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Abstract. A system of Poisson-Nernst-Planck equations (PNP) is an important dielectric con-5
tinuum model for simulating ion transport across biological membrane. In this paper, a PNP ion6
channel model with periodic boundary value conditions, denoted by PNPic, is presented and solved7
numerically with an effective finite element iterative method. In particular, the periodic boundary8
value conditions are used to mimic an infinitely large ion channel membrane, and the PNPic finite9
element solver includes (1) a PNPic solution decomposition scheme for overcoming the singularity10
difficulty caused by atomic charges, (2) Slotboom variables for transforming each related Nernst-11
Planck equation to avoid gradient calculation for any electrostatic potential function, (3) an efficient12
modified Newton iterative algorithm for solving each related nonlinear finite element equation, and13
(4) communication operators for carrying out functions operations between different finite element14
function spaces. This effective PNPic solver is implemented as a software package based on the15
state-of-the-art finite element library from the FEniCS project and an ion channel mesh generation16
package developed in Lu’s group. Numerical results demonstrate the convergence of the PNPic finite17
element iterative solver and the performance of the PNPic software package. Moreover, the PNPic18
model is validated by the cation selectivity property and electric current experimental data of an ion19
channel protein.20
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1. Introduction. Electrodiffusion describes a diffusion process of charged par-24

ticles in a self-induced electric field (sometimes together with an external electric25

field), which widely exists in electrochemistry, biology, nanofluidics, and semiconduc-26

tor physics, etc. A dielectric continuum implicit solvent model defined by Poisson-27

Nernst-Planck (PNP) equations has been recognized to have significant advantages28

in computational efficiency and in the calculation of macroscopic properties (e.g.,29

electric current) for a diffusion process at the mean field level compared to the cor-30

responding explicit solvent model [45, 13, 8, 26]. In the last two decades, many31

PNP ion channel models were developed through considering volume-exclusion en-32

tropy effects [37, 28, 44], hard sphere interactions [4, 17, 18, 32, 44, 43], van der33

Waals interactions [22], ionic solvation effects [33], electric charge correlations [29],34

variable dielectric properties [34], and surface energies [51], etc. They were solved35

numerically by using finite difference methods [14, 15, 26, 27, 54], finite element36

methods [16, 30, 36, 38, 41, 49], finite volume methods [40], and spectral element37

methods [21] in either a simplified one-dimensional or a complex three-dimensional38

setting. Special numerical techniques and implementation strategies were developed39

to improve the performance of PNP numerical solvers, including a second-order fi-40

nite difference method [54], a parallel finite element method [49], a potential decom-41

position technique [36], stabilized techniques [7, 50], energy and mass preservation42

schemes [14, 15, 20, 27, 41], and mixed finite element methods [16]. Slotboom vari-43
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2 D. XIE AND B. LU

able transformation [47] and Gummel’s iteration technique [19], developed in the early44

semiconductor device system simulations, were also used to solve PNP ion channel45

models [26, 36, 49].46

Compared with finite difference and finite volume methods, one major advantage47

of a finite element method is to be able to approximate a complex geometrical shape48

of an ion channel protein in a high degree of accuracy due to using an irregular49

tetrahedral mesh. Indeed, well retaining the geometry of a three-dimensional X-ray50

crystallographic ion channel molecular structure can significantly raise the quality51

of a PNP ion channel model. But the generation of an irregular tetrahedral mesh52

that can fit well a complex ion channel molecular surface is highly technical. In the53

last ten years, Lu’s research team developed an ion channel mesh software package54

based on the molecular surface triangular mesh package TMSmesh [9, 30, 31]. This55

mesh package has been released to the public through the cloud computing website56

https://www.xyzgate.com. As a unique ion channel tetrahedral mesh package, it will57

be applied to the development of a new PNP ion channel finite element solver in this58

paper.59

Typically, a PNP ion channel model is based on a box domain that is separated60

into two solvent compartments by a membrane. A single ion channel protein is then61

embedded centrally in the membrane and acts as the conduct for transporting ions62

from one solvent compartment to the other. The membrane normal direction and63

the ion channel pore are set to coincide with the z-axis direction for the simplicity64

of implementation. To account for the influence of other ion channel proteins on this65

single ion channel model, it is natural to set periodic boundary value conditions on66

the four side surfaces of the box. In fact, periodic boundary techniques have been67

routinely applied to molecular dynamics for a protein simulation in a box of water68

molecules. They were also applied to the construction of Poisson-Boltzmann (PB) ion69

channel models [5, 24] and a finite difference PNP solver [23]. Even so, they have not70

been considered in any PNP finite element solver yet since it is very difficult to develop71

a PNP ion channel finite element solver even in the case that does not consider any72

periodic boundary. In this paper, we attempt to develop an improved PNP ion channel73

model using the periodic boundary value conditions that are different from those used74

in [5, 24]. In fact, the periodic boundary conditions in [5] are set on the boundary75

of a box domain as if one side surface is adjacent to the opposing side surface, while76

the periodic boundary value conditions in [24] are constructed by setting the mesh77

nodes of two opposite side surfaces to have the same labeling numbers on the four side78

surfaces of the box. In our periodic boundary value conditions, each PNP unknown79

function is set to have the same values on the two opposite side surfaces as done80

commonly in a periodic boundary value problem.81

Another major difficulty in solving a PNP ion channel model comes from the82

solution singularity caused by atomic charges. As shown in [53, Figure 3], such a83

difficulty cannot be overcome unless all the singularity points can be isolated by a84

solution decomposition scheme. Two different solution decomposition schemes were85

reported in [11, 52], respectively, to overcome this difficulty in the numerical solution86

of a PB model for a protein surrounded by an ionic solvent. We recall that in [11], a PB87

unknown function, u, which gives an electrostatic potential density of the electric field,88

is split into three component functions, us, uh, and ur, within a protein regionDp only,89

resulting in a Laplace boundary value problem of uh in Dp and a nonlinear interface90

boundary value problem of ur in the box domain Ω. Since Dp is a strongly non-91

convex domain with a complicated nonsmooth boundary (i.e., a molecular surface),92

especially for an ion channel protein, solving such a Laplace boundary value problem93
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A PERIODIC PNP ION CHANNEL FINITE ELEMENT SOLVER 3

may cause problems in solution accuracy and solution regularity. The equation of94

ur is also difficult to solve due to involving a jumpily discontinuous flux interface95

condition on the interface between Dp and a solvent region Ds. In contrast, in [52],96

u is split into three component functions, G, Ψ, and Φ̃, over the box domain Ω such97

that G, Ψ, and Φ̃ represent the electrostatic potentials induced by the atomic charges,98

the potentials from the interfaces and boundary, and the ionic charges from a solvent99

region, Ds, respectively. Since G contains all the singularity points of u, both Ψ and100

Φ̃ become smooth within the solvent and solute regions. Note that ur = u within Ds,101

and u = G+ Ψ + Φ̃. Hence, Φ̃ = ur −G−Ψ. This shows that Φ̃ does not involve any102

tough part of ur from G and Ψ so that it is much smoother than ur. As a result, the103

interface boundary value problem of Φ̃ does not involve any jumpily discontinuous104

flux interface condition and can be much easier to solve numerically than that of ur.105

It is this splitting scheme that leads to an efficient PB finite element solver in [52].106

The splitting scheme from [11] has been adapted to construct a PNP finite difference107

solver in [54] and a PNP finite element solver in [49]. In this paper, we will adapt the108

splitting scheme from [52] to construct a new finite element PNP ion channel solver109

subject to periodic boundary constraints.110

In order to reduce numerical complexity and computer memory requirement111

sharply, a PNP iterative scheme is often constructed by classic successive relaxation112

iterative techniques [42] (or related Gummel’s iterative technique [19]). In such a113

scheme, however, each Nernst-Planck equation of a PNP system is modified as an114

equation that requires calculating the gradient of a given potential function. From115

the finite element theory it is known that a gradient calculation may decay one degree116

of a finite element solution accuracy [6]. To avoid such a potential numerical prob-117

lem, the Slotboom variables, introduced in [47], can be used to transform each related118

Nernst-Planck equation as the one that does not involve any gradient of a potential119

function, but on the other hand, the related linear Poisson dielectric equation is trans-120

formed as a strongly nonlinear equation. Consequently, how to solve such a nonlinear121

equation becomes a key step in the development of an effective PNP numerical solver.122

Hence, one important task of this paper is to develop new numerical techniques for123

solving each related nonlinear equation efficiently.124

A system of PNP finite element equations involves ionic concentration functions125

ci and an electrostatic potential function u that belong to two different finite element126

function spaces, respectively. A communication operator is thus required to carry out127

function operations between these two spaces. Currently, such a function operation128

issue was simply addressed by extending each ci from Ds to Ω through setting the129

values of ci to be zero at the mesh nodes outside the solvent region Ds so that both130

ci and u are defined on the same finite element function space based on a mesh131

of Ω. But this simple treatment may decay the accuracy of a PNP finite element132

system significantly since it actually causes ci to be nonzero outside Ds on a layer133

of tetrahedra along the interface between Ds and a protein-membrane region. Under134

periodic boundary constraints, each of these two spaces is modified as a space with135

a reduced dimensionality, further increasing the difficulty of dealing with this issue.136

