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AN EFFECTIVE MINIMIZATION PROTOCOL FOR SOLVING A

SIZE-MODIFIED POISSON-BOLTZMANN EQUATION FOR

BIOMOLECULE IN IONIC SOLVENT

JIAO LI AND DEXUAN XIE

Abstract. The size-modified Poisson-Boltzmann equation (SMPBE) has been developed to con-
sider ionic size effects in the calculation of electrostatic potential energy, but its numerical solution
for a biomolecule remains a challenging research issue. To address this challenge, in this paper,
we propose a solution decomposition formula and then develop an effective minimization protocol

for solving the nonlinear SMPBE model by using finite element approximation techniques. As
an application, a particular SMPBE numerical algorithm is constructed and programmed as a
finite element program package for a biomolecule (e.g., protein and DNA) in a symmetric 1:1
ionic solvent. We also construct a nonlinear SMPBE ball model with an analytical solution and
use it for validation of our new SMPBE numerical algorithm and program package. Furthermore,
numerical experiments are made on a central charged ball model to show some physical features
captured by the SMPBE model. Finally, they are made for six biomolecules with different net
charges to demonstrate the computer performance of our SMPBE finite element program package.
Numerical results show that the SMPBE model can capture some physical properties of an ionic
solvent more reasonably, and can be solved more efficiently than the classic PBE model. As an
application of the SMPBE model, free solvation energies were calculated and compared to the
case of the PBE model.

Key words. Poisson-Boltzmann equation, variational minimization, finite element method, im-
plicit solvent, electrostatic potential.

1. Introduction

The Poisson-Boltzmann equation (PBE) has been widely applied to the study
of protein docking, ion channel modeling, and rational drug design [6, 12, 13, 20].
Despite its success in many applications, it has been well known to have some draw-
backs in the calculation of electrostatic free energy for a highly charged biomolecule
immersed in an ionic solvent with a high salt concentration, since it neglects ionic
size effects on the biomolecular electrostatic free energy. As an improvement of
the PBE model, a size-modified PBE (SMPBE) model was proposed by simply
assuming that all water molecules and ions occupy the same space of a cube with
side length e Λ [1]. It was recently extended to a case of nonuniform ionic sizes
[2, 16, 18, 21]. However, even for the simple SMPBE model, the study of numer-
ical solutions was only limited to a small biological molecule in a monovalent ion
solution [10] and a case of one spheric ball containing a central charge or a small
molecule with three atoms in a salt solution so far [2, 5, 26]. How to solve the
SMPBE model effectively and efficiently for a large biomolecule in an ionic sol-
vent remains a challenging research issue in the fields of computational biology,
computational mathematics, and high performance scientific computing.

To address such a challenge, in this paper, we propose a solution decomposi-
tion formula (see Theorem 2.1), which naturally splits the SMPBE solution u, into
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three component functions G, Ψ, and Φ̃, respectively, according to the potential
contributions from the biomolecular charges, the interface and boundary value con-
ditions, and the ionic solvent charges. Since G collects all the singular points of u
and is known in an analytical expression, the SMPBE numerical solution problem
is remarkably simplified as the numerical solutions of one well defined nonlinear
elliptic interface problem for Φ̃ (see (5)) and one well defined linear elliptic inter-
face problem for Ψ (see (6)). We then construct a nonlinear minimization problem
and prove that this minimization problem has the same unique solution as the non-
linear interface problem so that Φ̃ can be found through solving the minimization
problem. In this way, we obtain an effective minimization protocol for solving the
SMPBE model using finite element approximation techniques. As a result, it be-
comes possible for us to develop a global convergent iterative algorithm for solving
the nonlinear SMPBE model. Note that setting a value of uniform size parameter
Λ to be zero immediately reduces the SMPBE model to the classic PBE model.
Hence, the SMPBE model contains the PBE model as a special case, and our work
of this paper is an extension of our work on the classic PBE model [22, 23].

Different selections of linear and nonlinear iterative methods within our mini-
mization protocol may result in different SMPBE numerical algorithms. As initial
work, in this paper, we construct a particular SMPBE numerical algorithm for a
biomolecule in a symmetric 1:1 ionic solvent by using a simple Newton minimization
method. We then programmed this SMPBE algorithm as a finite element program
package based on the FEniCS finite element library [17] and the molecular surface
and volumetric mesh generation program package GAMer [24]. Our SMPBE pro-
gram package is easy to use and portable on different computer systems because
its main program is written in Python.

To verify our algorithm and program package, we construct a SMPBE ball model
with an analytical solution (see (25)). We then solved it using our SMPBE program
package. Numerical results validate our new SMPBE algorithm and program pack-
age, and show that a higher accuracy of the finite element solution can be achieved
with a higher order of the finite element approximation.

We next made numerical experiments on a central charged ball immersed in the
salt solution. Numerical results confirm that the SMPBE model can much better
capture some physical features of ionic solvent than the classic PBE model.

