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We present a new size-modified Poisson–Boltzmann ion channel
(SMPBIC) model and use it to calculate the electrostatic potential,
ionic concentrations, and electrostatic solvation free energy for a
voltage-dependent anion channel (VDAC) on a biological mem-
brane in a solution mixture of multiple ionic species. In particular,
the new SMPBIC model adopts a membrane surface charge den-
sity and a natural Neumann boundary condition to reflect the
charge effect of the membrane on the electrostatics of VDAC. To
avoid the singularity difficulties caused by the atomic charges of
VDAC, the new SMPBIC model is split into three submodels such
that the solution of one of the submodels is obtained analytically
and contains all the singularity points of the SMPBIC model. The
other two submodels are then solved numerically much more

efficiently than the original SMPBIC model. As an application of
this SMPBIC submodel partitioning scheme, we derive a new for-
mula for computing the electrostatic solvation free energy.
Numerical results for a human VDAC isoform 1 (hVDAC1) in three
different salt solutions, each with up to five different ionic species,
confirm the significant effects of membrane surface charges on
both the electrostatics and ionic concentrations. The results also
show that the new SMPBIC model can describe well the anion
selectivity property of hVDAC1, and that the new electrostatic sol-
vation free energy formula can significantly improve the accuracy
of the currently used formula. © 2019 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.26091

Introduction

Voltage-dependent anion channel (VDAC) is the most abundant
protein on the outer mitochondrial membrane (OMM) and is
the main conduit that connects the cytosol to the narrow inter-
membrane space of mitochondria. It regulates the simultaneous
transport of respiratory substrates (e.g., pyruvate, malate, and
glutamate), adenine nucleotides and phosphates (e.g., ATP,
ADP, Pi), and anions and cations (e.g., Cl−, Na+, K+) into and out
of mitochondria.[1–4] By providing substrates, nucleotides, and
phosphates necessary for electron transfer along the electron
transport chain complexes and proton pumping across the
inner mitochondrial membrane. VDAC plays an important role
in regulating mitochondrial bioenergetics and ATP synthesis.
The rate of transport of a particular species depends on its size
and charge as well as on the OMM potential and biophysical
characteristics of VDAC (permeability, opening, and gating; con-
ductance) that largely depend on its exquisite structure.[5,6]

Attenuation of VDAC conductance due to alterations in VDAC
structure under pathophysiological conditions can lead to
reduction in substrate supply and ADP/ATP exchange across
the inner mitochondrial membrane during oxidative phosphor-
ylation and ATP synthesis, leading to mitochondrial dysfunction
and cellular injury/death. Thus, as a major regulatory gateway
for ions and metabolites (organic anions) to go into and out of
mitochondria, VDAC plays a crucial role in regulating an inti-
mate dichotomy between cell survival and cell death, character-
izing health and diseases.[7–16] An important first step toward
understanding how alteration in VDAC function impacts mito-
chondrial function is to characterize the structure-dependent

transport characteristics of VDAC across OMM in a solution of
multiple ionic species of different ion sizes.

The Poisson–Boltzmann equation (PBE) is one of the widely
used dielectric continuum models for computing the electro-
statics of a biomolecule surrounded by a salt solution due to
the popularity of several PBE software packages, such as
DelPhi,[17] UHBD,[18] APBS,[19,20] PBSA,[21,22] and PBEQ[23] as well
as the recent software packages MIBPB[24] and SDPBS.[25,26]

However, for such approach to work for modeling of ion chan-
nels on a biological membrane, such as VDAC on OMM, the
PBE and its software packages need to be significantly modified
to address the additional modeling and numerical solver chal-
lenges due to the geometric complexity of a transmembrane
channel protein and solvent that is a mixture of many ionic spe-
cies. Furthermore, a PBE ion channel model requires new inter-
face conditions between the membrane and the solvent
regions, new permittivity constants within the channel pore
and membrane region, and new boundary value conditions for
the boundary parts involving the membrane. Since a biological
membrane consists of many lipid and cholesterol molecules, its
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surface charge density can be up to 30 (μC/cm2),[27,28] which
can have significant effects on the flow of ions and metabolites
into and out of the ion channel pore.[28–31] Hence, charges from
a biological membrane should be accounted for in the model-
ing of an ion channel, such as VDAC.

Significant efforts have been devoted toward the development
of PBE-based ion channel models.[31–36] For such models, the com-
plexity of an ion channel was reduced by imposing different
assumptions. One typical technique that was used to deal with the
complexity of a charged membrane was to introduce a membrane
potential and treat it as an additional charge source for PBE.[29,31]

In doing so, the membrane was simply treated as a water barrier
between the inner and outer solution spaces without any charge.
The Dirichlet boundary value conditions from the PBE for a protein
surrounded by salt solution were retained in current PBE-based ion
channel models, thus ignoring any influence of the membrane.
Numerically speaking, the governing equations for the current PBE-
based ion channel models were solved directly without using any
solution decomposition reformulation, as was done in Reference
[25] to deal with the singularity difficulties caused by the atomic
charges of an ion channel molecule. To the best of our knowledge,
there are no ion size-modified PBE-based ion channel models in
the literature that work for a solution of multiple ionic species,
even though ion size effects have been known to be important,
especially for the calculation of ionic concentrations.[26,35,37–41]

In this article, we present a new size-modified Poisson–
Boltzmann ion channel (SMPBIC) model and use it to calculate
the electrostatic potential, ionic concentrations, and electro-
static solvation free energy for a VDAC protein on a biological
membrane in a solution mixture of multiple ionic species. One
significant difference between our new SMPBIC model and cur-
rent ion channel models is the fact that our model not only
accounts for ionic size effects but also adopts a membrane sur-
face charge density and a natural Neumann boundary condi-
tion. Thus, our new SMPBIC model can reflect both the ionic
size effect and the membrane charge effect on the electrostat-
ics of VDAC. Moreover, our SMPBIC model can be solved
numerically by a fast finite element algorithm based on a sub-
model partitioning scheme, and can work for a VDAC three-
dimensional (3D) molecular structure or any other ion channel
structure in a solution mixture of multiple ionic species.

