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ABSTRACT

The joint probability density function (PDF) of vertical velocity and conserved scalars is important for at
least two reasons. First, the shape of the joint PDF determines the buoyancy flux in partly cloudy layers. Second,
the PDF provides a wealth of information about subgrid variability and hence can serve as the foundation of a
boundary layer cloud and turbulence parameterization.

This paper analyzes PDFs of stratocumulus, cumulus, and clear boundary layers obtained from both aircraft
observations and large eddy simulations. The data are used to fit five families of PDFs: a double delta function,
a single Gaussian, and three PDF families based on the sum of two Gaussians.

Overall, the double Gaussian, that is binormal, PDFs perform better than the single Gaussian or double delta
function PDFs. In cumulus layers with low cloud fraction, the improvement occurs because typical PDFs are
highly skewed, and it is crucial to accurately represent the tail of the distribution, which is where cloud occurs.
Since the double delta function has been shown in prior work to be the PDF underlying mass-flux schemes, the
data analysis herein hints that mass-flux simulations may be improved upon by using a parameterization built
upon a more realistic PDF.

1. Introduction

This paper investigates the joint probability density
function (PDF) of vertical velocity w, liquid water po-
tential temperature ul, and total specific water content
qt, from cumulus, stratocumulus, and cumulus-rising-
into-stratocumulus layers. A joint PDF P(w, ul, qt) is
the probability density of finding a particular value of
the triplet (w, ul, qt) when a measurement is made. We
study joint PDFs derived from aircraft observations and
large eddy simulations (LES). Our interest in joint PDFs
has two related motivations.

A first motivation is that we seek a general represen-
tation of the buoyancy flux (g/u0) in partly cloudyw9u9y
layers. Here, uy is the virtual potential temperature, g
is the acceleration due to gravity, and u0 is a reference
temperature. The buoyancy flux is important because it
is the means by which convection generates turbulence.
Very different formulas for buoyancy flux in partly
cloudy layers can be derived depending on whether one
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assumes that w, ul, and qt are distributed according to
a Gaussian joint PDF (Mellor 1977; Sommeria and
Deardorff 1977) or a convective mass-flux model
(Randall 1987). In general, what is needed to accurately
determine the buoyancy flux is an accurate represen-
tation of the joint PDF P(w, ul, qt). Furthermore, if this
PDF is known, determining the buoyancy flux requires
no further information about spatial structure. This mo-
tivates us to focus directly on the PDF. If its shape can
be parameterized, the buoyancy flux follows as a by-
product. As will be shown below, low-cloudiness cu-
mulus boundary layers exhibit PDFs that resemble nei-
ther Gaussians nor double delta functions (see also
Wang and Stevens 2000).

A second, related motivation to study PDFs is to pro-
vide an observational test for a key assumption behind
a new cloudy boundary layer parameterization (Golaz
et al. 2002a,b). Traditionally, cloud parameterization has
been viewed as a multiplicity of tasks. Such tasks in-
clude the prediction of heat flux, moisture flux, cloud
fraction, and liquid water content. In contrast, Golaz et
al. (2002a) adopt the alternative viewpoint that the goal
of parameterization consists largely of a single task: the
prediction of the joint PDF P(w, ul, qt). The PDF view-
point is more general because, if P(w, ul, qt) is given,
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the fluxes, cloud fraction, and liquid water content can
all be diagnosed.

Unfortunately, direct calculation of P(w, ul, qt) is
computationally expensive. Therefore, the following
methodology is followed. Golaz et al. (2002a,b) assume
that the joint PDF P(w, ul, qt) in each grid box and time
step is the sum of two Gaussians. The double Gaussian
shape defines a family of joint PDFs that depends on
several variable parameters, such as the mean and var-
iance of each individual Gaussian. From this family of
PDFs, a particular member is selected for each grid box
and time step. The member is fixed by requiring it to
satisfy various moments of the PDF, such as , ,2w w9

, and , that are predicted using standard moment3w9 w9q9t
equations derived from the Navier–Stokes and advec-
tion–diffusion equations. The number of prognosed mo-
ments is chosen to equal the number of PDF parameters.
The PDF is then used to close various unclosed terms
in the prognostic equations, such as the buoyancy flux
(g/u0) and . Finally, the equations are ad-2w9u9 w9q9y t

vanced another timestep, and the cycle repeats. The
choice of PDF is a key closure assumption. This method,
the ‘‘assumed PDF’’ method, has a long history in com-
bustion research (e.g., O’Brien 1980; Frankel et al.
1993; Bray and Libby 1994; Cook and Riley 1994) and
meteorology (e.g., Manton and Cotton 1977; Sommeria
and Deardorff 1977; Bougeault 1981; Chen and Cotton
1987). However, only recently have atmospheric models
included w in the PDF (Randall et al. 1992; Lappen and
Randall 2001a,b,c).

The assumed PDF method has several advantages.
First, because the fluxes, cloud fraction, and liquid water
are all derived from the same joint PDF, they are all
calculated in an internally consistent manner (Lappen
and Randall 2001a). Second, predicting the PDF allows
one to remove certain systematic biases that occur in
the microphysics of models that ignore subgrid vari-
ability (Rotstayn 2000; Pincus and Klein 2000; Larson
et al. 2001a,b). Third, although the moment equations
require closure assumptions for the pressure and dis-
sipation terms, many terms in these equations are de-
rived directly from accepted theory, namely the Navier–
Stokes and advection–diffusion equations. The assumed
PDF method also includes empiricism in the form of
the family of PDFs. However, the shape of the family
of PDFs only determines the higher-order moments, and
if these moments are of sufficiently high order that they
do not strongly affect quantities of primary interest, such
as cloud fraction, then errors due to the shape of the
PDFs will be acceptably small. The errors in cloud frac-
tion, liquid water, and liquid water flux incurred by an
assumed PDF family can be assessed with observational
or numerical data, and we do so in the present paper.
Whether or not a double Gaussian PDF leads to tolerable
errors when used in an interactive, prognostic param-
eterization is explored in Golaz et al. (2002a,b).

To predict buoyancy flux and, more generally, to de-

velop a PDF-based parameterization of cloudy boundary
layers, it is crucial to choose a satisfactory family of
PDFs. We seek a family of PDFs that is simple, because
the more parameters a PDF involves, the more moments
must be prognosed. We also seek a family of PDFs that
is sufficiently flexible and general that it can model both
stratocumulus and cumulus regimes. Stratocumulus
clouds often have Gaussian-like PDFs, whereas cumulus
layers with a cloud fraction below 20% tend to have
skewed PDFs (Bougeault 1981, 1982; Cuijpers and Be-
chtold 1995). If a parameterization package in a large-
scale model includes separate schemes for separate re-
gimes, it faces the difficulty of choosing which scheme
to trigger.

This paper uses aircraft data and large eddy simula-
tions to test how well observed PDFs are fit by five
families of PDFs. The first and second families are dou-
ble delta and single Gaussian functions. The third family
is based on a double Gaussian functional form (Lewellen
and Yoh 1993). The fourth and fifth are analytic for-
mulations based on the double Gaussian form. We com-
pare cloud fraction, specific liquid water content, and
liquid water flux calculated from observed and param-
eterized PDFs. Since we desire to develop a parame-
terization for mesoscale models, we truncate the aircraft
legs to lengths ranging from 10 to 50 km. The two large
eddy simulations we perform span 6.4 km 3 6.4 km
and 6.7 km 3 6.7 km in the horizontal.

The present paper differs from prior studies of one-
dimensional PDFs of thermodynamic variables such as
total water content (Bougeault 1981, 1982; Lewellen
and Yoh 1993; Xu and Randall 1996; Larson et al.
2001b; Price 2001; Tompkins 2002). Such one-dimen-
sional PDFs are useful for developing subgrid cloud
schemes. However, to represent the buoyancy flux or
develop a PDF-based parameterization of boundary lay-
er turbulence, one needs a joint PDF that includes w.
Wang and Stevens (2000) do present such joint PDFs,
but we additionally fit various families of PDFs, and
we test PDF-based diagnoses of cloud fraction, liquid
water, and liquid water flux.