In this paper, we will directly construct a finite element function space for each ionic137

concentration function ci based on an irregular tetrahedral mesh ofDs. We then derive138

all the required communication operators so that we can well retain the accuracy of139

a PNP finite element system in the implementation of function operations between140

different function spaces.141

The rest of the paper is organized as follows. In Section 2, we present a PNP ion142
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4 D. XIE AND B. LU

Fig. 1: An illustration of the region partition (2.2) of a rectangular box domain Ω.

channel model using periodic boundary value conditions (denoted by PNPic). In Sec-143

tion 3, we present a PNPic solution decomposition. In Section 4, we reformulate each144

equation of the PNPic solution decomposition into a variational problem. In Section145

5, we describe the construction of our PNPic finite element solver. In Section 6, we146

report our PNPic software package and numerical results to demonstrate the conver-147

gence and performance of our PNPic finite element iterative solver and to validate our148

PNPic software package, along with two new formulas for estimating the distribution149

of ions and electric current within an ion channel pore. Finally, conclusions are made150

in Section 7.151

2. A PNP ion channel model with periodic boundary value conditions.152

We construct a sufficiently large open box domain, Ω, by153

(2.1) Ω = {(x, y, z) | Lx1 < x < Lx2, Ly1 < y < Ly2, Lz1 < z < Lz2 },154

and partition it and its boundary ∂Ω, as illustrated in Figure 1, as follows:155

(2.2) Ω = Dp ∪Dm ∪Ds ∪ Γm ∪ Γp ∪ Γpm, ∂Ω = ΓD ∪ ΓN ,156

where Lx1, Lx2, Ly1, Ly2, Lz1, and Lz2 are real numbers; Dp, Dm, and Ds denote an157

ion channel protein region, a membrane region, and a solvent region, respectively; Γm158

denotes the interface between Dm and Ds, Γp the interface between Dp and Ds; Γpm159

the interface between Dp and Dm; and ΓD consists of the bottom and top surfaces160

of the box domain Ω and ΓN the four side surfaces of Ω. In Figure 1, Z1 and Z2 set161

the location of the membrane, Ds contains an ionic solvent with n ionic species, and162

Dp hosts an ion channel protein with np atoms. We have set the normal direction163

of the membrane in the z-axis direction and the z-axis to pass the channel pore.164

Moreover, the position vector rj and charge number zj of atom j are given from165

a three-dimensional X-ray crystallographic molecular structure of the ion channel166

protein. The bulk concentration cbi and charge number of species i are also given for167

the ionic solvent.168

Based on the dielectric continuum approach, the three regions Dp, Dm, and Ds169

are treated as dielectric media with permittivity constants εp, εm, and εs, respec-170

tively. Since Dm consists of a double layer of phospholipid, cholesterol, and glycolipid171

molecules whereas Dp is composed of amino acids, εm may be greater than εp [48, 24].172
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(a) Top view of membrane (in z-direction) (b) Two side views of membrane

Fig. 2: (a) A membrane embedded with many ion channel proteins of the same type.
(b) An illustration of the periodic boundary value conditions of a function u. Here the
box domain for simulation is colored in red; ul, ur, uf , and ub denote the boundary
values of u on the left, right, front, and back surfaces of each box domain, respectively;
ion channel proteins are colored in green; and the membrane is colored in yellow.

We can duplicate the box domain Ω in the four side surface directions, as illus-173

trated in Figure 2(a), to produce an infinitely large membrane that is embedded with174

ion channel proteins of the same type. Since a dimensionless electrostatic potential175

function, u, on each box is identical to each other, it satisfies the periodic boundary176

value conditions, ul = ur and ub = uf , as illustrated in Figure 2(b). Here ul, ur, ub,177

and uf , respectively, denote the values of u on the left, right, back, and front side178

surfaces of the simulation box Ω, which is marked in red to differ from its neighboring179

boxes (in blue color). Hence, for a function, u(t, r), of time t and spatial variable r180

with r = (x, y, z) ∈ Ω, we obtain periodic boundary value conditions as follows:181

u(t, Lx1, y, z) = u(t, Lx2, y, z), (y, z) ∈ D1,(2.3)182

u(t, x, Ly1, z) = u(t, x, Ly2, z), (x, z) ∈ D2,183

where D1 = {(y, z) | Ly1 < y < Ly2, Lz1 < z < Lz2 }, D2 = {(x, z) | Lx1 <184

x < Lx2, Lz1 < z < Lz2 }. Similarly, we can obtain the periodic boundary value185

conditions for an ionic concentration function, ci(t, r) for r ∈ Ds and t ≥ 0, of species186

i on the four side surface ΓN ∩ ∂Ds of Ds. Here ∂Ds denotes the boundary of Ds.187

Our PNP ion channel model using the above periodic boundary value conditions,188

which is denoted as PNPic, consists of the Poisson equations189

− εp∆u(t, r) = α

np∑
j=1

zjδrj , r ∈ Dp,(2.4)190

− εm∆u(t, r) = 0, r ∈ Dm, −εs∆u(t, r) = β

n∑
i=1

Zici(t, r), r ∈ Ds,191
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6 D. XIE AND B. LU

and the Nernst-Planck equations192

(2.5)
∂ci(t, r)

∂t
= ∇·Di [∇ci(t, r) + Zici(t, r)∇u(t, r)] , r ∈ Ds, t > 0,193

for i = 1, 2, . . . , n, subject to the following interface conditions, initial value conditions,194

and boundary value conditions:195

• Interface conditions:196

(2.6)

u(t, s−) = u(t, s+), εp
∂u(t,s−)
∂np(s) = εs

∂u(t,s+)
∂np(s) , s ∈ Γp,

u(t, s−) = u(t, s+), εm
∂u(t,s−)
∂nm(s) = εs

∂u(t,s+)
∂nm(s) , s ∈ Γm,

u(t, s−) = u(t, s+), εp
∂u(t,s−)
∂np(s) = εm

∂u(t,s+)
∂np(s) , s ∈ Γpm.

197

• Initial value conditions:198

(2.7) ci(0, r) = c0i (r), r ∈ Ds, i = 1, 2, . . . , n.199

• Dirichlet boundary value conditions on the bottom and top surfaces:200

(2.8) u(t, s) = g(s), s ∈ ΓD, ci(t, s) = gi(s), s ∈ ΓD.201

• Periodic boundary value conditions on the four side surfaces:202

(2.9) u(t, s) is periodic for s ∈ ΓN , ci(t, s) is periodic for s ∈ ΓN ∩ ∂Ds.203

• Robin boundary value conditions on the interface Γp ∪ Γm:204

(2.10)
∂ci(t, s)

∂ns(s)
+ Zici(t, s)

∂u(t, s)

∂ns(s)
= 0, s ∈ Γp ∪ Γm.205

Here δrj is the Dirac delta distribution at rj ; α and β are defined by206

(2.11) α =
1010e2

c

ε0kBT
, β =

NAe
2
c

1017ε0kBT
;207

np, nm, and ns are the unit outward normal directions of Dp, Dm, and Ds, respec-208

tively; g and gi are boundary value functions; c0i is an initial value function; and Di209

denote a diffusion coefficient function of the i-th ionic species. Here ε0 is the permit-210

tivity of the vacuum, ec is the elementary charge, kB is the Boltzmann constant, T211

is the absolute temperature, and NA is the Avogadro number, which estimates the212

number of ions per mole. Note that we have measured ionic concentration function ci213

in moles per liter (mol/L), time t in picoseconds (ps), spatial length in angstroms (Å),214

and diffusion function Di in units Å2/ps. In physics, the Robin boundary condition215

(2.10) reflects the fact that none of ionic particles cross the interface Γp ∪Γm to enter216

the protein and membrane regions Dp and Dm; the boundary value functions g and gi217

can be properly selected, as shown in (6.1) in Section 6, to mimic an external voltage218

across the membrane.219

When u is known, an electrostatic potential function, Φ, is found by220

Φ(t, r) =
kBT

ec
u(t, r), r ∈ Ω, t > 0,221

in volts. Due to the above relation, the dimensionless potential u can be viewed as222

an electrostatic potential with the constant kBT/ec as its physical unit.223

At T = 298.15, the values of α, β, and kBT
ec

can be estimated as224

α ≈ 7042.9399, β ≈ 4.2413, kBT/ec ≈ 0.0257 volts.225

Thus, u = 1 is about 0.0257 volts or 25.7 millivolts (mV).226
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3. PNPic solution decomposition. To overcome the singularity difficulty227

caused by atomic charges, we split the electrostatic potential function u into three228

component functions, G, Ψ, and Φ̃, such that229

(3.1) u(t, r) = G(r) + Ψ(r) + Φ̃(t, r), r ∈ Ω, t ≥ 0,230

where G is a potential induced by atomic charges from the protein region Dp, Ψ is231

a potential induced by potentials from interface and boundary, and Φ̃ is a potential232

induced by ionic charges from the solvent region Ds.233

In particular, G can be found in the analytical expression234

(3.2) G(r) =
α

4πεp

np∑
j=1

zj
|r− rj |

235

as a solution of the Poisson equation in the whole space R3:236

(3.3) − εp∆G(r) = α

np∑
j=1

zjδrj , r ∈ R3.237

Since G and Ψ are independent of ionic concentrations ci, they can be calculated238

prior to the calculation of ci and Φ̃ so that we can treat them as two given functions239

during an iterative process of searching for ci and Φ̃. With this observation, we240

construct a linear interface boundary value problem of Ψ such that it collects all the241

jumpily discontinuous interface conditions produced by the splitting formula (3.1) and242

the related inhomogeneous boundary value conditions for the purpose of making the243

equation of Φ̃ as simple as possible. Clearly, Φ̃ is periodic on the four side surfaces of244

the box domain Ω. To get its periodic boundary value conditions, we set Ψ to satisfy245

the Dirichlet boundary value condition Ψ + G = 0 on ΓN . In this way, we derive a246

linear interface boundary value problem of Ψ,247

(3.4)



