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This paper reports a nonuniform ionic size nonlocal Poisson-Fermi double-layer model (nuNPF) and a uniform
ionic size nonlocal Poisson-Fermi double-layer model (uNPF) for an electrolyte mixture of multiple ionic species,
variable voltages on electrodes, and variable induced charges on boundary segments. The finite element solvers
of nuNPF and uNPF are developed and applied to typical double-layer tests defined on a rectangular box, a
hollow sphere, and a hollow rectangle with a charged post. Numerical results show that nuNPF can significantly
improve the quality of the ionic concentrations and electric fields generated from uNPF, implying that the effect
of nonuniform ion sizes is a key consideration in modeling the double-layer structure.
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I. INTRODUCTION

The modeling and simulation of an electric double layer
(EDL) has been widely studied in electrochemistry since
Helmholtz’s early work [1] one century ago, due to its great po-
tential in various important applications, such as water deion-
ization, energy storage and conversion, battery and fuel cell
design, and room-temperature ionic liquids. While many EDL
models were developed using the classic Poisson-Boltzmann
equation (PBE), the ionic size modified PBE (SMPBE), and the
Poisson-Fermi equation (PFE) [2–7], most of them were tested
only for a rectangular box containing an electrolyte of two ionic
species, and solved numerically as two-point boundary value
problems under the assumption that all ions have the same
volume (or zero volume in the case of PBE), electrodes are
planar, and the electrostatic potential on each electrode is a
constant.

However, in many applications, a double layer may involve
nonplanar electrodes, surface charges on electrodes, more than
two ionic species, and distinct ion sizes. A surface potential
or a surface charge density on an electrode or a boundary
segment may not be a constant. Clearly, incorporating these
features of a double layer can significantly improve the current
EDL models, but will require new EDL models, new numerical
algorithms, and new program packages.

In this paper, we report on a nonuniform ionic size nonlocal
Poisson-Fermi double-layer model (nuNPF), a uniform ionic
size nonlocal Poisson-Fermi double-layer model (uNPF), and
their fast finite element solvers. We then focus on the numerical
tests on nuNPF and uNPF for three typical EDL tests defined
on a rectangular box, a hollow sphere, and a hollow rectangle
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with a charged post. Numerical results show that the effect of
nonuniform ion sizes is a key consideration in modeling the
double-layer structure with more than two ionic species and
large voltages (or large surface charges).

The remaining part of the paper is organized as follows.
In Sec. II, we present the nuNPF model and its four special
cases: uNPF, a nonuniform SMPBE EDL model (nuSMPBE),
a uniform SMPBE EDL model (SMPBE), and a PBE EDL
model. In Sec. III, we present the free energy functional that
we use to construct nuNPF. In Sec. IV, we present the numerical
solvers for nuNPF and uNPF. In Sec. V, we report the numerical
test results. Finally, conclusions are made in Sec. VI.

II. OUR ELECTRIC DOUBLE-LAYER MODELS

In this section, we first present the nuNPF EDL model. We
then discuss its physical background, and show that it is a
family of methods containing uNPF, nuSMPBE, SMPBE, and
PBE EDL models as its special cases.

Let Ds be an ionic solvent domain containing n ionic species
with charge numbers Zi , ionic sizes vi , and bulk concentrations
cb
i of species i, and v0 be a size scaling parameter. We split the

boundary of Ds into two parts, �1 and �2, to specify the given
surface charge σ , voltage g, and other two boundary value
functions f1 and f2. See Fig. 1 for an example of Ds . We then
define the nuNPF EDL model as a system of n + 1 equations,
which consists of n nonlinear algebraic equations,

ci − cb
i

⎡
⎣1 − γ

n∑
j=1

vj cj

⎤
⎦

vi
v0

e−Ziu = 0, i = 1,2, . . . ,n, (1)
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FIG. 1. EDL box with �1 consisting of the four side surfaces and
�2 the bottom and top surfaces.

and one nonlocal Poisson-Fermi (NPF) boundary value prob-
lem,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�
[
u − l2

c �u
] = β

n∑
i=1

Zici in Ds,

∂�u(s)
∂n(s) = f1(s), ∂u(s)

∂n(s) = τσ (s) on �1,

u(s) = g(s), �u(s) = f2(s) on �2,

(2)

where u is an electrostatic potential function, ci is an ionic
concentration function of species i, γ = 10−27NA, � = ∂2

∂x2 +
∂2

∂y2 + ∂2

∂z2 for r = (x,y,z), n is the unit outward normal direc-

tion of Ds ,
∂u(s)
∂n(s) = ∇u(s) · n(s),

lc =
√

ε∞
εs

λ, β = 10−17e2
cNA

ε0εskBT
, and τ = 10−12ec

ε0εskBT
.