2. Families of PDFs to be tested

This section briefly summarizes the parameterizations
of the joint three-dimensional PDF, P(w, ul, qt). A fuller
description is given in the appendix. For simplicity, our
PDFs do not include any hydrostatic pressure variation.

a. Double delta function (7 parameters)

This PDF consists of two Dirac delta functions whose
locations and relative amplitude may vary. A double
delta function PDF corresponds to a mass-flux scheme
consisting of an updraft and downdraft plume, with no
subplume variability. This PDF is perhaps the simplest
that permits nonzero skewness and bimodality. Follow-
ing Randall et al. (1992) and Lappen and Randall
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(2001a), we fix the relative amplitude of the delta func-
tions and their positions in the w coordinate by choosing
them such that the resulting PDF matches the observed
values of the moments , , and . The positions2 3w w9 w9
of the delta functions in the ul coordinate are determined
by and . Likewise, the positions in the qt co-u w9u9l l

ordinate are determined by and . Therefore, whenq w9q9t t

we use this procedure to fit this PDF to data, we ensure
that the PDF exactly satisfies the observed scalar fluxes,
namely, and .w9u9 w9q9l t

b. Single Gaussian (9 parameters)

This PDF consists of a single Gaussian that in general
has nonzero correlations between the variables. That is,

, , ± 0. The Gaussian PDF does not alloww9u9 w9q9 q9u9l t t l

the possibility of skewness or bimodality, but, unlike
the double delta PDF, it does exactly satisfy the scalar
variances and .2 2u9 q9l t

c. Lewellen–Yoh (12 parameters)

This PDF is based on a double Gaussian function,
that is, the sum of two Gaussians. The positions and
relative amplitudes of the two Gaussians may vary, per-
mitting skewed and bimodal shapes. On the other hand,
if the two Gaussians overlap, the PDF can reduce to a
single Gaussian. Lewellen and Yoh (1993) reduce the
number of PDF parameters, so that the PDF is fully
determined by the means, variances, covariances, and

, , and . Although the Lewellen–Yoh scheme3 3 3w9 u9 q9l t

performs the best of those we tested, it contains two
complications. First, its PDF parameters cannot be
solved analytically. Second, a host model may predict
moments that result in unphysical values of the Lew-
ellen–Yoh PDF parameters. A plausible procedure for
limiting the PDF parameters to acceptable ranges is list-
ed in the appendix.

d. Analytic Double Gaussian 1 (10 parameters)

Like Lewellen–Yoh, this PDF is based on the double
Gaussian shape with a reduced number of parameters.
However, in this case the widths of the individual Gaus-
sians in w are assumed equal, and the parameters are
found analytically. An analytic PDF scheme is more
robust than one that requires a numerical root finder.
This is an advantage if the scheme is implemented as
a parameterization in a large-scale model. The only third
moment required for Analytic Double Gaussian 1 is

. Letting Skx denote the skewness of variable x, we3w9
set Sk 5 0 and Sk 5 1.2Skw. Analytic Double Gaussianu ql t

1 is constructed to satisfy exactly.q9u9t l

e. Analytic Double Gaussian 2 (10 parameters)

This scheme is exactly like Analytic Double Gaussian
1, except that the widths of the individual Gaussians in

w are obtained using the formulas of Luhar et al. (1996).
The widths are assumed unequal in general, and the PDF
reduces to a single Gaussian when the skewness in w
vanishes.

3. Observational data and large eddy simulations

To test the aforementioned PDFs, we use two sources
of data: aircraft observations and large eddy simulations
(LESs). Both sources contain only ice-free boundary
layer clouds.

The aircraft observations were made during the At-
lantic Stratocumulus Transition Experiment (ASTEX;
Albrecht et al. 1995) and the First International Satellite
Cloud and Climatology Project (ISCCP) Regional Ex-
periment (FIRE; Albrecht et al. 1988). ASTEX inves-
tigated stratocumulus layers, cumulus-rising-into-stra-
tocumulus layers, and some cumulus layers, whereas
FIRE focused more on stratocumulus layers. We fit the
PDF parameterizations to the ASTEX and FIRE datasets
separately. These datasets contain many cloud-free legs
flown in clear boundary layers or flown above or below
cloud layers. Of the 184 50-km ASTEX legs, 116 are
cloud free; of the 92 50-km FIRE legs, 48 are cloud
free. We keep these because we want to be able to pre-
dict the absence of cloud when appropriate. Addition-
ally, we wish to test the PDF parameterizations inde-
pendently on cumulus legs. To do so, we isolate all
ASTEX legs that contain some cloud and that occurred
on flights that, according to observers’ notes, sampled
cumulus layers with no stratocumulus or at most broken
stratocumulus above. This yields a third dataset, denoted
‘‘ASTEX cumulus legs,’’ that consists of eight legs. Six
of these legs had cloud fractions C & 0.02, one had C
5 0.08, and one had C 5 0.24. (In general 0 # C #
1.)

The aircraft was a C-130 operated by Meteorological
Research Flight, a branch of the Met Office. Its instru-
mentation is described in Rogers et al. (1995). Here we
merely mention the following. Liquid water content was
measured with a Johnson–Williams hot wire probe,
which has a response time of about 1 s. The vertical
velocity was measured with an estimated accuracy of
60.1 m s21. Temperature was measured using a Rose-
mount de-iced total temperature sensor and corrected
for dynamic heating effects. In ASTEX, total water con-
tent was measured with a fast–response Lyman-a hy-
grometer, logged at 64 Hz, referenced to out-of-cloud
data from a General Eastern 1011B dew/frost point hy-
grometer. In FIRE, total water content was obtained by
adding the liquid and vapor content obtained from the
Johnson–Williams probe and the dew/frost point hy-
grometer.

Because the set of observed cumulus legs is small,
we supplement it with LES of two cumulus cases, both
simulated by the Global Energy and Water Cylee Ex-
periment (GEWEX) Cloud System Studies (GCSS)
boundary layer cloud working group. The first is a con-
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FIG. 1. One- and two-dimensional projections of a joint PDF constructed from an aircraft transect through
the middle of a stratocumulus cloud observed during ASTEX. The dashed contour in the two-dimensional
PDFs is at 0.005 times the maximum of the PDF. The solid contours are evenly spaced. The dotted line in
the qt 2 ul panel corresponds to saturation. Above and to the left of this line all points contain liquid. The
stars mark the location of the best fit double delta function. Shown in the lower-right corner are the space
series used to construct the PDF.

tinental cumulus case based on measurements over the
Atmospheric Radiation Measurement (ARM) program
Cloud and Radiation Testbed (CART) site in Oklahoma.
The second is a trade wind cumulus case based on ob-
servations from the Barbados Oceanographic and Me-
teorological Experiment (BOMEX).

The LES model is the Regional Atmospheric Mod-
eling System (RAMS; Pielke et al. 1992). All ice and
precipitation processes in the model are turned off. Any
water vapor in excess of saturation is immediately con-
densed into liquid. In the ARM simulation, the hori-
zontal and vertical grid spacings are 100 m and 40 m,

respectively, and the domain is 6.7 km 3 6.7 km 3 4.4
km high. In the BOMEX simulation, the horizontal and
vertical grid spacings are 100 m and 40 m, respectively,
and the domain is 6.4 km 3 6.4 km 3 3 km high.
(Details of the setups can be found online at http://
www.atmos.washington.edu/breth/GCSS/GCSS.html.)
The ARM simulation we use was submitted as part of
the GCSS intercomparison workshop. The BOMEX
simulation we use was performed subsequent to the
BOMEX intercomparison workshop. Both simulations
we use compare well with other models’ results from
the GCSS workshops.
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FIG. 2. The best fit of Analytic Double Gaussian 1 for the stratocumulus joint PDF shown in Fig.
1. The axes and contours are the same as in Fig. 1. The dotted line in the qt 2 ul panel corresponds
to saturation. Above and to the left of this line all points contain liquid. The upward pointing arrow
in the top-right panel denotes a Dirac delta function.

4. Examples of joint PDFs from aircraft data

Before testing the PDF parameterizations quantita-
tively, we first plot two-dimensional slices of observed
and fitted PDFs to give a sense of their overall char-
acter.