Furthermore, we did numerical tests on six biomolecules with different net charges
to demonstrate the computer performance of our new SMPBE program package.
Although the SMPBE model is more complicated than the classic PBE model, our
numerical results show that a SMPBE numerical solution could be found in less
CPU time than the corresponding PBE numerical solution. For example, on one
2.4 GHz Intel Core i5 processor of a MacBook Pro, our SMPBE program package
took only about 28 seconds for a biomolecule with 2124 atoms over a finite element
mesh with 77,663 vertices; in contrast, the PBE program package took about 56
seconds for the corresponding PBE finite element solution [22].

Finally, as one important application, we calculated free solvation energies for
the six biomolecules using the SMPBE program package and compared them with
the ones calculated by our PBE program package [22]. Numerical results show that
the PBE model always produced a smaller free solvation energy than the SMPBE
model, and a value of the solvation energy becomes increasing when a larger value
of Λ is used for the SMPBE model if Λ is treated as a purely scale parameter.
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The remaining sections of the paper are outlined as follows. Section 2 introduces
the SMPBE model and its solution decomposition. Section 3 presents the mini-
mization protocol for solving the SMPBE model. Section 4 constructs a particular
SMPBE algorithm from the minimization protocol. Section 5 reports the SMPBE
program package and numerical results. The conclusions and future work are given
in Section 6.

2. The SMPBE model

We consider a biomolecule with np atoms hosted in a region Dp with the bound-
ary Γ being a molecular surface of the biomolecule. Here the position rj and charge
number Zj of the jth atom of the biomolecule are given. We then select a suffi-
ciently large ionic solvent region Ds surrounding Dp, and treat both Dp and Ds as
two continuum media with different dielectric constants ǫp and ǫs satisfying that
0 < ǫp < ǫs. We further assume that the solvent contains n different species of ions
with zi being the charge number of the ith ionic species, and each water molecule
and each ion occupy the same space of a cube with side length Λ.

Under the above assumptions and notation, the SMPBE model can be obtained
(see [16] for example) as follows:

(1)
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−ǫp∆Φ(r) = 4πec
np
∑

j=1

Zjδrj , r ∈ Dp,

−ǫs∆Φ(r)−
4πec

n∑

i=1
ziMie

−ziΦec/(kBT )

1+Λ3
n∑

k=1

Mke
−zkΦec/(kBT )

= 0, r ∈ Ds,

Φ(s+) = Φ(s−), εs
∂Φ(s+)
∂n(s) = εp

∂Φ(s−)
∂n(s) , s ∈ Γ,

Φ(s) = ḡ, s ∈ ∂Ω,

where Φ denotes the electrostatic potential density function, ec is the elementary
charge, δrj is the Dirac-delta distribution at point rj , Mi denotes the bulk con-
centration of the ith ionic species, kB is the Boltzmann constant, T denotes the
absolute temperature, n(s) is the unit outward normal vector of Dp, ḡ is a given
function, and ∂Ω denotes the boundary of a bounded open domain Ω defined by
Ω = Dp ∪Ds ∪ Γ.

When Φ is available, the concentration function ci of the ith ionic species can
be estimated by the modified Boltzmann distributions

(2) ci =
Mie

−qiΦ/(kBT )

1 + Λ3
n
∑

k=1

Mke−qkΦ/(kBT )

for i = 1, 2, . . . , n.

Clearly, using the variable change u = Φec/(kBT ), we can reformulate (1) as the
dimensionless form
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i=1
ziMie

−ziu

1+Λ3
n∑

k=1

Mke
−zku

= 0, r ∈ Ds,

u(s+) = u(s−), ǫs
∂u(s+)

∂n(s)
= ǫp

∂u(s−)

∂n(s)
, s ∈ Γ,

u(s) = g, s ∈ ∂Ω,
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where α = 4πe2c/(kBT ), g = ḡec/(kBT ), and u is called the dimensionless electro-
static potential.

Because of the Dirac delta distributions δrj , the solution u of the SMPBE model
(3) has singularities at rj for j = 1, 2, . . . , np, causing the difficulties in mathemat-
ical analysis and numerical solution. To overcome such difficulties, we obtain a
solution decomposition formula in the following theorem.

Theorem 2.1. Let u be a solution of the SMPBE model (3). Then u can be split

into three component functions, G,Ψ, and Φ̃, in the form

(4) u = Φ̃ + Ψ+G,

where Φ̃ is a solution of the nonlinear interface problem
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∆Φ̃(r) = 0, r ∈ Dp,

−ǫs∆Φ̃(r) −
α

n∑

i=1

ziMie
−zi(Φ̃+Ψ+G)

1+Λ3
n∑

k=1

Mke
−zk(Φ̃+Ψ+G)

= 0, r ∈ Ds,

Φ̃(s+) = Φ̃(s−), ǫs
∂Φ̃(s+)
∂n(s) = ǫp

∂Φ̃(s−)
∂n(s) , s ∈ Γ,

Φ̃(s) = 0, s ∈ ∂Ω,

Ψ is a solution of the linear interface problem

(6)
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∆Ψ(r) = 0, r ∈ Dp ∪Ds,
Ψ(s+) = Ψ(s−), s ∈ Γ,

ǫs
∂Ψ(s+)
∂n(s) = ǫp

∂Ψ(s−)
∂n(s) + (ǫp − ǫs)

∂G(s)
∂n(s) , s ∈ Γ,

Ψ(s) = g −G(s), s ∈ ∂Ω,

and G is given by

(7) G(r) =
α

4πǫp

np
∑

j=1

Zj

|r− rj |
.