Here, εs and ε∞ are two relative permittivity constants, λ is a
parameter for characterizing the spatial frequency of solvent
as a dielectric medium, ε0 is the permittivity of the vacuum,
ec is the electron charge, kB is the Boltzmann constant, T is
the absolute temperature, and NA is the Avogadro constant.
In SI units, we have γ ≈ 6.0221 × 10−4, β ≈ 0.05301, and
τ ≈ 0.0549 for εs = 80 and T = 298.5. We have measured u

in kBT /ec (≈0.026 volts), ci and cb
i in moles per liter (mol/L),

σ in μC/cm2, and the length in angstroms (Å). Solving the
system of nuNPF, we obtain u and the n ionic concentrations
ci simultaneously. We then obtain an electrostatic potential �

in volts by

� = kBT

ec

u.

The nuNPF EDL model is a modification of the nonlocal
Poisson-Fermi model reported in Eqs. (36) and (37) of [8].
One major modification is to introduce Neumann and Dirichlet
boundary value conditions [in the second and third lines of
Eq. (2)] to enable it to work for an EDL with either a surface
charge density σ or a voltage g on an electrode. Another

important modification is to remove the concentration function
of water molecules and the void volume fraction functions, and
then change Eq. (37) in [8] into a new system of Eq. (1). In
fact, removing the concentration function of water molecules
avoids a redundancy problem since the water solvent has been
treated as a continuum dielectric medium. This modification
also avoids any void between ionic balls so that the void volume
fraction functions become unnecessary. More discussion on the
physical insight of nuNPF can be found in the next section.

A related nonlocal Poisson model theory and the physical
background of NPF have been well reviewed in [8]. For exam-
ple, the nonlocal Poisson dielectric model, which is defined in
Eq. (8) of [8], is reduced to the classic Poisson dielectric model
[see Eq. (5) in [8]] when we set ε∞ = εs or λ = 0. Thus, it
is the biharmonic term l2

c �
2u that takes responsibility for the

nonlocal properties of NPF. The source termβ
∑n

i=1 Zici of the
NPF model (2) provides the EDL model with a charge density
function for the electrolyte solution. As shown in Eq. (18) of
[8], a solution of NPF is the convolution of a solution of a
Poisson dielectric model with a Yukawa-like kernel function.
In this sense, a solution u of the NPF model (2) can be regarded
as a globally “averaged” electrostatic potential over the whole
three-dimensional real space.

Our nuNPF EDL model is a family of methods, from which
we can obtain four special models as follows: (1) uNPF when
all vi = v0; (2) nuSMPBE when lc = 0; (3) SMPBE when lc =
0 and all vi = v0; and (4) a PBE double-layer model when
lc = 0 and all vi = 0.

In fact, when all vi = v0, we can find an analytical expres-
sion of ci from Eq. (1) as follows:

ci = cb
i e

−Ziu

1 + γ v0
∑n

j=1 cb
j e

−Zj u
, i = 1,2, . . . ,n. (3)

Substituting the above expressions into Eq. (2), we can obtain
uNPF as the nonlinear boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩

�
[
u − l2

c �u
] + β

∑n
i=1 Zic

b
i e

−Zi u

1+γ v0
∑n

i=1 cb
i e

−Zi u
= 0 in Ds,

∂�u(s)
∂n(s) = f1(s), ∂u(s)

∂n(s) = γ σ (s) on �1,

u(s) = g(s), �u(s) = f2(s) on �2,

(4)

where v0 is set as a water molecule volume (e.g., 3.113), or an
average volume v̄ given by

v̄ = 1

n

n∑
i=1

vi. (5)

Setting lc = 0 in Eq. (4) gives SMPBE:

⎧⎪⎪⎨
⎪⎪⎩

�u + β
∑n

i=1 Zic
b
i e

−Zi u

1+γ v0
∑n

i=1 cb
i e

−Zi u
= 0 in Ds,

∂u(s)
∂n(s) = γ σ (s) on �1,

u(s) = g(s) on �2,

(6)
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while setting lc = 0 in Eq. (2) gives nuSMPBE as a system of
Eq. (1) coupled with the Poisson double-layer model:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�u = β
n∑

i=1
Zici in Ds,

∂u(s)
∂n(s) = γ σ (s) on �1,

u(s) = g(s) on �2.