The first PDF is derived from an ASTEX aircraft leg
through the middle of a stratocumulus layer (Fig. 1).
The joint PDF is unimodal and relatively unskewed,
with a quasi-Gaussian shape. The PDF is spread out and
does not resemble a double delta function. There is some
negative correlation between qt and ul. This was com-
monly observed in the PDFs and may correspond to
legs that have little variability in temperature but large
variability in liquid water. For comparison, a one-di-

mensional PDF of liquid water using this leg was plotted
in Fig. 2a of Larson et al. (2001b). To give a sense of
how well a double Gaussian can fit such a PDF, Fig. 2
displays the best-fit Analytic Double Gaussian 1. This
fitting formula approximates the broad quasi-Gaussian
shape, yields an appropriately large cloud fraction, and
permits negative correlation between qt and ul.

The second PDF is derived from an ASTEX aircraft
leg through cumuli (Fig. 3). In contrast to the stratocu-
mulus PDF, the cumulus PDF is highly skewed. In the
cumulus case, the cloud portion of the PDF consists of
a long tail that does not resemble a delta function. The
negative correlation of qt and ul is stronger here than in
the stratocumulus leg. A one-dimensional PDF using this
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FIG. 3. One- and two-dimensional projections of a joint PDF of an aircraft transect through a cumulus
layer observed during ASTEX. The dashed contour in the two-dimensional PDFs is at 0.005 times the
maximum of the PDF. The solid contours are evenly spaced. The dotted line in the qt 2 ul panel corresponds
to saturation. Above and to the left of this line all points contain liquid. The stars mark the location of
the best fit double delta function. Shown in the lower-right corner are the space series used to construct
the PDF.

leg was plotted in Fig. 2d of Larson et al. (2001b). The
best fit provided by Analytic Double Gaussian 1 is shown
in Fig. 4. In this particular example, the updraft ‘‘plume’’
is diagnosed to have zero width in ul, that is, to be a
delta function in ul, which is unphysical. However, the
fitting formula does yield within-updraft variability in qt

and w. The fitted PDF has significant skewness and an
associated tail containing cloud, but the tail is somewhat
too long. In summary, although Analytic Double Gauss-
ian 1 sometimes produces unrealistic features, it is ca-
pable of distinguishing qualitatively between stratocu-
mulus PDFs that are relatively unskewed and cumulus
PDFs that have long tails.

5. Evaluations of PDF parameterizations

Now we quantify the errors induced by approximating
an observed PDF with a parameterized PDF. We adopt
the following procedure. First, we use an aircraft leg to
compute observed values of cloud fraction (C), specific
liquid water content ( ), and liquid water flux ( ).q w9q9l l

Second, we use the moments computed from the aircraft
leg and the five families of PDFs to parameterize the
leg’s PDF, as described in the appendix. Then, using the
parameterized PDF, we compute parameterized values
of C, , and as in the appendix. Finally we com-q w9q9l l

pare the parameterized and observed values.
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FIG. 4. The best fit of Analytic Double Gaussian 1 for the cumulus joint PDF in Fig. 3. The axes
and contours are the same as in Fig. 3. The dotted line in the qt 2 ul panel corresponds to saturation.
Above and to the left of this line all points contain liquid.

Because we use observed moments to compute pa-
rameterized values of C, , and , we do not testq w9q9l l

errors in the host model’s prediction of these moments.
Instead, we isolate errors arising from misrepresenta-
tions in the shape of the PDF. Therefore, the errors we
plot are the best that a model could hope to achieve if
it used these families of PDFs and if it predicted the
moments perfectly. The question of how accurately the
moments can be predicted is deferred to Golaz et al.
(2002b).

We choose to investigate C and because they areql

indicators of the cloud structure, which is important for
calculating radiative transfer and precipitation. We
choose to compute because it is a key componentw9q9l

of the buoyancy flux (g/u0) , which in turn generatesw9u9y
turbulent kinetic energy. We may write

1 2 e0w9u9 5 w9u9 1 u w9q9y l 0 te0

R /cd pL p 1y 01 2 u w9q9. (1)0 l1 2[ ]c p ep 0

Here, e0 5 Rd/Ry , Rd is the gas constant of dry air, Ry

is the gas constant of water vapor, Ly is the latent heat
of vaporization, cp is the heat capacity of air, u0 is a
reference temperature, p is the pressure field, and p0 is
a constant reference pressure. This expression shows
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FIG. 5. Errors in parameterized cloud fraction. A higher value along
the ordinate corresponds to greater error. To construct this plot, the
three datasets were divided into legs of a given length. Then observed
and parameterized cloud fraction, Cobserved and Cparameterized, were com-
puted for the parameterizations listed in the legend. Next we com-
puted the standard deviation of (Cparameterized 2 Cobserved) over all the
legs. Then we repeated the procedure for different leg lengths.

FIG. 6. Same as in Fig. 5, but here we compute errors in
parameterized specific liquid water content.

that the buoyancy flux may be approximated as a sum
of three fluxes, two of which are multiplied by slowly
varying coefficients. If and are prognosed orw9u9 w9q9l t

otherwise determined by a model, then the remaining
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FIG. 7. Same as in Fig. 5, but here we compute errors in
parameterized turbulent flux of specific liquid water content.

parameter to determine is . This depends sensitivelyw9q9l
on the joint PDF P(w, ul, qt) (Bougeault 1981). Hence

strongly influences the dynamics of a cloudyw9q9l
boundary layer and also indicates the quality of a pa-
rameterized PDF.

Before performing the above calculations, we trun-
cate our aircraft legs to lengths ranging from 10 to 50
km. Relative to a one-dimensional PDF, a three-dimen-
sional joint PDF has a relatively large volume of pa-
rameter space for a given number of sample points. To
maintain an adequate number of sampling points, we
truncate legs at no less than 10-km intervals. Despite
this, a one-dimensional leg samples only a small portion
of the three-dimensional volume spanned by a grid box
of corresponding size. This problem is difficult to avoid
with typical aircraft datasets. We limit legs to 50 km
because few aircraft legs in our datasets are longer than
50 km.

We do not ensemble average or remove linear trends
from the aircraft legs. This is because we want to mimic
what is done in the filtering approach to numerical mod-
eling of fluid flows. In this approach, the resolved fields
of a numerical model are regarded as flow fields filtered
by a running spatial average of finite width, rather than
an ensemble or Reynolds average (Germano 1992).
Then what needs to be parameterized is a localized spa-
tial average of moments such as liquid water flux, not
an ensemble average. The probability distribution that
corresponds to the filtering approach is the probability
of finding w, ul, and qt within a spatially filtered region.
Therefore the PDFs that this paper discusses are, strictly
speaking, more properly denoted ‘‘filtered density func-
tions’’ (see Colucci et al. 1998).

Filtered fields do not obey Reynolds rules of aver-
aging, such as 5 . This turns out not to hinderf f
derivation of the moment equations if central moments
such as are replaced by 2 , and similarlyw9q9 wq w ql l l

for other moments (Germano 1992). This avoids the
extra terms that would otherwise appear because spatial
filters over finite volumes do not obey Reynolds rules
of averaging (Leonard 1974). To shorten notation, this
paper will write , but this is meant to be interpretedw9q9l
as 2 , and analogously for all other higher-wq w ql l

order moments. All calculations we perform on the data
are consistent with the latter form. That is, a prime in
our calculations denotes a deviation from a grid box
average field, not a deviation from a running average
field that varies continuously. One particularly simple
filter is a spatial average over a rectangular parallele-
piped centered on a grid box. To mimic this filter, we
truncate each aircraft leg to a given length and calculate
its moments by performing the appropriate spatial av-
eraging over the truncated leg.

There are significant trends in some aircraft legs, such
as the qt leg in Fig. 1. In the filtering approach, these
trends should be and are included in the calculation of
deviations and the filtered density function. Prognosing
moments of fluid fields that contain trends is a difficult
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TABLE 1. Summary of bias and errors in cloud fraction C. This table lists the bias and errors averaged over all points shown in Fig. 5,
that is, averaged over all datasets and grid box sizes. The last row lists the standard deviation of C among all legs; it is equivalent to the
error incurred by a ‘‘parameterization’’ that predicts clear skies always.

Mean (Cparameterized 2 Cobserved)
Standard deviation of
(Cparameterized 2 Cobserved)

Lewellen–Yoh
Analytic Double Gaussian 1
Analytic Double Gaussian 2
Single Gaussian
Double delta function

20.0016
20.0040

0.000 68
20.0046
20.016

0.018
0.031
0.039
0.029
0.079

Standard deviation of Cobserved

0.25

TABLE 2. Summary of bias and errors in specific liquid water content averaged over all points in Fig. 6, that is, averaged over allql

datasets and grid box sizes. The last row lists the standard deviation of among all legs; it is equivalent to the error incurred by aql

‘‘parameterization’’ that predicts clear skies always.