As an application of our SMPBIC model, we carried out numeri-
cal simulations using a 3D human VDAC isoform 1 (hVDAC1)
structure from the Protein Data Bank (PDB) website (PDB ID
2JK4)[42] in three different ionic solvents, each with up to five dif-
ferent ionic species. Note that this hVDAC1 protein (PBD ID 2JK4)
is known to be in the open state conformation (i.e., maximal con-
ducting state with zero voltage across the OMM, which is the
most physiologically plausible condition for VDAC on OMM) with
an anion selectivity property. Hence, it can serve as a good test
case for assessing the accuracy and efficiency of our SMPBIC
model and the associated software package. Numerical results
show that the hVDAC1 anion selectivity property can be well
predicted by our SMPBIC model. They also demonstrate the sig-
nificant impact of membrane surface charges on the electrostatic
potential and ionic concentrations.

Materials and Methods

Mathematical Modeling of Ion Channels

In this section, we describe the construction of our SMPBIC
model based on a box domain, Ω, as defined by

Ω= x, y,zð Þ∈R3 j Lx1 < x < Lx2, L y1 < y < L y2, Lz1 < z < Lz2
� �

:

ð1Þ

As illustrated in Figure 1a, we partition this box domain and
its boundary ∂Ω as follows:

Ω=Dp[Dm[Ds[Γm[Γp[Γpm, ∂Ω=ΓD[ΓN , ð2Þ

where Lx1, Lx2, Ly1, Ly2, Lz1, and Lz2 are real numbers, rep-
resenting the dimensions of the three-dimensional (3D) box
domain, with the origin of the rectangular coordinate system
located at the center of the channel pore; Dp, Dm, and Ds

denote the protein region, which hosts the VDAC molecule, the
membrane region, and the solvent region, respectively; Γm
denotes the interface between Dm and Ds; Γp denotes the inter-
face between Dp and Ds; Γpm denotes the interface between Dp

and Dm; ΓD denotes the bottom and top surfaces of the box;
and ΓN denotes the four side surfaces of the box. Furthermore,
the location of the membrane is indicated by the two numbers

Figure 1. An illustration of a box domain
partition: a) an ion channel protein on a
membrane in an ionic solvent for the domain
partition (2). b) A protein surrounded by an
ionic solvent. Here, Γ denotes the interface
between the protein region Dp and solvent
region Ds. [Color figure can be viewed at
wileyonlinelibrary.com]
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Z1 and Z2 on the z-axis, and the membrane normal is
assumed to coincide with the z-axis direction of the 3D rect-
angular coordinate system of the whole space R3. In addition,
the three regions Dp, Dm, and Ds are treated as the dielectric
continuum media with permittivity constants ϵp, ϵm, and ϵs,
respectively.

In the currently used size-modified Poisson–Boltzmann equa-
tion (SMPBE),[41,43] the protein region Dp is surrounded by the
solvent region Ds, as illustrated in Figure 1b, and there is no
membrane region involved. In addition, an electrostatic poten-
tial function, u, of the electric field induced by the atomic char-
ges of the protein and the ionic charges of the ionic solvent is
governed by a Poisson equation in Dp,

−ϵpΔu rð Þ= α
Xnp
j =1

z jδr j , r∈Dp, ð3Þ

and a Poisson–Boltzmann equation in Ds,

ϵsΔu rð Þ+ β

Pn
i =1

Zicbi e
−Ziu rð Þ

1 + γ
�v

v0

Pn
i =1

cbi e
−Ziu rð Þ

= 0, r∈Ds , ð4Þ

together with the following interface and boundary value conditions:

u s−ð Þ= u s+ð Þ, ϵs
∂u s+ð Þ
∂np sð Þ = ϵp

∂u s−ð Þ
∂np sð Þ , s∈Γ, u sð Þ= g sð Þ, s∈ ∂Ω,

ð5Þ

where np is the unit outward normal vector of Dp; Γ denotes

the interface between Dp and Ds;
∂u sð Þ
∂np sð Þ =ru sð Þ�np sð Þ;

u s�ð Þ= lim
t!0+

u s� tnp sð Þ� �
, which are the two sided limits along

the direction of np from inside and outside the protein region
Dp; g is a boundary value function, which can be simply set as
zero for a sufficiently large box domain based on the fact that u
(r)!0 as jr j !∞; np is the number of atoms of the protein;
n is the number of ionic species of the ionic solvent; rj and zj
denote the position and charge number for the jth atom of the

protein; cbi , Zi, and vi denote the bulk concentration, the charge
number, and an ion volume of the ith ionic species; α, β, γ, and
�v are the model parameters defined by

α=
1010e2c
ϵ0kBT

, β =
NAe2c

1017ϵ0kBT
, γ = 10−27NA , �v =

1
n

Xn
i = 1

vi , ð6Þ

where v0 is a size scaling parameter (by default, v0 = min
{vi j i = 1, 2, …, n}), and δr j is the Dirac delta distribution at rj.

Here, ec is the elementary charge, kB is the Boltzmann constant,
T is the absolute temperature, ϵ0 is the permittivity of the vac-
uum, and NA denotes the Avogadro number.

In eqs. (3)–(5), the SI units have been used to measure length
in angstroms (Å), ionic concentrations in moles per liter (mol/L),
temperature in kelvins (K), charges in Coulombs (C), and elec-
trostatic potential in volts.

For our numerical simulations, we used the following physical
constant values:

ec = 1:6022× 10−19 C, ϵ0 = 8:8542× 10−12 F=m,

kB = 1:3806× 10−23 J=K, T =298:15 K,

where F, J, and m denote Farad (the unit of capacitance), Joule
(the unit of energy), and meter, respectively. By these physical
constants, we have

α≈7042:9399, β≈4:2414, γ≈6:022× 10−4,
kBT
ec

≈0:026 v:

To extend the SMPBE for a protein in an ionic solvent to an
ion channel on a membrane in an ionic solvent, we need to
deal with membrane modeling issues. Currently, the mem-
brane region Dm is treated as a dielectric slap without any
charge. Thus, the electrostatic potential, u, within Dm is
defined by the Laplace equation

−ϵmΔu rð Þ=0, r∈Dm, ð7Þ

where ϵm denotes a permittivity constant of the membrane
region. In other words, the membrane is only considered as a
water barrier in the current ion channel modeling.