(7)

Setting v0 = 0 in the SMPBE model (6) immediately results
in the PBE double-layer model:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�u + β
n∑

i=1
Zic

b
i e

−Ziu = 0 in Ds,

∂u(s)
∂n(s) = γ σ (s) on �1,

u(s) = g(s) on �2.

(8)

When Ds is split into m nonoverlapped subdomains Ds,j ,
we define an ion volume occupation rate, Vij , of species i over
the j th subdomain Ds,j by

Vij = vi

|Ds,j |
∫

Ds,j

ci(r)dr, i = 1,2, . . . ,n, (9)

for j = 1,2, . . . ,m. Here |Ds,j | denotes the volume of Ds,j .
We then define a total ion occupation rate Vj over Ds,j by the
formula

Vj =
n∑

i=1

Vij , j = 1,2, . . . ,m.

These rates can be useful in the analysis of ion distributions in
the solvent domain Ds for different species. See Figs. 4(e) and
4(f) for examples.

III. OUR FREE ENERGY FUNCTIONAL

We have shown that the ionic concentration c =
(c1,c2, . . . ,cn) generated from nuNPF is optimal in the sense of
minimizing an electrostatic free energy functional as follows:

F (c,�̃) = Fes(c,�̃) + Fid(c) + Fex(c), (10)

where Fes, Fid, and Fex are the electrostatic, ideal gas, and
excess energies, respectively, in the expressions

Fes(c,�̃) = kBT γ

2

n∑
i=1

Zi

∫
Ds

u(r)ci(r)dr, (11)

Fid(c) = kBT γ

n∑
i=1

∫
Ds

ci

(
ln

ci

cb
i

− 1

)
dr, (12)

Fex(c) = kBT

v0

∫
Ds

ξ (c)[ln ξ (c) − 1]dr. (13)

Here ξ (c) = 1 − γ
∑n

i=1 vici(r) > 0, which is a volume frac-
tion of the water solution since γ

∑n
i=1 vici(r) gives a volume

fraction occupied by all the ions.
The free energy F of Eq. (10) is a significant improvement

on the conventional free energies used in the derivation of PBE,

SMPBE, and PFE [e.g., see Eq. (4) in [6] or Eq. (36) in [8]
for PFE, and Eqs. (1.4) or (3.4) in [9] for SMPBE]. It avoids
the drawbacks of the conventional free energies by discarding
the thermal de Broglie wavelengths, chemical potentials, a
concentration c0 of water molecules, and terms ln(vici).

In detail, our ideal gas term Fid of Eq. (12) involves only a
given set of bulk concentrations, {cb

i | i = 1,2, . . . ,n}, and is
equivalent to the sum of traditional ideal gas and Gibbs free
energy terms, whose definitions involve the thermal de Broglie
wavelengths and chemical potentials [10–12]. In fact, using the
notation from Eq. (7) of [12], the traditional ideal gas and Gibbs
free energy terms fid and fG are given as

fid(c) = kBT

n∑
i=1

∫
Ds

ci(r)
{

ln
[

3

i ci(r)
] − 1

}
dr,

and

fG(c) = −
n∑

i=1

μi

∫
Ds

ci(r)dr,

where 
i and μi denote the thermal de Broglie wavelength
and chemical potential of ionic species i, respectively. The
bulk concentration cb

i is then found as

cb
i = 
−3

i eμi/(kBT ), i = 1,2, . . . ,n.

Using the above expression, we can obtain the chemical
potential μi in the expression

μi = kBT ln
(
cb
i 


3
i

)
, i = 1,2, . . . ,n,

and then simplify the sum of Fid(c) and FG(c) as

fid(c) + fG(c) = kBT

n∑
i=1

∫
Ds

ci

(
ln

ci

cb
i

− 1

)
dr.

When ionic concentrations are measured in moles per liter,
we multiply the scale parameter γ = 10−27NA on both sides
of the above identity to yield our ideal gas free energy term
of Eq. (12). This shows the equivalence of our free energy
functional to the traditional one without considering any ionic
size effect (the PBE case).