Mean (ql,parameterized 2 ql,observed)
(1023 g kg21)

Standard deviation of (ql,parameterized 2 ql,observed)
(1023 g kg21)

Lewellen–Yoh
Analytic Double Gaussian 1
Analytic Double Gaussian 2
Single Gaussian
Double delta function

20.34
20.86
20.58
22.5
27.3

3.6
6.9
8.0
7.0

19
Standard deviation of ql,observed (1023 g kg21)

98

problem in the theory of fluid mechanics. Traditional
turbulence closures do not model mesoscale trends. The
present paper eschews this problem and focuses instead
on relating the moments to PDF parameters, given ac-
curate moments.

The errors in C, , and at various leg lengthsq w9q9l l

are shown in Figs. 5, 6, and 7. Consider first the errors
in C and . The results from ASTEX cumulus legs areql

somewhat noisy because there are only eight legs. Over-
all, however, the largest errors are associated with the
double delta function (7 parameters). Superior to this
are the single Gaussian (9 parameters) and analytic dou-
ble Gaussian (10 parameters) parameterizations, which
perform comparably to each other. The best predictions
are provided by the Lewellen–Yoh scheme (12 param-
eters). As expected, the parameterizations with more
fitting parameters produce better fits. Now consider er-
rors in , shown in Fig. 7. Overall, this plot revealsw9q9l
no obviously superior scheme. The ASTEX cumulus
legs hint, however, that the double Gaussian schemes
may perform better for long legs in cumulus layers. The
double Gaussian schemes have the capability of pro-
ducing long tails when skewness is large. This is an
advantage when parameterizing cumulus PDFs. How-
ever, our experience was that these tails can occasionally
lead to poor predictions of C and ql. Such outliers dom-
inate the errors in the double Gaussian schemes. The
double delta function and single Gaussian PDFs are
more subdued, but they tend to underpredict . Thew9q9l
(nonsystematic) biases and errors for all the parameter-
izations and all three datasets are summarized in Tables

1, 2, and 3. For the most part, parameterizations with
larger errors also tend to have larger biases.

Figure 8 displays the errors in ASTEX and FIRE legs
that have midrange cloud fractions, 0.2 # C # 0.8. This
restriction leaves fifteen 50-km ASTEX legs and twelve
50-km FIRE legs. The errors are several times larger
than when all cloud fractions are permitted. This is be-
cause fits to clear or overcast legs have small errors for
all PDF parameterizations that we tested. However, the
performance of the parameterizations relative to each
other is similar for midrange C and all C.

A more detailed picture of the errors in long (50 km)
ASTEX cumulus legs is shown in Fig. 9. It turns out
that for each of these legs, the double delta function
diagnoses zero C, , and . Why is this? Considerq w9q9l l

Fig. 3, which fits a double delta function to a particular
observed PDF. Each delta function, denoted by a star,
lies within unsaturated air (although one lies close to
the saturation line). Recall that the locations of the delta
functions are chosen such that the observed and param-
eterized fluxes are equal, and similarly for .w9q9 w9u9t l

To prevent these fluxes from being overestimated, the
delta functions must be rather closely spaced. Then nei-
ther delta function lies within the cloudy region. In Fig.
9, the single Gaussian underestimates C modestly, ql

moderately, and severely. Similar results were ob-w9q9l
tained by Bougeault (1981). This is related to the fact
that the single Gaussian is unskewed, whereas cumulus
layers are positively skewed. The percentage underes-
timates are more severe for cases with less cloud. The
double Gaussian parameterizations produce scatter, but
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TABLE 3. Summary of bias and errors in liquid water flux . This table lists the bias and errors averaged over all points shown inw9q9l
Fig. 7, that is, averaged over all datasets and grid box sizes. The last row lists the standard deviation of w9ql9 among all legs; it is equivalent
to the error incurred by a ‘‘parameterization’’ that predicts clear skies always.

Mean ( 2 )w9q9 w9q9l,parameterized l,observed

(1023 m s21 g kg21)
Standard deviation of ( 2 )w9q9 w9q9l,parameterized l,observed

(1023 m s21 g kg21)

Lewellen–Yoh
Analytic Double Gaussian 1
Analytic Double Gaussian 2
Single Gaussian
Double delta function

20.43
1.4

21.6
23.3
22.8

3.9
5.7
4.1
8.2
6.4

Standard deviation of w9q9l,observed

(1023 m s21 g kg21)
12.7

FIG. 8. Same as in Fig. 5, but here we include only those legs from ASTEX and FIRE that have cloud fractions C between 0.2 and 0.8.
This provides an estimate of error for legs that are neither clear nor overcast. The figure also displays errors in parameterized specific liquid
water content and its flux.

do not have general underestimates, except in the di-
agnosis of by Analytic Double Gaussian 2 (aster-w9q9l
isks).

To investigate cumulus PDFs more closely, Figs. 10
and 11 present results from certain time periods of
LESs that were set up according to the GCSS specifi-
cations. Figure 10 displays the ARM continental cu-
mulus case, and Fig. 11 displays the BOMEX trade wind

cumulus case. Values of C, , and for the variousq w9q9l l

parameterizations are calculated as we did for the air-
craft legs, but as input we use moments computed from
the LES fields. For the most part, the results corroborate
those of our observational data. As before, the double
delta function PDF produces no cloud for these time
periods. As before, the single Gaussian underestimates
C moderately, more severely, and even moreq w9q9l l



3530 VOLUME 59J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 9. A scatterplot of parameterized vs observed cloud fraction
(C ), average specific liquid water content ( ), and turbulent flux ofql

specific liquid water content ( ). The various parameterizationsw9q9l
tested are listed in the legend. Each point corresponds to one long
(50 km) ASTEX cumulus leg. A perfect fit would correspond to all
points lying along the solid line. The Gaussian PDF (circles) leads
to underpredictions. The double delta function (stars) diagnoses no
cloud or liquid for these cumulus legs, and therefore does not appear
in the top panel.

severely. The double Gaussian schemes perform sig-
nificantly better, but they still underestimate liquid water
flux by a factor of two to three. Although the percentage
errors in fitting our cumulus simulations are large, the
absolute errors are comparable with the errors in fitting
the aircraft data. For instance, the error in fitting w9q9l
diagnosed by the double delta PDF over the cloud layer
is 6.3 3 1023 6 4.3 3 1023 m s21 g kg21 for BOMEX
and 20 3 1023 6 17 3 1023 m s21 g kg21 for ARM.
This is comparable to the errors shown in Table 3 and
Figs. 7 and 8. Whether either the Gaussian or double
delta function performs well for cumulus layers with
higher cloudiness is an open question that we have not
explored.

In our cumulus simulations the cloud fraction max-
imizes near cloud base and then decreases with increas-
ing altitude. This is because only a small percentage of
clouds reach the top of the cloud layer. The single
Gaussian and double Gaussian PDFs are all able to re-
produce the shape of the cloud fraction profiles. Both
analytic double Gaussian schemes underestimate the al-
titudes of cloud top and cloud base. The Lewellen–Yoh
scheme performs better in this respect, probably because
it assumes that the skewnesses of qt and ul are prog-
nosed, not diagnosed.

It is important that a boundary layer parameterization
remain valid for a range of grid box sizes, especially if
the host model uses nested gridding. We have tested
PDF families for horizontal domains ranging from 6.4
km 3 6.4 km for the BOMEX LES to 50 km for the
aircraft legs. Whether or not the PDF families will per-
form well for larger or smaller grid box sizes remains
an open question. One would expect the scalar variances
to increase with increasing length scale, but all PDF
families we tested can accommodate such a change with
scale.

The fits produced by the double delta function PDF
merit further discussion. The fact that the double delta
function diagnoses no cloud in the cumulus cases might
lead one to suppose that the double delta function is a
more appropriate PDF for stratocumulus cases, where
at least it diagnoses some cloud. This may seem coun-
terintuitive, because one might have expected that the
double delta function would represent the updraft–
downdraft structure better in cumulus layers than in stra-
tocumulus layers. However, the delta function has dif-
ficulties with the stratocumulus layers as well, produc-
ing the least satisfactory estimates of C and amongql

all the schemes tested. The problems in cumulus and
stratocumulus layers are both significant, but they are
distinct from each other.