However, because the membrane consists of many lipid and
cholesterol molecules, its charge effect on the membrane
potential is too strong to be ignored. To account for such an
effect, we added a surface charge density, σ (in units of
μC/cm2), on the membrane surface, Γm, and then obtained a
new electric flux interface condition on Γm as follows:

ϵm
∂u s+ð Þ
∂nm sð Þ = ϵs

∂u s−ð Þ
∂nm sð Þ + τσ, s∈Γm, ð8Þ

where nm denotes the unit outward normal vector of Dm, and τ

is a scaling constant such that τσ has units Å−1. Note that the
directional derivatives also have units Å−1. Hence, these units
can be removed from both sides of eq. (8), making it dimen-
sionless. Under such conditions:

τ =
10−12ec
ϵ0kBT

, ð9Þ

which is about 4.392 at T = 298.5 K. Experimentally measured
values for σ range from 0.2 to 30 (μC/cm2).[27,28]

Another important ion channel modeling issue arises from the
selection of boundary value conditions. Currently, the Dirichlet
boundary condition of eq. (5) was set similarly to what was done
in the case of a protein surrounded by an ionic solvent without
considering any membrane boundary influence on the four side
surface ΓN of the box domain. We address this issue by con-
structing a mixed boundary value condition—a Neumann bound-
ary condition on the four side surfaces ΓN as follows:

∂u sð Þ
∂nb sð Þ = 0, s∈ΓN , ð10Þ
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together with the Dirichlet boundary value condition on the
bottom and top surfaces ΓD:

u sð Þ= g sð Þ, s∈ΓD, ð11Þ

where nb denotes the unit outward normal vector of Ω, and
g is selected as a piecewise function:

g sð Þ= ub, s∈Γb,

ut , s∈Γt:

�
ð12Þ

Here, ub and ut denote two boundary potential functions
defined on the bottom surface Γb and top surface Γt of the box
domain Ω, respectively. Clearly, we can simply set ut = 0 and
ub = 0 when the box dimension in the z-axis direction is suffi-
ciently large according to the fact that u(r) ! 0 as jz j ! ∞ for
r = (x, y, z). We can also set nonzero ut and ub to mimic an exter-
nal voltage, V, across the membrane by setting V = ut − ub.

The Neumann boundary condition (10) is a natural bound-
ary value condition because it reflects the fact that none of
the charges enters the box domain Ω from the four side sur-
face ΓN. Hence, our new mixed boundary value condition well
reflects the influence of membrane on the boundary values
of electrostatic potential u.

In addition, we redefine the solvent permittivity constant ϵs
as a piecewise constant function

ϵs rð Þ= ϵs, r∈ r= x, y,zð Þ∈Ds j z < Z1, or z > Z2f g,
θϵs, r∈ r= x, y,zð Þ∈Ds j Z1≤ z ≤ Z2f g,

�
ð13Þ

where θ is a reduction factor between 0 and 1. This new
change reflects the fact that the channel pore has much less
water than the bulk solvent due to ions crowding inside the
channel pore; thus, the solvent permittivity constant ϵs of bulk
water can be significantly reduced within the pore area.

For clarity, we now combine eqs. (3), (4), and (7) with the
interface and boundary value conditions, namely eqs. (5), (8),
(10), and (11), to obtain a nonlinear interface boundary value
problem as follows:

−ϵpΔu rð Þ= α
Pnp
j =1

z jδr j , r∈Dp,

Δu rð Þ= 0, r∈Dm,

ϵsΔu rð Þ+ β

Pn
i = 1

Zicbi e
−Ziu rð Þ

1+ γ
�v

v0

Xn
i =1

cbi e
−Ziu rð Þ

= 0, r∈Ds,

u s−ð Þ= u s+ð Þ, ϵp
∂u s+ð Þ
∂np sð Þ = ϵs

∂u s−ð Þ
∂np sð Þ , s∈Γp,

u s−ð Þ= u s+ð Þ, ϵm
∂u s+ð Þ
∂nm sð Þ = ϵs

∂u s−ð Þ
∂nm sð Þ + τσ, s∈Γm,

u s−ð Þ= u s+ð Þ, ϵp
∂u s−ð Þ
∂np sð Þ = ϵm

∂u t,s+ð Þ
∂np sð Þ , s∈Γpm,

u sð Þ= g sð Þ, s∈ΓD,
∂u t,sð Þ
∂nb sð Þ = 0, s∈ΓN ,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð14Þ

which gives the definition of our SMPBIC model. Here, α, β, γ, �v
τ, g, and ϵs are given in eqs. (6), (9), (12), and (13), respectively,

cbi is the bulk concentration of species i in mol/L, and σ is a
membrane surface charge in μC/cm2. When a solution u of
SMPBIC model is given, the corresponding electrostatic poten-
tial function Φ is derived by the formula

Φ rð Þ= u rð ÞkBT
ec

≈0:026 u rð Þ in volts, r∈Ω:

Specifically, when we set v0 = 0, our SMPBIC model (14) is
reduced to a Poisson–Boltzmann equation ion channel (PBEic)
model as follows:

−ϵpΔu rð Þ= α
Pnp
j =1

z jδr j , r∈Dp,

−ϵmΔu rð Þ= 0, r∈Dm,

ϵsΔu rð Þ+ β
Pn
i =1

Zicbi e
−Ziu rð Þ = 0, r∈Ds ,

u s−ð Þ= u s+ð Þ, ϵp
∂u s+ð Þ
∂np sð Þ = ϵs

∂u s−ð Þ
∂np sð Þ , s∈Γp,

u s−ð Þ= u s+ð Þ, ϵm
∂u s+ð Þ
∂nm sð Þ = ϵs

∂u s−ð Þ
∂nm sð Þ + τσ, s∈Γm,

u s−ð Þ= u s+ð Þ, ϵp
∂u s−ð Þ
∂np sð Þ = ϵm

∂u t,s+ð Þ
∂np sð Þ , s∈Γpm,

u sð Þ= g sð Þ, s∈ΓD,
∂u t,sð Þ
∂nb sð Þ = 0, s∈ΓN:

