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ABSTRACT

The Green’s function (or propagator) of the advection-diffusion equation is used to link the transilient matrix
to the advection-diffusion equation. The Green’s function framework allows one to construct more rigorous and
general derivations of various mixing properties of the transilient matrix. Unlike the transilient matrix or one-
dimensional convective parameterizations, the Green’s function satisfies a composition property that allows a
long-time propagator to be constructed from a series of short-time propagators.

1. Introduction

Many problems in meteorology involve fluid-me-
chanical mixing.1 For example, the dynamics of a cu-
mulus cloud is strongly influenced by (and strongly in-
fluences) the rapidity with which clear, dry air surround-
ing the cloud mixes into the cloud itself. Evaporative
cooling occurs when, and only when, the mixing has
proceeded to the molecular level. In this way, mixing
at the finest cloud scales affects dynamics at the largest
cloud scales. Another problem in which mixing is fun-
damental is the dispersal of pollutants emitted by a
smokestack.

It is useful to place such mixing problems within a
general theoretical framework, such as transilient matrix
theory (Stull 1984, 1986, 1993; Stull and Hasegawa
1984). In this framework, the fluid domain is concep-
tually partitioned into disjoint, overlying horizontal
slabs, or grid boxes. The transilient matrix is an array
of numbers Gij(t; t9) that represents tracer transport
among the slabs between an initial time, t9, and a final
time, t. To be more precise, we consider an ensemble,
each member of which consists of a particular flow field
and a particular initial dye distribution. Given the tran-

1 In this paper, the term ‘‘mixing’’ shall subsume advection of
material surfaces (i.e., transport) as well as tracer diffusion across
material surfaces.
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silient matrix and the ensemble-averaged tracer mixing
ratio in the jth slab at the initial time, c j(t9), then the
ensemble-averaged tracer mixing ratio in the ith slab at
the final time, c i(t), is computed from the matrix equa-
tion (Stull 1993):

N

c (t) 5 G (t; t9)c (t9). (1)Oi ij j
j51

Here N denotes the number of slabs in the vertical, and
an overbar denotes an ensemble average.

Stull (1984) and Ebert et al. (1989) offer a second
definition of the transilient matrix in which the ensemble
averages in (1) are replaced by slabwise spatial aver-
ages, and only a single realization of a flow is consid-
ered. According to the ergodic hypothesis, if the flow
is statistically homogeneous in the horizontal, then as
the slabs increase in horizontal extent and thereby en-
compass more eddies, the two definitions of the tran-
silient matrix become equivalent. Operationally, the
transilient matrix has been constructed as follows. A
single realization of a flow is computed by a large eddy
simulation model. At the initial time, tracers are spread
uniformly throughout the slabs, using a different tracer
for each slab. Then the transilient matrix is diagnosed
from the amounts of the various tracers in each slab at
the final time (Ebert et al. 1989). This operational def-
inition of the transilient matrix can be thought of as a
special case of the second definition, namely, the case
in which the initial tracer distribution has no fluctuations
within a slab. The operational definition thereby pre-
cludes the possibility of intraslab correlations between
the initial tracer fluctuations and the flow. Because of
this, the operational definition is not entirely equivalent



2448 VOLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

to the first two definitions. The operational definition
is, however, closely related to the statement in Stull
(1993) that the transilient matrix is a matrix whose ijth
element represents ‘‘the fraction of air mixed into a
destination grid cell at vertical location index i from a
source grid cell at location j’’ (the italics are ours). This
statement is in conformity with the operational defini-
tion of the transilient matrix, except that a tracer is not
an exact marker of material fluid elements, since a tracer
may diffuse from one element to another. This paper
shall adhere to the first definition of the transilient ma-
trix, given by (1).