In our term Fex of Eq. (13), we used the size scaling
parameter v0 instead of the water molecule concentration
c0. This modification avoids a redundancy problem caused
by using c0 since the water solution has been treated as a
continuum dielectric. We also observe that using c0 causes
voids among ions and water molecules, breaking down the
size constraint condition

ξ (c) + γ

n∑
i=1

vici(r) = 1, r ∈ Ds.

In addition, the terms ln(vici) used in a conventional excess
energy term become undefined at vi = 0 so that the case of
PBE is excluded as a special case in the conventional free
energy functional for SMPBE and NPF.

IV. NUMERICAL SOLVERS

We developed finite element iterative algorithms and soft-
ware packages for solving nuNPF and uNPF based on our PBE

052610-3



DEXUAN XIE AND YI JIANG PHYSICAL REVIEW E 97, 052610 (2018)

and SMPBE program packages [13–15], and the state-of-the-
art finite element library from the FEniCS project [16]. In our
algorithms, we constructed a Lagrange finite element function
space M as a subspace of the usual Sobolev space H 1(Ds)
using a tetrahedral mesh of Ds , and a finite element vector
function space N1 × N2. We then introduced an additional
function, ψ , to reformulate Eq. (2) as a variational form as
follows:

Find (u,ψ) ∈ N1 × N2 such that∫
Ds

∇u · ∇v1dr +
∫

Ds

ψv1dr + l2
c

∫
Ds

∇ψ · ∇v2dr

+
∫

Ds

ψv2dr

= −β

∫
Ds

v2

n∑
i=1

Zicidr + τ

∫
�1

σv1ds

+l2
c

∫
�1

f1v2ds ∀ (v1,v2) ∈ N0 × N0, (14)

where N0 = {v ∈ M | v = 0 on �2}, N1 = {v ∈ M | v =
g on �2}, and N2 = {v ∈ M | v = f2 on �2}. Let u(k) and
c

(k)
i denote the kth iterative approximations to u and ci for

i = 1,2, . . . ,n, and ξ (c(k,k+1)) be defined by

ξ (c(k,k+1)) = 1 − γ

⎛
⎝ i−1∑

j=1

vj c
(k+1)
j +

n∑
j=i

vj c
(k)
j

⎞
⎠.

In the nuNPF iterative scheme, uNPF is used to generate initial
iterates u(0) and c

(0)
i for i = 1,2, . . . ,n. When both u(k) and c

(k)
i

are known, the (k + 1)th iterates c
(k+1)
i for i = 1,2, . . . ,n are

defined by the recursive formulas:

c
(k+1)
i = c

(k)
i − ω

c
(k)
i − cb

i e
−Ziu

(k)
[ξ (c(k,k+1))]vi/v0

1 + γ
v2

i

v0
cb
i e

−Ziu(k) [ξ (c(k,k+1))]vi/v0−1
,

and the (k + 1)th iterate u(k+1) is then defined by

u(k+1) = u(k) + ω[ū − u(k)],

where ω is a relaxation parameter between 0 and 2, and ū

denotes a solution of the linear variational problem: Find
(u,ψ) ∈ N1 × N2 such that∫

Ds

∇u · ∇v1dr +
∫

Ds

ψv1dr + l2
c

∫
Ds

∇ψ · ∇v2dr

+
∫

Ds

ψv2dr

= −β

∫
Ds

v2

n∑
i=1

Zic
(k+1)
i dr + τ

∫
�1

σv1ds

+ l2
c

∫
�1

f1v2ds ∀ (v1,v2) ∈ N0 × N0.

The iteration is terminated when u(k+) and c
(k+)
i satisfy

max

{
‖u(k+1) − u(k)‖, max

1�i�n

∥∥∥c
(k+1)
i − c

(k)
i

∥∥∥
}

< ε,

where ε is a convergence tolerance (ε = 10−5 by default). Our
program packages work for any number of ionic species.

Note that the problem for solving ū is a system of linear
algebraic equations with the coefficient matrix independent
of iterations. Hence, one efficient scheme for solving it is
the LU factorization method in which the coefficient matrix
is factorized as a lower triangular matrix (L) and an upper
triangular matrix (U) (see Sec. 3.2 in [17]). In implementation,
the LU factorization is carried out only once before starting the
iteration. At each iteration, we only need to solve one lower
triangular linear system and one upper triangular linear system,
resulting in a very fast iterative scheme.