∆Ψ(r) = 0, r ∈ Dm ∪Dp ∪Ds,

Ψ(s−) = Ψ(s+), εp
∂Ψ(s−)
∂np(s) = εs

∂Ψ(s+)
∂np(s) + (εs − εp) ∂G(s)

∂np(s) , s ∈ Γp,

Ψ(s−) = Ψ(s+), εm
∂Ψ(s−)
∂nm(s) = εs

∂Ψ(s+)
∂nm(s) + (εs − εm) ∂G(s)

∂nm(s) , s ∈ Γm,

Ψ(s−) = Ψ(s+), εp
∂Ψ(s−)
∂np(s) = εm

∂Ψ(s+)
∂np(s) + (εm − εp) ∂G(s)

∂np(s) , s ∈ Γpm,

Ψ(s) = g(s)−G(s), s ∈ ΓD,
Ψ(s) = −G(s), s ∈ ΓN ,

248

and a linear interface boundary value problem of Φ̃, which has continuous interface249

conditions, a homogeneous Dirichlet boundary condition, and periodic boundary con-250

ditions, as follows:251

(3.5)



∆Φ̃(t, r) = 0, r ∈ Dm ∪Dp,

−εs∆Φ̃(t, r) = β
n∑

i=1

Zici(t, r), r ∈ Ds,

Φ̃(t, s+) = Φ̃(t, s−), εs
∂Φ̃(t,s+)
∂np(s) = εp

∂Φ̃(t,s−)
∂np(s) , s ∈ Γp,

Φ̃(t, s+) = Φ̃(t, s−), εs
∂Φ̃(t,s+)
∂nm(s) = εm

∂Φ̃(t,s−)
∂nm(s) , s ∈ Γm,

Φ̃(t, s−) = Φ̃(t, s+), εp
∂Φ̃(t,s−)
∂np(s) = εm

∂Φ̃(t,s+)
∂np(s) , s ∈ Γpm,

Φ̃(t, s) = 0, s ∈ ΓD,

Φ̃(t, s) is periodic, s ∈ ΓN .

252
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Here ∂G(s)
∂n(s) = ∇G(s) · n(s) with ∇G being given by253

(3.6) ∇G(s) = − α

4πεp

np∑
j=1

zj
(s− rj)

|s− rj |3
.254

It can be easy to validate that the sum of G with Ψ and Φ̃ gives the solution of255

the Poisson ion channel interface boundary value problem (2.4). Clearly, G contains256

all the singular points of u. Thus, both Ψ and Φ̃ are smooth within Dp, Dm, or Ds.257

Using the given G and Ψ, we can treat each Nernst-Planck equation of (2.5) as258

an equation of ci and Φ̃,259

(3.7)
∂ci(t, r)

∂t
= ∇·Di

[
∇ci + Ziciw + Zici∇Φ̃(t, r)

]
, r ∈ Ds, t > 0,260

for i = 1, 2, . . . , n. Here w = ∇G(r) +∇Ψ(r), which has been calculated.261

Consequently, a combination of (3.7) with (3.5) gives a system of equations for262

solving Φ̃ and ci for i = 1, 2, . . . , n, together with the initial and boundary value263

conditions (2.7)–(2.10). Note that this new system is much easier to solve numerically264

than the original PNPic system since it avoids the solution singularity difficulties265

induced by atomic charges, and Φ̃ is much smoother than u because the tough parts266

G and Ψ of u have been removed from the construction of Φ̃.267

In the remaining part of this paper, we only consider the steady state of PNPic.268

Since in the steady state, ci, u, and Φ̃ become independent of time t, the system for269

Φ̃ and ci is simplified as n steady Nernst-Planck boundary value problems,270

(3.8)


∇·Di(r)

[
∇ci(r) + Zici(r)w(r) + Zici(r)∇Φ̃(r)

]
= 0, r ∈ Ds,

∂ci(s)
∂ns(s) + Zici(s) ∂u(s)

∂ns(s) = 0, s ∈ Γp ∪ Γm,

ci(s) = gi(s), s ∈ ΓD,

Φ̃(s) is periodic, s ∈ ΓN ,

271

for i = 1, 2, . . . , n, plus one interface boundary value problem,272

(3.9)



∆Φ̃(r) = 0, r ∈ Dm ∪Dp,

−εs∆Φ̃(r) = β
n∑

i=1

Zici(r), r ∈ Ds,

Φ̃(s+) = Φ̃(s−), εs
∂Φ̃(s+)
∂np(s) = εp

∂Φ̃(s−)
∂np(s) , s ∈ Γp,

Φ̃(s+) = Φ̃(s−), εs
∂Φ̃(s+)
∂nm(s) = εm

∂Φ̃(s−)
∂nm(s) , s ∈ Γm,

Φ̃(s−) = Φ̃(s+), εp
∂Φ̃(s−)
∂np(s) = εm

∂Φ̃(s+)
∂np(s) , s ∈ Γpm,

Φ̃(s) = 0, s ∈ ΓD,

Φ̃(s) is periodic, s ∈ ΓN .

273

When Φ̃ is known, we obtain u by the formula274

u(r) = G(r) + Ψ(r) + Φ̃(r), r ∈ Ω.275

4. Variational formulations. One key step in the development of a finite276

element algorithm for solving the PNPic model is to derive the variational forms of277

interface boundary value problems (3.4) and (3.9) and Nernst-Planck system (3.8). In278

this section, we obtain these forms and give them detailed proofs since their derivations279
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are nontrivial due to the complicated interface conditions and periodic boundary280

value conditions. We then obtain a variational form of the system of (3.8) and (3.9).281

Furthermore, we simplify the variational form of (3.4) into a variational problem282

without involving any surface integral when the membrane permittivity constant εm283

is set to be equal to the protein permittivity constant εp.284

Let H1(Ω) and H1(Ds) be the Sobolev function spaces based on the box domain285

Ω and solvent region Ds, respectively [1]. We define their subspaces, U,U0, H
1
0 (Ω), V,286

and V0, as follows:287

U = {u ∈ H1(Ω) | u is periodic on ΓN }, U0 = {u ∈ U | u = 0 on ΓD},(4.1)288

H1
0 (Ω) = {v ∈ H1(Ω) | v = 0 on ∂Ω},289

290

(4.2) V = {v ∈ H1(Ds) | v is periodic on ΓN ∩ ∂Ds }, V0 = {v ∈ V |v = 0 on ΓD}.291

We first present a variational form of the interface boundary value problem (3.9)292

in Theorem 4.1.293

Theorem 4.1. The linear interface boundary value problem (3.9) has the follow-294

ing variational form:295

(4.3) Find Φ̃ ∈ U0 such that a(Φ̃, v) = β

n∑
i=1

Zi

∫
Ds

civdr ∀v ∈ U0,296

where U0 is defined in (4.1) and a(Φ̃, v) is defined by297

(4.4) a(Φ̃, v) = εp

∫
Dp

∇Φ̃ · ∇vdr + εm

∫
Dm

∇Φ̃ · ∇vdr + εs

∫
Ds

∇Φ̃ · ∇vdr.298

Proof. We multiply the first and second equations of (3.9) with a test function299

v ∈ U0; integrate it over Dp, Dm, and Ds, respectively; and then add them together300

to get301

−εp
∫
Dp

∆Φ̃(r)v(r)dr− εm
∫
Dm

∆Φ̃(r)v(r)dr− εs
∫
Ds

∆Φ̃(r)v(r)dr302

= β

n∑
i=1

Zi

∫
Ds

ci(r)v(r)dr.303

Using Green’s first identity, we can rewrite the above equation as304

(4.5)

εp

∫
Dp

∇Φ̃(r) · ∇v(r)dr + εm

∫
Dm

∇Φ̃(r) · ∇v(r)dr + εs

∫
Ds

∇Φ̃(r) · ∇v(r)dr

= εp

∫
∂Dp

∂Φ̃(s)

∂np(s)
v(s)ds + εm

∫
∂Dm

∂Φ̃(s)

