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a b s t r a c t

In this paper, we develop algorithms for solving nonsymmetric indefinite linear systems
by considering the augmented linear systems resulting from a weighted linear least
squares problem. Even though the augmented system is more ill-conditioned than the
original linear system, one can construct preconditioned GMRES methods for solving
these augmented systems capable of obtaining reasonable approximation of the solution
in fewer iterations than the classical ILU preconditioned GMRES method for solving
the original linear system. More specifically, we present two different preconditioners
for these augmented systems, examine the spectral properties of these preconditioned
augmented systems, and report numerical results to illustrate the effectiveness of these
preconditioners.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider solving large sparse linear systems

Ax = b, (1.1)

where A is a nonsymmetric indefinite nonsingular sparse matrix of order n. This kind of linear systems often arises in
many important scientific and engineering applications such as those modeled by diffusion–convection equations [1–3].
Classical stationary iterative methods (such as Jacobi, Gauss–Seidel, and successive over-relaxation (SOR) methods [4])
may fail in solving such linear systems when the coefficient matrix A is highly indefinite and nonsymmetric [5,6]. When
A is highly indefinite, a black-box preconditioners such as various forms of incomplete LU-factorizations (ILU) are often
not effective in addition to not being suitable for implementation on parallel computing platforms [7–10] due to the
dependencies in the forward and backward sweeps.

Instead of modifying ‘‘black-box’’ preconditioners such as ILU preconditioning schemes, we develop preconditioners
through considering the weighted linear least squares problem:

min
x∈Rn

∥b − Ax∥W , (1.2)

where ∥u∥W = [uTWu]1/2 with the weight W being a symmetric positive definite matrix. In this study, we simply choose

W = γ−2I,
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where I is the identity matrix, and γ is a positive scalar. When the residual r = b − Ax is treated as an unknown vector,
the least squares problem (1.2) yields a two-block linear system of the form

Cy = d, (1.3)

where the matrix C and vectors y and d are given by

C =

(
I B

−BT 0

)
, y =

(
r̃
x

)
, d =

(
b̃
0

)
. (1.4)

Here, B = A/γ , r̃ = r/γ , and b̃ = b/γ .
It is this special structure of our matrix C that allows us to choose a solver of (1.3) from the variety of numerical

techniques used for saddle point problems [11,12].
Because of this special matrix structure, similar to Lemma 2.2 in [13], we find that the augmented matrix C has the

following properties:

1. C is nonsingular.
2. C is positive real (i.e., the real parts of all the eigenvalues of C are positive).
3. There exists a positive integer t such that the singular values, {σk}nk=1, of A satisfy

σ1 ⩾ · · · ⩾ σt >
γ

2
> σt+1 ⩾ · · · ⩾ σn,

and the eigenvalues of C are given by

1
2

± i
1
2

√(
2σj
γ

)2

− 1, j = 1, 2, . . . , t,

where i =
√

−1, and

1
2

±
1
2

√
1 −

(
2σk
γ

)2

, k = t + 1, t + 2, . . . , n.

4. If we choose γ = σ1, then the spectral condition number of C can be estimated approximately as 1.618κ2. Here κ
denotes the spectral condition number of A, which is defined by

κ = σ1/σn. (1.5)

These properties of the augmented matrix C can be particularly valuable in the development of preconditioners for
the GMRES method [14] for solving the augmented linear system (1.3). We introduce two preconditioners, M1 and M2,
and propose iterative schemes for solving linear systems involving them effectively and efficiently.

To verify the effectiveness of preconditioners M1 and M2, we construct linear systems (1.1) from finite element
approximations of partial differential equation boundary value problems and by selecting matrices from the SuiteSparse
Matrix Collection [15]. Numerical results show that GMRES for solving the augmented system preconditioned by M1 and
M2 can be much more effective than GMRES for solving the original linear system Ax = b preconditioned via ILU and its
variants.

The remaining part of this paper is organized as follows. In Section 2, we introduce these two preconditioners and the
SOR convergence analysis for solving linear systems involving M1 and M2. In Section 3, we present the test models and
the results of the numerical experiments. Finally, conclusions are made in Section 4.

2. Two preconditioners for augmented systems

We present two preconditioners for the augmented system (1.3), and explore the spectral properties of the resulting
preconditioned matrices.