Stull (1993) uses physical arguments to deduce var-
ious properties of Gij(t; t9). For instance, Stull (1993)
writes that each column of Gij sums to unity,

N

G (t; t9) 5 1, (2)O ij
i51

because ‘‘all of the air initially within each grid box
must go somewhere.’’ Similarly, Stull (1993) writes that
each row of Gij also sums to unity,

N

G (t; t9) 5 1, (3)O ij
j51

because ‘‘100% of the air at each destination must have
come from somewhere.’’

The transilient matrix is more general than traditional
eddy diffusivity formulations. An eddy diffusivity re-
lates the tracer flux at a point in space to the local
gradient in tracer concentration. In contrast, the tran-
silient matrix relates the tracer profile at a final time, t,
to the full, nonlocal tracer profile at an initial time, t9.
Sometimes a local description of mixing fails. For in-
stance, a planetary boundary layer whose interior lapse
rate is adiabatic may be either convecting or not, de-
pending on whether the lapse rate near the earth’s sur-
face is superadiabatic or subadiabatic, respectively.
Therefore, the interior lapse rate does not provide
enough information to determine the interior vertical
flux of potential temperature.

Stull (1993) has elucidated the physical content of
the transilient matrix, but the following two questions
may be raised. First, although the transilient matrix pro-
vides a fairly complete description of mixing, ultimately
the mixing of a tracer is governed by the advection-
diffusion equation; therefore, we may ask, can one find
a rigorous connection between the transilient matrix and
the advection-diffusion equation? Second, we may ask,
how can the transilient matrix formalism be generalized
to include sources of tracers and various tracer boundary
conditions?

The bridge between the transilient matrix and the ad-
vection-diffusion equation is the Green’s function of the
advection-diffusion equation. Stull (1993) notes that the
transilient matrix ‘‘is essentially a Green’s function
(Morse and Feshbach, 1953) matrix.’’ We shall dem-
onstrate the more specific fact that, under several im-

portant restrictions, the transilient matrix is proportional
to the ensemble-averaged advection-diffusion Green’s
function. Use of Green’s functions permits us to rederive
formulas (1), (2), and (3) with greater rigor and gen-
erality. Sobel (1997, 1999) has also related the transi-
lient matrix to the advection-diffusion equation via a
route in which he immediately discretizes the advection-
diffusion equation. Unlike Sobel (1997, 1999), our der-
ivation starts with a more general flow, does not dis-
cretize the advection-diffusion equation, and employs
the Green’s function for the advection-diffusion equa-
tion.

Many prior authors have used Green’s functions to
study mixing. For example, Holzer (1999) has used a
coarse-grained Green’s function to study tropospheric
transport of tracer in a general circulation model. Lin
and Hildemann (1997) and references therein examine
statistically steady-state turbulent dispersion in the at-
mospheric boundary layer. Phillips and Kaye (1996)
study shear dispersion, and Fennel (1981) examines oce-
anic turbulent dispersion. Hamba (1995) uses the
Green’s function of a horizontally averaged advection-
diffusion equation to study nonlocal mixing in a large
eddy simulation of an atmospheric boundary layer. The
use of Green’s functions in the direct-interaction ap-
proximation (DIA) of Kraichnan (1959) is discussed in
the text by Leslie (1973). Roberts (1961) applies DIA
techniques to the turbulent dispersion problem with mo-
lecular diffusivity neglected. The review of Stull (1993)
contains many references on transilient matrix theory
and other approaches to mixing problems.

2. Development of the Green’s function
framework

We consider an advection-diffusion equation of the
form (see Gill 1982, 84)

]c(x, t)
r(x, t) 1 r(x, t)u(x, t) · =c(x, t)

]t

2 = · [r(x, t)k=c(x, t)] 5 r(x, t)s(x, t). (4)