∂nm(s)
v(s)ds + εs

∫
∂Ds

∂Φ̃(s)

∂ns(s)
v(s)ds

+ β

n∑
i=1

Zi

∫
Ds

ci(r)v(r)dr,

305

where ∂Dp, ∂Dm, and ∂Ds denote the boundaries of Dp, Dm, and Ds and np, nm,306

and ns denote the unit outward normal vectors of Dp, Dm, and Ds, respectively. Note307

that the normal vectors have the relations308

ns = −np on Γp, ns = −nm on Γm, nm = −np on Γpm,309

nm = nb on ΓN ∩ ∂Dm, ns = nb on ΓN ∩ ∂Ds,310
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and the boundaries ∂Dp, ∂Dm, and ∂Ds can be expressed as311

∂Dp = Γp∪Γpm, ∂Dm = Γm∪(ΓN∩∂Dm)∪Γpm, ∂Ds = Γm∪Γp∪ΓD∪(ΓN∩∂Ds).312

Hence, by v = 0 on ΓD, the three surface integrals of (4.5) can be simplified as follows:313 ∫
∂Dp

∂Φ̃(s)

∂np(s)
v(s)ds =

∫
Γp

∂Φ̃(s−)

∂np(s)
v(s)ds +

∫
Γpm

∂Φ̃(s−)

∂np(s)
v(s)ds,∫

∂Dm

∂Φ̃(s)

∂nm(s)
v(s)ds =

∫
Γm

∂Φ̃(s−)

∂nm(s)
v(s)ds−

∫
Γpm

∂Φ̃(s−)

∂np(s)
v(s)ds

+

∫
ΓN∩∂Dm

∂Φ̃(s)

∂nb(s)
v(s)ds,∫

∂Ds

∂Φ̃(s)

∂ns(s)
v(s)ds = −

∫
Γm

∂Φ̃(s+)

∂nm(s)
v(s)ds−

∫
Γp

∂Φ̃(s+)

∂np(s)
v(s)ds

+

∫
ΓN∩∂Ds

∂Φ̃(s)

∂nb(s)
v(s)ds,

314

where nb denotes the unit outward normal vector of the box domain Ω. Applying the315

above expressions and the interface conditions of (3.9)–(4.5), we obtain316

a(Φ̃, v) =β

n∑
i=1

Zi

∫
Ds

civdr + εm

∫
ΓN∩∂Dm

∂Φ̃(s)

∂nb(s)
v(s)ds

+ εs

∫
ΓN∩∂Ds

∂Φ̃(s)

∂nb(s)
v(s)ds.

317

Clearly, the normal vectors nb = (±1, 0, 0) and (0,±1, 0) on the four side surfaces318

of ΓN . Thus, the surface integral
∫

ΓN∩∂Ds

∂Φ̃(s)
∂nb(s)v(s)ds can be written as319

∫
ΓN∩∂Ds

∂Φ̃(s)

∂nb(s)
v(s)ds320

=

∫ Z1

Lz1

∫ Ly2

Ly1

[
∂Φ̃(Lx2, y, z)

∂x
v(Lx2, y, z)−

∂Φ̃(Lx1, y, z)

∂x
v(Lx1, y, z)

]
dydz321

+

∫ Lz2

Z2

∫ Ly2

Ly1

[
∂Φ̃(Lx2, y, z)

∂x
v(Lx2, y, z)−

∂Φ̃(Lx1, y, z)

∂x
v(Lx1, y, z)

]
dydz322

+

∫ Z1

Lz1

∫ Lx2

Lx1

[
∂Φ̃(x, Ly2, z)

∂y
v(x, Ly2, z)−

∂Φ̃(x, Ly1, z)

∂y
v(x, Ly1, z)

]
dxdz323

+

∫ Lz2

Z2

∫ Lx2

Lx1

[
∂Φ̃(x, Ly2, z)

∂y
v(x, Ly2, z)−

∂Φ̃(x, Ly1, z)

∂y
v(x, Ly1, z)

]
dxdz,324

where Z1 and Z2 denote the starting and ending numbers of the membrane in the Z-325

axis direction, respectively. Since each test function v satisfies the periodic boundary326

This manuscript is for review purposes only.



A PERIODIC PNP ION CHANNEL FINITE ELEMENT SOLVER 11

conditions, the above expression becomes327 ∫
ΓN∩∂Ds

∂Φ̃(s)

∂nb(s)
v(s)ds.(4.6)328

=

∫ Z1

Lz1

∫ Ly2

Ly1

[
∂Φ̃(Lx2, y, z)

∂x
− ∂Φ̃(Lx1, y, z)

∂x

]
v(Lx1, y, z)dydz329

+

∫ Lz2

Z2

∫ Ly2

Ly1

[
∂Φ̃(Lx2, y, z)

∂x
− ∂Φ̃(Lx1, y, z)

∂x

]
v(Lx1, y, z)dydz330

+

∫ Z1

Lz1

∫ Lx2

Lx1

[
∂Φ̃(x, Ly2, z)

∂y
− ∂Φ̃(x, Ly1, z)

∂y

]
v(x, Ly1, z)dxdz(4.7)331

+

∫ Lz2

Z2

∫ Lx2

Lx1

[
∂Φ̃(x, Ly2, z)

∂y
− ∂Φ̃(x, Ly1, z)

∂y

]
v(x, Ly1, z)dxdz.332

From the periodicity of Φ̃ on ΓN , it can imply that the partial derivatives ∂Φ̃
∂x and333

∂Φ̃
∂y satisfy the following periodic boundary conditions:334

∂Φ̃(Lx1, y, z)

∂x
=
∂Φ̃(Lx2, y, z)

∂x
∀(y, z) ∈ D1,335

∂Φ̃(x, Ly1, z)

∂y
=
∂Φ̃(x, Ly2, z)

∂y
∀(x, z) ∈ D2.336

Applying the above equations to (4.6) immediately gives337

(4.8)

∫
ΓN∩∂Ds

∂Φ̃(s)

∂nb(s)
v(s)ds = 0.338

Similarly, we can prove that
∫

ΓN∩∂Dm

∂Φ̃(s)
∂nb(s)v(s)ds = 0. This completes the proof. �339

We next present a variational formulation of the Nernst-Planck system (3.8) in340

Theorem 4.2.341

Theorem 4.2. The system (3.8) of n steady Nernst-Planck equations has the342

following variational form: Find ci ∈ V satisfying ci = gi on ΓD such that343

(4.9)

∫
Ds

Di(r) (∇ci(r) + Zici(r)∇u(r))∇vi(r)dr = 0 ∀vi ∈ V0, i = 1, 2, . . . , n,344

where V and V0 are given in (4.2).345

Proof. We multiply a test function vi ∈ V0 on both sides of the first equation of346

(3.8), integrate on the solvent region Ds, and use Green’s first identity to get347

(4.10)

∫
∂Ds

Di

(
∂ci(s)

∂ns(s)
+ Zici

∂u(s)

∂ns(s)

)
vi(s)ds−

∫
Ds

Di (∇ci + Zici∇u)∇vidr = 0.348

Since the boundary ∂Ds of Ds can be expressed as349

∂Ds = Γm ∪ Γp ∪ ΓD ∪ (ΓN ∩ ∂Ds),350
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we can use the second equation of (3.8) and vi = 0 on ΓD to get351 ∫
∂Ds

Di

(
∂ci(s)

∂ns(s)
+ Zici

∂u(s)

∂ns(s)

)
vi(s)ds = Di

∫
ΓN∩∂Ds

∂ci(s)

∂nb(s)
vi(s)ds352

+Di Zi

∫
ΓN∩∂Ds

ci
∂u(s)

∂nb(s)
vi(s)ds ∀vi ∈ U0,353

where we have used the fact that ns = nb on ΓN and Di is a constant on the side354

surface ΓN ∩ ∂Ds. Clearly, from the periodicities of ci and u, it can imply the peri-355

odicities of the partial derivatives ∂ci
∂x , ∂ci

∂y , ∂u
∂x , and ∂u

∂y on the side surfaces ΓN ∩ ∂Ds356

and ΓN , respectively. Similarly to what is done in the proof of (4.8), we can use the357

periodicities of ci, vi,
∂ci
∂x , and ∂ci

∂y on ΓN ∩ ∂Ds and the periodicities of u, ∂u
∂x , and358

∂u
∂y on ΓN to get359 ∫

ΓN∩∂Ds

∂ci(s)

∂ns(s)
vi(s)ds = 0,

∫
ΓN∩∂Ds

ci
∂u(s)

∂ns(s)
vi(s)ds = 0.360

Thus, we obtain361 ∫
∂Ds

Di

(
∂ci(s)

∂ns(s)
+ Zici

∂u(s)

∂ns(s)

)
vi(s)ds = 0.362

Applying the above equation to (4.10) gives the weak form (4.9). This completes the363

proof. �364

Furthermore, a variational form of the interface boundary value problem (3.4) is365

presented in Theorem 4.3.366

Theorem 4.3. The linear interface boundary value problem (3.4) has the follow-367

ing variational form: Find Ψ ∈ H1(Ω) satisfying Ψ = g −G on ΓD and Ψ = −G on368

ΓN such that369

a(Ψ, v) = (εs − εp)