Here ∂G(s)
∂n(s) = ∇G · n with ∇G being given by

(8) ∇G(r) = − α

4πǫp

np
∑

j=1

Zj
r− rj

|r− rj |3
.

Proof. Since 1
4π|r−rj |

satisfies the equation −∆Gj = δrj ,

∆G =
α

ǫp

np
∑

j=1

Zj∆
1

4π|r− rj |
= − α

ǫp

np
∑

j=1

Zjδrj .

For r ∈ Dp, we have ∆Ψ = 0 and ∆Φ̃ = 0. Thus,

−ǫp∆u = −ǫp(∆Φ̃ + ∆Ψ+∆G) = −ǫp(−
α

ǫp

np
∑

j=1

Zjδrj ) = α

np
∑

j=1

Zjδrj .

For r ∈ Ds, we can easily verify that

−ǫs∆u = −ǫs∆Φ̃ =

α
n
∑

i=1

ziMie
−zi(Φ̃+Ψ+G)

1 + Λ3
n
∑

k=1

Mke−zk(Φ̃+Ψ+G)

=

α
n
∑

i=1

ziMie
−ziu

1 + Λ3
n
∑

k=1

Mke−zku

,

since ∆G = 0 and ∆Ψ = 0 in Ds.
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On the interface Γ, Φ̃ and Ψ satisfy the interface conditions given in (5) and (6),

respectively, while both G(s) and ∂G(s)
∂n(s) are continuous. As a result, for any s ∈ Γ,

we have

u(s+) = Φ̃(s+) + Ψ(s+) +G(s) = Φ̃(s−) + Ψ(s−) +G(s) = u(s−)

and

ǫp
∂u(s−)

∂n(s)
= ǫp

∂Φ̃(s−)

∂n(s)
+ ǫp

∂Ψ(s−)

∂n(s)
+ ǫp

∂G(s)

∂n(s)

=ǫs
∂Φ̃(s+)

∂n(s)
+ ǫs

∂Ψ(s+)

∂n(s)
− (ǫp − ǫs)

∂G(s)

∂n(s)
+ ǫp

∂G(s)

∂n(s)

=ǫs
∂

∂n(s)
(Φ̃ + Ψ +G)(s+) = ǫs

∂u(s+)

∂n(s)
.

Finally, for s ∈ ∂Ω, we get that

u(s) = Φ̃(s) + Ψ(s) +G(s) = 0 + g −G(s) +G(s) = g ∀s ∈ ∂Ω.

This completes the proof. �

It is interesting to note that with our solution decomposition (4), we have nat-

urally split the potential u into the three parts G, Ψ, and Φ̃ according to the
potential contributions from the biomolecular charges, the interface and boundary
value conditions, and the ionic solvent charges, respectively. Since G is known, it
only needs to find Ψ and Φ̃ to yield a solution u of the SMPBE model (3) without
any singularity difficulty.

Clearly, setting Λ = 0 immediately reduces the SMPBE model (3) to the classic
PBE model:

(9)
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−ǫp∆u(r) = α

np
∑

j=1

Zjδrj , r ∈ Dp,

−ǫs∆u(r)− α
n
∑

i=1

ziMie
−ziu = 0, r ∈ Ds,

u(s+) = u(s−), ǫs
∂u(s+)

∂n(s)
= ǫp

∂u(s−)

∂n(s)
, s ∈ Γ,

u(s) = g, s ∈ ∂Ω.

Thus, the PBE model can be regarded as a special case of the SMPBE model. Since
the work on the PBE model has been done in [22], we only consider the SMPBE
model using a positive value of Λ in this paper.

3. Our minimization protocol for solving SMPBE

In this section, we present a minimization protocol for solving the SMPBE model
(3) numerically by the finite element method. For a given tetrahedral mesh partition
of domain Ω, we can construct a Lagrange finite element space M as a finite
dimensional subspace of the usual Sobolev function space H1(Ω) such that each
function in M is continuous [4]. We then set

M0 = {v ∈ M | v = 0 on ∂Ω},
as a subspace of the Sobolev function space H1

0 (Ω).
With Green’s first identity, we can formulate the linear interface problem (6) as

the following finite element variational problem:
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Find Ψ ∈ M with Ψ|∂Ω = g −G such that

(10) a(Ψ, v) = (ǫp − ǫs)

∫

Ds

∇G(r) · ∇v(r)dr ∀v ∈ M0,

where a(u, v) is a bilinear form defined by

(11) a(u, v) = ǫp

∫

Dp

∇u(r) · ∇v(r)dr + ǫs

∫

Ds

∇u(r) · ∇v(r)dr.