Here c(x, t) is the mixing ratio of tracer with units of
mass of dye per mass of fluid. We shall use the term
‘‘tracer’’ and the more vivid term ‘‘dye’’ interchange-
ably. The function s(x, t) is a source of dye, such as a
smokestack, specified as a function of space and time.
The quantities u, r, and k denote a specified velocity
field, fluid density, and (molecular) tracer diffusivity,
respectively; then the advection-diffusion equation for
c(x, t) is linear. The velocity field u may be interpreted
as the full velocity field down to the smallest fluid scale.
Alternatively, it is easy to generalize the tracer diffu-
sivity to include a space and time dependence; if we do
so, we can interpret u and k as the large-scale velocity
field and eddy diffusivity field output by a large eddy
simulation. As a third alternative, one can even use a
u field that does not satisfy the Navier–Stokes equation.
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The fluid is fully compressible and is enclosed within
a volume V bounded by a surface S. We do not permit
advection of dye through the boundary, although we do
permit diffusion of dye through the boundary in some
cases. The boundary may be removed to infinity. The
time variables shall be ordered as follows, except when
they are used as dummy variables of integration:

t0 , t9 , t , tf .

The variable t shall denote an additional dummy var-
iable of time integration.

The Green’s function G(x, t; x9, t9) is defined by the
equation

]G(x, t; x9, t9)
r(x, t) 1 r(x, t)u(x, t) · =G(x, t; x9, t9)

]t
32 = · [r(x, t)k=G(x, t; x9, t9)] 5 d (x 2 x9)d(t 2 t9),

(5)

where d denotes the Dirac delta function. The
G(x, t; x9, t9) field may be taken to represent a ‘‘dye,’’
which we shall call ‘‘G-dye.’’ Comparison of (5) and
(4) shows that G-dye is like the dye c(x, t), except that
G-dye has a delta function source at x9 and t9. Also, as
shown later, G-dye must obey a homogeneous boundary
condition. To interpret Eq. (5), we imagine that at lo-
cation x9 and time t9 we inject into the fluid an infini-
tesimally small, instantaneous puff of G-dye of unit
mass, which subsequently evolves according to the giv-
en flow field. Then G(x, t; x9, t9) is proportional to the
mixing ratio of G-dye at a later time t and position x.
It is important to note that the Green’s function governs
the propagation of dye in a particular flow field, whereas
the transilient matrix, as defined by this paper, concerns
the propagation of dye in an ensemble of flows and
initial dye distributions.

Before deriving the equation governing the propa-
gation of tracer, it is necessary to note the reciprocity
condition:

G(x, t; x9, t9) 5 G̃(x9, t9 ; x, t), (6)

where G̃ is the adjoint function, which satisfies the equa-
tion

˜]G(x, t; x0, t0) ˜r(x, t) 1 r(x, t)u(x, t) · =G(x, t; x0, t0)
]t

3˜1 = · [r(x, t)k=G(x, t; x0, t0)] 5 2d (x 2 x0)d(t 2 t0).

(7)

Here G propagates an initial dye distribution forward
in time to its final distribution, whereas G̃ propagates a
final distribution of dye backward in time to its initial
distribution. We omit the derivation of the reciprocity
condition here. A similar derivation for the diffusion
equation may be found in Morse and Feshbach (1953,
857–859). We simply note various conditions that must
be imposed in the course of the derivation. To avoid
violating causality, we must require that

G(x9, t9; x, t) 5 0 t9 , t, (8)

that is, that a puff injected at t has no effect at earlier
times t9. Likewise, we require that

G̃(x, t; x9, t9) 5 0 t9 , t.

Furthermore, we insist either that (a) there is no flow
through the boundary u · n|s 5 0 and G satisfies the
homogeneous Neumann boundary condition n · =G(x,
t; x9, t9)|s 5 0 where n is the unit outward normal to
the boundary; or that (b) G obeys the homogeneous
Dirichlet boundary condition G(x, t; x9, t9)|s 5 0. We
let G and G̃ satisfy the same boundary conditions.

With the reciprocity condition in hand, we proceed
to derive the equation governing the propagation of trac-
er, again following Morse and Feshbach (1953, 859–
860). From the defining equation for the adjoint function
(7) and the reciprocity condition (6), we find

]G(x, t; x9, t)
r(x9, t) 1 r(x9, t)u(x9, t) · =9G(x, t; x9, t)

]t

31 =9 · r(x9, t)k=9G(x, t; x9, t) 5 2d (x 2 x9)d(t 2 t).