∫
Γp

∂G(s)

∂np(s)
v(s)ds + (εs − εm)

∫
Γm

∂G(s)

∂nm(s)
v(s)ds(4.11)370

+(εm − εp)

∫
Γpm

∂G(s)

∂np(s)
v(s)ds ∀v ∈ H1

0 (Ω),371

where nm and np denote the unit outward normal vectors of Dm and Dp, respectively,372

and a(·, ·) is defined in (4.4).373

Proof. We multiply the first equation of (3.4) with a test function v ∈ H1
0 (Ω);374

integrate it over Dp, Dm, and Ds, respectively; and then add them together to get375

εp

∫
Dp

∆Ψ(r)v(r)dr + εm

∫
Dm

∆Ψ(r)v(r)dr + εs

∫
Ds

∆Ψ(r)v(r)dr = 0.376

Applying Green’s first identity to each of the above three integrals, we can get377

(4.12)

εp

∫
Dp

∇Ψ(r) · ∇v(r)dr + εm

∫
Dm

∇Ψ(r) · ∇v(r)dr + εs

∫
Ds

∇Ψ(r) · ∇v(r)dr

= εp

∫
∂Dp

∂Ψ(s)

∂np(s)
v(s)ds + εm

∫
∂Dm

∂Ψ(s)

∂nm(s)
v(s)ds + εs

∫
∂Ds

∂Ψ(s)

∂ns(s)
v(s)ds.

378
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By v = 0 on ΓD ∪ ΓN (i.e., the boundary ∂Ω), the three surface integrals of (4.12)379

can be simplified as follows:380 ∫
∂Dp

∂Ψ(s)

∂np(s)
v(s)ds =

∫
Γp

∂Ψ(s−)

∂np(s)
v(s)ds +

∫
Γpm

∂Ψ(s−)

∂np(s)
v(s)ds,∫

∂Dm

∂Ψ(s)

∂nm(s)
v(s)ds =

∫
Γm

∂Ψ(s−)

∂nm(s)
v(s)ds−

∫
Γpm

∂Ψ(s−)

∂np(s)
v(s)ds,∫

∂Ds

∂Ψ(s)

∂ns(s)
v(s)ds = −

∫
Γm

∂Ψ(s+)

∂nm(s)
v(s)ds−

∫
Γp

∂Ψ(s+)

∂np(s)
v(s)ds.

381

Applying the above expressions and the interface conditions of (3.4)–(4.12), we obtain382

(4.11). This completes the proof. �383

In PNP ion channel simulations, it is often to set εm = εp. In this case, the weak384

form (4.11) can be simplified as follows: Find Ψ ∈ H1(Ω) satisfying Ψ = g−G on ΓD385

and Ψ = −G on ΓN such that386

(4.13) a(Ψ, v) = (εs − εp)

∫
Γ

∂G(s)

∂n(s)
v(s)ds ∀v ∈ H1

0 (Ω),387

where n denotes the unit outward normal direction of the protein-membrane region388

Dpm = Dp ∪Dm ∪ Γpm, Γ = Γm ∪ Γp, which is the interface between Dpm and Ds,389

and a(u, v) is simplified as follows:390

(4.14) a(u, v) = εp

∫
Dpm

∇u · ∇vdr + εs

∫
Ds

∇Φ̃ · ∇vdr.391

Theorem 4.4. Let the gradient vector ∇G be given in (3.6). If εm = εp and392

Γ = Γm ∪ Γp, then393

(4.15)

∫
Γ

∂G(s)

∂n(s)
v(s)ds = −

∫
Ds

∇G(r) · ∇v(r)dr.394

Proof. Using Green’s first identity, ∆G = 0 in Ds, ∂Ds = Γ ∪ ΓD ∪ (ΓN ∩ ∂Ds),395

and v = 0 on ΓD ∪ ΓN , we get396

0 =

∫
Ds

∆Gvdr =

∫
∂Ds

∂G(s)

∂ns(s)
v(s)ds−

∫
Ds

∇G(r) · ∇v(r)dr

=

∫
Γ

∂G(s)

∂ns(s)
v(s)ds−

∫
Ds

∇G(r) · ∇v(r)dr.

397

Since ns = −n on Γ, from the above expression, it gives the identity (4.15). This398

completes the proof. �399

Applying (4.15) to the variational problem (4.13), we obtain another variational400

form of Ψ as follows: Find Ψ ∈ H1(Ω) satisfying Ψ = g −G on ΓD and Ψ = −G on401

ΓN such that402

(4.16) a(Ψ, v) = (εp − εs)
∫
Ds

∇G(r) · ∇v(r)dr ∀v ∈ H1
0 (Ω).403

The above weak form simplifies the numerical calculation of Ψ since it does not involve404

any surface integral. A surface integral can be more difficult to calculate than a405
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corresponding volume integral since a geometrical shape of the interface Γ is very406

complicated in an ion channel simulation.407

In summary, we have obtained a variational form of the system of (3.8) and (3.9)408

as follows: Find Φ̃ ∈ V0 and ci ∈ U with ci = gi on ΓD for i = 1, 2, . . . , n such that409

(4.17)


∫
Ds
Di

[
∇ci + Zici(w +∇Φ̃)

]
∇vidr = 0 ∀vi ∈ U0 for i = 1, 2, . . . , n,

a(Φ̃, v)− β
n∑

i=1

Zi

∫
Ds
civdr = 0 ∀v ∈ V0,

410

where w = ∇G(r)+∇Ψ(r) with ∇G being given in (3.6) and Ψ is a solution of (4.11)411

(or (4.16) in the case that εm = εp).412

5. A PNPic finite element solver. Let Ωh be an interface fitted irregular413

tetrahedral mesh of a box domain Ω. We use Ωh to construct two linear Lagrange finite414

element function spaces, U1 and U2, as two finite-dimensional subspaces of the function415

spaces H1(Ω) and U , respectively. From Ωh, we extract an irregular tetrahedral mesh,416

Ds,h, of Ds to construct two linear Lagrange finite element function spaces, V1 and V2,417

as two finite dimensional subspaces of the function spaces H1(Ds) and V , respectively.418

We also define three subspaces, U1,0, U2,0, and V2,0, by419

U1,0 = {u ∈ U1 | u = 0 on ∂Ω}, U2,0 = {u ∈ U2 | u = 0 on ΓD},420

V2,0 = {v ∈ V2 | v = 0 on ΓD}.421

Here U and V have been defined in (4.1) and (4.2), respectively.422

Since Ψ, Φ̃, and ci belong to three different finite element spaces, U1, U2, and V2,423

respectively, we construct three communication operators P1, P2, and P3 by424

P1 : U2 → U1, P2 : U1 → V1, P3 : V2 → U2.425

For example, we map Φ̃ from the periodic boundary constrained finite element space426

U2 onto the original finite element space U1 by linear operator P1 to complete the427

addition of Φ̃ with G and Ψ. Using these linear operators, we approximate the system428

(4.17) by a system of finite element equations as follows: Find Φ̃ ∈ U2,0 and ci ∈ V2429

satisfying ci = gi on ΓD for i = 1, 2, . . . , n such that430

(5.1)


∫
Ds
Di

[
∇ci + Zici∇P2(G+ Ψ + P1Φ̃)

]
∇vidr = 0 ∀vi ∈ V2,0

for i = 1, 2, . . . , n,

a(Φ̃, v)− β
n∑

j=1

Zj

∫
Ds
P3cjvdr = 0 ∀v ∈ U2,0,

431

where G is given in (3.2) and Ψ has been calculated through solving a finite element432

approximation of the variational problem (4.11). For example, in the case that εm =433

εp, the finite element equation for computing Ψ is given as follows: Find Ψ ∈ U1434

satisfying Ψ = g −G on ΓD and Ψ = −G on ΓN such that435

(5.2) a(Ψ, v) = (εp − εs)
∫
Ds

∇G(r) · ∇v(r)dr ∀v ∈ U1,0,436

where the bilinear form a(·, ·) is given in (4.14).437

We recall that the Slotboom variable transformation is defined by438

(5.3) ci = e−Ziuc̄i, i = 1, 2, . . . , n,439
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where c̄i denotes the i-th Slotboom variable [47]. From the periodicity of u and ci on440

ΓN ∩ ∂Ds, it can imply that c̄i is periodic on ΓN ∩ ∂Ds. Using (5.3), we can get441

(5.4) ∇ci + Zici∇u = e−Ziu∇c̄i, i = 1, 2, . . . , n,442

and then transform the system (5.1) into a new system of Φ̃ and c̄i as follows: Find443

Φ̃ ∈ U2,0 and c̄i ∈ V2 satisfying c̄i = ḡi on ΓD for i = 1, 2, . . . , n such that444

(5.5)


