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Abstract
Bridge decks are a significant factor in the deterioration of bridges, and substantially affect long-term bridge maintenance 
decisions. In this study, conditional survival (reliability) analysis techniques are applied to bridge decks to evaluate the age at 
the end of service life using the National Bridge Inventory records. As bridge decks age, the probability of survival and the 
expected service life would change. The additional knowledge gained from the fact that a bridge deck has already survived 
a specific number of years alters (increases) the original probability of survival at subsequent years based on the conditional 
probability theory. The conditional expected service life of a bridge deck can be estimated using the original and conditional 
survival functions. The effects of average daily traffic and deck surface area are considered in the survival calculations. Using 
Wisconsin data, relationships are provided to calculate the probability of survival of bridge decks as well as expected service 
life at various ages. The concept of survival dividend is presented and the age when rapid deterioration begins is defined.

Keywords  Survival analysis · Conditional survival · Bridge decks · Hypertabastic distribution · Expected life · Reliability · 
Service life · Remaining service life

1  Introduction

As the average age of bridges in the U.S. continues to 
increase (ASCE 2018), there is a growing need to develop 
field performance-based probabilistic tools that could help 
guide bridge maintenance decisions. Large-scale data 
obtained from biannual bridge inspections can be particu-
larly informative and beneficial by providing the necessary 
input for the development of observation-based probabilistic 
models for bridge deterioration with time.

Bridge decks are a significant factor influencing the 
deterioration of bridges, and substantially affect long-term 
bridge maintenance decisions (Tabatabai et al. 2015, 2016 
and Brown et al. 2014). Strength-based reliability of bridge 

decks has been studied for many years providing important 
measures of structural safety. However, the end of service 
life is typically a result of serviceability issues and not due 
to local or global structural failure. Survival analysis is a set 
of observation-based and data-driven reliability techniques 
that has been commonly used in biomedical and cancer 
research (Tabatabai et al. 2007; Bursac et al. 2008). More 
recently, survival analysis techniques have been employed in 
reliability and remaining service life assessments of bridges 
(Tabatabai et al. 2011, 2015, 2016, 2018).

Parametric survival analysis of bridge decks based on 
the National Bridge Inventory (NBI) records for the State 
of Wisconsin was introduced by Tabatabai et al. (2011). 
Using the 2005 NBI data, the authors investigated the best 
fit survival model among Weibull, log-logistic, lognormal, 
and hypertabastic survival functions. Based on the Akaike 
Information Criteria (AIC), the authors concluded that the 
hypertabastic accelerated failure time model would best fit 
the data. Later, the same researchers extended the survival 
analysis of bridge decks to six states in northern United 
States (Tabatabai et al. 2016) and subsequently to all fifty 
states and Puerto-Rico (Tabatabai et al. 2015). In these 
studies, the covariates considered (obtained from NBI 
records) were the age of bridge, deck surface area (DA), 
average daily traffic (ADT), and type of superstructure 
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(steel or concrete). It is important to note that, as actual 
field observation data, the NBI information analyzed nec-
essarily includes the combined effects of all factors influ-
encing the outcome (service life of decks) in these field 
bridges. The covariates selected can be used to explicitly 
isolate and quantify (probabilistically) the influence of 
those selected covariates on the outcome. The effects of all 
other influencing factors are still embedded in the results, 
even though they are not explicitly quantified through 
inclusion as covariates.

Nabizadeh (2015) and Nabizadeh et al. (2018) con-
ducted parametric survival analyses of bridge super-
structures in the state of Wisconsin. In these studies, the 
covariates used were the age of bridge, maximum span 
length (MSL), ADT, and the type of superstructure (steel 
or concrete). Other studies on survival analysis of bridges 
include Beng and Matsumoto (2012), Yang et al. (2013), 
and Mauch and Madanat (2001).

The results of parametric survival analyses can provide 
estimates of survival as a function of time under the influ-
ence of various covariates. Survival is synonymous with 
reliability, i.e., probability of not failing at a given time. 
In this paper, “failure” is defined as the end of service life 
(and not structural failure). Figure 1 shows a typical sur-
vival curve for bridge decks. This type of survival curve is 
a representation of variation of reliability with time and is 
widely used in this form in various scientific fields.