V. NUMERICAL TESTS

We made numerical experiments on nuNPF and uNPF to
show the effect of nonuniform ion sizes on the structure of the
double layer. In these tests, each ion of species i was treated as
a ball with radius ai so that the volume vi = 4π

3 a3
i . The values

of ai (in Å) were selected as the radii of hydrated ions from
[18]: 3.58, 4.12, 3.32, 3.31, and 3.35 for Na+, Ca+2, Cl−, K+,
and NO−

3 , respectively. For simplicity, we set f1 = f2 = 0,
εs = 80, ε∞ = 1.8, T = 298.5, and λ = 15 for all the tests.
In the tests for nuNPF, we set v0 = min1�i�n vi .

For clarity, we present the numerical results in five sections.
In Sec. V A, we did tests for an EDL electrolyte solution
domain Ds being a box of Fig. 1 to compare the application
range and accuracy of nuNPF with that of uNPF, SMPBE,
nuSMPBE, and PBE, and to demonstrate the importance of
considering nonuniform ion sizes in EDL modeling under
a strong electrostatic field. In Sec. V B, we did tests using
a hollow sphere of Fig. 2 as Ds to demonstrate how the
co-ions (such as Na+ and K+) compete with each other for
space near a highly charged spherical surface to further show
the importance of considering nonuniform ion sizes in EDL
modeling. In Sec. V C, we did tests for Ds being a hollow
rectangle of Fig. 5(a) with a charge density function σ (x,y)
on the inner circle to demonstrate the significant effects of
nonuniform ion sizes on the electric field of an EDL. Finally,
comparison tests with molecular dynamic and Monte Carlo
simulation data were done in Secs. V D and V E, respectively,
as initial validation tests for our new models.

FIG. 2. Hollow sphere with �2 = �2,1 ∪ �2,2 and �1 = ∅. Here
�2,1 and �2,2 denote the inner and outer spherical surfaces with radii
rin and rout, respectively.
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FIG. 3. Differences between two models defined in Eq. (15) for the EDL tests on a box of Fig. 1.

A. Tests for EDL with a box domain

In these tests, a rectangular box Ds , as illustrated in Fig. 1,
was set with Lx = Ly = 10 and Lz = 50 (in Å). �1 included
the four side surfaces of the box, and �2 included the bottom
and top surfaces. The box Ds contained a mixture of Na+,
Ca+2, and Cl− with Z1 = +1 and cb

1 = 0.1 for Na+, Z2 = +2
and cb

2 = 0.1 for Ca+2, and Z3 = −1 and cb
3 = 0.3 for Cl−. The

voltage function g = 0 on the top surface (one EDL electrode)
at z = Lz, and the surface charge density σ = 0 on �1 were
set for all the tests.

We first did tests on nuNPF for this EDL using g = −0.01,
−0.1, −1, −5, −10, −15, or −20 on the bottom surface of the
box Ds (the other electrode of EDL) at z = 0 in order to check
the validity range and accuracy of nuNPF. As comparison, we
also solved uNPF, nuSMPBE, SMPBE, and PBE for these EDL
cases. All the tests were done by using a cubic finite element
method on an interval 0 � z � Lz due to the symmetry of the
EDL model. We then calculated the differences between two
models in the L2-norm ‖ · ‖L2(Ds ) as follows:

‖ua − ub‖L2(Ds ), ‖ci,a − ci,b‖L2(Ds ), i = 1,2,3, (15)

where ua,ub,ci,a, and ci,b denote the electrostatic potentials
and ionic concentrations calculated by models a and b from
the nuNPF, uNPF, nuSMPBE, SMPBE, and PBE EDL models,

and ‖ · ‖L2(Ds ) is defined by ‖v‖L2(Ds ) =
√∫

Ds
|v|2dr for v in

the function space L2(Ds). These differences were plotted as
functions of the voltage g in Fig. 3.

Figure 3 shows that the differences between any two models
were small for a low voltage of g (e.g., |g| < 1 in these
tests), implying that PBE or SMPBE would be good enough.
But, for a high voltage (e.g., |g| > 5), the differences became
significant, even huge, so a sophisticated EDL model like
nuNPF becomes necessary in the study of EDL structures in
ionic concentrations.