Let the block matrix C be defined in (1.4) with B = γ−1A. The first preconditioner, M1, which is called the HSS
preconditioner, introduced by Benzi and Golub [12] motivated by the Hermitian skew-Hermitian splitting technique by
Z.-Z. Bai, Golub, and Ng [16], is given by

M1 = (αI + H)(αI + S), (2.1)

where H =
1
2 (C+CT ), S =

1
2 (C−CT ), which are the symmetric and skew-symmetric parts of C, respectively, I denotes an

identity matrix of order 2n, and α is a positive scalar. Preconditioner M1 has favorable spectral properties. The schemes
that we use to solve linear systems involving M1 take advantage of the fact that B is nonsingular, and the (1, 1)th block
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entry of C is the identity matrix. For example, as shown in [17], our preconditioned matrices M−1
1 C and CM−1

1 are positive
real for all α > 0, which assures that the preconditioned GMRES method is convergent.

We solve linear systems involving the preconditioner M1 of the form

M1z = g, (2.2)

by first solving the diagonal system (αI + H)v = g for v, followed by using the SOR method to solve the shifted
skew-symmetric system

(αI + S)z = v. (2.3)

Each SOR iteration for solving the above system is of the form(
1
ω
D − L

)
zk+1 =

[(
1
ω

− 1
)

D + U
]
zk + v, (2.4)

where D, L and U are defined by

D =

(
αI 0
0 αI

)
, L =

(
0 0
BT 0

)
, and U =

(
0 −B
0 0

)
.

Since (
1
ω
D − L

)−1

=

( ω
α
I 0(

ω
α

)2 BT ω
α
I

)
,

then in obtaining zk+1, all we need is an efficient scheme for multiplying B and BT by a vector. It has been shown in [17],
see also Theorem 4.1 in [18], that if β is the spectral radius of the Jacobi iteration matrix for solving (2.3) then the SOR
iteration (2.4) converges for all acceleration parameters ω in the interval 0 < ω < 2/(1 + β). Furthermore, the optimal
acceleration parameter ωb is given by,

ωb =
2

1 +
√
1 + β2

and the spectral radius of the SOR iteration matrix is given by,

ρ =
β2

(1 +
√
1 + β2)2

.

If γ is chosen as σ1, the maximum singular value of A, then β = 1/α, and

α =
1 − ρ

2
√
ρ
, ωb = 1 − ρ. (2.5)

Thus, if we choose ρ as a value between 0 and 1, we can determine α and ωb.
On the other hand, for a given α, ρ can be found by ρ = (

√
1 + α2 − α)2. Note that the optimal relaxation parameter

ωb is less than 1, reducing to a case of under relaxation. Clearly, the smaller the value of ρ, the faster the convergence of
the SOR method used to solve the system involving the preconditioner, i.e., one GMRES iteration step gets cheaper. But,
from (2.5) it can be seen that a smaller value of ρ leads to a larger value of α. Numerical experiments indicate that large
values of α result in larger numbers of the preconditioned GMRES iterations. Thus, there exists a trade off between the
cost of solving systems involving the preconditioner and the number of outer GMRES iterations.

In practice, γ is chosen approximately by computing σ1 numerically. We did so in our numerical experiments by using
the limited memory block Krylov subspace optimization method [19]. Since this results in γ = µσ1 with 0 < µ < 1, α
should be chosen slightly larger than either (1 − ρ)/(2

√
ρ) or ωb/(2

√
1 − ωb).

The second preconditioner, M2, is given by

M2 =

(
I B

−BT θ I

)
, (2.6)

where θ is a positive scalar. This preconditioner has been proposed by Axelsson [20] for saddle point problems, see
also [21]. Solving linear systems involving this preconditioner,

M2z = g, (2.7)

can be achieved again using the SOR method [17]. From the special structure of M2 we find that all the eigenvalues of the
iteration matrix of the Jacobi method for solving the linear system (2.7) are also pure imaginary. Hence, the SOR method
for solving (2.7) is convergent, and the SOR spectral radius is given by the following theorem.
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Theorem 2.1. Let ρ be the spectral radius of the SOR method for solving the linear system (2.7). If the relaxation parameter
ω is set optimally as 1 − ρ, then ρ is given by the expression

ρ =

⎛⎝√( γ
σ1

)2

θ + 1 −
γ

σ1

√
θ

⎞⎠2

, (2.8)

where σ1 is the maximum singular value of A.

Proof. The iteration matrix, J , of the Jacobi method for solving (2.7) can be found as follows:

J = I − (diag(M2))−1M2 =

(
0 −

1
γ
A

1
θγ

AT 0

)
,

where diag(M2) denotes the diagonal matrix of M2. Hence, the eigenvalues of J are pure imaginary, and the spectral
radius of J is given by σ1/(γ

√
θ ). Theorem 4.1 in [18] yields the spectral radius expression (2.8). □

From the above theorem and proof it can be seen that the spectral radius of the Jacobi iteration matrix is given by
1/

√
θ and the spectral radius ρ of the SOR method is given by ρ = (

√
1 + θ −

√
θ )2 when γ = σ1, and the relaxation

parameter ω is set optimally as 1 − ρ. Hence, for any ρ ∈ (0, 1), from the above expression we can select θ as follows:

θ =
(1 − ρ)2

4ρ
. (2.9)

Theorem 2.2. The preconditioned matrix M−1
2 C has n eigenvalues equal to 1, and the remaining n eigenvalues are given by

σ 2
i

γ 2θ + σ 2
i
, i = 1, 2, . . . , n,

where σi denotes the ith singular value of A.