The reliability/survival curve is a function of covariates 
used in the model. The survival curve in Fig. 1 was derived 
assuming that the covariates ADT and DA were equal to 
the mean values for the state of Wisconsin (ADT = 4944 
and DA = 404 m2). Higher ADT and DA values would shift 
the curve to the left (lower reliability at a given age), while 
lower values of those covariates would shift the curve to 
the right. The survival function, S(t), is defined as

(1)S(t) = p(T > t) = 1 − F(t),

where t is the age of bridge deck (in years), T is the age at 
the end of service life, and F(t) is the cumulative distribu-
tion function. The probability density function, f(t), and the 
hazard rate function, h(t), are defined below:

These functions are determined during survival analysis 
of observation-based data on bridge decks that are obtained 
from the NBI records. The area under the entire survival 
curve (integral of survival function with respect to time) 
is the expected life (EL0), or average life expectancy, for a 
bridge that is in a brand-new condition (t = 0):

Based on the results of a study by Tabatabai et al. (2011) 
and using Eq. 4, the expected life of Wisconsin bridge decks 
is approximately 45 years, when ADT and deck areas are 
held at mean values for the state. It is important to note, 
however, that the expected life would change at different 
ages (i.e., different from EL0). Furthermore, estimates of life 
expectancy at a given age would vary depending on whether 
that age has been successfully achieved (i.e., without failure) 
or when the estimate for life expectancy at that age is made 
at t = 0.

In the medical field, prognosis of a disease is generally 
predicted based on the information at the time of diagnosis. 
However, it has been shown that disease prognosis improves 
with every additional year that the patient survives (Baade 
et al. 2011; Zabor et al. 2013). Therefore, life expectancy 
based on the information at the time of diagnosis (t = 0) 
would need to be updated as time progresses. For example, 
if a patient were given 5 years to live at the time of diagno-
sis of a disease, the life expectancy at 2, 3, or 4 years past 
diagnosis would not remain the same. This statement stems 
from the conditional probability theory and would remain 
true even if conditions (including treatments) remained 
unchanged during the elapsed time. Similarly, a bridge deck 
that may have an initial life expectancy of 45 years would 
have changing expected life with age. There would be an 
increasing expected life trend as survival is confirmed at 
various ages. If a bridge deck has already reached 30 years 
of life without “failure” (defined as end of service life), then 
the expected survival age would be higher than the originally 
estimated 45 years. In this paper, this additional expected 
life is termed “survival dividend”. The fact that a bridge 
deck has already survived ts years adds an important piece 
of information that should be used to update the initial life 

(2)f (t) = lim
Δt→0

p(t < T < t + Δt)∕Δt,

(3)h(t) = lim
Δt→0

p(t < T < t + Δt|T > t)∕Δt.

(4)EL0 =

∞

∫
0

S(t)dt.

0.00

0.20

0.40

0.60

0.80

1.00

0 20 40 60 80 100

R
el

ia
bi

lit
y

Age (years)

Fig. 1   Reliability of bridge decks in the state of Wisconsin (Tabatabai 
et al. 2011)
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expectancy based on the conditional probability theory. The 
objective of this paper is to introduce the concept of condi-
tional survival for the assessment of service life in bridge 
decks, and to demonstrate its application to assessment of 
bridge deck service life in Wisconsin based on the 2016 
NBI data.

2 � Bridge deck data

The 2016 National Bridge Inventory (NBI) data were used 
to assess conditional survival of bridge decks in Wiscon-
sin. First, using a procedure described in Tabatabai et al. 
(2011), the overall survival functions were determined. An 
NBI bridge deck rating of 5 (on a numerical scale of 0–9) 
was selected as the end of service life. The justification for 
this choice is provided by Nabizadeh et al. (2018) and is 
primarily based on the fact that a deck rating of 4 would 
automatically designate a bridge as “structurally deficient” 
(or “poor” in the new designation by the Federal Highway 
Administration) with important policy implications. There-
fore, bridge owners take steps (rehabilitation or replace-
ment) before reaching that rating level to avoid a “poor” 
designation.