(9)

Here =9 denotes the gradient operator with respect to
the x9 coordinate. A change of variables in the advec-
tion-diffusion equation [(4)] leads to

]c(x9, t)
r(x9, t) 1 r(x9, t)u(x9, t) · =9c(x9, t)

]t

2 =9 · [r(x9, t)k=9c(x9, t)] 5 r(x9, t)s(x9, t). (10)

We now multiply Eq. (9) by c(x9, t), Eq. (10) by
G(x, t; x9, t), and add. Let e denote a positive, infini-
tesimal time interval. Then applying the operator #V d3x9

dt to the resulting equation and using continuityt1e#t9

yields the propagation equation:

3c(x, t) 5 d x9r(x9, t9)G(x, t; x9, t)c(x9, t9)E
V

| |}}}}}}}}}}}}}}}}}z

I

t1e

31 dt d x9r(x9, t)G(x, t; x9, t)s(x9, t)E E
t9 V

| |}}}}}}}}}}}}}}}}}}}}z

II

t1e

1 dt dA9 n · r(x9, t)kE E
t9 S


3 G(x, t; x9, t)=9c(x9, t)

| |}}}}}}}}}}}z
III


2 c(x9, t)=9G(x, t; x9, t) . (11)

| |}}}}}}}}}}}z 
IV 
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The advection term has vanished. To ensure its disap-
pearance, we have had to demand either that no fluid
flows through the boundary, or that G satisfies a ho-
mogeneous Dirichlet boundary condition. Furthermore,
the causality condition on the Green’s function [(8)] has
caused the time-integrated term to vanish at t 5 t 1 e.

We require that G obey the homogeneous form of the
boundary condition on c. For instance, if c satisfies a
homogeneous or inhomogeneous Dirichlet condition,
then we choose a homogeneous Dirichlet condition on
G, so that term III vanishes and Eq. (11) becomes an
explicit solution for c(x, t). By way of example, we list
two possible sets of boundary conditions. If the dye
mixing ratio on the boundary c|S is a specified function,
then

G|S 5 0.

If the diffusive flux of dye through the boundary n · =c|S

is a specified function, then

n · =G|S 5 0 n · u|S 5 0.

In term I of Eq. (11), the operator #d3x9 r(x9, t9)
G(x, t; x9, t9) propagates the dye from its distribution
c(x9, t9) at the initial time to its distribution c(x, t) at
any later time. Hence the Green’s function may be called
a ‘‘propagator.’’ It is similar to the propagator of quan-
tum mechanics, which, when applied to an initial wave
function, yields the wave function at a later time (Sak-
urai 1985, 110). Term II of Eq. (11) propagates each
infinitesimal puff of dye emitted by the source to its
destination at time t. Terms III and IV add the contri-
bution of dye diffused through the boundary. The prop-
agation equation [(11)] provides a simple interpretation
of G: if c satisfies a homogeneous boundary condition
and s 5 0, then r(x9, t9)G(x, t; x9, t9) is proportional to
the dye distribution that arises from a delta function
initial dye distribution. The fact that integral operators
and not differential operators appear in the propagation
equation [(11)] reflects the fact that mixing may depend
on the flow field and dye concentration at remote points,
that is, that mixing may be nonlocal.

Mixing often depends strongly on both the flow field
and the initial distribution of dye. We may wish, how-
ever, to gain information about a flow’s mixing prop-
erties abstracted from any particular initial dye distri-
bution. The Green’s function provides such information.
The governing equation for the Green’s function [(5)]
reveals that the Green’s function can be constructed
solely from the flow field (i.e., u, r, and k), and the
boundary condition on G (which depends on the form
of the boundary condition for c). On the other hand, if
one desires to know the mixing properties associated
with any particular initial condition, one may find this
information by performing the integrations in (11), once
G, r, k, and s are given. In this sense, the Green’s
function ‘‘knows’’ about the mixing processes associ-
ated with all initial dye distributions that are compatible
with G’s boundary condition.