Proof. Clearly, the inverse M−1
2 of preconditioner M2 can be expressed in the factored form

M−1
2 =

(
I −B
0 I

)(
I 0
0 (θ I + BTB)−1

)(
I 0
BT I

)
.

Thus, M−1
2 C is of the form

M−1
2 C =

(
I −B
0 I

)(
I 0
0 (θ I + BTB)−1

)(
I 0
BT I

)(
I B

−BT 0

)
=

(
I θB(θ I + BTB)−1

0 (θ I + BTB)−1BTB

)
.

Let the singular value decomposition of B be given by

B = UTΛV , (2.10)

where U and V are orthogonal matrices of order n, and Λ denotes a diagonal matrix with the diagonal entries being γ−1σi
for i = 1, 2, . . . , n. Using (2.10), we can factorize M−1

2 C in the expression

M−1
2 C =

(
UT 0
0 V T

)(
I θΛ(θ I +Λ2)−1

0 Λ2(θ I +Λ2)−1

)(
U 0
0 V

)
,

where Λ2(θ I +Λ2)−1 is a diagonal matrix, whose ith entry is given by

(σi/γ )2

θ + (σi/γ )2
, i = 1, 2, . . . , n.

As a result, we obtain the eigenvalues of M−1
2 C. This completes the proof. □

In the case that γ = σ1, we can establish upper and lower bounds on those n eigenvalues of M−1
2 C that are different

from 1,

1
1 + θκ2 ≤

σ 2
i

γ 2θ + σ 2
i

≤
1

1 + θ
.
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Thus, from Theorem 2.2 and the above inequalities it can be seen that for a small value of θ , all the eigenvalues of
the preconditioned matrix are either at 1 or clustered around 1. This indicates that solving (1.3) using GMRES with
preconditioner M2 will require few iterations to obtain an approximation of the solution with sufficiently low relative
residual.

However, from (2.8) it can be seen that a very small value of θ results in a slow rate of convergence for the SOR
method. Hence, there exists a trade off between the spectral radius of the SOR method used to solve linear systems
involving the preconditioner and the number of outer GMRES iterations. The smaller the value of θ , the fewer the number
of outer GMRES iterations, but the larger the number of inner SOR iterations for solving each linear system involving the
preconditioner if one insists on realizing very low relative residuals for solving each inner system. Our extensive numerical
experiments have shown that only few SOR iterations (around 10) are needed with a modest SOR spectral radius (ρ ≈ 0.8).

3. Numerical experiments

In this section, we construct linear systems from three different sources: (i) a two dimensional diffusion–convection
model, (ii) an ion channel protein model problem, and (iii) the SuiteSparse Matrix Collection [15]. These linear systems are
nonsymmetric and highly indefinite. We use the GMRES algorithm as the outer iterative scheme for solving the augmented
linear systems (1.3) with our preconditioners M1 and M2, and compare the effectiveness and performance of these two
preconditioners with an ILU-preconditioned GMRES for solving the original linear system (1.1). We tried several options
for ILU, which are specified in Section 3.5.

3.1. A diffusion–convection model for numerical tests

We consider a diffusion–convection model problem as follows:{
−∇ · (D(r)∇u(r)) + w(r) · ∇u(r) + c(r)u(r) = f (r), r ∈ Ω,

u(r) = uD(r), r ∈ ∂Ω,
(3.1)

where Ω is an open bounded domain with the boundary ∂Ω , D is a coefficient matrix with entries being differentiable, c
and f are continuous functions, w is a continuous vector function, and uD is a continuous boundary value function. This
model problem is related to many applications in physics, chemistry, and biology [22,23]. For example, in the ion channel
modeling study, a solution u of (3.1) gives a concentration of an ionic species crossing the membrane through the pore
of an ion channel protein [23]. In such an application, D reflects the diffusion properties of an ionic solvent, and w is an
electrostatic force field induced by charges from ions and the atoms of an ion channel molecule.

The finite element approximation of the model problem (3.1) can be derived as follows: Find u ∈ V satisfying u = uD
on ∂Ω such that

a(u, v) = L(v) ∀v ∈ V0, (3.2)

where a(u, v) is a bilinear functional as defined by

a(u, v) =

∫
Ω

[D(r)∇u] · ∇vdr +

∫
Ω

[w(r) · ∇u]vdr +

∫
Ω

c(r)uvdr,

L(v) =
∫
Ω
f vdr, which is a linear functional, V denotes a linear Lagrange finite element function space defined on a

quasi-uniform triangular mesh Ωh of Ω with h being a mesh size, and V0 = {u ∈ V|u = 0 on ∂Ω}. Here V is a subspace
of the normal Sobolev space H1(Ω) [24].