Note that in the weak form (10), we have used the identity
∫

Γ

∂G(s)

∂n(s)
v(s)ds = −

∫

Ds

∇G(r) · ∇v(r)dr ∀v ∈ H1
0 (Ω)

to avoid the difficulty that may be caused by the complexity of the interface Γ.
Similarly, the nonlinear interface problem (5) can be reformulated as the finite

element nonlinear variational problem:
Find Φ̃ ∈ M0 such that

(12) a(Φ̃, v)−
∫

Ds

α
n
∑

i=1

ziPie
−ziΦ̃

1 + Λ3
n
∑

k=1

Pke−zkΦ̃

vdr = 0 ∀v ∈ M0,

where a(u, v) is defined in (11), and Pi is defined by

Pi = Mie
−zi(Ψ+G).

In calculation, we always suppose that Ψ has been found before solving the
nonlinear variational problem (12). Thus, Pi can be treated as a given function.

Obviously, a(u, v) is a bounded and symmetric bilinear form. The solution ex-
istence and uniqueness of the variational problem (10) can be easily followed from
the regularity analysis of the elliptic interface problem [3, 8, 19] if the interface Γ
is assumed to be of class C2.

For the case of the nonlinear variational problem (12), we construct a minimiza-
tion problem as follows

(13) min
v∈M0

J(v)

where J is a functional defined by

(14) J(v) =
1

2
a(v, v) +

α

Λ3

∫

Ds

ln(1 + Λ3
n
∑

k=1

Pke
−zkv)dr, v ∈ M0.

We then obtain the following theorem.

Theorem 3.1. The minimization problem (13) has a unique solution and is equiv-
alent to the nonlinear variational problem (12).

Proof. Clearly, J is continuous and twice Fréchet differentiable on M0. Thus, J
is lower semicontinuous, and its first and second derivatives J ′(φ) and J ′′(φ) at
φ ∈ M0 can be found as follows: For any v, w ∈ H1

0 (Ω),

(15) J ′(φ)v = a(φ, v)−
∫

Ds

α
n
∑

i=1

ziPie
−ziφ

1 + Λ3
n
∑

k=1

Pke−zkφ

vdr,
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and

J ′′(φ)(v, w) = a(w, v) +

∫

Ds

α
n
∑

i=1

z2i Pie
−ziφ

1 + Λ3
n
∑

k=1

Pke−zkφ

wvdr

−
∫

Ds

αΛ3(
n
∑

i=1

ziPie
−ziφ)2

(1 + Λ3
n
∑

k=1

Pke−zkφ)2
wvdr.(16)

By Poincaré inequality and the facts that ǫs > ǫp and

α

Λ3

∫

Ds

ln(1 + Λ3
n
∑

k=1

Pke
−zkv)dr ≥ 0,

there exists a constant C > 0 such that

J(v) =
1

2
a(v, v) +

α

Λ3

∫

Ds

ln(1 + Λ3
n
∑

k=1

Pke
−zkv)dr

≥ ǫp

∫

Ω

|∇v(r)|2dr ≥ ǫp
C
‖v‖2H1(Ω) ∀v ∈ H1

0 (Ω)

from which it implies J(v) → ∞ as ‖v‖H1(Ω) → ∞ (i.e., J is coercive on H1
0 (Ω)).

Furthermore, it is easy to show that the difference of the last two terms of
J ′′(φ)(v, v) in (16) is positive. Thus, for any φ ∈ M0, we have

J ′′(φ)(v, v) ≥ 1

2
a(v, v) ≥ ǫp

C
‖v‖2H1(Ω) ∀v ∈ H1

0 (Ω).

Hence, J is strictly convex. Therefore, from [11, Proposition 1.2, Page 35] it implies
that the minimization problem (13) has a unique solution u ∈ M0. Moreover, the
minimizer u satisfies J ′(u)v = 0 for all v ∈ H1

0 (Ω), which is the same as (12).
Hence, u is also a solution to (12). The equivalence can be directly followed from
[25, Theorem 40.B, Page 194]. �

We are now in the position to construct our minimization protocol for solving
the SMPBE model in the following algorithm.

Algorithm 1 (Minimization Protocol for Solving SMPBE ) Let u be a finite
element solution of the SMPBE model (3) on a Lagrange finite element space M.
It can be calculated in the following steps:

(1) Calculate G by (7) and ∇G by (8) on M.
(2) Solve the finite element variational problem (10) to get Ψ.

(3) Search for a minimizer Φ̃ of the minimization problem (13) as a finite
element solution of (12).

(4) Construct u by the decomposition formula u = G+Ψ+ Φ̃.

