, 44.7) 51133 546637 9.4%
1SVR 1433 (−50.9, 53.3; −56.5, 47.7; −50.6, 53.6) 78149 573653 13.6%
4PTI 892 (−30.9, 61.5; −25.4, 67.0; −41.7, 50.7) 62199 557703 11.2%
1AZQ 1603 (−51.5, 70.9; −50.2, 72.2; −49.8, 72.6) 91864 587368 15.6%
1D3X 756 (−42.0, 41.5; −42.5, 41.1; −41.3, 42.3) 59297 554801 10.7%
1TC3 2124 (−71.0, 91.6; 50.8, 213.4; −48.8, 113.8) 79320 574824 13.8%

7.3. Performance tests for proteins

We made numerical tests on six proteins to compare the performance of our new PBE hybrid solver with that of SDPB.
HereD andΩ were constructed from Step 1 of Algorithm4.1 by using the default values. For clarity, we listed the dimensions
of D and some basic information of these proteins and meshes in Table 3. In these tests, the relaxation parameter ω was set
as 1.215 for computing Ψ and 1.015 for computing Φ̃ . Numerical results were reported in Figs. 5, 6, and 7 and Table 4.

Fig. 5 reports the numbers of iterationswithin each box in solving the nonlinear interface problemonΩ7 byNewton-PCG-
ILU and the nonlinear boundary value problem on each neighboring box by Newton-PCG-MG. Here the nonlinear boundary
value problems had been substituted to its linearized problem after the first iteration in all the six neighboring boxes. From
this figure it can also be seen that the iteration number of Newton-PCG-ILUwas reduced significantly after the first iteration,
indicating that the properties of the nonlinear interface problem ofΩ7 was improved as its boundary value function became
a better approximation to the solution Φ̃ . In other words, the iterates from the neighboring boxes mainly played a role to
generate a ‘‘good’’ boundary value function for the nonlinear interface problem on Ω7.

Fig. 6 displays the convergence of our new box iterativemethod (3.2) for solving the nonlinear interface problem (4.6) for
Φ̃ . Here, an initial iterate of zero was used, and the convergence was controlled by the test rule (3.7) with ϵ = 10−7. From
the figure we can see that the errors were reduced by more than tenth per iteration, showing that the new box iterative
method had a fast rate of convergence.

Fig. 7 shows that our Newton-PCG-MGmethod had a quadratic rate of convergence. These test results came from boxΩ1
for four proteins represented in the PDB IDs 1D3X and 1TC3. Here, an initial iterate of zero was used, and the convergence
was controlled by the test rule (5.9) with ϵ = 10−7.
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Fig. 6. Convergence of the new box iterative method (3.2) for solving the nonlinear interface problem (4.6) for Φ̃ with the iteration termination rule (3.7).
Here 1CBN, 1SVR, 4PTI, 1AZQ, 1D3X, and 1TC3 are the PDB IDs of the six proteins.

Fig. 7. Convergence of our Newton-PCG-MGmethod for solving a nonlinear boundary value problem on box Ω1 with the iteration termination rule (5.9).
Here, F is defined in (5.8), and ∥F(u(k))∥ is the Euclidean vector norm at the kth iterate u(k) on Ω1 .

Table 4 compares the performance of the new PBE hybrid solver with that of the PBE finite element software SDPBS in
the calculation of PBE component functions G, Ψ and Φ̃ as well as in the total CPU time. Here, the total time excluded mesh
generation time, and the total time speedup Sp is defined as a ratio of the total time costed by SDPBS to the one by our
new PBE hybrid solver. In these tests, the relative errors between the numerical solutions by the new PBE hybrid solver and
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Table 4
A comparison of the performance of our new PBE hybrid solver (Hybrid) with that of the PBE finite element solver SDPBS from [29] in CPU time (in seconds).

PDB ID Find G & ∇G Find Ψ Find Φ̃ Total time Time speed up Sp
Hybrid SDPBS Hybrid SDPBS Hybrid SDPBS Hybrid SDPBS

1CBN 2.72 5.28 3.90 13.71 23.34 74.67 30.53 94.54 3.10
1SVR 7.59 15.01 7.76 15.27 56.98 123.66 73.39 154.81 2.11
4PTI 4.48 9.05 5.71 15.54 36.01 85.33 46.96 110.77 2.36
1AZQ 8.88 17.28 9.09 17.27 81.27 175.14 100.43 210.60 2.10
1D3X 3.76 7.65 5.51 15.31 48.79 170.23 58.73 194.05 3.30
1TC3 11.58 22.34 8.21 16.6 77.03 236.09 98.11 275.92 2.81

SDPBS were found to be less than 10−7. From Table 4 we can see that our new PBE hybrid solver speeded up the total CPU
time of SDPBS up to 3 times. We also noted that a smaller value of the ratio ρ̂ might result in a larger speedup Sp due to
the fact that the Newton-PCG-MGmethod on the six neighboring boxes is more efficient than the Newton-PCG-ILUmethod
used in the central box Ω7. Hence, the performance can be further improved through a proper reduction of the ratio ρ̂.
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