Clearly, for a set of basis functions of V , ψj for j = 1, 2, . . . , n, the finite element equation (3.2) can be expressed
in a matrix form of (1.1) with the ith entries of x and b being ui and L(ψi), respectively, and A having the (i, j)th entries
a(ψi, ψj) for i, j = 1, 2, . . . , n. Since a(ψi, ψj) ̸= a(ψj, ψi) for i ̸= j, this matrix A is nonsymmetric. We can construct
different indefinite matrices of A through selecting the coefficient functions D, w, and c of the model problem (3.1).

3.2. Linear systems for numerical experiments

We developed a Python program for generating the linear systems (1.1) from the test models (3.1) based on the state
of the art finite element library from the FEniCS project [25]. Here, Ω is a 2 dimensional bounded domain with r = (x, y)
as defined in Fig. 1, D is a 2 by 2 coefficient matrix with entries dij for i, j = 1, 2, and a linear finite element method is used
to discretize the underlying partial differential equation defined on a quasi-uniform triangulation mesh Ωh, as illustrated
in Fig. 2. In the numerical experiments, we fixed the vector function w = q/(2π )∇ ln(x2 + y2), which is singular at the
origin r = (0, 0), the boundary value function uD = sin(x) cos(y), and the right hand side function f that is selected such
that the model (3.1) has the analytical solution u = sin(x) cos(y).

Using functions D and c and parameter q in Table 1, we generated the three linear systems of (1.1), which have the
following properties, respectively: (i) The coefficient matrix A is dominated by its symmetric part (i.e., ∥H∥2 > ∥S∥2), (ii)
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Fig. 1. A two dimensional (2D) domain Ω of model (3.1) for numerical tests.

Fig. 2. A triangulation mesh Ωh of the 2D domain Ω with mesh size h = 1/32.

Table 1
Coefficient functions c and D of the diffusion–convection problem (3.1) and the parameter
q of vector function w used in Test models 1, 2, and 3.

Test model 1 Test model 2 Test model 3
(||H||2> ||S||2) (||H||2≈ ||S||2) (||H||2< ||S||2)

c 1 1 1
q 1 103 103

D
(
10−2 104

1 1

) (
10−2 104

1 1

) (
10−2 103

1 10−2

)

the symmetric and skew-symmetric parts of A satisfy ∥H∥2 ≈ ∥S∥2, and (iii) the skew-symmetric part of A dominates its
symmetric part (i.e., ∥H∥2 < ∥S∥2). Here, H and S are defined by

H =
1
2
(A + AT ), S =

1
2
(A − AT ), (3.3)
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Fig. 3. A comparison of the eigenvalue distributions in Test model 1.

Fig. 4. A comparison of the eigenvalue distributions in Test model 2.

and ∥ · ∥2 denotes the matrix norm induced by the 2-norm for vectors. These three linear systems will be referred to as
Test models 1, 2, and 3, respectively.

In each of Figs. 3, 4, and 5 (one figure for each test model), we display the eigenvalue distributions of the original
coefficient matrix A, the ILU-preconditioned matrix (A-ILU), and the preconditioned augmented matrices CM−1

1 and CM−1
2 .

Here we used α = 0.01 and θ = 0.001. Because each A-ILU has a few of eigenvalues with huge real parts, several clusters
are produced in Figs. 3(b), 4(b), and 5(b). To truly reflect the distributions of these eigenvalues, we plotted the eigenvalues
with small real parts in Fig. 6. For example, in the case of Fig. 3(b), there are 1274 eigenvalues that have real parts in the
interval [−70, 30] while the remaining 16 eigenvalues have real parts across a wide range from −1012 to 109.

From Figs. 3(a, b), 4(a, b), 5(a, b), and 6 it can be seen that both A and A-ILU have many eigenvalues across wide
ranges. This indicates serious difficulties for unpreconditioned and ILU-preconditioned GMRES methods for these three
linear systems.

Figs. 3(c), 4(c), and 5(c) confirm what is claimed in [26,27] — the eigenvalues of CM−1
1 are tightly grouped into two

clusters, where each cluster consists of the eigenvalues that are distributed across a small range. For example, in the case
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Fig. 5. A comparison of the eigenvalue distributions in Test model 3.

Fig. 6. The eigenvalues with small scales from Figs. 3(b), 4(b), and 5(b).

of Fig. 3(c), the left cluster consists of the 1290 eigenvalues with real parts between 0 and 1, and the right cluster consists
of the 1290 eigenvalues with real parts varying from 99 to 100.