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð15Þ

Furthermore, setting all cbi =0 for i = 1, 2, …, n (i.e., no any
ion in the solvent) in the above PBEic model, we obtain a
Poisson dielectric model for an ion channel in the pure water
solvent as follows:

−ϵpΔu rð Þ= α
Pnp
j =1

z jδr j , r∈Dp,

−ϵmΔu rð Þ= 0, r∈Dm,

−ϵsΔu rð Þ=0, r∈Ds ,

u s−ð Þ= u s+ð Þ, ϵp
∂u s+ð Þ
∂np sð Þ = ϵs

∂u s−ð Þ
∂np sð Þ , s∈Γp,

u s−ð Þ= u s+ð Þ, ϵm
∂u s+ð Þ
∂nm sð Þ = ϵs

∂u s−ð Þ
∂nm sð Þ + τσ, s∈Γm,

u s−ð Þ= u s+ð Þ, ϵp
∂u s−ð Þ
∂np sð Þ = ϵm

∂u t,s+ð Þ
∂np sð Þ , s∈Γpm,

u sð Þ= g sð Þ, s∈ΓD,
∂u t,sð Þ
∂nb sð Þ = 0, s∈ΓN:

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð16Þ

Although the above Poisson dielectric model is unrealistic
in biology because an ion channel protein cannot survive in
water solution, it can be a valuable reference model for the
calculation of electrostatic solvation free energy, as discussed
under the Calculation of Electrostatic Solvation Free Energy
section.
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When our SMPBIC model solution u is known, the concentra-
tion function ci of species i (in units mol/L) can be calculated
using the following equation:

ci rð Þ= cbi e
−Ziu rð Þ

1+ v0γ
Pn
j =1

cbje
−Z ju rð Þ

, i =1,2,…,n: ð17Þ

Setting v0 = 0 in the above formula gives the classic
Boltzmann distribution formula

ci rð Þ= cbi e
−Ziu rð Þ, i = 1,2,…,n, ð18Þ

where u is a solution of the PBEIC model, namely eq. (15).

A Submodel Partitioning of the SMPBIC Model

In this section, we on our SMPBIC model into three submodels
to overcome the solution singularity difficulties caused by the
atomic charges from an ion channel molecular structure. Similar
partitioning was done for a protein surrounded by an ionic sol-
vent in References [25,41,43], but its construction becomes
more difficult for the case of SMPBIC model since it involves
more complicated geometries, more difficult interface condi-
tions, and more difficult boundary value conditions. The three
submodels of our SMPBIC model are referred to as models 1–3
for clarity.

For simplicity, we only consider the case for which ϵm = ϵp.
Under this assumption, we set

Dpm =Dp[Dm[Γpm,

and find that model 1 is defined by the Poisson equation over
the whole space R3,

−ϵpΔG rð Þ= α
Xnp
j =1

z jδr j , r∈R3, ð19Þ

Model 2 is defined by the linear interface boundary value
problem

ΔΨ rð Þ= 0, r∈Dpm[Ds,

Ψ s−ð Þ=Ψ s+ð Þ, ϵp
∂Ψ s−ð Þ
∂n sð Þ = ϵs

∂Ψ s+ð Þ
∂n sð Þ + ϵs−ϵp

� �∂G sð Þ
∂n sð Þ , s∈Γp,

Ψ s−ð Þ=Ψ s+ð Þ, ϵm
∂Ψ s−ð Þ
∂n sð Þ = ϵs

∂Ψ s+ð Þ
∂n sð Þ + ϵs−ϵmð Þ∂G sð Þ

∂n sð Þ + τσ, s∈Γm,

Ψ sð Þ= g sð Þ−G sð Þ, s∈ΓD,
∂Ψ sð Þ
∂nb sð Þ =−

∂G sð Þ
∂nb sð Þ , s∈ΓN ,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð20Þ

and Model 3 is defined by the nonlinear interface boundary
value problem

Δ~Φ t,rð Þ=0, r∈Dpm ,

ϵsΔ~Φ rð Þ+ β

Pn
i = 1

Zicbi e
−Zi G rð Þ+Ψ rð Þ½ �e−Zi ~Φ rð Þ

1 + γ
�v

v0

Xn
i = 1

cbi e
−Zi G rð Þ+Ψ rð Þ½ �e−Zi ~Φ rð Þ

=0, r∈Ds ,

~Φ t,s+ð Þ= ~Φ t,s−ð Þ, ϵp
∂ ~Φ t,s+ð Þ
∂n sð Þ = ϵs

∂ ~Φ t,s−ð Þ
∂n sð Þ , s∈Γp,

~Φ t,s+ð Þ= ~Φ t,s−ð Þ, ϵm
∂ ~Φ t,s+ð Þ
∂n sð Þ = ϵs

∂ ~Φ t,s−ð Þ
∂n sð Þ , s∈Γm,

~Φ t,sð Þ= 0, s∈ΓD,

∂ ~Φ sð Þ
∂nb sð Þ = 0, s∈ΓN:

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð21Þ

In the above equations, n denotes the unit outward normal
vector of Dpm. From Ref. [25], we can show that the analytical
solution G of model 1 is given by

G rð Þ= α

4πϵp

Xnp
j =1

z j

j r−r j j , ð22Þ

and its gradient vector rG sð Þ= ∂G sð Þ
∂x , ∂G sð Þ

∂ y , ∂G sð Þ
∂z

� �
is given by

rG sð Þ=−
α

4πϵp

Xnp
j = 1

z j
s−r j
� �
s−r j

		 		3 : ð23Þ

Clearly, when the solutions Ψ and ~Φ of models 2 and 3 are
found, the solution u of our SMPBIC model (14) can be con-
structed by the formula

u rð Þ=G rð Þ+Ψ rð Þ+ ~Φ rð Þ 8r∈Ω: ð24Þ

Note that G is singular at each atomic position rj for j = 1,
2, …, np, and models 2 and 3 are well defined within the pro-
tein, membrane, and solvent regions. Hence, from the solution
decomposition formula (24), one can show that our SMPBIC
model (14) has np singularity points within the protein region
Dp, causing it to become very difficult to solve numerically. With
the three submodel partitioning, we completely avoid this sin-
gularity problem by solving models 2 and 3, which are clearly
much easier to solve than the original SMPBIC model (14).