In cumulus layers with low cloud fraction, the es-
sential difficulty is that often the observed distribution
contains cloud only within the end of a long tail, but a
double delta function contains no tail and therefore often
produces no cloud. We must note a caveat: although in
our examples the double delta function does not produce
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FIG. 10. Diagnosed profiles of cloud fraction (C), average specific
liquid water content ( ), and turbulent flux of liquid water ( ),q w9q9l l

along with corresponding profiles computed by LES. Plotted is the
10th and 11th hours of the GCSS ARM simulation involving cumulus
over land. The Gaussian PDF (circles) leads to underpredictions. The
double delta function PDF (stars) diagnoses no clouds for this time
period.

cloud, it nearly does so in some of our cases. For ex-
ample, one of the delta functions in Fig. 3 is near the
saturation line. To move the delta function within the
saturated region, one could choose an algorithm other
than Randall et al. (1992) to position the delta functions,
but then the fluxes and would no longer bew9q9 w9u9t l

satisfied exactly. However, the error induced in the flux-
es may be small if a delta function needs to be moved
only slightly.

In stratocumulus layers, the essential difficulty is that
many of the PDFs are spread out and not highly cor-
related. For example, consider the stratocumulus layer
depicted in Fig. 1. The correlation coefficient between
w and qt is 0.20, that between w and ul is 20.14, and
that between qt and ul is 20.59. One can illustrate the
difficulty of fitting such PDFs with a double delta func-
tion by considering the limiting case of a single Gauss-
ian that is uncorrelated in w and qt, as shown in Fig.
12. Suppose one chooses to match the flux ( 5 0)w9q9t
and the variance in w, as does Randall et al. (1992).
Then for an uncorrelated PDF, the delta functions lie
along the w axis (pluses). Unfortunately, then the fitted
double delta PDF has 5 0, contrary to the PDF we2q9t
desire to fit. The double delta fit to the observed stra-
tocumulus PDF in Fig. 1 shows a hint of this behavior.
Similarly, one could match the flux and the variance in
qt (triangles), but then unfortunately the variance in w
would vanish. Finally, one could match the variances
in both directions by placing the delta functions along
the diagonal (dots), but then the flux would be grossly
overestimated. Regardless of where the delta functions
are positioned, either the flux or variances or both must
be misrepresented. The problem of matching both flux
and variances using the double delta function PDF has
been studied in more detail by Wang and Stevens (2000).
Our data show additionally that the double delta PDF
misrepresents liquid water, and we conjecture that
source of the problem in stratocumulus layers is the
dissimilarity between double delta PDFs and stratocu-
mulus PDFs, which are spread out and comparatively
uncorrelated.

The double delta PDF is of practical importance be-
cause several authors have shown that the assumption
that a double delta function can adequately represent
observed PDFs is the essential assumption behind sim-
ple updraft–downdraft mass-flux schemes with no sub-
plume variability (Randall et al. 1992; de Roode et al.
2000; Lappen and Randall 2001a). Therefore, deficien-
cies of the double delta function PDF are also deficien-
cies of the simplest mass-flux schemes. Our fits to data
evaluate only one variant of the double delta PDF, the
Randall et al. (1992) algorithm, in which the fluxes are
used to fix the locations of the delta functions. Other
possible techniques to close the mass-flux approach,
such as using variances to locate the delta functions,
may produce better results. However, it seems unlikely
to us that a double delta PDF can simultaneously di-
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FIG. 11. Diagnosed profiles of cloud fraction (C), average specific
liquid water content ( ), and turbulent flux of liquid water ( ),q w9q9l l

along with corresponding profiles computed by LES. Plotted is the
4th and 5th hours of the GCSS BOMEX simulation involving trade
wind cumulus. The Gaussian PDF (circles) leads to underpredictions.
The double delta function PDF (stars) diagnoses no clouds for this
time period.

FIG. 12. An idealized joint PDF of vertical velocity w and total
specific water content qt (contours) overplotted with three possible
double delta PDF fits. The idealized PDF is a single Gaussian with
no correlation. The three fitted PDFs are double delta functions that
match and (pluses); and (triangles); and and2 2 2w9q9 w9 w9q9 q9 w9t t t

(dots). No double delta PDF can simultaneously match the flux2q9t
and both variances.

agnose accurate fluxes, variances, and cloud properties,
because boundary layer PDFs do not closely resemble
double delta functions. We cannot make conclusions
about the usefulness of mass flux schemes in deep con-
vecting layers because our data include only boundary
layers.

To overcome the deficiencies of mass-flux models,
prior authors have proposed several remedies, listed be-
low.

1) Some authors have suggested coupling a mass-flux
scheme to a cloud PDF that is not a double delta
function, for example, a triangular-shaped PDF
(Lock et al. 2000). Such a scheme should then ensure
that it does not use two separate and mutually in-
consistent PDFs (the double delta function and the
triangular-shaped PDF) in different calculations,
rather than using a single internally consistent joint
PDF (consisting of a delta function plus a triangular-
shaped function) for all calculations.

2) Other authors have explored the possibility of choos-
ing the updraft and downdraft properties via a so-
phisticated sampling strategy (Wang and Stevens
2000). For instance, one could define the updraft
plume to consist of those parcels that have w9 . 0,
ql . 0, and . 0. However, Wang and Stevensu9y
(2000) were unsatisfied with the sampling strategies
they discussed. Furthermore, it is not obvious how
such a redefinition of sampling strategy should be
implemented numerically.
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3) Several authors have added subplume variability to
mass-flux schemes in an attempt to improve the flux-
es. For instance, some have increased the fluxes by
multiplying them by a constant prefactor whose val-
ue could be derived, for example, under the as-
sumption that the underlying PDF is a single joint
Gaussian (Randall et al. 1992; Petersen et al. 1999).
However, the present paper has demonstrated that
cloud fields can be misrepresented by double delta
PDFs even if the fluxes are perfect.

We do not evaluate the above remedies because the main
topic of this paper is PDFs, not mass-flux schemes. Also,
we believe that if one’s goal is to parameterize cloudy
boundary layers, it is more natural to attempt to model
the PDF as directly and faithfully as possible, rather than
modifying a mass flux scheme. A possible procedure to
directly model PDFs, the assumed PDF method, was out-
lined in the introduction and is discussed in more detail
in Golaz et al. (2002a,b).

6. Conclusions

This paper has used aircraft observations and large
eddy simulation (LES) of boundary layer clouds to test
five families of joint probability density functions
(PDFs).

The double delta function satisfactorily diagnoses liq-
uid water flux for the ASTEX and FIRE aircraftw9q9l
legs overall. However, compared to the other four PDFs,
the double delta function tends to produce the least sat-
isfactory fits of cloud fraction and specific liquid water
content. Additionally, in the cumulus data segments we
examined, which had low cloud fraction, if one places
the delta functions such that the fluxes are matched ex-
actly, then no clouds are diagnosed. (We have not, how-
ever, investigated the degree to which the fluxes would
have to be compromised in order to produce reasonable
cloud values. Other variants of mass-flux schemes may
perform better.) The reason that no clouds are diagnosed
is that cumulus clouds for our low-cloudiness cases tend
to reside on the tail of the distribution, and the double
delta function misrepresents the tails. Because there is
a close link between the double delta function and mass-
flux schemes, this raises doubts about a main assumption
underlying the simplest mass-flux schemes. This has
inspired Golaz et al. (2002a,b) to develop an alternative
to mass-flux schemes that is based on a more realistic
PDF. Although it remains an open question whether the
higher-order moments, particularly the third-order mo-
ments, can be predicted with sufficient accuracy to war-
rant the use of the more sophisticated PDF families,
Golaz et al. (2002a,b) were able to prognose ac-3w9
curately enough to develop a satisfactory PDF-based
model for cloudy boundary layers. The PDF family they
used was the Analytic Double Gaussian 1.