Figs. 3(d), 4(d), and 5(d) show that the eigenvalues of CM−1
2 are distributed in a small range with the real parts

between 0 and 1. These results illustrate that GMRES preconditioned with M1 or M2 can be quite effective in solving
these augmented linear system of (1.3).

Fig. 7 compares the numerical solution uh of Test model 1 with the analytical solution u of the model problem (3.1)
for a mesh domain Ωh with h = 1/32. This demonstrates the close agreement between the exact and the finite element
solutions. The relative error between the finite element solution uh and u is 0.543 in the L2(Ω) norm. We also validated
such agreements for Test models 2 and 3.

Table 2 lists the values of the spectral condition number κ of the coefficient matrix A, the numbers n+(H) and n−(H) of
positive and negative eigenvalues of H , respectively, and the values of σ1 for Test models 1, 2, and 3. Here σ1 was calculated
approximately by the limited memory block Krylov subspace optimization method [19] with the options opts.tol = 10−4
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Fig. 7. (a, b) A view of solution in surface. (c, d) A color mapping of solution onto domain Ω . Here, the mesh size h = 1/32 for Test model 1.

Table 2
Matrix properties of Test models 1, 2 and 3.

Test model 1 Test model 2 Test model 3
(||H||2> ||S||2) (||H||2≈ ||S||2) (||H||2< ||S||2)

Ωh with h = 1/32 and 1290 interior mesh points

σ1 2.5 × 104 2.5 × 104 1.6 × 104

κ 8.1 × 106 1.5 × 105 2.6 × 105

||H||2 2.5 × 104 2.5 × 104 7.2 × 103

||S||2 1.1 × 101 1.1 × 104 1.1 × 104

n+(H) 649 648 647
n−(H) 641 642 643

Ωh with h = 1/64 and 5324 interior mesh points

σ1 2.6 × 104 3.5 × 104 3.3 × 104

κ 1.9 × 107 8.8 × 106 1.7 × 107

||H||2 2.6 × 104 2.6 × 104 1.3 × 104

||S||2 2.4 × 101 2.4 × 104 2.4 × 104

n+(H) 2659 2659 2658
n−(H) 2665 2665 2666

and opts.maxit = 200. We set γ = σ1 in the construction of augmented linear system (1.3). In all our experiments, the
time consumed for estimating the largest singular value σ1 of A is not more than 5% of the total CPU time.

3.3. Software packages for numerical experiments

We developed a Matlab code for the GMRES method for solving the augmented linear system (1.3) using our
preconditioners M1 and M2 and sparse matrix techniques. Our Python code is called by our Matlab program to generate
the coefficient matrix A and the right hand side vector b for Test model 1, 2, or 3. Linear systems involving preconditioners
M1 and M2 are solved approximately by using the optimal relaxation parameter and a fixed number of SOR iterations
(SOR-Ite). The outer GMRES iteration stopping criterion is defined by

Relres(C) < η, (3.4)

where η = 10−7 by default, and Relres(C) = ∥d − Cy(k)∥2/∥d∥2, which gives the relative residual norm of the augmented
linear system (1.3). Here, y(k) denotes the kth outer GMRES iterate for k = 0, 1, 2, . . . with y(0) being an initial guess, and
∥ · ∥2 is the 2-norm for vectors. This version of GMRES will be referred to as the GMRES-SOR method.

All the numerical experiments were performed on an iMac desktop with 4.3 GHz quad-core Intel Core i7 with 64 GB
main memory. Here the initial guess y(0) was simply set as the zero vector.
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Table 3
Validation of our software package for solving the diffusion–convection problem (3.1). Here, pk is an
estimation of finite element error order defined in (3.5), and Nhk is the number of unknowns.

hk Nhk Relres(A) < 10−3 Relres(A) < 10−4 Relres(A) < 10−5

Eα pk Eα pk Eα pk
1/4 1 457 4.736 × 10−2 4.736 × 10−2 4.736 × 10−2

1/8 6 481 1.234 × 10−2 1.940 1.235 × 10−3 1.938 1.236 × 10−2 1.938
1/16 1 457 3.130 × 10−3 1.979 3.120 × 10−3 1.985 3.122 × 10−3 1.984
1/32 6 481 9.772 × 10−4 1.679 7.798 × 10−4 2.001 7.827 × 10−4 1.996
1/64 27 281 7.368 × 10−4 0.407 1.989 × 10−4 1.971 1.960 × 10−4 1.998
1/128 111 889 7.866 × 10−4