We next tested nuNPF with a high voltage, g = −30, on
the electrode at z = 0 and kept Ds as a box for the purpose of
confirming the symmetry of the EDL model. In these tests, we
solved nuNPF and uNPF by a linear finite element method on a
uniform mesh ofDs with mesh sizeh = 0.5. We also calculated
the ion occupation rates Vij of Eq. (9), where the interval 0 �
z � 50 was divided into six and seven equal segments for uNPF
and nuNPF, respectively, to fit each ion ball, since the largest
ion ball in nuNPF, a calcium ion ball, has radius 4.12, and each
ion ball in uNPF has radius 3.7 since we set v0 = v̄. Here v̄ is
defined in Eq. (5).

All the grid values of the concentrations of Na+, Ca+2, and
Cl− from the box mesh were plotted in points, resulting in three
curves in Fig. 4(a) for uNPF and Fig. 4(b) for nuNPF. This
well validates the symmetry property of the EDL box model;
both u and ci vary only along the z-axis direction. Hence, this
confirms that the EDL box model can be solved equivalently as
a two-point boundary value problem for 0 � z � Lz as done
mostly in the current literature.

Figures 4(a) and 4(b) show that uNPF and nuNPF had
very different concentrations for Na+ and Ca+2. The ion
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FIG. 4. (a, b) A comparison of the concentrations of uNPF with that of nuNPF for a box of Fig. 1 using a mixture of Na+, Ca+2, and Cl−.
(c, d) A further comparison in the ion concentration rates Vij of Eq. (9). (e, f) A comparison of the concentrations of uNPF with that of nuNPF
for a hollow sphere of Fig. 2 using a mixture of Na+, K+, Cl−, and NO−

3 and voltage −10. (g, h) A further comparison for the hollow sphere
using voltage −30.

occupation rates Vij of Eq. (9) produced by uNPF and
nuNPF were reported in Figs. 4(c) and 4(d), from which
it can be seen that while both uNPF and nuNPF produced
the Stern layer (the first ion occupation bar) and the dif-

fuse layer (the other bars), nuNPF modified the Stern layer
of uNPF sharply from a layer of pure calcium ions to a
mixed layer of calcium (about 80%) and sodium (about 20%)
ions.
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FIG. 5. (a) Hollow rectangle with Lx = Ly = 30 and a charge function, σ (x,y) = −8y, on the inner circle �1,3 with radius a = 8.
(b) Electrostatic potential u by nuNPF mapped onto the mesh in colors. (c) Electric field ∇u by uNPF. (d) Electric field ∇u by nuNPF. (e, f)
Comparison of uNPF and nuNPF with an EDL molecular dynamics (MD) simulation [20] on the box domain of Fig. 1. Here σi = ∫ 10i

10(i−1) cj (z)dz

for i = 1 to 7, j = 1,2.

These tests indicate that near a strongly negatively charged
electrode, for cations in the same size, the one with the higher
charge is more successful in vying for space, but for cations
in different sizes, smaller ions can become more successful.
Hence, the consideration of nonuniform ion sizes is important
in the double-layer modeling.

B. Tests for EDL with a hollow sphere domain

In these tests, we set Ds as a hollow sphere, Ds = {r|rin <

|r| < rout}, as illustrated in Fig. 2, with rin = 1 and rout = 10
for a mixture of four ionic species with Z1 = +1 and cb

1 =
0.2 for Na+, Z2 = +1 and cb

2 = 0.1 for K+1, Z3 = −1 and
cb

3 = 0.2 for Cl−, and Z4 = −1 and cb
4 = 0.1 for NO−

3 . In this
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case, the inner and outer spherical surfaces �2,1 and �2,2 are
two electrodes with g = −10 (or −30) and g = 0, respectively,
�2 = �2,1 ∪ �2,2, and �1 = ∅. We solved nuNPF and the uNPF
using v0 = v̄ via a quadratic finite element method on an
irregular tetrahedral mesh of Ds with 18 662 mesh points. We
plotted the concentrations of Cl− and NO−

3 in two insets on
Figs. 4(e) and 4(h) due to their small values.

Figures 4(e)–4(h) show that the Na+ and K+ concentrations
of uNPF were sharply changed when the ion ball radii of
Na+ and K+ were changed from the same value to distinct
values. Near the negatively charged electrode, for cations with
the same size and charge number, the ion with a larger bulk
concentration has a larger concentration [the case of uNPF as
shown in Figs. 4(e) and 4(g)]. But, when their hydrated radii
are different, the ionic species with a smaller size can produce
a larger concentration even with a smaller bulk concentration
[the case of nuNPF as shown in Figs. 4(f) and 4(h)]. These test
results further indicate the importance of the consideration of
nonuniform ion sizes.