Regardless of whether or not a source is present or
the boundary condition on c is inhomogeneous, the com-
position property may be proven:

G(x, t; x0, t0)

35 d x9 r(x9, t9)G(x, t; x9, t9)G(x9, t9; x0, t0). (12)E
V

An analogous identity arises in quantum mechanics
(Sakurai 1985, 115). To derive the composition prop-
erty, we multiply the equation

]G(x9, t ; x0, t0)
r(x9, t)

]t

1 r(x9, t)u(x9, t) · =9G(x9, t ; x0, t0)

2 =9 · r(x9, t)k=9G(x9, t ; x0, t0)
35 d (x9 2 x0)d(t 2 t0) (13)

by G(x, t; x9, t), Eq. (9) by G(x9, t ; x0, t0), add the two
resulting equations, and operate with #V d3x9 dt . Us-t1e#t9

ing the continuity equation, the causality condition [(8)],
and homogeneous Dirichlet or Neumann boundary con-
ditions, we may eliminate various time-integrated and
boundary terms, as in the derivation of (11), and obtain
the composition property [(12)]. The composition prop-
erty states that propagating an infinitesimal puff of G-
dye from (x0, t0) to (x, t) is equivalent to propagating
it from (x0, t0) to an intermediate point (x9, t9) and then
from (x9, t9) to (x, t), integrating over all possible in-
termediate positions x9. When the diffusivity k is non-
zero, a particle of G-dye may take many paths from
(x0, t0) to (x, t); we must sum the contributions from all
such paths to calculate the concentration of G-dye at
(x, t). A long-time-interval propagator may be con-
structed from a series of short-time-interval propagators
by generalizing the composition property [(12)].

Under certain assumptions, ensemble averaging the
propagation equation [(11)] yields the transilient matrix
equation [(1)], and ensemble averaging the Green’s
function yields essentially the transilient matrix. We par-
tition the Green’s function and dye distribution into an
ensemble-averaged part, denoted by an overbar, and a
deviation part, denoted by a hat:

ˆG(x, t; x9, t9) 5 G(x, t; x9, t9) 1 G(x, t; x9, t9)

c(x9, t9) 5 c(x9, t9) 1 ĉ(x9, t9).

We assume that the domain is a rectangular parallele-
piped, partitioned into a stack of overlying horizontal
slabs. Furthermore, we assume that c obeys a homo-
geneous boundary condition, that there is no source of
dye, and that r is constant. Then, upon ensemble av-
eraging the propagation equation [(11)], we find

3c(x, t) 5 d x9 rG(x, t; x9, t9)c(x9, t9)E
V

3 ˆ1 d x9 r (x, t; x9, t9)ĉ(x9, t9). (14)GE
V
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The second term is an ‘‘error term,’’ similar to that
derived by Sobel (1997, 1999). The error term is non-
zero if, for instance, the ensemble of flows contains
rising plumes surrounded by subsiding regions, and the
initial dye is placed preferentially in the plumes. In order
to derive the transilient matrix equation, however, we
must assume that the dye is initially distributed such
that the error term vanishes. Then, to discretize (14),
we spatially average over individual slabs. Denote a
spatial average over the x coordinate of the ith slab by
^ & i and a spatial average over the x9 coordinate of the
jth slab by ^ &j. Assume that either ^G(x, t; x9, t9)& i or
c(x9, t9) is approximately slabwise uniform in x9. Upon
averaging (14) over slabs, we find

N

^c(x, t)& 5 m ^^G(x, t; x9, t9)& & ^c(x9, t9)& . (15)Oi j i j j
j51

Here mj denotes the mass of fluid contained within slab
j. If we identify the transilient matrix Gij(t; t9) with
mj^^G(x, t; x9, t9)& i& j, then we recover the transilient
matrix equation [(1)]. The integral operator of Green’s
function theory has become the matrix operator of tran-
silient theory. When the volumes of the slab are equal,
mj is a constant number, and the transilient matrix is
simply proportional to ^^G(x, t; x9, t9)& i& j. Stull (1993)
also shows how the transilient matrix may account for
slabs of different mass mj, but he absorbs mj into the
transilient matrix using a different convention than ours.