−0.094 7.933 × 10−5 1.320 4.966 × 10−5 1.980
1/256 453 137 8.312 × 10−4

−0.080 7.242 × 10−5 0.131 1.225 × 10−5 2.019

3.4. Validation tests for our GMRES-SOR software package

We performed validation tests for our GMRES-SOR software package using a test model of (3.2) with Ω = (−1, 1) ×

(−1, 1), D = [1, 1; 1, 1], c = 1, and w = 1/(2π )∇ ln(x2 +y2 +1). We discretized this test model by a linear finite element
method based on the uniform meshes of Ω with the mesh sizes hk = 1/2k for k = 2 to 8, deriving 7 linear systems with
coefficient matrices A. We solved these linear systems by our GMRES-SOR method to yield approximate solutions, x(k), of
the original linear system (1.1) satisfying

Relres(A) < η,

where η = 10−3, 10−4, and 10−5, and Relres(A) is defined by

Relres(A) =
∥b − Ax(k)∥2

∥b∥2
.

We then calculated the absolute error, Ea(h), between the finite element solution uh and the analytical solution u in the
L2(Ω) norm via

Ea(h) =

√∫
Ω

|uh(r) − u(r)|2dr,

and estimated the convergence order p of the finite element method by

p ≈ pk = ln(|Ea(hk)|/|Ea(hk−1)|)/ln(hk/hk−1) for k = 2 to 8. (3.5)

The numerical results are reported in Table 3.
For a linear finite element approximation, p is known to be 2 so that pk should approach 2 as hk approaches zero if the

calculation is correct [24]. From Table 3 it can be seen that Ea approaches zero monotonically as the grid size hk decreases,
and pk approaches 2 when the numerical solutions satisfy Relres(A) < 10−5. Hence, these numerical results well validate
our GMRES-SOR method and related software packages.

3.5. Test results

Using our Matlab and Python programs, we conducted the numerical tests using outer GMRES iterations with the
preconditioners M1 and M2 for solving the augmented systems (1.3), and compared them with the ILU-preconditioned
GMRES and unpreconditioned GMRES for solving the original linear system (1.1). In these tests, we constructed the linear
systems resulting from Test models 1, 2, and 3 based on the mesh domain Ωh with mesh size h = 1/32 and 1290 interior
mesh points. To explore the effectiveness of preconditioners M1 and M2, we solved systems involving them exactly
in each outer GMRES iteration, from which we also derived the lowest number of outer iterations realizable using these
preconditioners. In what follows, we refer to this version of preconditioned GMRES by GMRES*. The numerical test results
are reported in Table 4 and Figs. 8 and 9. Here, ‘‘Ite’’ denotes the number of outer iterations, and the iteration stopping
criteria included both (3.4) and Ite ≤ 1000.

Table 4 shows that our preconditioners M1 and M2 for the augmented systems succeeded in satisfying our stopping
criteria, while the unpreconditioned and the ILU-preconditioned GMRES for solving the original linear system failed for
all the three test models. Furthermore, in Figs. 8 and 9, we display the behavior of the relative residual norms versus the
number of outer iterations for Test models 1 and 3, respectively. From these figures we can see that the unpreconditioned
and ILU-preconditioned GMRES reduced the relative residual norm very slowly, and the relative residual norm of the
unpreconditioned GMRES reached only O(10−3) before the last iteration Ite = 1290 (the size of the linear system). In
contrast, our GMRES* reduced the relative residual norm quickly. These tests suggest that the augmented linear system
approach is effective for handling highly indefinite linear systems.
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Table 4
A comparison of GMRES* with ILU preconditioned GMRES for Test models 1, 2, and 3 based on the mesh
domain Ωh with mesh size h = 1/32.

Test model 1 Test model 2 Test model 3

Ite Relres(A) Ite Relres(A) Ite Relres(A)

No preconditioner 1000 2.0 × 10−3 1000 7.7 × 10−3 1000 1.4 × 10−3

ILU 1000 3.4 × 10−2 1000 2.2 × 10−2 1000 1.6 × 10−1

M1 (α = 0.01) 89 3.5 × 10−4 74 8.9 × 10−4 180 7.8 × 10−4

M2 (θ = 0.001) 127 3.8 × 10−4 112 8.9 × 10−4 271 7.8 × 10−4

Fig. 8. A comparison of the relative residual reduction processes of GMRES* (left plot) with GMRES for solving the linear system Ax = b without
and with an ILU preconditioner (right plot) for Test model 1.

Fig. 9. A comparison of the relative residual reduction processes of the GMRES* (left plot) with GMRES for solving the linear system Ax = b without
and with an ILU preconditioner (right plot) for Test model 3.
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Fig. 10. A comparison of the relative residual reduction processes of GMRES-SOR (with SOR-Ite = 50) and GMRES* for Test model 1 using h = 1/64.