C. Tests for EDL with a hollow rectangle domain

In these tests, we set a hollow rectangle domain Ds , as
illustrated in Fig. 5(a), to mimic an induced electro-osmosis
around a metal post (Fig. 1 in [19]). Here, Lx = Ly = 30,
a = 8, σ = 0 on �1,1 and �1,2, g = −30 on �2,1, g = 30 on
�2,2, and an induced charge density function, σ (x,y) = −8y,
on �1,3 (a circle with radius a = 8), whose extreme and
neutral values (±64 μC/cm2 and 0) were reached at points
(0, ± a) and (±a,0), respectively. We solved the uNPF using
v0 = 3.113 and nuNPF for a mixture of Na+, Ca+2, and Cl−, as
set in Sec. V A, via a cubic finite element method on a triangular
mesh with 1935 vertices, as shown in Fig. 5(b), where the
electrostatic potential u generated by nuNPF has been mapped
onto the mesh domain in colors. We then calculated the electric
fields −∇u generated by uNPF and nuNPF, and plotted them
in streamlines in Figs. 5(c) and 5(d).

Figures 5(c) and 5(d) show that nuNPF and uNPF produced
very different electric fields. The uNPF field had many broken
streamlines. Surprisingly, it was modified sharply to the one
with the streamlines that follow the rules of electrostatics when
the distinct ion sizes were retrieved. This indicates that the
effect of nonuniform ion sizes has a critical impact even on the
electric field of an electric double layer.

D. Comparison tests with MD simulation data

While the test results of Secs. V A–V C demonstrate the
importance of nonuniform ion size effects on EDL structures,
it is interesting to compare nuNPF and uNPF with an ionic
liquid molecular dynamic (MD) test done in [20]. In this MD
test, 1050 cations (Z1 = +1) and 1050 anions (Z2 = −1) were
added to the box of Fig. 1 with Lx = Ly = 55 and Lz = 450,
which gave the bulk concentrations

cb
j = 1050/(1102 × 450)1027/NA ≈ 0.32 mol/L, j = 1,2,

σ = −32 on the electrode at z = 0, σ = 32 on the other
electrode at z = 450, and each ion was treated as a ball with
radius 5 Å. Because of the symmetry, we solved this EDL as

a two-point mixed boundary value problem for 0 � z � 225
with the boundary value conditions

du(0)

dz
= −32, u(225) = 0.

In uNPF, we set v0 = 103, which is about a volume of a ball
with radius 6.2. Thus, in nuNPF, the radii of cations and anions
were set as 6.2 and 3.1, respectively. We set εs = 15 to get
u ≈ −102 at z = 0, which is close to the value of 100 used
in [6], and retained all the other parameter values including
T = 298.5 (a room temperature) instead of T = 450 used in
[6,20].

Following the MD simulation report in [20], we displayed
the distributions of cations and anions predicted by uNPF
and nuNPF near the electrode at z = 0 in the bar plots of
Figs. 5(e) and 5(f). Here, the distributions were split into seven
consecutive layers, each bar represents one layer, and the width
of each bar was set as the diameter (10 Å) of an ionic ball.
For comparison, we also plotted the MD data in Figs. 5(e)
and 5(f).

From Figs. 5(e) and 5(f) it can be seen that both uNPF
and nuNPF produced two layers of cations near the electrode,
which agree with the MD case. While the first two layers
of uNPF reached the maximal admissible value of ionic
concentration, nuNPF had only one layer that did so, which
is similar to the MD data. This difference between uNPF and
nuNPF indicates the effects of nonuniform ion sizes on an
EDL of an ionic liquid. Similar to the MD case, both uNPF
and nuNPF also predicted that the most cations were collected
to the first two layers so that the other five layers had week
oscillations.