In partly cloudy layers, the liquid water flux, ,w9q9l
and hence the buoyancy flux (g/u0) , depend on thew9u9y

joint PDF P(w, ul, qt) of w, ul, and qt. One finds different
expressions for depending on whether one assumesw9q9l
that the PDF is a single Gaussian (Mellor 1977) or a
double delta function (Randall 1987). One may ask,
‘‘Which PDF produces the better estimate of ?’’w9q9l
The single Gaussian appears to work slightly better, but
both PDFs severely underestimate in low-cloudi-w9q9l
ness cumulus layers. However, we believe the question
poses a false dichotomy. Since depends on the PDF,w9q9l
there can be as many approximations to as therew9q9l
are PDFs. For instance, the formula (A13) for isw9q9l
based on the double Gaussian PDF. Therefore, we ad-
vocate striving to find the most representative and sim-
plest family of PDFs possible.

In our survey of five PDFs, we found that PDFs that
depend on more parameters tend to produce better fits,
as expected. The Lewellen–Yoh family of PDFs, which
is based on a double Gaussian form, performs best. If
an analytic scheme is desired, then the analytic double
Gaussians presented here perform satisfactorily. In par-
ticular, they fit low-cloudiness cumulus layers somewhat
better than the single Gaussian form.

The merits of the various PDF parameterizations must
be weighed against their computational costs. Imple-
menting any of the PDF parameterizations we tested
would be expensive compared to using a first-order,
down-gradient diffusion scheme. It is difficult to ac-
curately compare the costs of the various schemes with-
out implementing each of them. However, assuming that
the host model prognoses the mean quantities, the num-
ber of additional moments that must be prognosed in
the PDF parameterizations ranges from nine (Lewellen–
Yoh) to four (double delta). If all moment equations
were equally expensive—which is not strictly true, be-
cause the higher-moment equations contain extra
terms—then the Lewellen–Yoh parameterization would
be roughly 9/4 as expensive as a double delta function
parameterization.
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APPENDIX

Fitting PDFs to Data

This appendix describes how we solve for the param-
eters that specify the five PDFs, given moments cal-
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culated from the aircraft legs or LES output. We also
list formulas for cloud fraction (C), average specific
liquid water content ( ), and turbulent flux of liquidql

water ( ).w9q9l

a. Double delta function (7 parameters; input
moments , , , , , , )2 3 9 9w w9 w9 u w9u q w9ql l t t

This function is given by

P 5 ad(w 2 w )d(u 2 u )d(q 2 q )dd 1 l l1 t t1

1 (1 2 a)d(w 2 w )d(u 2 u )d(q 2 q ).2 l l2 t t2

This formula lists all the PDF parameters. Namely, 0
# a # 1 is the relative amplitude of the first delta
function, and (w1, ul1, qt1) and (w2, ul2, qt2) are the
positions of the first and second delta functions, re-
spectively, in (w, ul, qt) space. To determine these pa-
rameters for a particular aircraft leg, we follow the pro-
cedure of Randall et al. (1992) and Lappen and Randall
(2001a). The strategy is to relate these known moments
to the PDF parameters using the definitions of the mo-
ments; for example,

` ` `

2 2w9 5 dw du dq P (w, u , q )(w 2 w )E E l E t dd l t

2` 2` 2`

2 25 a(w 2 w ) 1 (1 2 a)(w 2 w ) .1 2

We first compute a, w1, and w2 from , , and2 3w w9 w9
via the following formulas (Randall et al. 1992; Lappen
and Randall 2001a):

1 Skwa 5 1 2 ,1 222 Ï4 1 Skw

1 2 a
2Ïw 5 w 1 w9 , and1 ! a

a
2Ïw 5 w 2 w9 .2 !1 2 a

Here, Skw 5 /( is the skewness of w. Next,
3/2

3 2w9 w9 )
we compute ul1 and ul2 from and :u w9u9l l

w9u9 w9u9l lu 5 u 2 , u 5 u 2 .l1 l l2 lw 2 w w 2 w2 1

We use analogous formulas to compute qt1 and qt 2

from and . The procedure guarantees that theq w9q9t t

delta function PDF satisfies the fluxes andw9u9l
, but does not guarantee accurate diagnosis of thew9q9t

scalar variances, and . Despite the simplicity2 2u9 q9l t

of the double delta function, use of this PDF in a
numerical model still requires the prediction of ,3w9
which is nontrivial.

Given the PDF parameters, we need to compute cloud

fraction C, mean specific liquid water content , andql

mean liquid water flux . To do so, we first need tow9q9l
compute a quantity s, which equals ql when s . 0 but
can also be negative and is conserved under conden-
sation. We have (Lewellen and Yoh 1993)

(1 1 bq )ts 5 q 2 q (T , p) , (A1)t s l [1 1 bq (T , p)]s l

where

R e (T )d s lq (T , p) 5 , (A2)s l R p 2 [1 2 (R /R )]e (T )y d y s l

R L Ld y yb 5 b(T ) 5 , and (A3)l 1 21 2R R T c Ty d l p l

LyT [ T 2 q . (A4)l lcp

Here, qs is the saturation specific humidity, es is the
saturation vapor pressure over liquid, Tl is the liquid
water temperature, T is temperature, p is pressure, Ly is
the latent heat of vaporization, cp is the specific heat at
constant pressure, and Rd and Ry are the gas constants
for dry air and water vapor.

We let s1 be the value of s evaluated at ul1 and qt1,
and s2 be the value of s evaluated at ul2 and qt2. Then

C 5 aH(s ) 1 (1 2 a)H(s ),1 2

q 5 as H(s ) 1 (1 2 a)s H(s ), andl 1 1 2 2

w9q9 5 w9ql l

5 a(w 2 w )s H(s ) 1 (1 2 a)(w 2 w )s H(s ).1 1 1 2 2 2

Here, H denotes the Heaviside step function.

b. Single Gaussian (9 parameters; input moments ,w
, , , , , , , )2 9 9 9 9 92 92w9 u w9u q w9q q u u ql l t t t l l t

This function is given by (Stuart and Ord 1994, p.
511):

P (w, u , q )sg l t

1
23/25 (2p) Ï|A| exp 2 (x 2 x )A (x 2 x ) . (A5)i i i j j j[ ]2

The indices i and j range from 1 to 3, and x1 5 w, x2

5 ul, and x3 5 qt. A is the inverse of the covariance
matrix A 5 C21, where

C 5 (x 2 x )(x 2 x ).i j i i j j

For a single Gaussian, we are spared the inconvenience
of translating from moments to PDF parameters, since
the two are the same.
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For a Gaussian PDF, cloud fraction C and mean spe-
cific liquid water content are calculated by linearizingql

variability in ul and qt (see Lewellen and Yoh 1993;
also Sommeria and Deardorff 1977; Mellor 1977; Bou-
geault 1982; Chen 1991; Larson et al. 2001b):

1 s
C 5 1 1 erf , and (A6)1 2[ ]2 Ï2ss

2
s 1 ssq 5 sC 1 exp 2 . (A7)l 1 2[ ]2 sÏ2p s

Here, erf is the error function, and ss is the standard
deviation of s:

2 2 2 2 2s 5 c s 1 c s 2 2c s c s r ,s u u q q u u q q q ul l t t l l t t t l

where we have defined

1
c 5 , andqt 1 1 b(T )q (T , p)l s l

R /cd pc1 1 b(T )q ppl tc 5 b(T )q (T , p) ,u l s ll 2 1 2[1 1 b(T )q (T , p)] L pl s l y 0

where p0 is a reference pressure. Here s and s areu ql t

the respective standard deviations of ul and qt. Also,
r is the correlation coefficient between qt and ul.q ut l

The flux of liquid water is given by

w9q9 5 Cw9s9, (A8)l

where

w9s9 5 c s s r 2 c s s r .q w q wq u w u wut t t l l l

Here, sw is the standard deviation of w.
To close the prognostic moment equations of Golaz

et al. (2002a), which uses the Analytic Double Gaussian
1, the three formulas below are essential building
blocks. We list them here for reference:

21 1 s
2 2w9 q9 5 (w9s9) exp 2 ,l 1 2[ ]2 sÏ2ps ss

u9q9 5 s (c s r 2 c s )C, andl l u q q q u u ul t t t l l l

q9q9 5 s (c s 2 c s r )C.t l q q q u u q ut t t l l t l

c. Lewellen–Yoh (12 parameters; input moments ,w
, , , , , , , , , , )2 3 9 9 92 92 9 9 93 93w9 w9 u w9u q w9q u q q u u ql l t t l t t l l t

This PDF is based on a double Gaussian form
P (w, u , q ) 5 aG (w, u , q ) 1 (1 2 a)G (w, u , q ),LY l t 1 l t 2 l t

where G1 and G2 are three-dimensional Gaussian PDFs,
each representing one ‘plume’:
G (w, u , q )1 l t

1
23/25 (2p) Ï|A | exp 2 (x 2 x )A (x 2 x ) . (A9)1 i i1 i j1 j j1[ ]2

The second plume G2 has an analogous form. Here A1

5 is the inverse of the covariance matrix of the21C1

within-plume correlations, where

C 5 (x 2 x )(x 2 x ).i j,1 i i1 j j1

Here, i and j vary between 1 and 3, with x1 5 w, x2 5
ul, and x3 5 qt. The mean values of plume 1 are x11 5
w1, x21 5 ul1, and x31 5 qt1.