Fig. 11. GMRES-SOR vs. GMRES* (h = 1/64) for Test models 1, 2, 3.

To explore the performance of GMRES-SOR, we solved the linear systems of Test models 1, 2 and 3 based on the mesh
domain Ωh with h = 1/32 and 1/64. Here, we used SOR-Ite = 50, and ρ = 0.9, from which we derived α ≈ 0.0527 and
θ ≈ 0.0028 from (2.5) and (2.9), respectively. Numerical results are reported in Table 5. They demonstrate the performance
of GMRES-SOR in terms of outer iteration numbers, CPU time, and the relative residual realized for the original systems.
Furthermore, we compare a relative residual reduction process of the GMRES-SOR method with that of GMRES* in Fig. 10,
showing that the GMRES-SOR method can have a behavior of Relres(C) that is almost identical to that of GMRES*. Further,
Fig. 10 reveals that M2 uniformly requires fewer iterations than M1 for Test models 1, 2, 3.

In order to demonstrate the influence of using a fixed number of inner SOR iterations (i.e., SOR-Ite), we used all the
parameters in Table 5 except varying SOR-Ite from 20 to 100 with increments of 10. Fig. 11 shows that for the linear
systems derived from Test models 1, 2, and 3, setting SOR-Ite = 50 is sufficient for GMRES-SOR to realize the same
number of outer iterations as GMRES* under the same stopping criterion Relres(C)< 10−7.

In addition, we considered two more linear systems (Test models 4 and 5) to further explore the performance of
our GMRES-SOR method. Test model 4 has the coefficient matrix A selected from the SuiteSparse Matrix Collection
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Table 5
Performance of our GMRES-SOR method for solving Test models 1, 2, and 3. Here, each preconditioning linear system
was solved by at most 50 SOR iterations, and CPU denotes the total time for solving an augmented linear system in
seconds.
Preconditioner for GMRES Test model 1 Test model 2 Test model 3

Ite CPU Relres(A) Ite CPU Relres(A) Ite CPU Relres(A)

Case with h = 1/32

M1 411 0.7 3.8 × 10−4 368 0.6 9.0 × 10−4 832 2.0 7.8 × 10−4

M2 214 0.3 3.8 × 10−4 190 0.2 9.0 × 10−4 458 0.8 7.9 × 10−4

Case with h = 1/64

M1 619 6.4 4.8 × 10−4 771 8.9 5.3 × 10−4 2248 51.2 1.3 × 10−3

M2 321 2.5 4.8 × 10−4 403 3.5 5.3 × 10−4 1358 21.7 1.3 × 10−3

Table 6
Properties of Test models 4 and 5. Here nnz denotes the number of nonzero entries.

n nnz σ1 κ ||H||2 ||S||2
Test model 4 76 480 329 762 62.79 8.2 × 10277 62.5 25.1
Test model 5 14 203 191 689 178.58 9.4 × 106 122.2 102.0

Table 7
Performance of our GMRES-SOR method for solving Test models 4 and 5.
Preconditioner for GMRES Test model 4 Test model 5

Ite CPU Relres(A) Ite CPU Relres(A)

M1 210 7.8 2.5 × 10−6 993 78.6 9.8 × 10−4

M2 84 3.1 2.3 × 10−6 217 14.3 9.7 × 10−4

(https://sparse.tamu.edu/Shyy/shyy161). This matrix is derived from viscous flow calculation via a direct, fully-coupled
method for solving the Navier–Stokes equations. It is nonsymmetric and highly indefinite. The right hand side vector b is
simply set as b = A ∗ ones(n, 1).

Test model 5 was generated from a linear finite element approximation to the Nernst–Planck boundary value
problem:

∇ · D(r) [∇u(r) + u(r)∇Φ(r)] = 0, r ∈ Ω, (3.6)

where Ω is a three dimensional bounded domain with r = (x, y, z), as illustrated in Fig. 12, D(r) is a diffusion coefficient
function, Φ is an electrostatic potential function induced from the atomic charges of an ion channel protein and the ionic
charges of a salt (NaCl) solution (in 0.1 moles per liter) contained in the domain Ω , and u is a concentration function of
sodium ions (Na+). The dimensions of Ω are marked on Fig. 12(b, c). In the numerical tests, we set D(r) = 0.0196 in the
channel pore portion (the middle part of Ω in the z-axis direction), and 0.196 in the other part of Ω . The ion channel
protein was downloaded from the Protein Data Bank (PDB) website http://www.rcsb.org with the PDB ID: 1MAG.pdb. A
mixed boundary value condition is applied to the Nernst–Planck equation (3.6): (i) u(r) = 0.1 on the bottom and top
surfaces defined by z = −33.42, 26.58 (i.e., Dirichlet boundary condition), (ii) u is periodic on the four side surfaces of
Ω defined by x = −20.32, 19.68 and y = −20, 20, and (iii) u satisfies the Robin boundary condition

∂u(r)
∂n

+ u(r)
∂Φ(r)
∂n

= 0

on the remainder of the boundary ∂Ω . Here n denotes the unit outward normal direction of Ω . An irregular tetrahedral
mesh, as illustrated in Fig. 12, is used to generate the coefficient matrix A and the right hand side vector b.