Furthermore, using the fact that ΔG(r) = 0 for r ∈ Dm [ Ds,
we can show that the sum of G and Ψ gives the solution of the
Poisson dielectric model (16) for an ion channel in water.

Calculation of Electrostatic Solvation Free Energy

Electrostatic solvation energy, E, is one important part of the
solvation energy. In general, E can be estimated by

E =
NA

4184
kBT
2ec

ð
Ω
ρ rð Þu rð Þdr,

where u is an electrostatic potential of an electric field induced
by a fixed charge density function ρ, and 1

4184 is a constant for
converting the unit of E from Joules to kilocalories per mole

WWW.C-CHEM.ORG FULL PAPER

Wiley Online Library Journal of Computational Chemistry 2019 5

http://WWW.C-CHEM.ORG


(kcal/mol). The electrostatic solvation free energy, 4E, repre-
sents the energy that is required to move a charged system
from the reference state to the current state. It can be esti-
mated as the energy difference from a reference state:

ΔE = E−Eref ,

where Eref is the electrostatic solvation energy induced by the
same charge density ρ in the reference state.

In the case of our SMPBIC model, we have the charge density
function ρ in the expression

ρ rð Þ=
ec

Pnp
j =1

z jδ r−r j
� �

, r∈Dp,

ec
Pn
i =1

Z jc j rð Þ, r∈Ds:

8>>><
>>>:

ð25Þ

We define the reference state using the water solvent
SMPBIC model (16) and then use solution decomposition
(24) to obtain the reference potential uref as follows:

uref =G rð Þ+Ψ rð Þ, r∈Ω: ð26Þ

Note that all ci = 0 for i = 1, 2, …, n in the reference state,

and u−uref = ~Φ rð Þ for r ∈Ω. Hence, with eqs. (25), (26), and the
box domain partition (2), we can obtain a new formula for com-
puting 4E as follows:

ΔE =
NA

4184
kBT
2ec

ð
Dpm

ρ rð Þ u−urefð Þ rð Þdr+
ð
Ds

ρ rð Þu rð Þdr
" #

=
NA

4184
kBT
2

Xnp
j = 1

z j ~Φ r j
� �

+ γ
Xn
i = 1

Zi

ð
Ds

u rð Þci rð Þdr
" #

,

ð27Þ

where γ = 10−27NA ≈ 6.02214129 × 10−4, which converts the
concentration unit from mol/L to per cubic angstroms as
required in the calculation of energy.

Currently, the free energy 4E is often calculated in three
steps:

Step 1: Calculate the electrostatic solvation energy Esol by
solving the PBE on the solvated state.

Step 2: Calculate the electrostatic solvation energy Eref by
solving the Poisson dielectric model on the reference state—a
protein in the whole space R3 with permittivity ϵp.

Step 3: Set the free energy 4E = Esol − Eref.

See the website https://apbs-pdb2pqr.readthedocs.io/en/lat-
est/examples/solvation-energies.html from the APBS project, for
example. When ϵp = 1, the reference state reflects the case of a
protein in the vacuum. In our notation, the potential uref of the
current reference state is the solution G of model 1, which is
defined in eq. (19) with G given in eq. (22). Thus, the potential
difference can be obtained directly from our solution decompo-
sition formula (24) as follows:

u−uref =Ψ+ ~Φ:

Hence, the current formula for computing the free energy
4E can be reformulated in terms of our component functions

Ψ and ~Φ in the expression:

ΔE =
NA

4184
kBT
2

Xnp
j = 1

z j Ψ rð Þ+ ~Φ r j
� �� �

+ γ
Xn
i =1

Zi

ð
Ds

u rð Þci rð Þdr
" #

:

ð28Þ

The above expression for 4E is often approximated by

ΔE =
NA

4184
kBT
2

Xnp
j =1

z j Ψ rð Þ+ ~Φ r j
� �
 �

, ð29Þ

without involving any ionic concentrations ci. The reason why
each ci is ignored in the calculation of 4E is that formula (29) is
originally introduced in the case of PBE, in which ions are
treated as volume-less points. As such, each ci, estimated by
the Boltzmann distribution (18), may become unrealistically
large, especially near a strongly charged molecular surface.

Numerical Results

We developed an effective finite element algorithm for solving
our SMPBIC model, and programmed it as a software package
based on the above submodel partitioning (eq. (24)), our PBE
and SMPBE program packages,[25,43] the state-of-the-art finite
element library from the FEniCS project,[44] and an ion channel
membrane finite element mesh program package from.[45]

Using this software package and three ionic solvents with up to
five ionic species, we simulated the ionic concentrations, elec-
trostatic potential, and electrostatic solvation free energy based
on a 3D human VDAC1 (hVDAC1) structure, which we down-
loaded from the Orientations of Proteins in Membranes (OPM)
database https://opm.phar.umich.edu using the PDB identifica-
tion number 2JK4.

The reason why we did not use the PDB website https://
www.rcsb.org/ to download the PDB file of hVDAC1 is that the
PDB file from OPM gives the membrane location numbers Z1
and Z2, and the 3D molecular structure of hVDAC1 has been

Figure 2. Two molecular structure views (in cartoon style) of the human
voltage-dependent anion channel with PDB ID 2JK4.[42] [Color figure can be
viewed at wileyonlinelibrary.com]
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transformed in the position as illustrated in Figure 2. This
molecular structure was determined conjointly by NMR spec-
troscopy and X-ray crystallography.[42] As shown in Figure 2, it
is composed of 19 beta strands with an alpha-helix located hor-
izontally midway within the pore to adopt a beta-barrel archi-
tecture. Such a channel architecture is common to all VDAC
proteins. It has been known that this hVDAC1 molecular struc-
ture is in the open state and is anion selective. Thus, it is a
good test case to check whether our SMPBIC model can retain
the hVDAC1 anion selectivity property or not.