4. A particular algorithm for solving SMPBE

Clearly, different linear and minimization solvers in Steps 2 and 3 of Algorithm 1
may lead to different numerical algorithms for solving the SMPBE model. For
the purpose of numerically testing our minimization protocol, in this section, we
only consider a symmetric 1:1 ionic solvent, and construct a Newton minimization
algorithm for solving the minimization problem (13) as defined in Algorithm 2.
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Algorithm 2. (A Newton minimization method) Let {φ(k)} be a sequence of
the Newton minimization method for solving the minimization problem (13). For
a given initial guess φ(0) ∈ M0, do the following steps for k = 0, 1, 2, . . .:

(1) Convergence Test: If ‖J ′(φ(k))‖ < ǫ (in our tests, ǫ = 10−6), stop the
iteration and output φ(k) as the numerical solution.

(2) Determine a descent search direction pk: Select pk ∈ M0 as a numerical
solution of the Newton equation

(17) J ′′(φ(k))(p, v) = −J ′(φ(k))v ∀v ∈ M0.

(3) Selection of a steplength λk: Set λk = 1 if

(18) J(φ(k) + λkpk) ≤ J(φ(k)) or ‖J ′(φ(k) + λkpk)‖ ≤ ‖J ′(φ(k))‖;
otherwise, select λk by a line search algorithm to satisfy (18).

(4) Define the next iterate φ(k+1): Set φ(k+1) = φ(k) + λkpk.

In the case of the symmetric 1:1 ionic solvent, we have n = 2, z1 = 1, z2 = −1,
and M1 = M2 = M . Thus, the SMPBE model (3) is simplified as

(19)
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−ǫp∆u(r) = α

np
∑

j=1

Zjδrj , r ∈ Dp,

−ǫs∆u(r) + 2Mα sinh(u)
1+2MΛ3 cosh(u) = 0, r ∈ Ds,

u(s+) = u(s−), ǫs
∂u(s+)

∂n(s)
= ǫp

∂u(s−)

∂n(s)
, s ∈ Γ,

u(s) = g, s ∈ ∂Ω.

For the above SMPBE model, Ψ and G are the same as the ones defined in (6) and

(7), but the variational form (12) of Φ̃ has been simplified in the form

(20) a(Φ̃, v) + 2Mα

∫

Ds

sinh(Φ̃ + Ψ +G)

1 + 2MΛ3 cosh(Φ̃ + Ψ +G)
vdr = 0.

Correspondingly, for Λ > 0, the functional J of (14) and its first and second Gâteaux
derivatives of (15) and (16) are also simplified into the following forms

(21) J(v) =
1

2
a(v, v) +

α

Λ3

∫

Ds

ln(1 + 2MΛ3 cosh(v +Ψ+G))dr,

(22) J ′(φ)v = a(φ, v) + 2Mα

∫

Ds

sinh(φ +Ψ+G)

1 + 2MΛ3 cosh(φ+Ψ+G)
vdr

J ′′(φ)(v, w) = a(w, v) + 2Mα

∫

Ds

2MΛ3 + cosh(φ+Ψ+G)

(1 + 2MΛ3 cosh(φ +Ψ+G))2
wvdr

Clearly, the variational form (20) can be linearized as

(23) a(Φ̃, v) +
2Mα

1 + 2MΛ3

∫

Ds

Φ̃vdr =
−2Mα

1 + 2MΛ3

∫

Ds

(Ψ +G)vdr,

whose finite element solution can be selected as a starting iterate φ(0) for our Newton
minimization algorithm.

In practice, the ionic strength Is is often given in mole per liter (mol/L). In this
case, the bulk concentration M is expressed by

M = 10−27NAIs,

where NA is the Avogadro constant, which is given as NA = 6.02214129× 1023.
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Similar to the case of the PBE model [14], we can obtain the following approxi-
mate boundary function g for the SMPBE model (19):

(24) g =
e2c

ǫskBT

np
∑

j=1

e−κ̄|r−rj|/
√

ǫs(1+2MΛ3)

|r− rj |
zj .

5. Program package and numerical results

We programmed our SMPBE algorithm as a finite element program package
in Python based on the library DOLFIN from the FEniCS project [17]. The mesh
generation program package GAMer [24] was adapted as a Python module of our
SMPBE program by the software development tool SWIG (http://www.swig.org).
Thus, we can generate a finite element mesh directly within our program package for
each input biomolecule represented in a PQR file. To improve the computer perfor-
mance, we wrote Fortran subroutines for computing the mesh node values of func-
tions G, ∇G, g, ln, sinh, and cosh, and converted them as Python modules by the
Fortran to Python interface generator F2PY (http://cens.ioc.ee/projects/f2py2e/).
The preconditioned conjugate gradient method with the ILU preconditioner from
the PETSc library (http://www.mcs.anl.gov/petsc/) was used to solve a system of
linear algebraic equations arisen from the finite element variational problem (10)
and the Newton’s equation (17).