Relevant properties of the coefficient matrices of Test models 4 and 5, are listed in Table 6. We use the restarted
GMRES(50)-SOR method (restart = 50) for both Test models 4 and 5. For Test model 4, we set the SOR spectral radius
ρ = 0.9, SOR-Ite = 50, and η = 10−10 for the iteration stopping criterion (3.4). For Test model 5, we set ρ = 0.98, SOR-Ite
= 200, and η = 10−7. From (2.5) and (2.9), we have α ≈ 0.0527 and θ ≈ 0.0028 for Test model 4 and α ≈ 0.01 and
θ ≈ 0.0001 for Test model 5. The test results are reported in Table 7. In this table, the total number of GMRES iterations,
Ite, is computed via,

Ite = (i − 1) × 50 + j,

where i is the number of restarts, and j is the number of iterations taken in the last restart step. Similar to Test models
1, 2 and 3, we find that the restarted GMRES method failed for the linear system of Test models 4 and 5 with ILU
preconditioning. Here, we used several ILU options from the MATLAB library such as setup.type = ‘‘crout’’, setup.milu =

‘‘row’’, and setup.droptol = 0.001. For example, for Test model 5, these options resulted in the lower and upper triangular

https://sparse.tamu.edu/Shyy/shyy161
http://www.rcsb.org
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Fig. 12. Dimensions and mesh views of the domain Ω for Test model 5.

matrices L and U of ILU having 694779 and 705871 nonzero entries, respectively (i.e., too many fill-in produced). For Test
model 4, these options failed. Further, we performed experiments using the options setup.type = ‘‘ilutp’’ and setup.droptol
= 0.001, resulting in GMRES stopped after 5 iterations with relres(A) = 0.6171 only even though we used the stopping
criterion relres(A) < 10−6.

From Table 7 it can be seen that both M1 and M2 are successful with M2 being more effective than M1 in requiring
a fewer number of outer GMRES iterations. It is interesting to note that Test model 4 has a much smaller value of σ1 than
Test model 5, which caused our GMRES-SOR method to produce numerical solutions with lower relative residuals for
Test model 4 than those for Test model 5 even though Test model 4 has a much larger condition number κ . This indicates
that σ1 is a more important factor than κ in the determination of the effectiveness of our GMRES-SOR method. In other
words, our GMRES-SOR method is especially effective for linear systems with σ1 not very large even though the condition
number of A may be very large.

Finally, we considered a much larger linear system selected from the SuiteSparse Matrix Collection (Hamrle3, https:
//sparse.tamu.edu/Hamrle). This linear system Ax = b has size n = 1, 447, 360. The nonsymmetric coefficient matrix A has
5, 514, 242 nonzero entries, and the right-hand side vector b = A ∗ ones(n, 1). For this system, we found that σ1 ≈ 16.1
and κ ≈ 1.6 × 107. Computing σ1 consumed only 10 s. GMRES(50) with the ILU preconditioner (no-refills) for solving
the system Ax = b failed. Attempting to solve the corresponding augmented system by GMRES(50)-SOR using M1 as a

https://sparse.tamu.edu/Hamrle
https://sparse.tamu.edu/Hamrle
https://sparse.tamu.edu/Hamrle
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preconditioner failed as well. But, using M2 as a preconditioner proved to be successful in satisfying the stopping criterion
(3.4) with η = 10−6 in 186 iterations, which consumed 217 s (CPU time), and yielded Relres(A) = 3.5 × 10−3. In these
GMRES-SOR tests, we used ρ = 0.95, and SOR-Ite = 50.

4. Conclusion

We have demonstrated that for strongly indefinite sparse linear systems Ax = b, casting the problem as a weighted
linear least squares problem enabled the creation of two effective preconditioners M1 and M2 of the corresponding
augmented linear systems. Using GMRES preconditioned by M1 or M2 proved to be successful in obtaining an ap-
proximation of the solution x while ILU-preconditioned GMRES failed in solving Ax = b. Further, our approach proved
to be successful in solving those ill-conditioned augmented systems due to favorable eigenvalue distributions of the
preconditioned augmented matrices. In addition, we have shown that the SOR method can be effectively used in solving
linear system involving M1 and M2 which can be useful for implementation on parallel computing platforms since in
each inner iteration one avoids global inner products.
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