With the PDB file of hVDAC1, we got the missed data in the
PDB file (such as the hydrogen atoms, the atomic charge
numbers, and atomic radii) from the PDB2PQR web server
(http://nbcr-222.ucsd.edu/pdb2pqr_2.1.1/) as required by our
SMPBIC model and the finite element mesh generation soft-
ware package.[45] Here, we selected a CHARMM forcefield and
removed all the water molecules to produce a PQR file of
hVDAC1.

Using the membrane position numbers Z1 = −11.7 and
Z2 = 11.7 in Å, which were produced from OPM, and the PQR
file of hVDAC1, we generated an interface fitted irregular tetra-
hedral mesh of a box domain Ω with dimensions 80 × 80 × 100
by the mesh program package.[45] Here, the box domain Ω of
eq. (1) is defined by using

Lx1 =−38:4985,Lx2 = 41:5015,L y1 =−39:788,L y2 = 40:212,

Lz1 =−51:992,Lz2 = 48:008,

and its mesh has 78,888 mesh nodes and 488,206 tetrahedra.
Two views of the mesh are shown in Figure 3a,b. The sub-
meshes for the membrane and protein regions Dm and Dp were
also extracted from the box mesh, and displayed, separately, in
Figure 3c,d to demonstrate the complexity of an interface fitted
irregular tetrahedral mesh.

Using this mesh, we constructed the systems of linear and
nonlinear finite element equations of models 2 and 3, which

Figure 3. Four views of the interface fitted irregular tetrahedral mesh of a box domain Ω used for SMPBIC model calculation. Here, the meshes of the
membrane region Dm and protein region Dp are colored in yellow and green, respectively, for clarity. [Color figure can be viewed at wileyonlinelibrary.com]
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are defined in eqs. (20) and (21), respectively, to approximate Ψ
and ~Φ. We solved the nonlinear algebraic system for ~Φ by a
modified Newton minimization algorithm and approximated
the solution of each related linear algebraic system by a
preconditioned generalized minimal residual method (GMRES)
with incomplete LU preconditioning. Each of the linear and
nonlinear systems has about 78,888 unknown variables to solve,
and each iterative process was terminated whenever the resid-
ual norm of a finite element equation systems was less
than 10−5.

For simplicity, we set ϵp = 2, ϵm = 2, ϵs = 80, ub = 0, and ut = 0
for all the numerical tests. Each ion was treated as a cubic box
with the same volume v̂ as defined in eq. (6). Here, the
hydrated ion radii of five ionic species, K+, Na+, Mg2+, Ca2+, and
Cl− were set as 3.31, 3.58, 4.28, 4.12, and 3.32 in Å, respectively,
which came from reference [46] (see table 1 in this reference).

The bulk concentrations cbi were set in mol/L according to the
electroneutrality condition and the definition of ionic strength
Is as follows:

Xn
i = 1

Zic
b
i = 0, Is =

1
2

Xn
i =1

Zið Þ2cbi : ð30Þ

In the numerical tests, we used the following three salt
solutions:

I. A salt solution of NaCl with cb1 = cb2 = Is = 0:1 mol/L.

II. A salt solution of KCl with cb1 = cb2 = Is = 0:14 mol/L.
III. A solution mixture of KCl (0.140 mol/L), NaCl (0.01 mol/L),

MgCl2 (0.01 mol/L), and CaCl2 (0.00025 mol/L).

Using the conditions of eq. (30), we found that the bulk con-
centrations of Cl−, K+, Na+, Mg2+, and Ca2+ were 0.15140, 0.14,
0.01, 0.0007, and 0.83333 × 10−7 in mol/L, respectively, for the
solution mixture.

All the numerical tests were done on one processor of a Mac
Pro Workstation with the 3.7 GHz Quad-Core Intel XeonE5 and
64 GB memory. Each SMPBIC model test took only about 30 s,
including solving the linear finite element system of Ψ and the

nonlinear finite element system of ~Φ and calculating the poten-
tial u and ionic concentrations ci. This demonstrates the effi-
ciency of our SMPBIC model finite element program package.
The numerical results are reported in Figures 4–9 to show,
respectively, (1) the case of varying the solvent permittivity con-
stant ϵs within the channel pore; (2) the case of varying the
membrane surface charge density σ; (3) the potential values on
the four side surface ΓN caused by the Neumann boundary con-
dition; (4) the potential values on the molecular surface of
hVDAC1; and (5) the values of potential u and ionic concentra-
tions ci on a cross section of the box domain and within the
channel pore of hVDAC1. In these tests, we calculated the elec-
trostatic free energies using formulas (27) and (29) to show
their differences.

Figure 4 displays the values of solvation free energy 4E as
a function of the bulk solvent permittivity constant within the

channel pore with σ = 0. From this figure, it can be seen that
these values did not vary much when the bulk solvent permit-
tivity constant ϵs was reduced from 80 to 10 within the chan-
nel pore, consistent with the small effects of using a smaller
solvent permittivity constant within the channel pore on the
calculation of 4E. From Figure 4, it can also be seen that our
new formula (27) produced much smaller free energy values
than the current formula (29) in absolute value. These results
are consistent with the fact that moving a charged hVDAC1
from the ionic solvent state to the pure water state should
take less energy than that to the state of the whole space R3

full of water.
Figure 5 displays the values of 4E as a function of the

membrane surface charge density σ for the hVDAC1 in the
three ionic solvents with up to five ionic species with ϵs = 50
within the channel pore. From this figure, we can see that
the values of solvation free energy 4E calculated by our
new formula (27) better reflect the effects of membrane sur-
face charges than that by the current formula (29), since the
new formula (27) includes the energy contribution from the
solvent region Ds, which is ignored in the current for-
mula (29).