Neither the transilient matrix nor the ensemble-av-
eraged Green’s function satisfies a composition property
analogous to (12). Ensemble averaging the composition
property [(12)] yields, if r is constant,

3G(x, t; x0, t0) 5 d x9 rG(x, t; x9, t9)G(x9, t9 ; x0, t0)E
V

3 ˆ ˆ1 d x9 rG(x, t; (x9, t9)G(x9, t9; x0, t0).E
V

(16)

The second term on the right-hand side represents the
correlation between the perturbation transport from
(x0, t0) to (x9, t9) and the perturbation transport from
(x9, t9) to (x, t). The correlation term does not vanish
in general. A nonnegligible correlation term can arise
when the flow is not random, but instead contains per-
sistent, large-scale, organized structures. For instance,
consider an ensemble of flows, each of which contains
rising plumes surrounded by subsiding regions. Suppose
a puff of dye starts in the base of a plume at (x0, t0),
then rises within the plume to a moderate altitude
(x9, t9), and continues to rise until it reaches (x, t). The
transport within the plume during the two time intervals
[t0, t9] and [t9, t] is strongly correlated. Consideration
of the fate of many such puffs indicates that the cor-
relation term is likely to be nonnegligible. The transi-
lient matrix, however, destroys information about the

correlations by averaging at the intermediate time step.
Loosely speaking, after an application of the transilient
matrix, we do not know whether dye that was originally
in a plume still resides within the plume or resides else-
where in the slab. The lack of a composition property
may also be explained as follows. Even if the error term

for the first time interval3 ˆ# d x0 rG(x9, t9; x0, t0)ĉ(x0, t0)V

vanishes, the error term 3 ˆ# d x9 rG(x, t; x9, t9)ĉ(x9, t9)V

for the second time interval is unlikely to vanish, be-
cause of dye transport by the plumes during the first
time interval. Therefore, errors arise when the transilient
matrix is applied the second time. An analysis of such
‘‘convective structure memory’’ effects is contained in
Ebert et al. (1989), Stull (1993), and Sobel (1997, 1999).

In some cases we may be interested in fluid transport
to and from irregularly shaped or overlapping regions.
For instance, we might want to know how much en-
vironmental air at time t9 has been entrained into a cloud
by time t. If we ignore tracer diffusion from one material
element to another, we might compute this by perform-
ing a numerical simulation in which we spread dye of
unit mixing ratio uniformly throughout the volume VO9

that excludes the cloud at time t9. Then we would ob-
serve how much dye is contained within the volume VC

occupied by the cloud at time t. If we let c satisfy ho-
mogeneous boundary conditions and s 5 0, then the
quantity we desire can be written in terms of the Green’s
function:

3d x r(x, t)c(x, t)E
VC

3 35 d xr(x, t) d x9 r(x9, t9)G(x, t; x9, t9). (17)E E
V VC O9

This connection between tracer numerical experiments
and the Green’s function may be conceptually helpful.
On the one hand, one may use the Green’s function point
of view to help interpret tracer calculations. On the other
hand, tracer calculations may be used to compute in-
tegrals over the Green’s function when direct compu-
tation of the Green’s function is impossible. Ebert et al.
(1989) have demonstrated the usefulness of this pro-
cedure.