∫
Ds
Die
−ZiP2(G+Ψ+P1Φ̃)∇c̄i∇vidr = 0 ∀vi ∈ V2,0

for i = 1, 2, . . . , n,

a(Φ̃, v)− β
n∑

i=1

Zi

∫
Ds
e−Zi(G+Ψ+P1Φ̃)P3c̄i, vdr = 0 ∀v ∈ U2,0,

445

where ḡi = eZiggi, which is derived from the boundary value conditions u = g and446

ci = gi on ΓD. After finding c̄i, we recover ci using (5.3) for i = 1, 2, . . . , n.447

We now construct a relaxation iterative scheme for solving the nonlinear finite448

element system (5.5) using the classic successive relaxation iterative techniques [42].449

Let Φ̃k and c̄ki denote the kth iterative approximations to Φ̃ and c̄i, respectively. We450

define them for k = 0, 1, 2, . . . by451

c̄k+1
i = c̄ki + ω(p̄i − c̄ki ), i = 1, 2, . . . , n,(5.6)452

Φ̃k+1 = Φ̃k + ω(q̄ − Φ̃k),(5.7)453

where p̄i ∈ V2 satisfying p̄i = ḡi on ΓD such that454

(5.8)

∫
Ds

Die
−ZiP2(G+Ψ+P1Φ̃k)∇p̄i∇vidr = 0 ∀vi ∈ V2,0, i = 1, 2, . . . , n,455

q̄ is a solution of the nonlinear variational problem: Find q̄ ∈ U2,0 such that456

(5.9) a(q̄, v)− β
n∑

i=1

Zi

∫
Ds

e−Zi(G+Ψ+P1q̄)P3c̄
k+1
i vdr = 0 ∀v ∈ U2,0,457

c̄0i and Φ̃0 are given initial iterates, and ω is a relaxation parameter between 0 and 1.458

By default, we set that c̄0i = cbi , and Φ̃0 is a solution of the variational problem:459

Find Φ̃0 ∈ U2,0 such that460

(5.10) a(Φ̃0, v)− β
n∑

i=1

Zic
b
i

∫
Ds

e−Zi(G+Ψ+P1Φ̃0)vdr = 0 ∀v ∈ U2,0.461

We stop this iteration process whenever the following criteria hold:462

(5.11) ‖Φ̃k+1 − Φ̃k‖ < ε and max1≤i≤n‖c̄k+1
i − c̄ki ‖ < ε.463

where ε is a tolerance (e.g. ε = 10−5) and ‖ · ‖ denotes the L2 norm.464

In order to solve the nonlinear variational problem (5.9) in the kth iteration, we465

construct an iterative sequence, {qjk}, by466

(5.12) qj+1
k = qjk + ξjk j = 0, 1, 2, . . . ,467
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16 D. XIE AND B. LU

where q0
k = Φ̃k and ξjk is a solution of the variational problem: Find ξjk ∈ U2,0 such468

that469

a(ξjk, v) + β

∫
Ds

n∑
i=1

Z2
i P3c̄

k+1
i e−Zi(G+Ψ+P1q

j
k)ξjkvdr(5.13)470

= β

∫
Ds

n∑
i=1

Zie
−Zi(G+Ψ+P1q

j
k)P3c̄

k+1
i vdr− a(qjk, v) ∀v ∈ U2,0.471

To get the initial iterate Φ̃0, we construct an iterative sequence, {qj}, for solving472

the nonlinear variational problem (5.10) by473

(5.14) qj+1 = qj + ξj , j = 0, 1, 2, . . . , ,474

where initial iterate q0 is set as a solution of a linearized problem of (5.10),475

(5.15) a(φ, v) + β

n∑
i=1

Z2
i c

b
i

∫
Ds

φvdr = −β
n∑

i=1

Z2
i c

b
i

∫
Ds

(G+ Ψ)vdr ∀v ∈ U2,0,476

and ξj is a solution of the linear variational problem: Find ξj ∈ U2,0 such that477

a(ξj , v) + β

∫
Ds

n∑
i=1

Z2
i c

b
ie
−Zi(G+Ψ+P1q

j
k)ξjvdr(5.16)478

= β

∫
Ds

n∑
i=1

Zic
b
ie
−Zi(G+Ψ+P1q

j
k)vdr− a(qjk, v) ∀v ∈ U2,0.479

In (5.15), we have used the electroneutrality condition
∑n

i=1 Zic
b
i = 0.480

In the iterative process of (5.12), we use the iteration stopping criterion:481

(5.17) either j > Ite max or ‖qj+1
k − qjk‖ < τ,482

where Ite max denotes the maximum allowable number of iterations and τ is a tol-483

erance. In calculation, we set Ite max = 10 and τ = 10−5 by default. Similarly, we484

stop the iterative process of (5.14) whenever485

(5.18) either j > Ite max or ‖qj+1 − qj‖ < τ.486

For clarity, we summarize our relaxation iterative scheme in Algorithm 1.487

Algorithm 1. Our finite element relaxation iterative scheme for solving the488

steady PNPic system of (3.8) and (3.9) for the electrostatic potential u and ionic489

concentrations ci can be implemented in five steps:490

Step 1. Initialization: Calculate G by (3.2); calculate Ψ by solving a finite element491

approximation problem of (4.11) (or (5.2) when εm = εp); set the initial492

iterates c̄0i = cbi for i = 1, 2, . . . , n; calculate Φ̃0 as a solution of the nonlinear493

problem (5.10) by the iterative scheme (5.14); and set k = 0.494

Step 2. Define c̄k+1
i by (5.6) with p̄i being a solution of the linear variational problem495

(5.8) for i = 1, 2, . . . , n.496

Step 3. Define Φ̃k+1 by (5.7) with q̄ being an iterate qjk of the iterative scheme (5.12)497

for solving the nonlinear variational problem (5.9) satisfying the iteration stop498

rule (5.17).499
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Step 4. Check the convergence: If the iteration stop criteria of (5.11) hold, go to500

Step 5 with c̄i = c̄k+1
i for i = 1, 2, . . . , n and Φ̃ = Φ̃k+1; otherwise, increase k501

by 1, and go back to Step 2.502

Step 5. Define the steady PNPic solution: u = G + Ψ + Φ̃ and ci = e−Ziuc̄i for503

i = 1, 2, . . . , n.504

Remark 1. The iterative scheme defined in (5.12) is a Newton iterative method505

for minimizing the functional506

J(v) =
1

2
a(v, v) + β

∫
Ds

n∑
i=1

c̄k+1
i e−Zi(G+Ψ+P1v)dr.507

It can be shown that the minimizer of J gives a solution of the nonlinear variational508

problem (5.9). This statement is true for the iterative scheme defined in (5.14) if509

Slotboom iterates c̄k+1
i of J are replaced by the bulk concentrations cbi .510

Remark 2. The iterative scheme of (5.14) is actually a finite element Newton511

iterative scheme for solving a PB ion channel model using the periodic boundary con-512

ditions given in (2.3). That is, this PB ion channel model is defined by the equations513

of (3.3), (3.4), and (3.5) using ci = cbie
−Ziu for i = 1, 2, . . . , n. It can be shown that514

the solution u of this PB ion channel model can be constructed by515

(5.19) u = G+ Ψ + Φ̃PB ,516

where Φ̃PB denotes a solution of the nonlinear variational problem (5.10). This PB517

ion channel model and finite element solver are different from those reported in [24].518

6. Numerical results. We implemented Algorithm 1 in Python as a software519

package based on the state-of-the-art finite element library from the FEniCS project520

[35] and the PB finite element solver program package reported in [52]. We used the521

ion channel finite element mesh program package developed by Lu’s research group522

[10, 30, 31] to generate interface fitted irregular tetrahedral meshes for a box domain Ω523

as illustrated in Figure 1. From a mesh of Ω, we extracted the meshes of solvent region524

Ds, membrane region Dm, and protein region Dp, denoted by Ds,h, Dm,h, and Dp,h,525

respectively. We then used these meshes to define the finite element function spaces526

U1 and V1. Furthermore, we modified U1 and V1 as the finite element function spaces527

U2 and V2 using the periodic boundary value conditions. In this software package, we528

set boundary value functions gi(r) and g(r) with r = (x, y, z) for ionic concentration529

functions ci and electrostatic potential function u, respectively, as follows:530

(6.1) gi(r) =

{
cbi at z = Lz1 (bottom),
cbi at z = Lz2 (top),

g(r) =

{
ub at z = Lz1 (bottom),
ut at z = Lz2 (top),

531

where cbi is a bulk concentration of species i and the difference between electrostatic532

potential values ub and ut can be regarded as a voltage across the membrane. We533

also followed what was done in [49, Equation (27)] to define the diffusion coefficient534

function Di(r) with r = (x, y, z) by535

Di(r) =


Di,b, z < Z1 or z > Z2 (bulk part),

Di,c + (Di,c −Di,b)ft(r), Z2− η ≤ z ≤ Z2 (top buffer part),
Di,c, Z1 + η ≤ z ≤ Z2− η (channel pore),

Di,c + (Di,c −Di,b)fb(r), , Z1 ≤ z ≤ Z1 + η (bottom buffer part),

536

where Di,b and Di,c are the diffusion constants of species i for the bulk and channel537

pore regions, respectively; fb and ft are the interpolation functions given in [49,538

This manuscript is for review purposes only.