The independent covariates used in the analyses were the 
bridge age, deck area, and average daily traffic (ADT). The 
average daily truck traffic (ADTT) was found to be corre-
lated with ADT and, therefore, ADT alone was used as a 
covariate. Parameters such as deck rating (NBI Item 58), 
bridge age (NBI Items 90 and 27), deck area (NBI Items 49 
and 51), and ADT (NBI Item 29) were used as covariates 
for parametric survival analysis. The complete data extrac-
tion and data analysis procedures are presented by Tabatabai 
et al. (2011).

3 � Conditional survival

The conditional survival, which is symbolically represented 
by CS (t, ts), gives the probability of surviving t years (or 
t′ additional years), given that the bridge deck has already 
survived ts years where t′ = t − ts. As stated earlier, the addi-
tional “knowledge” gained because of the continuing sur-
vival alters the original survival function for the future, and 
thus the expected life would vary with survived age. The 
importance of using conditional survival to arrive at a mean-
ingful measure of prognosis or expected remaining life has 
not been broadly understood (Zabor et al. 2013).

As bridges age, benchmark (initial) estimates of bridge 
survival (made at the time of start of service life, t = 0) can 
provide inaccurate prediction of remaining service life. Over 
time, the additional information on bridge survival would 
alter the survival estimates relative to the initial survival 

estimates. A relevant question that may arise is: “If a bridge 
deck has already survived t1 years, what is the probability 
that it would survive another t2 years?”

Conditional survival analyses can directly address this 
question and provide estimates for the probability of survival 
(of bridge decks) that have already survived to a certain age. 
This would require knowledge of the basic reliability curves 
such as that shown in Fig. 1. Probabilistic estimates of con-
ditional survival can provide important additional informa-
tion that could be used by bridge maintenance engineers 
to support decision-making and budget allocations for the 
management of bridge networks. This would be an important 
tool to assess bridge condition with respect to service life in 
a probabilistic manner.

Conditional survival has seen increasing interest and has 
been extensively studied in medical research over the last 
20 years (Merrill et al. 1999; Kato et al. 2001; Wang et al. 
2007; Fuller et al. 2007; Chang et al. 2009; Janssen-Heijnen 
et al. 2010; Xing et al. 2010; Merrill and Hunter 2010; Zam-
boni et al. 2010; Parsons et al. 2011; Baade et al. 2011; Yu 
et al. 2012; Harshman et al. 2012; Zabor et al. 2013; Hieke 
et al. 2015). These studies address changes in the proba-
bility of survival or expected life for various diseases and 
conditions.

While some studies have investigated the survival of 
bridges around the world, the authors of this paper have 
not identified any work that addresses conditional survival 
of bridges with respect to the end of service life, which is 
typically reached due to serviceability conditions. There are 
works that address changes in the reliability index over time 
(Zhu et al. 2017; Sun and Hong 2001; Akgul and Frangopol 
2003; Kong and Frangopol 2003; Barone and Frangopol 
2014). These studies, however, are not typically related to 
field observation-based end of service life resulting from 
serviceability conditions.

The survival function, S(t), described above provides esti-
mates of reliability over time based on information available 
at t = 0. This is referred to here as overall survival (OS). OS 
does not include the influence of knowledge gained when 
survival is realized at t > 0. After ts years of survival, the 
survival information must be updated to reflect the new 
knowledge gained. This is introduced in terms of conditional 
survival (CS) in which prior knowledge of survival at time 
ts exists. CS estimates the probability of survival at time t, 
given that the bridge deck has already survived ts years. CS 
can be considered as a dynamic survival estimation and is 
defined as

The above equations indicate that, given the fact that 
survival has been achieved up to time ts , the conditional 

(5)CS
(
t, ts

)
=

{
1when 0 ≤ t ≤ ts
S(t)

S(ts)
when t > ts

.
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probability of survival would be equal to 1 (100%) at or 
before time ts . The originally estimated survival probabilities 
are then adjusted using Eq. (5). The change in the probability 
of survival at times greater than ts (as reflected in Eq. 5) also 
changes the expected life beyond time ts.