We next visualized the electrostatic potential u and ionic con-
centrations ci generated by our SMPBIC model (14) onto a
molecular surface of hVDAC1 protein or a cross section of the
box domain Ω in color mapping (i.e., representing values in
colors). Such a visualization method is commonly used in the
study of a biomolecule to visually display the charge distribu-
tion and charge related properties of a biomolecule. As exam-
ples, we only plotted the electrostatic potential u and ionic
concentrations ci for the KCL solution case in Figures 6–8. Here,
we fixed the Direchlet boundary condition (11) with ut = ub = 0,
and the bulk concentration of a KCL solution as 0.14 mol/L
(physiologically realistic condition).

Figure 6 displays the boundary values of electrostatic poten-
tial u on the four side surfaces ΓN of the box domain Ω with
σ = 0. From Figure 6, it can be seen that the boundary values
on ΓN varied in a large range from −9 to 10, which has signifi-
cant impact on the electrostatics of hVDAC1. These boundary
values are very different from a boundary value function used
in the current Dirichlet boundary condition (e.g., a zero or an
multiple Debye–Hückel potential function).[33] The natural Neu-
mann boundary condition (10) also characterizes an important
feature of the membrane environment—no charge enters from
any side surface of the box domain Ω. Hence, our new mixed
boundary value condition of eqs. (10) and (11) is a good bound-
ary condition for ion channel modeling.

Figure 7 maps the electrostatic potential u in colors on a
molecular surface (plots A1 and B1) and a cross section defined
by x = 0 (plots A2 and B2) to show the influence of membrane
surface charges on the electrostatics of hVDAC1. This calcula-
tion was carried out for σ = 30 (plots A2 and B2) and σ = 0
(plots A1 and B1), respectively, and the color mapping was set
from the blue for all the values of u ≤ −5 to the red for all the
values of u ≥ 5. From Figure 7, it can be seen that the mem-
brane surface charge caused the electrostatic potential u to
have a significant value change. This suggests that considering
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the charge effect of membrane is important in the construction
of an ion channel model.

Figure 8 displays the electrostatic potential u and the con-
centrations of anions Cl− and cations K+ in a color spectrum,
with blue as the lowest value and red as the highest value.
Here, we marked the membrane and channel protein regions in
yellow and green colors, respectively, to let us focus on the
values in the solvent region Ds. With this figure, we can clearly
interpret how the electrostatics of hVDAC1 induce the anion
selectivity property of hVDAC1, from Figure 8, we can see that
the channel pore area is colored mostly in red for the electro-
static potential u. As a result, anions Cl− were attracted to the
channel pore while most cations K+ were respelled away.

However, it is too prolix to use the color mapping method
for visualizing the values of electrostatics and ionic concentra-
tions over a three dimensional domain. Here, we introduce a
simple method that allows us to plot the values of electrostatics
and ionic concentrations over a volume subdomain in two-
dimensional curves along the z-axis direction. Using this
method, we construct a cylinder domain by the set

Figure 4. Effects of reducing the solvent permittivity constant ϵs within the channel pore from 80 to 10 on the solvation free energy 4E for the hVDAC1 in a)
a solution of 0.14 mol KCl, b) a solution of 0.1 mol NaCl, and c) a mixture of 0.14 mol KCl, 0.01 mol NaCl, 0.01 mol MgCl2, and 0.00025 mol CaCl2. [Color figure
can be viewed at wileyonlinelibrary.com]

Figure 5. Effects of increasing the membrane surface charge density σ from
0 to 32 on the solvation free energy 4E for the hVDAC1 in a) a solution of
0.14 mol KCl, b) a solution of 0.1 mol NaCl, and c) a mixture of 0.14 mol KCl,
0.01 mol NaCl, 0.01 mol MgCl2, and 0.00025 mol CaCl2. [Color figure can be
viewed at wileyonlinelibrary.com]
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x, y,zð Þ∈Ω j x2 + y2 ≤ r2, Z1−ξ≤ z ≤ Z2 + ξ
� ��Ω,

where r and ξ are the positive numbers, which are selected to
be large enough such that the cylinder domain covers the
channel pore portion. We then partition this cylinder domain
into m portions by the partition numbers,

z j = Z1−ξ+
j
m

Z2−Z1+ 2ξð Þ, j =0,1,2,…,m,

and calculate the points z*j ,u j

� �
and z*j ,c

j
i

� �
for the electro-

static potential u and the concentration ci, respectively, by the
formulas

z*j =
1
2

z j−1 + z j
� �

, u j = kU j uð Þk, c j
i = kU j cið Þk, j =1,2,…,m,

ð31Þ
where k�k is a vector norm, and Uj(f ) denotes a set of the values
of function f coming from the jth portion of the cylinder
domain, that is,

U j fð Þ= f x, y,zð Þ j x, y,zð Þ∈Ω, x2 + y2 ≤ r2, z j−1 ≤ z ≤ z j
� �

:

Using these points, we can plot two-dimensional curves to
visualize the values distributions of electrostatic potential and
ionic concentrations within a 3D channel pore volume area
along the z-axis. Since they are clear to view, these curves can
be valuable in a comparison of the electrostatic potentials and
ionic concentrations generated from different numerical tests.

Figure 9 displays the curves plotted by using the above
method for the electrostatic potentials and ionic concentrations
generated by our SMPBIC model for the hVDAC1 using the
three salt solutions and the value of membrane surface charge
density σ was set at 0 and 30. Here, we used

r = 8, ξ= 5, m= 50, kwk =
1
l

Xl

k = 1

jwk j

for w = w1,w2,…,wlð Þ:
ð32Þ

From Figure 9, it can be seen that the membrane charges
have significant impact on the electrostatic potential and ionic

Figure 6. Electrostatic potential u on the
four side surfaces of the box domain Ω
generated by SMPBIC model using
the Neumann boundary condition
(10) for hVDAC1 in a salt solution of KCl
(0.14 mol/L). Here, the membrane surface
charge density σ = 0 for hVDAC1 in KCl
solution. [Color figure can be viewed at
wileyonlinelibrary.com]
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concentrations. With Figure 9, we now can clearly see that
there are much more anions than cations in the channel pore.
These test results indicate that our SMPBIC model retains well
the anion selectivity property of hVDAC1.