We now derive generalized versions of Eqs. (2) and
(3). An analog to the transilient matrix condition (2)
may be derived directly from the defining equation for
the Green’s function [(5)] by applying the operator
#V d3x dt to it. Using appropriate boundary condi-tf#t92e

tions and the causality condition [(8)], we obtain

3d x r(x, t )G(x, t ; x9, t9)E f f

V

tf

5 1 1 dt dA n · r(x, t)k=G(x, t; x9, t9). (18)E E
t92e S

To interpret this equation, imagine that a point-source
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puff of G-dye is injected into the flow at x9 and t9. Then
the left-hand side represents the amount of G-dye within
the volume V at a later time tf . With our normalization,
this is equal to unity minus the portion of the original
puff that has diffused out the boundary between times
t9 2 e and tf . With Neumann boundary conditions on
c, the final term in Eq. (18) vanishes, and the equation
becomes analogous to the transilient matrix equation
[(2)]. Thuburn and McIntyre (1997) note that when c
obeys homogeneous Neumann boundary conditions and
s 5 0, Eq. (18) is equivalent to conservation of tracer
mass, as can be seen by applying #V d3x r(x, t) to the
propagation equation [(11)].

Similarly, an analog to the transilient matrix condition
(3) is derived by applying #V d3x9 dt to (9):t1e#t9

3d x9 r(x9, t9)G(x, t; x9, t9)E
V

t1e

5 1 1 dt dA9 n · r(x9, t)k=9G(x, t; x9, t).E E
t9 S

(19)

This equation sums the contributions of all those particles
of G-dye at an initial time t9 that contribute to the con-
centration of G-dye present at (x, t). All such contributions
integrate to unity, minus the loss due to diffusion out the
boundary. With Neumann boundary conditions on c, Eq.
(19) reduces to an analog of the transilient formula [(3)].
Thuburn and McIntyre (1997) note that when c obeys
homogeneous Neumann boundary conditions and s 5 0,
Eq. (19) is equivalent to requiring that a spatially uniform
initial dye distribution remain uniform, as can be seen by
inspection of the propagation equation [(11)].

3. Conclusions

This note has argued that the Green’s function for the
advection-diffusion equation provides a useful way to
attach mathematical rigor to ideas about nonlocal mix-
ing that have been developed over the past several de-
cades. The Green’s function is well suited to this purpose
for several reasons. It is a rigorously defined mathe-
matical entity that contains within it all relevant infor-
mation about a flow’s capacity for mixing. Yet the
Green’s function is independent of the initial distribution
of dye. Although local mixing may be adequately rep-
resented by a differential operator, nonlocal mixing is
probably best represented by an integral operator. The
Green’s function appears as part of an integral operator
in the propagation equation [(6)], but in addition the
Green’s function has a direct mathematical connection
to the differential equation that governs the advection
and diffusion of dye. Finally, the composition property
[(12)] allows us to construct a single long-time Green’s
function by stringing together many short-time Green’s

functions. The transilient matrix lacks such a compo-
sition property.

Unfortunately, for many flows of interest, direct com-
putation of the truly point-source Green’s function is
not feasible. Here the transilient matrix, which averages
over extended volumes, has a great advantage. Users of
the transilient matrix may find it helpful, however, to
interpret each element of the transilient matrix as an
average of the Green’s function over source and desti-
nation slabs. The shapes of the volumes may be gen-
eralized, if desired. Also, the Green’s function formal-
ism makes it clear how to incorporate sources of dye
and inhomogeneous boundary conditions into the tran-
silient matrix framework.

Finally, we speculate that convective structure mem-
ory effects may significantly degrade the accuracy of
vertical transport of scalars, such as chemical species,
in large-scale models. In such models, vertical fluxes
are accomplished partly by convective parameteriza-
tions. These are one-dimensional schemes that compute
average properties over the large horizontal area
spanned by a grid box. As with the transilient matrix,
therefore, convective parameterizations lose informa-
tion each time they are applied. It may be worthwhile
to seek ways to minimize convective structure memory
effects in such parameterizations. For instance, one
might attempt to optimize the time interval between
successive applications of the convective parameteri-
zation, as in Ebert et al. (1989).
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