18 D. XIE AND B. LU

(a) Molecular structure of GA (b) Our protein region Dp fitting GA well

Fig. 3: (a) Two views of GA (PDB identification code 1MAG) depicted in sticks for
the molecular structure and cartoons for the two helical subunits. (b) Two views of
our protein region Dp, along with the GA molecular structure depicted in balls for
oxygen atoms (in red), nitrogen atoms (in blue), and carbon atoms (in gray).

Equation (27)] such that each diffusion function is sufficiently smooth in the solvent539

regionDs; and η is a parameter for adjusting the buffering region size. By default, each540

finite element equation of (5.8) and (5.13) is solved, approximately, by the generalized541

minimal residual method using incomplete LU preconditioning with the absolute and542

relative residual errors being less than 10−6.543

We did numerical tests on an ion channel protein, a gramicidin A (GA), in a544

solution of anions Cl− and cations K+ to demonstrate the convergence of our nonlinear545

relaxation iterative scheme and the computer performance of our program package.546

Here the charge numbers Z1 = 1 and Z2 = −1. The GA channel is a small protein 0.4547

nm in diameter and 2.5 nm in length composed of symmetric dimers of two β-helical548

subunits. Two views of its molecular structure are given in Figure 3(a).549

GA is an antibiotic peptide produced by Bacillus brevis and has been extensively550

studied in experiments and various modelings [3, 46]. Due to the cation-selective551

property and the simplicity in molecular structure compared with other ion channel552

proteins [2], the GA channel has been a typical molecular force probe to explore how553

changes in bilayer properties alter protein function [39]. With an X-ray crystallo-554

graphic molecular structure [25] and the experimental data [12], the GA channel is555

often selected to construct numerical tests for validating PNP ion channel models556

[49, 54].557

We downloaded the GA molecular structure file 1mag.pdb from the protein data558

bank (PDB, https://www.rcsb.org). We then derived its PQR file that contains the559

data missed in the PDB file, such as the hydrogen atoms, the atomic charge numbers,560

and the atomic radii. The total number np of atoms is 280. We rotated the ion channel561

and assembled it with a membrane, as illustrated in Figure 1, for a rectangular box562

Ω of dimensions 40× 40× 60 defined by Lx1 = −20.323, Lx2 = 19.677, Ly1 = −20.0,563

Ly2 = 20.0, Lz1 = −33.421, Lz2 = 26.579, Z1 = −11, and Z2 = 6 for a membrane564

thickness of 17 Å. The meshes Ωh and Ds,h have 24686 and 15828 mesh points,565

respectively. We display them in Figure 4(a,b) to show their geometrical complexities.566

Because of the periodic boundary conditions, the dimensions 24686 and 15828 of U1567

and V1 were reduced to the dimensions 22541 and 14203 of U2 and V2, respectively.568
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(a) Mesh for the box domain Ω (b) Mesh for solvent region Ds

Fig. 4: The interface fitted irregular tetrahedral meshes of the box domain Ω and
solvent region Ds for the ion channel protein Gramicidin A (PDB identification code
1MAG) for our numerical tests. Here the meshes of the membrane region Dm and
protein region Dp are colored in yellow and green, respectively, for clarity.

(a) Protein region Dp (b) Solvent region Ds (c) Membrane region Dm

Fig. 5: The electrostatic potential u produced by the PNPic finite element solver on
the triangular surface meshes of the protein, solvent, and membrane regions Dp, Ds,
and Dm in color mapping from blue for −2 to red for 2.

In the numerical tests, we set εs = 80, εp = 2, and εm = 2; D1,b = 0.196,569

D1,c = 0.0196 (for K+ ions), D2,b = 0.203, and D2,c = 0.0203 (for Cl− ions); and570

η = 3 (for the diffusion coefficient function Di(r)). Since εm = εp, we calculated Ψ by571

solving the finite element variational problem (5.2). All the numerical tests were done572

on our iMac computer with one 4.2-GHz Intel core i7 processor and 64 GB memory.573

One important feature of our PNPic software package is to be able to visualize574
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Table 1: Parameter values for the boundary value functions gi for i = 1, 2 and g
defined in (6.1) and the performance of our PNPic finite element solver.

ub ut cbi Iteration number CPU time (seconds)
−1 1 0.5 15 86.10
−1 1 0.1 15 85.41
−3 3 0.5 24 140.86

(a) Electrostatic potential u (b) K+ concentration c1 (c) Cl− concentration c2

Fig. 6: The periodic boundary value conditions (2.9) well retained in the PNPic finite
element solution (u, c1, c2). Here the color mapping ranges for u and ci are [−1, 1]
and [0, 1], respectively, from blue to red.

the values of ionic concentrations ci and electrostatic potential function u produced575

by our PNPic finite element solver in color mapping on a surface mesh of ion channel576

protein region Dp, membrane region Dm, or solvent region Ds. This feature makes577

our PNPic software package particularly useful in the study of ion channel properties.578

As an example, Figure 5 displays the values of u on the surface meshes of Dp, Ds,579

and Dm, respectively. The three surface mesh plots of Figure 5 also display the580

complicated shapes of the interfaces Γp, Γpm, and Γm. From Figure 3(b), it can be581

seen that our protein region Dp wraps well the molecular structure of GA.582

Figure 6 displays the boundary values of the electrostatic potential u and con-583

centrations c1 and c2 on the four side surfaces ΓN of the box domain Ω and the four584

side surfaces ΓN ∩ ∂Ds of the solvent region Ds in color mapping. Here u, c1 and c2585

were generated by our PNPic finite element software package using ub = −1, ut = 1,586

and cbi = 0.5 mol/L for i = 1, 2. The plots from this figure confirm that our PNPic587

finite element solution can well retain the periodic boundary value conditions (2.9).588

Figure 7 displays the convergence of our relaxation iterative scheme, defined in589

(5.6) and (5.7) in terms of iteration numbers and the performance of our software590
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Fig. 7: Convergence and performance of our relaxation iterative scheme (5.6) for
solving the PNPic finite element system (5.5) as a function of ω for a GA (PDB
identification code 1MAG) in the 0.1 molar KCl solution with ub = 1 and ut = 0.

Fig. 8: Iteration errors maxi=1,2 ||cj+1
i −

cji || and ||Φ̃j+1 − Φ̃j || of iteration j for
the PNPic relaxation iterative scheme
defined in (5.6) and (5.7) using ω = 0.8.

Fig. 9: Iteration errors ‖F (qj+1
k )‖ and

‖qj+1
k − qjk‖ of iteration j for Newton

scheme (5.12) for finite element equation
F (Φ̃) = 0 of (5.9) at k = 0.

package in terms of computer CPU time, as a function of the relaxation parameter591

ω. Here we set ub = 1, ut = 0, and cb1 = cb2 = 0.1 mol/L. From the figure, it592

can be seen that the number of iterations was reduced from 36 at ω = 0.4 to 15593

at ω = 0.8 and that the corresponding computer CPU time was reduced from 209594

seconds to 86 seconds. These test results show that the convergence and performance595

of our relaxation iterative scheme can be improved sharply through properly selecting596

a relaxation parameter value.597

Figure 8 reports the convergence processes of our PNPic relaxation iterative598

scheme. From the figure, it can be seen that the iteration errors for both Φ̃ and599

ci were reduced from 102 to 10−6 in 15 iterations, showing that our PNPic relaxation600

iterative scheme has a fast rate of convergence.601

Figure 9 reports a convergence process of our Newton iterative scheme (5.12) for602
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Fig. 10: The electrostatic potential u and the concentrations c1 and c2 of K+ and Cl−

ions in color mapping on a cross section (x = 0) of the solvent region Ds. Here the
protein and membrane regions are colored in green and yellow, respectively; concen-
trations are in mol/L; and electrostatic potential u is in kBT/ec (≈ 0.0257 volts).

solving the nonlinear finite element equation of (5.9) for Φ̃ at the initial iteration603

k = 0. Here the initial iterate Φ̃0 was generated by the modified Newton iterative604

scheme (5.14) for solving our PB ion channel model. From this figure it can be seen605

that the iteration errors were reduced quickly from 106 to 10−6 in 16 iterations only.606

Furthermore, as the iteration number k was increased for k ≥ 1, the total number607

of iterations determined by the criteria (5.11) was further reduced due to using the608

previous iterate Φ̃k as the initial guess. It is this fast rate of convergence of our609

modified Newton iterative scheme that makes our PNPic relaxation iterative scheme610

particularly efficient.611

Figure 10 displays the concentrations of anions Cl− and cations K+ and the612

electrostatic potential u on a cross section (x = 0) of the solvent region Ds in color613

mapping. Here we marked the membrane and protein regions in yellow and green614

colors, respectively, to clearly show the values in the solvent region Ds. From the615

figure, it can be seen that the electrostatic potential values are almost all negative (in616

blue) within the channel pore, repeling the anions Cl− away from the channel pore617

(in blue) while attracting the cations K+ to the channel pore (in red).618

To visualize a three-dimensional concentration function as a curve across the619

channel pore, we construct a rectangular box domain B such that B contains the620

channel pore part fully. We then divide B uniformly into m sub-boxes, {Bj}mj=1, in621

the z-axis direction and calculate a volume integral as follows:622

(6.2) ci,j =

∫
Bj

ci(r)dr, i = 1, 2, . . . , n, j = 1, 2, . . . ,m,623

where ci has been set to be zero outside the solvent region Ds to ensure the definition624

of the above integrals. Clearly, cij gives the total amount of the ions of species i in625
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Fig. 11: A comparison of the concentrations of K+ and Cl− ions within and near the
channel pore (−11 < z < 6) generated by the PNPic model for GA (PDB identification
code 1MAG) using three different boundary value functions gi and g defined in (6.1).