The probability of failure defined here is based on con-
ditional survival analysis. Probability of failure indicates 
reaching the end of service life at a specific age of bridge (1 
minus probability of survival at a specific age). CS is then 
calculated relative to varying survival times.

The hypertabastic accelerated failure time model, first 
introduced by Tabatabai et al. (2007), was used for the analy-
ses. This model was determined to be the best fit model for 
bridge deck and superstructure data when compared with 
Weibull, log-logistic and lognormal models (Tabatabai et al. 
2011; Nabizadeh et al. 2018). The hypertabastic distribution 
has been used in several studies including biomedical and 
engineering survival analyses (Tabatabai et al. 2007; Tran 
2014; Nikulin and Wu 2016; Tahir et al. 2017).

The theoretical basis and complete equations for the 
hypertabastic model are given in Tabatabai et al. (2011). 
Therefore, in this paper, only the equations and parameters 
needed to calculate reliability and failure rates are provided. 
These are summarized below:

In Eq. (8), parameter tg is defined as a mathematical func-
tion of t (age of bridge in years), DA (bridge deck surface 
area in m2), and ADT. Parameters α, β, c, and d are all deter-
mined for bridges in Wisconsin, using the procedures pro-
posed by Tabatabai et al. (2011). Functions sech and coth 
are hyperbolic secant and hyperbolic cotangent, respectively.

Several different survival analyses were performed in this 
study using different subsets of the extracted NBI data. The 
full analysis (D0) involved all bridge data that were extracted 
from the NBI records. In addition, several subsets of the full 
data were chosen for analysis. These data subsets included 
all bridge records that had survival times greater than speci-
fied ages from 20 to 50 years at 5-year increments (ts = 20, 
25, 30, 35, 40, 45, and 50 years). Each dataset analyzed 
is designated “Dts” with “ts” indicating the length of time 
(years) that bridge deck has already survived. Thus, the full 
data set (D0) as well all other subsets (D20, D25, D30, D35, 
D40, D45, and D50) were analyzed separately to determine the 

(6)S(t) = sech
{
W
(
tg
)}

,

(7)
h(t) = �

[
t2�−1Csch2

(
t�
)
− t�−1

g
coth

(
t�
g

)]
tanh

[
W
(
tg
)]
e[c(DA)+d(ADT)],

(8)tg = (t)e[c(DA)+d(ADT)],

(9)W
(
tg
)
= �

[
1 − t�

g
coth

(
t�
g

)]
∕�.

survival functions associated with them. This was done to 
assess the accuracy of the proposed CS models with avail-
able data as the survival age increases. The conditional sur-
vival function for bridge decks can be calculated by solving 
Eq. (5) using survival function of Eq. (6).

4 � Analysis of NBI data

Descriptive statistics of NBI data for all bridges used in this 
study is shown in Table 1. As discussed earlier, survival 
analyses were performed on multiple subsets of the full data-
set. First, analyses were performed to determine the survival 
functions for all bridges in the dataset (D0 dataset). This 
would provide the overall (unconditional) survival function 
(Eq. 6). Using this survival function and Eq. 5, the condi-
tional survival functions assuming survival up to various 
ages (ts = 20, 25, 30,…, or 50 years) could be theoretically 
calculated. To check the validity of these theoretical calcu-
lations, subsets of data corresponding to various survival 
ages were extracted and analyzed separately. For example, 
to generate the D35 dataset, all records with a bridge age of 
less than 35 years were excluded and the remaining data 
were analyzed.

Using the various datasets, the non-parametric 
Kaplan–Meier estimation of the survival, SK–M(t), can be 
calculated using the following relationship:

The Kaplan–Meier estimates of survival were calculated 
for the entire dataset as well as all data subsets. For the data 
sets that are subsets of the entire data, the Kaplan–Meier 
estimate is, in fact, equal to the conditional Kaplan–Meier 
survival estimates.