All the numerical experiments were made on one 2.4 GHz Intel Core i5 processor
of a MacBook Pro with 8GB memory. Here, we set the two iterative termination pa-
rameters from the PETSc library, relative tolerance and absolute tolerance, as 10−10.
All the numerical tests on the corresponding PBE model (9) were done by using
the PBE program package [22].

5.1. Tests on a SMPBE ball model with analytical solution. To validate
our SMPBE algorithm and program package, we construct the SMPBE ball model

(25)



















−ǫp∆u(r) = αZδ, r ∈ Dp,

−ǫs∆u(r) + 2Mα sinh(u(r))
1+2MΛ3 cosh(u(r)) = ρs(r), r ∈ Ds,

u(s+) = u(s−), ǫs
∂u(s+)

∂n = ǫp
∂u(s−)

∂n , s ∈ Γ,
u(s) = αZ

4πǫs|s|
, s ∈ ∂Ω,

where Ω = {r : |r| < Rs}, Dp = {r : |r| < Rp}, Ds = {r : Rp < |r| < Rs},
Γ = {r : |r| = Rp}, Z is a charge number, δ is the Dirac delta distribution at the
origin, and the right hand side function ρs is defined by

ρs(r) = 2Mα sinh

(

αZ

4πǫs|r|

)[

1 + 2MΛ3 cosh

(

αZ

4πǫs|r|

)]−1

for r ∈ Ds.

Clearly, the analytical solution of this SMPBE ball model is given by

(26) u(r) =

{

αZ
4πRp

( 1
ǫs

− 1
ǫp
) + αZ

4πǫp|r|
, r ∈ Dp,

αZ
4πǫs|r|

, r ∈ Ds,

which is the same as the analytical solution of the Born ball model:

(27)















−ǫp∆u(r) = αZδ, r ∈ Dp,
−ǫs∆u(r) = 0, r ∈ Ds,

u(s+) = u(s−), ǫs
∂u(s+)

∂n = ǫp
∂u(s−)

∂n , s ∈ Γ,
u(s) = αZ

4πǫs|s|
, s ∈ ∂Ω.
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To solve the SMPBE ball model (25), the only modification we made to the
SMPBE program package was to subtract the term

∫

Ds
ρs(r)vdr from the expres-

sions (21) and (22) of J(v) and J ′(φ)v, respectively. In this test, we set Rp = 1
and Rs = 10 to use the tetrahedral mesh with 2955 vertices from in [22]. Is = 0.1
and 0.2 are two commonly used ionic strength values. Linear, quadratic, and cubic
finite element methods were used. An initial guess of zero was set in the Newton
minimization algorithm. Numerical results are reported in Table 1. Here Errorr de-
notes the relative error of a finite element solution uh with respect to the analytical
solution u as defined by

(28) Errorr = ‖uh − u‖L2(Ω)/‖u‖L2(Ω),

where ‖ · ‖L2(Ω) is the norm defined by ‖v‖L2(Ω) = (
∫

Ω |v|2dr) 1
2 for v ∈ L2(Ω).

From Table 1 it can be seen that the accuracy of a finite element solution is
high and can be improved significantly as the order of the finite element method is
increased from 1 to 3. These numerical results well validated our SMPBE algorithm
and program package.

Table 1. Relative errors of the finite element solutions of the
SMPBE ball model (25) with Rp = 1, Rs = 10, and Λ = 6.
Here, Errorr is defined in (28), and FEM stands for Finite Element
Method.

Order Errorr (Z = 1) Errorr (Z = 3)
of FEM Is = 0.1 Is = 0.2 Is = 0.1 Is = 0.2

1st 2.8890× 10−3 2.8925× 10−3 3.1599× 10−3 3.2098× 10−3

2nd 4.7170× 10−4 4.6829× 10−4 4.6535× 10−4 4.6385× 10−4

3rd 2.2023× 10−4 2.1976× 10−4 2.1854× 10−4 2.1837× 10−4

5.2. Tests on a central charged ball immersed in salt solution. To demon-
strate that the SMPBEmodel can capture some physical features of an ionic solvent,
we made numerical experiments on the SMPBE model (19) with Is = 0.2, the so-
lute region Dp being a unit ball, Dp = {r | |r| < 1}, with only one charge Zec at
the center of the ball (np = 1), the solvent region Ds = {r | 1 < |r| < 10}, the
boundary function g defined in (24), and Λ = 3.11. Such a value of Λ estimates the
linear size of water molecule, which is calculated at temperature 298.15K. At this
temperature, the density of liquid water is 997.0479 Kg/m3, and the molar mass of
water is 18.01528 g/mol.

With the cubic finite element solution calculated on the same tetrahedral mesh
as the one used in the previous subsection, we obtained the concentration functions
c1 and c2 of anions and cations according to the expression of (2) with n = 2,
q1 = −ec and q2 = ec. One cross section of each concentration function from the xy
coordinate plane is displayed on Figure 1 for both the SMPBE and PBE models.