Table 2: A comparison of the currents estimated by our new formula (6.4) with the
experimental data reported in [12] for GA (PDB identification code 1MAG) in a 0.1
molar NaCl solution. Here voltages are in mV and currents in pA.

Voltage across the membrane 50 100 150 200
Averaged current by formula (6.4) 0.5878 1.2026 1.8430 2.5072

Experimental current reported in [12] 0.65 1.2 1.71 2.12
Relative error 0.0956 0.0022 0.0778 0.1826

the sub-box Bj . We next set zj to be the z-coordinate of a midpoint of Bj to produce626

m points, (zj , ci,j) for j = 1, , . . . ,m. Linking these points results in a curve of ci as a627

function of z from z1 to zm. Clearly, such a curve provides us with a simple tool for628

visualizing the distribution of an ionic species within the channel pore. It can also be629

valuable for us to compare concentration functions.630

We did numerical tests to study the effect of Dirichlet boundary value conditions631

on the concentrations c1 and c2. Here B = [−1.791, 1.2125] × [−0.8262, 1.6595] ×632

[−14.4, 10.6] and B was uniformly divided into 28 sub-boxes Bj (i.e., m = 26) to633

produce 26 points (zj , ci,j). We solved the PNPic model using three different boundary634

value functions as listed in Table 1, along with the performance data of our relaxation635

iterative scheme. A comparison of the concentrations is displayed in Figure 11.636

Figure 11 shows that changing the boundary value function of an electrostatic637

potential u (i.e., changing a voltage across the membrane) has an impact on concen-638

tration functions within and near the channel pore. We also see that changing the639

bulk concentrations cbi caused significant changes outside the channel pore for cations640

K+ and inside the channel pore for anions Cl−.641

The test results of Figures 10 and 11 validate our PNPic model since they clearly642

describe the distribution patterns of cations and anions, which match the well-known643

fact that the GA is cation selective.644

Finally, as an application of PNPic, we present a new formula for computing the645

electric current across the membrane and compare computed values with experimental646

data. It is known that the electric current IS passing a cross section S of the channel647
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pore can be calculated by648

(6.3) IS = −ecNA

103

n∑
i=1

ZiDi,c

∫
S

[
∂ci(s)

∂z
+ Zici(s)

∂u(s)

∂z

]
ds649

provided that the normal direction of the cross section S coincides with the z-axis650

direction, each ionic concentration ci is measured in mol/L, Di,c is a diffusion coeffi-651

cient within the channel pore in Å/ps (pico-second), and the current is measured in652

pA (pico-ampere). In the steady state, IS only varies with the cross-surface S within653

the channel pore since both ∂ci(s)
∂z and ∂u(s)

∂z with s = (x, y, z) are independent of z.654

In calculation, different values of IS can be derived due to either numerical errors or655

S having different sizes. Thus, an average value Iave of IS is often calculated using656

several cross sections. However, for an irregular tetrahedral mesh of the solvent region657

Ds, the calculation of IS is difficult since the calculation of a surface integral over S658

requires a mesh of S and an interpolation of both ∂ci(s)
∂z and ∂u(s)

∂z onto this surface659

mesh, which are very difficult tasks to be done numerically. To avoid these difficulties,660

we present a new formula for computing Iave as follows:661

(6.4) Iave = − θ

hB

ecNA

103

n∑
i=1

ZiDi,b

∫
B

[
∂ci(r)

∂z
+ Zici(r)

∂u(r)

∂z

]
dr,662

where B is a piece of the ion channel pore with height hB in the z-axis direction,663

0 < θ ≤ 1, and Di,b is the diffusion coefficient of species i in the bulk solution region.664

Here Di,c has been set as Di,c = θDi,b.665

In fact, since B ≈ S × [z1, z2] with z2− z1 = hB , we can get that666 ∫
B

[
∂ci(r)

∂z
+ Zici(r)

∂u(r)

∂z

]
dr ≈

∫ z2

z1

∫
S

[
∂ci(s)

∂z
+ Zici(s)

∂u(s)

∂z

]
dsdz667

= hB

∫
S

[
∂ci(s)

∂z
+ Zici(s)

∂u(s)

∂z

]
ds,668

where we have used the fact that the surface integral is independent of z. Applying669

the above identity to (6.3), we show that Iave is an approximation to IS .670

In the tests, we set B with the bottom surface at z = −8 and the top surface671

at z = 2 since the buffer size η was set as 3 (i.e., hB = 10 Å), cbi = 0.1 mol/L,672

θ = 0.0245, ut = 0, and ub = 50, 100, 150, and 200 mV (1 mV = 0.001 volts). The673

test results are reported in Table 2. From these test results, it can be seen that674

the currents computed by our PNPic finite element software package match well the675

experimental data reported in [12]. These test results further validate our PNPic676

model and software package.677

7. Conclusions. We have presented a new PNP ion channel model using pe-678

riodic boundary value conditions, called PNPic, and developed an effective finite679

element relaxation iterative algorithm for solving PNPic. We then implemented this680

PNPic finite element algorithm as a software package for the calculation of electro-681

static potential density function, ionic concentration functions, and the distribution682

of ions and electric current within an ion channel pore. This PNPic software pack-683

age works for an ion channel protein with a three-dimensional X-ray crystallographic684

molecular structure in an ionic solvent with multiple ionic species.685

In particular, because of the periodic boundary value conditions, our PNPic model686

can reflect the influence of ion channels from outside a simulation box on the cal-687

culation of ionic concentrations and an electrostatic potential. Using our solution688
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decomposition scheme, we simplify the PNPic system as a new system that does689

not involve any singularity and can be much easier to solve numerically so that the690

complexity of PNPic is reduced remarkably. We also show that the accuracy of the691

finite element solver can be well retained by using the Slotboom variable transforma-692

tion technique. We have developed an efficient modified Newton iterative scheme for693

solving each nonlinear finite element equation that is generated from the Slotboom694

variable transformation. Through constructing proper communication operators, we695

have successively carried out function operations between different finite element func-696

tion spaces, which are defined on different physical domains (a solvent region for ionic697

concentrations and a box domain for potential functions) and subject to periodic698

boundary constraints. As applications, we have obtained new formulas for visualizing699

the distribution of an ionic species within the channel pore in a simple curve (see700

(6.2)) and for computing the electric current passing on average a cross section of701

an ion channel pore (see (6.4)). Moreover, we did numerical tests on an ion channel702

protein and reported the numerical results that demonstrate the convergence and per-703

formance of our PNPic finite element solver. Finally, we validated our PNPic model704

using the cation selectivity property of an ion channel protein and the experimental705

data from a chemical laboratory.706

In this work, we have mainly focused on the presentation of our new PNPic model707

and its effective finite element solver and only reported numerical results on a small708

ion channel protein in a symmetric 1:1 ionic solvent. But our PNPic software package709

can be applied to the calculation of electrostatic potential and ionic concentrations for710

a large ion channel protein in ionic solvents with multiple species. It also can be used711

to study the various properties of our PNPic model. For example, we will study how712

and to what extent the periodic boundary value conditions can affect ion transport713

and electric current across membrane or within an ion channel pore. Moreover, our714

PNPic software package can be used to make various numerical experiments to justify715

the novelty and advantage of our PNPic model in comparison to those reported in716

[36, 49]. We will further improve the convergence and performance of our PNPic717

finite element solver using other advanced numerical techniques to make our PNPic718

software package a powerful tool for ion channel simulations.719

Finally, it is worth noting that a repetition of one type of ion channel protein720

along the membrane, as done in our construction of periodic boundary value condi-721

tions, has beenroutinely used in state-of-the-art molecular dynamics for calculating722

long-range electrostatic interactions by means of a simulation box containing a single723

protein molecule. This treatment reduces the complexity of membrane modeling re-724

markably, making it possible for us to count the electrostatic interactions outside a725

simulation box. On the other hand, it does produce modeling errors since a real cell726

membrane consists of various ion channel proteins as passage conduits for different727

ionic species. In order to improve the reliability of our PNPic model in the calculation728

of electrostatics and ionic concentrations, it is important to estimate such modeling729

errors either theoretically or numerically via the experimental data from chemical730

laboratories and molecular dynamics simulations. We plan to do so in the future.731
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