Figure 2 shows estimates of the non-parametric condi-
tional Kaplan–Meier survival curves for bridge decks for 

SK-M(t) =
No.of bridges surviving beyond tyears

Total number of bridges
.

CSK−M
(
t, ts

)
= SK−M(t)for theDts

dataset.

Table 1   Statistical information on the entire Wisconsin NBI dataset 
used in the analyses

Bridges with deck rating 5

ADT Area (m2) Age (years)

Mean 3843 458 53
Median 809 223 50
Mode 47 82 46
Standard deviation 7314 807 20
Count 1065 1065 1065
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different Dts data sets. In conditional Kaplan–Meier survival, 
bridges that have failed prior to each considered service life 
( ts .) were removed from the analysis, as shown in Fig. 2.

The median and mean of age for bridge decks in the vari-
ous datasets are shown in Table 2. These values indicate the 
effect on the service life of the remaining bridge decks when 
decks with ages less than or equal to ts are excluded from 
consideration. Data show increasing mean and median ages 
of bridges that remain after various ages are reached.

All the datasets were then used to estimate survival parame-
ters and equations using the procedures presented by Tabatabai 

et al. (2011). The method of maximum likelihood was used for 
parameter estimation of the hypertabastic AFT survival model. 
Table 3 shows the estimated values of various hypertabastic 
model parameters as well as related test statistics for the analy-
sis of the main D0 dataset.

Using the derived survival function and the resulting 
conditional survival functions (Eq. 5), the conditional mean 
(expected) life of bridge decks, ELc

(
ts
)
 , can be calculated by 

integrating the survival or conditional survival functions as 
shown in Eq. 1:

The unconditional expected life, ELu(t), as a function of age 
can be represented as follows:

(10)

ELc

(
ts
)
=

∞

∫
0

CS(t)dt = ts +

∞

∫
ts

CS(t)dt = ts +

∞

∫
ts

S(t)

S
(
ts
)dt.

(11)ELu(t) = S(t)ELc(t),

Fig. 2   Kaplan–Meier survival 
curves for bridges that have 
already achieved ts years of 
survival
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Table 2   Median and mean ages 
of Wisconsin bridge decks at 
the end of service life

Dataset Survived age (ts)
(years)

Median age of 
decks (years)

Mean age of decks 
(years)

St. dev. of age 
(years)

Number 
of bridges

D0 0 50.0 53.2 20.2 1065
D20 20 50.0 54.2 19.5 1040
D25 25 51.0 55.2 18.9 1008
D30 30 52.0 56.7 18.2 954
D35 35 53.0 58.5 17.5 889
D40 40 55.0 61.1 16.8 793
D45 45 57.0 63.6 16.3 702
D50 50 64.0 68.3 15.4 549

Table 3   Parameter and standard error estimates of the hypertabastic 
AFT model

Parameter Estimate Standard error Wald P value

α 1.29E−03 2.11E−04 37.42 9.51E−10
β 1.90E+00 4.48E−02 1796.7 1.34E−392
c 5.70E−05 1.00E−05 32.08 1.48E−08
d 6.93E−06 1.43E−06 23.39 1.32E−06
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It should be noted that EL0 = ELc (0) = ELu (0). Two 
types of survival dividend can be defined: SD1(ts) relates to 
improvements in expected service life relative to EL0, and 
SD2 (t) relates to improvements with respect to ELu (t). The 
two types of survival dividend are illustrated in Fig. 3. 

Figure 3 shows the difference between the two survival 
dividend forms (SD1 and SD2). Figure 4 shows a graphical 

(12)ELu(t) = S(t)t +
∞∫
t

S(t)dt.

(13)SD1

(
ts
)
= ELc

(
ts
)
− EL0,

(14)SD2

(
t = ts

)
= ELc

(
ts
)
− ELu

(
t = ts

)
.