E. Comparison tests with MC simulation data

Monte Carlo (MC) simulation techniques were applied to
the study of EDL for monovalent, divalent, symmetric, or
asymmetric electrolytes for a low voltage of g (e.g., |g| < 1)
or a weakly surface charge. As comparisons, we did tests on
nuNPF for an EDL case studied by MC techniques in [21].
In these tests, the domain Ds was set as the box of Fig. 1

FIG. 6. Concentrations C1 and C2 of cations and anions produced
by nuNPF for the EDL case in Fig. 9 of [21]. Here C1(z) = C2(z) =
0.88 for 13 � z � 35.
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FIG. 7. Comparison of the ionic concentrations calculated by
nuNPF with the Monte Carlo (MC) simulation data reported in [21].

containing a 1:1 electrolyte, the radii of cations and anions were
set as 1 Å and 2.125 Å, respectively (i.e., n = 2, Z1 = 1, Z2 =
−1, a1 = 1, and a2 = 2.125), and the bulk concentrations
were set as cb

1 = cb
2 = 1 mol/L. In our tests, we kept these

data and other default parameters for simplicity while setting
Lz = 48, σ = 2μC/cm2 at z = 0, and u = 0 at z = 48 Å.
The length Lz = 48 was found to be long enough to reveal
an electro-neutrality region, which was about 13 � z � 35. In
such a region, the concentrations ci are expected to equal the
bulk concentrations cb

i . Hence, we define ci by

ci(z) = Ci(z) + [
cb
i − Ci(Lz/2)

]
, 0 � z � Lz, i = 1,2,

where Ci denotes the ith ionic concentration calculated by
nuNPF. The values of Ci are displayed in Fig. 6, from which it
was found that Ci(Lz/2) ≈ 0.88. Thus, we got ci = Ci + 0.12
for i = 1,2, and plotted them in Fig. 7, along with the MC data
from Fig. 9 of [21].

Figure 7 shows that the nuNPF results agree well with the
MC data. Furthermore, we repeated the tests via the uNPF
and SMPBE using a1 = a2 = 1 Å, and a1 = a2 = 2.125 Å,
respectively. Their results were found very similar to those
produced by nuNPF due to a low voltage g at z = 0 (about
0.5). This further confirms the observations we derived from
Fig. 3. In the case of low voltages, we prefer SMPBE and uNPF
to nuNPF due to their simplicity and efficiency in calculation
even though nuNPF can work as well as uNPF and SMPBE.

VI. CONCLUSIONS

In summary, we have reported on the two electric double-
layer models, nuNPF and uNPF, as well as their special
cases: nuSMPBE, SMPBE, and PBE. We then developed the
finite element algorithms and software packages for solving
these EDL models. This work enables us to calculate EDL
structures for more than two ionic species, nonuniform ion
sizes, variable surface charges, and nonplanar electrodes in
three-dimensional space. We also introduced a free energy
functional as a significant improvement on the conventional
free energies used in the derivation of PBE, SMPBE, and PFE.
Moreover, we show that the nuNPF EDL model can predict
the EDL structure in terms of ionic concentrations optimally
in the sense of minimizing the free energy functional.

Using our nuNPF program package, we performed three
typical EDL tests, as reported in Secs. V A–V C, for up to
four ionic species and high concentrations up to about 10
mole/L. The test results demonstrate how the cations with
different sizes (such as a pair of Na+ and Ca+2 with the same
bulk concentration or a pair of Na+ and K+ with different
bulk concentrations) compete with each other for space in the
vicinity of a highly negatively charged surface. They confirm
that the effect of nonuniform ion sizes is a key consideration
in the prediction of the structure of EDL models under a
strong electrostatic field. The importance of ion size effects is
known in EDL modeling and simulation, but here it has been
confirmed computationally via a dielectric continuum model,
our nuNPF model, for a three-dimensional EDL with more
than two ionic species.

Furthermore, we compared uNPF and nuNPF with molec-
ular dynamics and Monte Carlo simulation data, as well as
the nuSMPBE, SMPBE, and PBE EDL models. These test
results demonstrate the validity range and accuracy of our
models. In the future, we plan to further explore the accuracy,
performance, and application of nuNPF and uNPF, and validate
nuNPF and uNPF using more EDL molecular dynamic and
Monte Carlo simulation data from the literature (e.g., the
Granada group’s work reported in [22]). We also will use our
new software packages to simulate various EDL applications
that are difficult to study with current simulation techniques
for a mixture solution containing a number of ionic species
in different ion sizes and an electrode with a high voltage or a
strong surface charge density. Such simulations are expected to
yield insight into the structure of EDL and to further improve
our nuNPF EDL model.
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