From Plots (B) and (D) of Figure 1 it can be seen that both the SMPBE and
PBE models captured such an ionic solvent feature of cations (e.g., sodium ions
N+

a ): the cations are repelled away from the positive charged unit ball.
However, as shown in Plot (C), the PBE calculated concentration of anions (e.g.,

chloride ions Cl−) had too high values around the unit ball within a very tiny ring,
indicating that all the anions unrealistically accumulated on the spherical surface
of the unit ball due to all the ions being treated as volumeless points.
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(d) Concentration of cations by PBE

Figure 1. A comparison of the concentrations calculated from
the SMPBE and PBE models for a unit ball with one central point
charge immersed in a symmetric 1:1 ionic solvent containing anions
(e.g., chloride ion Cl−) and cations (e.g., sodium ion N+

a ). Here
Λ = 3.11 Å, Is = 0.2 M, Z = 3, Rp = 1, and Rs = 10.

In contrast, from Plot (A) it can be seen that the SMPBE calculated concen-
tration of anions reached a saturation value 55.2 (i.e., 1/Λ3) around the spherical
surface, which matched well what is claimed in Physics.

5.3. Tests on biomolecules with different net charges. To demonstrate the
computer performance of our SMPBE program package, we made numerical exper-
iments on six biomolecules with different net charges. These six biomolecules (three
proteins, two DNA-protein complexes, and one DNA) were downloaded from the
Protein Data Bank (PDB) (http://www.rcsb.org). Their PDB identifications (ID),
net charges, and atom numbers are listed in Table 2.

Using the software tool PDB2PQR (http://www.poissonboltzmann.org/pdb2pqr),
we converted each PDB file to a PQR file as an input file of our SMPBE program
package. Six tetrahedral meshes were generated, respectively, by calling GAMer [24]
within our program package for these six biomolecules located in the center parts
of the six spherical ball domains Ω with radii 90.2, 127.5, 111.6, 149.7, 102.0, and
198.9 in units Å respectively. Their total numbers of vertices are listed in Table 2.

A tetrahedral mesh for the protein represented by PDB ID 1CBN is displayed
in Figure 2 as an example to show the challenge to generate a high quality finite
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Table 2. The six biomolecules used in our numerical experiments.

PDB ID Type # Atom Net charges Mesh vertices

1CBN Protein 642 0ec 69949
1SVR Protein 1433 −2ec 52715
4PTI Protein 892 +6ec 73195
1AZQ DNA-protein complex 1603 −8ec 51380
1D3X DNA 756 −21ec 42358
1TC3 DNA-protein complex 2124 −35ec 77663

Figure 2. A tetrahedral mesh for a protein represented in PDB
ID 1CBN. Here the protein range Dp and solvent region Ds are
marked in red and cyan, respectively. A part of cross section of
the mesh is displayed in the right figure to show the mesh around
the protein.

element mesh due to a complex molecular surface of a biomolecule. This figure is
also used as a demonstration to show that the meshes generated from GAMer were
satisfactory for our numerical experiments.

The numerical tests were done by using the linear finite element method, the
boundary function g defined in (24), Is = 0.2, and Λ = 3.11. An initial guess for the
Newton minimization method was set as the corresponding numerical solution of the
linear variational problem (23). We also simply treated Λ as a scaling parameter
(i.e., ignoring its physical sense), and did numerical tests using Λ = 6 and 10.
As comparisons, we also did tests on the corresponding PBE model using our
PBE program package [22] with the same parameters as Algorithm 2. Computer
performance data are reported in Table 3 and Figure 3. Here Time is the total
amount of CPU time in seconds excluding the time for mesh generation. In fact,
the same meshes were used in PBE and SMPBE tests. Thus, the time for mesh
generation can be omitted in a performance comparison between PBE and SMPBE.
One discussion on it can be found in [22] for the case of PBE.

From Table 3 we can see that while both the PBE and SMPBE program packages
were efficient, the SMPBE package performed better than the PBE package in terms
of the total CPU time. This result is beyond what we expected since the SMPBE
model is a more complicated model than the PBE model so that each of its Newton
iterations is more expensive to be computed than the case of the PBE model.



298 J. LI AND D. XIE

Table 3. Comparison of the our SMPBE program package with
our PBE program package [22] in the total number of iterations
of the Newton minimization method(Iter) and the total CPU time
(Time in seconds).