Ex
pe

ct
ed

 li
fe

 (y
ea

rs
)

t, ts 

EL0

ELc

ELu

SD1

SD2

Fig. 3   Definition of the two types of survival dividend SD1 and SD2

EL0 ELc (ts)

ELu (t = ts) SD1(ts)

SD2(t = ts)

EL0 = Area I + Area III + Area V 
ELc(ts) = Area I + Area II + Area III + Area IV + Area V
ELu(ts) = Area III + Area V 
SD1(ts) = Area II + Area IV + Area V
SD1(ts) = ELc(ts) - EL0 
SD2(ts) = Area I + Area II + Area IV

Fig. 4   Graphical representation and comparison between various expected life terms
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representation and comparison between various expected life 
terms described above (EL0, ELc and Elu). The cross hatched 
areas (areas under the survival curve marked with Roman 
numerals) represent the parameters shown.

5 � Results and discussion

Survival and hazard rate functions for bridge decks can be 
determined as a function of time (age) using the param-
eters shown in Table 3 for the hypertabastic accelerated 
failure time model (Eqs. 6 and 8) for all datasets. The 

users could use any covariate values to assess their effect 
on survival. However, for the following analyses, the val-
ues of the covariates DA and ADT were assumed to be 
equal to the mean values for the bridges in the D0 dataset 
(ADT = 3843 and DA = 458 m2). For the D0 (full) data-
set, conditional survival estimates were made using Eq. 5 
based on the D0 dataset (Fig. 5) as well as all other Dts 
datasets (Fig. 6) for comparison purposes.

Estimated baseline survival curves (static prediction) 
and conditional survival curves (dynamic prediction) were 
determined for ts values ranging from 20 to 50 years at 
5-year increments as shown in Fig. 6. Again, it should be 
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emphasized that the values reported are for the values of 
covariates assumed above. Other covariate values may be 
used as applicable.

Figure 7 compares the two sets of CS curves that were 
determined using D0 and Dts datasets. These results show 
reasonably good agreement. Therefore, the D0 dataset in 
combination with Eq. 5 can be used to accurately determine 
the conditional survival of bridge decks under various con-
ditions. This would eliminate the need to sort and separate 
data based on the survival age.

Using the D0 dataset, and assuming DA = 500 m2, the 
example values of the conditional expected life can be 
determined. Figure 8 shows these values as a function of 
ts for various ADT levels. As ts increases, the expected life 
increases as well. Figure 9 shows the conditional expected 
service life when ADT = 5000 vehicles for different values 
of DA.

Figures 10 and 11 show variations of ELu with age when 
DA and ADT are fixed at 500 m2 and 5000 vehicles, respec-
tively. A comparison of Figs. 8 and 9 with their correspond-
ing Figs. 10 and 11 shows the full effect of achieving sur-
vival at various ages. While the unconditional expected life 

at various ages would continue to decrease, the conditional 
expected life would continuously increase as survived age 
increases.

Both ELc and ELu curves show approximately linear seg-
ments at the beginning and end of each curve. If straight 
lines are drawn at the beginning and end of each ELu curve 
based on linear regression analyses of data in those zones, 
the intersection of the two straight lines would represent 
an approximate transition point beyond which the rate of 
decline of unconditional expected life would increase sig-
nificantly (Fig. 12). The intersection point is defined here as 
the “rapid deterioration” point with a corresponding age trd. 
Values of trd are calculated for various combinations of ADT 
and DA values. Tables 4 and 5 show variations of EL0 and 
trd, respectively, for different combinations of ADT and DA. 
The trd parameter could be another factor to be considered in 
support of bridge deck management decisions.

From the data presented, it is evident that both ADT and 
DA influence the unconditional and conditional expected 
life as well as the probability of survival at various ages. An 
evaluation of the results shows that changes in ADT have 
larger influence on the expected life than the DA. Changing 
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Fig. 7   Comparison of CS of bridge decks using full (D0) and partial (Dts) data sets



Life Cycle Reliability and Safety Engineering	

1 3

ADT from 500 to 20,000 would reduce the expected life 
EL0 by roughly 6–7 years. On the other hand, changing the 
DA from 200 to 1500 m2 reduces EL0 by less than 2 years.

A detailed example illustrating the calculation processes 
for conditional survival and expected service life estimates 
is provided in Appendix.