Discussion and Conclusions

We have developed a new SMPBIC model, and applied it to the
calculation of electrostatic potential, ionic concentrations, and
electrostatic solvation free energy for a VDAC 3D molecular
structure[42] (hVDAC1; PBD ID 2JK4) on a biological membrane
in a solution of up to five ionic species. In comparison to the
current ion channel models, our SMPBIC model: (1) accounts for

the effect of membrane charges via a membrane surface
charge density, (2) adopts a natural Neumann boundary condi-
tion on the four side surfaces of a computational box domain
to insure that no charges enter the box via these side surfaces,
which partially mimics membrane environment, and (3) uses a
reduced bulk solvent permittivity constant within the channel
pore to reflect the fact that the channel pore has much less
water than the bulk water region.

To overcome the theoretical and numerical complexities of
our SMPBIC model, we split it into three submodels, referred to
as models 1–3, such that the solution of the SMPBIC model is
the sum of the solutions of these three submodels. This
approach allowed us to avoid the singularity difficulties of our
SMPBIC model caused by atomic point charges from an ion
channel molecular structure. The solution of model 1 was
obtained analytically, whereas models 2 and 3 were solved
numerically using efficient finite element algorithms. As an
important application of this submodel partitioning approach,
we obtained two new formulas for computing the electrostatic
solvation free energy by using the two reference states con-
structed by models 1 and 2 to reflect the influences of mem-
brane charges and ionic solvent charges. Moreover, the
numerical results were obtained for a human VDAC1 protein
(PDB ID 2JK4) in terms of three salt solutions, each with up to
five ionic species, and different membrane surface charge den-
sities. These results demonstrate that our SMPBIC model retains
the anion selection property of VDAC and show that the mem-
brane charges have significant impacts on the electrostatic
potential and ionic concentrations of a VDAC membrane sys-
tem. Furthermore, these results demonstrate the importance of
considering the membrane charges and ionic solvent charges
in the calculation of electrostatic solvation free energy through
using our new formulas.

According to a recent review article by Zeth and
Zachariae,[47] there are three high-resolution 3D VDAC molecu-
lar structures available in the PDB website, which have been

Figure 7. A comparison of the electrostatic potential u by SMPBIC model
using σ = 30 μC/cm2 (B1 and B2) with that using σ = 0 (A1 and A2). Here,
the values of u are mapped in colors from blue (for u ≤ −5) to red (for
u ≥ 5) on a molecular surface (A1 and B1) of hVDAC1 and a cross
section defined by x = 0 (A2 and B2) to display the values of u on an inner
surface of hVDAC1. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 8. The electrostatic potential u and concentrations of Cl− and K+ ions calculated by SMPBIC model on a cross section of the box domain (x = 0) in
color mapping for hVDAC1 in KCl solution (0.14 mol/L) with the membrane surface charge density σ = 30μC. [Color figure can be viewed at
wileyonlinelibrary.com]
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identified by NMR spectroscopy and X-ray crystallogra-
phy.[42,48,49] Two of the structures are for native human VDAC
isoform 1 (hVDAC1; PBD ID 2JK4 and 2K4T) and the third one is
for a native murine VDAC isoform 1 (mVDAC1; PBD ID 3EMN).
All three structures are in their open state conformation
(i.e., maximal conducting state with zero membrane potential
across the outer mitochondrial membrane, which is the most
physiologically plausible condition for VDAC).

The ability of the three available VDAC molecular structures
to distinguish between molecules of the same size and charge
(e.g., ATP vs nonphysiological molecules of the same size and
charge) has not been properly evaluated by any model.
Choudhary et al.[50] studied the mechanism of ATP transport
through VDAC based on molecular dynamics simulations using
the published 3D mVDAC1 structural data.[49] However, their

study is not amenable for quantitative understanding of protein
electrostatics and simultaneous transport of multiple ionic spe-
cies of variable ion sizes. Our proposed model is the first to
address the continuum modeling of protein electrostatics of an
ion channel on a biological membrane that allows the simulta-
neous transport of multiple ionic species with different ion
sizes. We chose the published hVDAC1 structural data (PBD ID:
2JK4) as an application of our SMPBIC model. Based on this
structure and open state conditions, our model is able to pre-
dict the anion selectivity of hVDAC1 in an ionic solvent con-
taining many anions and cations (Figs. 7–9). However, our
proposed model cannot distinguish between two ionic species
of the same charge and size (e.g., ATP vs. nonphysiological mol-
ecules of the same size and charge) because all the ionic spe-
cies in the model are treated as spherical bodies with different

Figure 9. A comparison of the electrostatic potential u and ionic concentrations ci generated by SMPBIC model using membrane surface charge density
σ = 30 μC/cm2 or without any membrane surface charge (i.e., σ = 0). a)–c) report the results for hVDAC1 in a solution of KCl (0.14 mol/L), a solution of NaCl
(0.1 mol/L), and a solution mixture of KCl (0.14 mol/L), NaCl (0.01 mol/L), MgCl2 (0.01 mol /L), and CaCl2 (0.00025 mol), respectively. Here, the values of
potential and concentrations are defined by eqs. (31) and (32). [Color figure can be viewed at wileyonlinelibrary.com]
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radii. To overcome this limitation, we need to combine our
model with another approach, such as molecular dynamics or
Brownian dynamics, which would enable us to account for the
structural information of the ionic species (e.g., ATP). Although
the hVDAC1 structure was chosen as an application of our
model in this study, our model can be easily adapted to any
current or future VDAC structures or any other ion channel
structure.

Keywords: size-modified Poisson–Boltzmann equation � ion
channel modeling � VDAC electrostatics � solvation free
energy � finite element method
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