The PDF parameters are the amplitude of plume 1
(a); the means of plume 1 (w1, qt1, ul1); the standard
deviations of plume 1 (sw1, s , s ); and the within-q 1 u 1t l

plume correlations of plume 1 (r , r , r ). Therewu 1 wq 1 q u 1l t t l

are analogous PDF parameters for the second plume.
This leads to a total of 19 PDF parameters. Lewellen
and Yoh (1993) use diagnostic assumptions to obtain
these 19 parameters from the 12 prognosed moments.
A detailed description of the procedure is provided in
Lewellen and Yoh (1993) and is summarized here.

Lewellen and Yoh’s PDF parameters satisfy the equa-
tions obtained by integrating the 12 relevant moments
over the double Gaussian PDF. We list four of these
equations; the others are analogous:

w 5 aw 1 (1 2 a)w ,1 2

2 2 2w9 5 a[(w 2 w ) 1 s ]1 w1

2 21 (1 2 a)[(w 2 w ) 1 s ],2 w2

3 3 2w9 5 a[(w 2w ) 1 3(w 2 w )s ]1 1 w1

3 21 (1 2 a)[(w 2 w ) 1 3(w 2 w )s ],2 2 w2

w9q9 5 a[(w 2 w )(q 2 q ) 1 r s s ]t 1 t1 t wq 1 w1 q 1t t

1 (1 2 a)[(w 2 w )(q 2 q ) 1 r s s ].2 t2 t wq 2 w2 q 2t t

To satisfy these equations for the moments, we first
select the skewness with the largest magnitude:

Sk 5 max( | Sk | , | Sk | , | Sk | ).max w u ql t

Then we compute a via

a 5 0.75, if |Sk | # 0.84, andmax

6 2a 2 Sk (1 2 a) 5 0, if |Sk | . 0.84.max max

The transcendental equation for a must be solved nu-
merically.

Next, we compute the locations w1 and w2, and stan-
dard deviations sw1 and sw2, of the two Gaussians in
the w coordinate. First, we compute Bw [ w2 2 w1

according to
1/3|Sk |w2ÏB 5 sign(Sk ) w9 .w w 1 21 2 a

Then we write
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w 5 w 2 B (1 2 a),1 w

w 5 w 1 B a,2 w

2 2 2 2s 5 w9 2 B (1 2 a)(1 1 a 1 a )/(3a),w1 w

2 2 2 2s 5 w9 1 B (1 2 a) /3.w2 w

Analogous formulas hold for the means and widths of
the Gaussians in ul and qt.

The within-plume correlation between w and ul is
given by

w9u9 2 B B a(1 2 a)ul w lr 5 . (A10)wu 1l as s 1 (1 2 a)s sw1 u w2 u 2l1 l

Physically, we must have 21 # r # 1. However, thewu 1l

above formula yields a value outside this range for cer-
tain values of the moments. To avoid this, we set 21
1 rthresh , r , 1 2 rthresh, where rthresh 5 0.05. Wewu 1l

find r and r using formulas analogous to (A10).wq 1 q u 1t t l

We use the same value of rthresh to restrict r andwq 1t

r to physically possible values. Furthermore, we setq u 1t l

the within-plume correlations in the two plumes equal:
r 5 r and r 5 r .wu 2 wu 1 wq 2 wq 1l l t t

Despite the adjustments to the within-plume correla-
tions, for some PDFs, the determinant of A1, | A1 | , can
still turn out to be negative. In this case, the factor

in (A9) renders the PDF imaginary. To preventÏ |A |1

this, we ensure
2 2 21/|A | } 1 2 r 2 r 2 r 1 2r r r . 01 wu 1 wq 1 q u 1 wu 1 wq 1 q u 1l t t l l t t l

by adjusting r such thatq u 1t l

2 2r r 2 Ï(1 2 r )(1 2 r )wu 1 wq 1 wu 1 wq 1l t l t

2 2, r , r r 1 Ï(1 2 r )(1 2 r ).q u 1 wu 1 wq 1 wu 1 wq 1t l l t l t

Finally, we set r 5 r .q u 2 q u 1t l t l

Cloud fraction, , and for the Lewellen–Yohq w9q9l l

scheme are

C 5 a(C) 1 (1 2 a)(C) , (A11)1 2

q 5 a(q ) 1 (1 2 a)(q ) , and (A12)l l 1 l 2

w9q9 5 a[(w 2 w )(q ) 1 (w9q9) ]l 1 l 1 l 1

1 (1 2 a)[w 2 w )(q ) 1 (w9q9) ]. (A13)2 l 2 l 2

Here (C)1, ( )1, and ( )1 are given respectively byq w9q9l l

the single Gaussian equations (A6), (A7), and (A8),
except that they are evaluated with respect to the mean
and variances and covariances of Gaussian 1, which has
amplitude a. Likewise, (C)2, ( )2, and ( )2 are as-q w9q9l l

sociated with Gaussian 2.
In addition, we have the formulas

2 2 2 2w9 q9 5 a{[(w 2 w ) 1 s ][(q ) 2 q ] 1 2(w 2 w )(w9q9) 1 (w9 q9) }l 1 w1 l 1 l 1 l 1 l 1

2 2 21 (1 2 a){[(w 2 w ) 1 s ][(q ) 2 q ] 1 2(w 2 w )(w9q9) 1 (w9 q9) },2 w2 l 2 l 2 l 2 l 2

u9q9 5 a[(u 2 u )(q ) 1 (u9q9) ] 1 (1 2 a)[(u 2 u )(q ) 1 (u9q9) ], andl l l1 l l 1 l l 1 l2 l l 2 l l 2

q9q9 5 a[(q 2 q )(q ) 1 (q9q9) ] 1 (1 2 a)[(q 2 q )(q ) 1 (q9q9) ]. (A14)t l t1 t l 1 t l 1 t2 t l 2 t l 2

d. Analytic double Gaussian 1 (10 parameters, input
moments , , , , , , , , , )2 3 9 9 92 92 9 9w w9 w9 u w9u q w9q u q q ul l t t l t t l

Like the Lewellen–Yoh formulation, the analytic dou-
ble Gaussian families of PDFs are based on the double
Gaussian

P (w9, u9, q9) 5 aG (w9, u9, q9)adg1 l t 1 l t

1 (1 2 a)G (w9, u9, q9), (A15)2 l t

where G1 and G 2 are Gaussians. For the analytic dou-
ble Gaussians, however, the parameters can be found
analytically. To achieve this simplicity, we invoke
several assumptions. First, we assume that subplume
variations in w are uncorrelated with those in qt or
u l . Then, if we let i 5 1 or 2, the individual Gaussians
are given by

21 1 w9 2 (w 2 w )iG (w9, u9, q9) 5 exp 2i l t 3/2 2 1/2 1 2[ ](2p) s s s (1 2 r ) 2 swi q i u i q u i wit l t l

2 21 q9 2 (q 2 q ) u9 2 (u 2 u )t ti t l li l3 exp 2 1
2 5[ ] [ ]1 2(1 2 r ) s sq u i q i u it l t l

q9 2 (q 2 q ) u9 2 (u 2 u )t ti t l li l2 2r .q u it l 6[ ][ ] 2s sq i u it l
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The PDF parameters of Padg1 are the same as for Lew-
ellen and Yoh, except that we set r 5 r 5 0.wq 1,2 wu 1,2t l

The PDF parameters are determined by the following
procedure. If there is no variability in w—that is,