PDB PBE SMPBE
ID (Λ = 0) Λ = 3.11 Λ = 6 Λ = 10

Iter Time Iter Time Iter Time Iter Time
1CBN 8 25.00 6 21.31 5 19.41 4 17.70
1SVR 21 33.25 7 17.40 5 15.19 4 14.09
4PTI 10 29.91 9 27.74 8 26.03 6 22.53
1AZQ 19 29.74 8 18.32 7 17.00 5 14.97
1D3X 24 26.85 14 17.73 12 16.04 6 11.35
1TC3 21 55.57 12 38.47 11 36.88 6 28.40

Interestingly, as shown in Figure 3, our Newton minimization method achieved a
faster rate of convergence for the SMPBE model than the PBE model, and the rate
can be speeded up by using a larger value of the scaling parameter Λ, resulting in
a sharp reduction of the total CPU time.
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Figure 3. A comparison of the convergence rate of the Newton
minimization method for the SMPBE model with that for the cor-
responding PBE model in terms of the total number of iterations.
Here, the convergence rule is that ‖J ′(φ(k))‖ < 10−6 (see Algo-
rithm 2), Is = 0.2, the PBE case is marked in red diamonds, and
the SMPBE using Λ = 3.11, 6, and 10 are marked in green stars,
blue circles, and cyan triangles, respectively.

5.4. Solvation energy calculations. As one important application, we calcu-
lated the free solvation energy for the six biomolecules using the SMPBE program
package and made a comparison with that calculated by our PBE program package
[22]. The free solvation energy is an interesting physical quantity associated with
the free energy changes of a charged system from the vacuum into a solvent. As a
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Figure 4. Comparison of the solvation free energy calculated by
the PBE model (in red diamonds) with that by the SMPBE model
using Λ = 2 (in blue circles), 6 (in green stars), or 10 (in cyan
triangles). Here the tests were done with the ionic strength Is
being 1, 2, . . . , 10 in units 0.1mol/L, respectively.

result of our solution decomposition (4), it can be calculated by

(29) Fsol =
1.439× 1013

2
kBT

np
∑

j=1

Zj(Φ̃(rj) + Ψ(rj)).

Here the energy has the unit kcal/mol as the number 1.439×1013 is the energy unit
converting constant from erg to kcal/mol.

With the finite element solutions produced from our SMPBE and PBE program
packages, we calculated the solvation energies for the six biomolecules with different
ionic strengths (from 0.1 mol/L to 1 mol/L) and different values of the uniform ionic
size parameter Λ (from 0 to 10 Å, treating it as a purely scaling parameter). The
results were plotted in Figure 4.

Figure 4 shows that the solvation energy Fsol is an increase function of Λ for
each fixed value of the ionic strength Is while a decrease function of Is for each
fixed value of Λ. Thus, the PBE model produced smaller values of Fsol than
the SMPBE model. It is also interesting to note that the difference between the
solvation energies calculated by the SMPBE and PBE models become larger for a
larger value of Is so that the largest difference occurred at Λ = 10 Å and Is = 1
mol/L for each biomolecule. Among all the six biomolecules, the largest difference
was 60 kcal/mol in the case of 1TC3, but, in comparison to the large magnitude
(5670) of the solvation energy, it was relatively very small (60/5670 ≈ 0.01058).

6. Conclusions and future works

In this paper, we have proposed a solution decomposition formula such that the
SMPBE solution u is split as a sum of three component functions G, Ψ, and Φ̃.
Here, these three functions are defined naturally according to the potential contri-
butions from the biomolecular charges, the interface and boundary value conditions,



300 J. LI AND D. XIE

and the ionic solvent charges. As an application of this solution decomposition for-
mula, we have developed an effective minimization protocol using finite element
approximation techniques to numerically solve the nonlinear SMPBE model for a
biomolecule (e.g., protein or DNA) immersed in an ionic solvent containing n differ-
ent kinds of ions. This general minimization protocol makes it possible to construct
different fast SMPBE numerical solvers through selecting different linear/nonlinear

iterative solvers or different minimization algorithms for computing Ψ and Φ̃. As
an example, in this paper, we have obtained one particular SMPBE algorithm and
programmed it as a computer program package in the case of a biomolecule in a
symmetric 1 : 1 ionic solvent (i.e., the case of n = 2 with two opposite unit charged
ions), which is often studied in literature. This particular SMPBE algorithm and
program package were numerically tested and validated on a SMPBE ball model we
constructed with a given analytical solution in this paper. The high performance of
our SMPBE program package was demonstrated for six biomolecules with different
net charges. Furthermore, we have done comparison tests between the SMPBE and
PBE models, showing that the SMPBE model is a more reasonable than the PBE
model in the calculation of electrostatic solvation free energies.

We note that two other different solution decomposition formulas were proposed
for the PBE model in the case of a symmetric 1:1 ionic solvent [7, 9, 15, 27]. Even
in this special case, they are very different from ours. For example, in the one
proposed in [9], the component function Ψ was defined only within the protein
range Dp, while the one from [7] used different boundary value functions from ours

in the construction of the elliptic interface problems of Ψ and Φ̃.
In the future, we plan to do more theoretical and numerical studies on the

SMPBE model to further understand its physical and mathematical properties.
We will also carry out a theoretical analysis on the Newton minimization method
to understand why it has a faster rate of the convergence in the case of the SMPBE
model than in the case of the PBE model. Moreover, we will look for a more
efficient mesh generator and more efficient linear and nonlinear iterative methods
for calculating Ψ and Φ̃ to further improve the performance of our SMPBE finite
element algorithm and program package.
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