6 � Summary and conclusions

Probabilistic assessment of service life of bridge decks is an 
important consideration in support of effective long-term 
maintenance of bridges. In this study, conditional survival 

analysis techniques are applied to bridge decks to evalu-
ate the end of service life using the NBI bridge records. A 
recorded NBI deck condition rating of five was considered 
the end of service life of bridge decks. The survival analy-
sis procedures developed by Tabatabai et al. (2011) were 
extended to include conditional survival considerations. The 
covariates considered were the bridge age, ADT, and DA.

As bridge decks age without failure (reaching the end of 
service life), the survival probabilities change. The addi-
tional knowledge gained from the fact that a bridge deck has 
survived several years alters (increases) the original (bridge 
construction) probability of survival at subsequent years 
based on the conditional probability theory. The fact that 
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survival has been achieved at any given time ts changes the 
probability of survival from S(ts) to 1.0. The probability of 
survival at subsequent times would also change by dividing 
the original survival function by S(ts). A conditional survival 
function can thus be calculated for different t and ts values.

The expected service life of a bridge deck, without or 
with achieved survival years, can be estimated using the 
original and conditional survival functions, respectively. 
The area under the original survival function is equal to the 
expected life (EL0) based on the state of knowledge at t = 0. 
Relationships are provided to calculate the expected ser-
vice life at various ages of the bridge deck. These estimates 
can be unconditional, based on knowledge at the time of 
construction of bridge deck, or conditional when ts years 
of service have been achieved without reaching the end of 
service life.

The average daily traffic and deck surface area affect the 
survival probabilities and the expected life. As an example, 
changing ADT from 500 to 2000 would reduce the expected 
life (EL0) by 6–7 years based on Wisconsin data (when 
DA = 500 m2). A parameter representing the age when the 
unconditional expected life begins to suffer rapid reduction 
(trd) has been defined and calculated for various ADT and 
DA values. This parameter can be another tool in planning of 
maintenance, repair, and replacement operations for bridge 
decks. In addition, an example is provided to illustrate cal-
culations of overall survival, conditional survival, initial 
expected life, and conditional expected life.

It should be noted that although the procedures 
described in this paper apply to bridge decks in all geo-
graphic locations, the parameters (α, β, c, and d) that are 
used in the calculations are determined based on the 2016 
Wisconsin NBI data. For all other states, these parameters 
have been determined by Tabatabai et al. (2015) and can 
be used in a similar fashion.

The information provided in this paper can be combined 
with cost information to determine the optimum mainte-
nance interventions during the service life of bridge decks. 
Changes in the probability of survival during the life of 
a bridge deck should be considered to be a dynamic and 
changing value that must be assessed based on the condi-
tional probability theory.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

Appendix

Example  Consider a bridge deck in Wisconsin with a surface 
area of 1000 m2 and ADT of 5000 vehicles that was built 
20 years ago. The bridge deck is performing well in service 
and has not reached the end of its service life (defined as 
deck condition rating of five). Using the NBI-based survival 
analysis, parameters described in this paper are determined:

1.	 Overall survival estimates at the ages of 20, 40, and 
60 years [i.e., S(20), S(40), and S(60)].

2.	 The expected life at the time of construction of the 
bridge deck.

3.	 The age corresponding to rapid deterioration (trd).
4.	 Considering that the bridge deck has already survived 

20 years (ts= 20), what is the probability that it would 
survive another 20 years (i.e., reach the age of 40), or 
40 years (i.e., reach the age of 60)?

5.	 The conditional expected life if the bridge deck had 
already survived 40 years [ELc(40)].

6.	 The unconditional expected life at 40 years [ELu(40)].
7.	 Estimate values of survival dividend (SD1 and SD2) at 

the age of 40 years.