5 0—then the skewness of w, Skw [ /(
3/2

), is2 3 2w9 w9 w9
undefined and we cannot determine the PDF parameters.
In the data, 5 0 never occurs. In a numerical model,2w9
however, 5 0 is an important special case. Golaz et2w9
al. (2002a,b) assume that in this case the PDF reduces to
a single delta function. If ± 0, then we determine the2w9
relative amplitude of the Gaussian a and the centers of
the Gaussians in w space, w1 and w2, by integrating over
the PDF to obtain moment equations for , , and2w w9

. We assume that the widths of the two Gaussians in3w9
w are equal; that is, sw1 5 sw2. Then we find

1/21 1
a 5 1 2 Sk , (A16)w 2 3 25 6[ ]2 4(1 2 s̃ ) 1 Skw w

1/2w 2 w 1 2 a1 2 1/2w̃ [ 5 (1 2 s̃ ) , and (A17)1 w1 22 aÏw9

1/2w 2 w a2 2 1/2w̃ [ 5 2 (1 2 s̃ ) . (A18)2 w1 22 1 2 aÏw9

To avoid dividing by a vanishingly small number in
equations (A17) and (A18), we insist that 0.01 # a #
0.99. We have defined w [ sw1/ 5 sw2/ .2 2s̃ Ïw9 Ïw9
We choose 5 0.4. As shown below, the widths of2s̃w

the individual Gaussians in ul are permitted to differ in
Analytic Double Gaussian 1, and likewise for qt. The
assumption that sw1 5 sw2 is relaxed in Analytic Double
Gaussian 2.

Now we solve for ul1 and ul2 from the equations for
and . If there is no variability in ul—that is,u w9u9l l

5 0—then we set the means of the Gaussians equal,2u9l
ul1 5 ul2 5 , and the widths of the Gaussians in theul

ul direction to zero, s 5 s 5 0. Otherwise, we setu 1 u 2l l

2 2Ï Ïw9u9/( w9 u9 )u 2 u l ll1 lũ [ 5 2 , (A19)l1
2 w̃Ï 2u9l

2 2Ï Ïw9u9/( w9 u9 )u 2 u l ll2 lũ [ 5 2 . (A20)l2 2 w̃Ï 1u9l

Although the widths of the Gaussians in the w direction
are set equal, sw1 5 sw2, we allow the widths of the
Gaussians in the ul direction, s and s , to differ.u 1 u 2l l

Specifically, we integrate over the PDF to relate and2u9l
to . We find3u9 s̃l u 1,2l

2 2 3 32 3ũ [1 2 aũ 2 (1 2 a)ũ ] 2 [Sk 2 aũ 2 (1 2 a)ũ ]s l2 l1 l2 u l1 l2u 1 ll 5 , (A21)
2u9 3a(ũ 2 ũ )l l2 l1

2 2 3 32 23ũ [1 2 aũ 2 (1 2 a)ũ ] 1 [Sk 2 aũ 2 (1 2 a)ũ ]s l1 l1 l2 u l1 l2u 2 ll 5 . (A22)
2u9 3(1 2 a)(ũ 2 ũ )l l2 l1

One difficulty of the expressions (A21) and (A22) is
that the denominators vanish if l2 5 l1. Furthermore,ũ ũ
a Gaussian cannot have negative width. Therefore we
impose the condition

2su 1,2l0 # # 100. (A23)
2u9l

To find q̃t1, q̃t2, , and , we use equations that are2 2s sq 1 q 2t t

exactly analogous to (A19), (A20), (A21), (A22), and
(A23), with qt replacing ul everywhere.

Equations (A21) and (A22) depend on the skewness
Sk , and the analogous equations for qt depend onul

Sk . However, we want the analytic double Gaussianqt

closures to be usuable in models that eschew the com-
putational burden of predicting Sk or Sk . Therefore,u ql t

we make a diagnostic assumption for these quantities,
as does the single Gaussian PDF, which assumes that
the skewnesses are zero, and as does the double delta
PDF discussed above, which implicitly assumes rela-
tionships for Sk and Sk . For the analytic double Gaus-u ql t

sians, we simply set Sk 5 0. It may be more realisticul

to set Sk 5 2Skw, but this assumption led to numericalul

instability in the single-column model of Golaz et al.
(2002a,b). To better represent the skewness in cumulus
layers, we set Sk 5 1.2 Skw. However, this leads to aqt

noisy solution when | q̃t2 2 q̃t1 | is small, and hence the
denominators of the expressions for and are2 2s sq 1 q 2t t

small. To reduce the noisiness, we adjust Sk so thatqt

the numerator becomes small when the denominator be-
comes small. Namely, we set Sk 5 1.2 Skw when | q̃t2qt

2 q̃t1 | . 0.4, we set Sk 5 0 when | q̃t2 2 q̃t1 | # 0.2,qt

and we linearly interpolate between these extremes
when 0.2 , | q̃t2 2 q̃t1 | # 0.4. These formulas for
Sk and Sk are expedient, but it would be worthwhileu ql t

to attempt to construct more sophisticated and realistic
formulas in the future. An estimate of the possible im-
provement can be gleaned from the performance of the
Lewellen–Yoh scheme, which assumes that all skew-
nesses are prognosed.

Finally, to compute the within-plume correlations,
r , we set r 5 r and integrate over the PDFq u 1,2 q u 1 q u 2t l t l t l

to obtain an equation for . We findq9u9t l
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r 5 [q9u9 2 a(q 2 q )(u 2 u )q u 1,2 t l t1 t l1 lt l

2 (1 2 a)(q 2 q )(u 2 u )]t2 t l2 l

4 [as s 1 (1 2 a)s s ]. (A24)q 1 u 1 q 2 u 2t l t l

If s s and s s have been set to zero, then theq 1 u 1 q 2 u 2t l t l

denominator of Eq. (A24) vanishes. In this case, we set
r 5 0. Since a correlation must lie between 21 andq u 1,2t l

1, we also insist that

21 # r # 1.q u 1,2t l

The formulas for C, , , and are exactly as2q w9q9 w9 q9l q l

for the Lewellen–Yoh scheme [Eqs. (A11), (A12),
(A13), and (A14)], except that the within-Gaussian cor-
relation between w and the conserved scalars vanishes:
r 5 r 5 0. Therefore, ( )1,2, ( )1,2, andw9s9 w9q9wq 1,2 wu 1,2 lt l

( )1,2 vanish.2w9 q9l

e. Analytic Double Gaussian 2 (10 parameters; input
moments , , , , , , , , , )2 3 9 9 92 92 9 9w w9 w9 u w9u q w9q u q q ul l t t l t t l

This scheme is exactly the same as Analytic Double
Gaussian 1 except that we follow the procedure of Luhar
et al. (1996) to find the widths and positions of the
Gaussians in w. Luhar et al. (1996) proposed an analytic
one-dimensional PDF that allows the widths of the in-
dividual Gaussians to differ and that reduces to a single
Gaussian when Skw 5 0. We modify their closure triv-
ially to permit both negative and positive Skw. We also
extend their closure to joint three-dimensional PDFs by
following the procedure for Analytic Double Gaussian
1. The only formulas that change are those for the rel-
ative amplitude a (A16), w̃1 (A17), and w̃2 (A18). They
become, respectively,

1/21 1
a 5 1 2 Sk ,w 21 2[ ]2 4/M 1 Skw

w̃ 5 ms̃ , and1 w1

w̃ 5 2ms̃ .2 w2

Here,
2 3(1 1 m )

M 5 ,
2 2 2(3 1 m ) m

1/2
s (1 2 a)w1s̃ 5 5 ,w1 2[ ]s a(1 1 m )w

1/2
s aw2s̃ 5 5 , andw2 2[ ]s (1 2 a)(1 1 m )w

2
1/3m 5 |Sk | .w3

These equations have the reasonable property that sw1

. sw2 when Skw is positive, thereby producing a long
tail in w. A long tail on the opposite side of the PDF
is produced when Skw is negative. When Skw 5 0, this

scheme reduces to a single Gaussian, and hence w̃1 and
w̃2 vanish. This leads to infinite values of l1 (A19), l2ũ ũ
(A20), q̃t1, and q̃t2. To prevent this, we enforce | w̃1 | .
0.05 and | w̃2 | . 0.05.
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