Solution:

1.	 According to Eqs.  6, 8, and 9 and using calculated 
parameters for Wisconsin bridges shown in Table 3:

Table 4   Expected service life (EL0) for various ADT and DA

Expected service life (years)

Deck area (m2) ADT (vehicles)

500 1000 5000 10,000 20,000

200 54.8 54.6 53.2 51.4 48.0
500 53.9 53.7 52.3 50.5 47.2
1000 52.4 52.3 50.9 49.2 45.9
1500 51.0 50.8 49.5 47.8 44.6

Table 5   Rapid deterioration age (trd) for various ADT and DA 

trd (years)

Deck area (m2) ADT (vehicles)

500 1000 5000 10,000 20,000

200 35.2 35.1 34.5 33.8 31.8
500 34.8 34.8 34.2 33.3 31.2
1000 33.6 33.5 32.7 31.7 29.0
1500 34.2 34.2 33.5 32.5 30.2

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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	   At the age of 20 years:

	   Therefore, the probability of survival at the age of 20 
is 97.2%.

	   At the age of 40 years:

	   Therefore, the probability of survival at the age of 40 
is 70.1%.

	   At the age of 60 years:

� = 1.29E − 03

� = 1.90E + 00

c = 5.70E − 05

d = 6.93E − 06.

tg = (t)e[c(DA)+d(ADT)]

= (20)e[(5.70E−05)(1000)+(6.93E−06)(5000)] = 21.92,

W
(
tg
)
= �

[
1 − t�

g
coth

(
t�
g

)]
∕�

=
(1.29E − 03)

[
1 − 21.921.90 coth

(
21.921.90

)]

1.9

= −0.239,

S(20) = sech
{
W
(
tg
)}

= sech(−0.239) = 0.972.

tg = (t)e[c(DA)+d(ADT)]

= (40)e[(5.70E−05)(1000)+(6.93E−06)(5000)] = 43.83,

W
(
tg
)
= �

[
1 − t�

g
coth

(
t�
g

)]
∕�

=
(1.29E − 03)

[
1 − 43.831.90 coth

(
43.831.90

)]

1.9

= −0.893,

S(40) = sech
{
W
(
tg
)}

= sech(−0.893) = 0.701.

tg = (t)e[c(DA)+d(ADT)]

= (60)e[(5.70E−05)(1000)+(6.93E−06)(5000)] = 65.76,

W
(
tg
)
= �

[
1 − t�

g
coth

(
t�
g

)]
∕�

=
(1.29E − 03)

[
1 − 65.761.90 coth

(
65.761.90

)]

1.9

= −1.931,

tg = (t)e[c(DA)+d(ADT)]

= (60)e[(5.70E−05)(1000)+(6.93E−06)(5000)] = 65.76,

	   Therefore, the probability of survival at the age of 60 
is 28.4%.

2.	 According to Table 4, the expected life at the time of 
construction of the bridge deck is 50.9 years. This can 
also be determined by numerically integrating the entire 
survival function:

3.	 According to Table 5, trd is 33 years. This can also be 
determined by determining the two straight lines at the 
beginning and end zones of the Elu curve, and finding the 
age associated with the intersection of those two lines.

4.	 According to Eq. 5, the conditional survival at the age 
of 40 considering survival at 20 years is

	   The probability of reaching the age of 60 assuming 
that 20 years of survival has been achieved is

5.	 Conditional expected life when ts = 40 years can be esti-
mated using Eq. 10. The integration can be performed 
numerically (for example, using a spreadsheet):

6.	 Unconditional expected life at 40 years can be estimated 
using Eqs. 11 and 12. The integration can be performed 
numerically:

7.	 Survival dividend (SD1 and SD2) at age of 40 years are 
calculated by Eqs. 13 and 14 as

EL0 =

∞

∫
0

S(t)dt = 50.9years.

CS(t, s) =
S(t)

S(s)
,

CS(40, 20) =
S(40)

S(20)
=

0.701

0.972
= 0.721.

CS(60, 20) =
S(60)

S(20)
=

0.284

0.972
= 0.292.

ELc(40) = ts +

∞

∫
ts

S(t)

S
(
ts
)dt = 40 +

1

S(40)

∞

∫
40

S(t)dt

= 40 +
1

0.701
15.64 = 60.0years.

ELu(40) = S(t)t +

∞

∫
t

S(t)dt = S(40)40 +

∞

∫
40

S(t)dt

= (0.701)40 + 14.0 = 42.0years.

SD1(40) = ELc(40) − EL0 = 60.0 − 50.9 = 9.1years,
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