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Abstract

In this article we present some statistical applications of the functional singular

value decomposition (FSVD). This tool allows us to decompose the sample mean

of a bivariate stochastic process into components that are functions of separate

variables. These components are sometimes interpretable functions that summa-

rize salient features of the data. The FSVD can be used to visually detect outliers,

to estimate the mean of a stochastic process or to obtain individual smoothers of

the sample surfaces. As estimators of the mean, we show by simulation that FSVD

estimators are competitive with tensor-product splines in some situations.

Key Words: Eigenvalues and eigenfunctions; Functional data analysis; Outlier

detection; Principal component analysis; Spectral decomposition; Spline smooth-

ing.



1 Introduction

The analysis of samples of curves has become more common in statistical applica-

tions in recent years. In many applications, the data consists of discrete realiza-

tions of a univariate process, say X(t), where t can be time (e.g. growth curves in

Gasser et al., 2004), distance (e.g. biomarker expression curves in Morris and Car-

roll, 2006) or age (e.g. income distribution densities in Kneip and Utikal, 2001),

among other possibilities. More examples and statistical methodology can be found

in Ramsay and Silverman (2002, 2005) or Ferraty and Vieu (2006).

Multivariate stochastic processes, on the other hand, have received less atten-

tion. By multivariate process we mean a real-valued process X(s) that is a function

of a multidimensional variable s. They are also known as random fields (Adler

and Taylor, 2007). Although they are less common in statistics than univariate

processes, they play an important role in fMRI studies and spatial statistics (Taylor

and Worseley, 2007; Nychka, 2000). In these applications s is a point in R2 or R3.
However, in other situations the variables do not belong to a single natural space.

For example, X(s; t)may be the mortality rate for individuals of age s during year t

in a given country, or the outcome of a multichannel electroencephalography study

where t is time and s is the location of the electrode on the scalp. It is clear that

the variables s and t belong to different spaces; although the product space could

be regarded as a single space, this would be more a mathematical formalization

than a natural structure implied by the data.

To understand more clearly the problems involved, in Fig. 1 we have plotted

the sample mean of log-mortality rates for ten European countries. The raw mean

shows some irregularities due to random noise. To regularize a bivariate estimator

like this, one would normally employ a smoothing method based on splines (Gu,

2000) or kernels (Härdle and Müller, 2000). However, those global smoothers will

most likely level off important features of the data, like the increased mortality

rates during the Second World War, which are sharp but localized features.

In this paper we present a different approach, based on a generalization of the

singular value decomposition. The basic idea is to approximate a bivariate function

�(s; t)with a sum of functions of separate variables, �(p)(s; t) =
Pp

k=1 �
1=2
k �k(s) k(t),

where �k and  k are univariate functional principal components (Silverman, 1996;

Yao and Lee, 2006; Gervini, 2006). The components are sometimes interpretable
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Figure 1: Human Mortality Data. Mean of log-mortality rates for ten European
countries.
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functions that summarize important features of the data, and can be used, for ex-

ample, to detect atypical observations. Individual smoothers of the sample surfaces

can also be obtained as by-products. The bivariate singular value decomposition

has been used in image analysis and physics (Dente et al., 1996; Aubry et al.,

1991), under the name of “biorthogonal decomposition”. However, these articles

disregard smoothing issues, using raw principal components for estimation. In

most statistical applications, that would lead to extremely noisy and uninformative

estimates. In contrast, the method we present here produces smooth and regular

estimators.

This article is organized as follows. The functional singular value decomposi-

tion (FSVD) is presented in Section 2, and smooth estimators of the components

are introduced in Section 3. An application to a real dataset in Section 4 illus-

trates the potential of the FSVD as a graphical tool. In Section 5 we compare by

simulation the behavior of the FSVD with tensor-product splines as estimators of

the mean. Abbreviated proofs of the theorems are given in the Appendix; more

detailed proofs and additional material is available on a Technical Report that will

be posted on the author’s website.

2 The functional singular value decomposition

Let X(s; t) be a real-valued stochastic process in L2(S � T) with finite expectation

�(s; t) and finite covariance function �f(s1; t1); (s2; t2)g. We assume that S and T

are closed intervals in R. Let us define the kernel functions

k1(s1; s2) =

Z
T
�(s1; t)�(s2; t) dt

and

k2(t1; t2) =

Z
S
�(s; t1)�(s; t2) ds:

We say that � 2 L2(S) is an eigenfunction of k1 with eigenvalue � if
R

S k1(s; u)�(u)du =

��(s) for almost every s 2 S. The eigenfunctions of k2 are defined in a similar way,

only that they belong to L2(T). The next theorem establishes the existence of a

decomposition of k1, k2 and � in terms of these eigenfunctions.
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Theorem 1 There exist a non-increasing sequence of positive eigenvalues f�kg of k1
and k2, an orthonormal sequence f�kg of eigenfunctions of k1 and an orthonormal
sequence f kg of eigenfunctions of k2 such that

k1(s1; s2) =
X
k�1

�k�k(s1)�k(s2); (1)

k2(t1; t2) =
X
k�1

�k k(t1) k(t2) (2)

and
�(s; t) =

X
k�1

�
1=2
k �k(s) k(t): (3)

The series (1), (2) and (3) converge in the sense of the L2 norm. If in addition �(s; t)
is continuous, then f�kg and f kg are continuous functions and the convergence of
(1) and (2) is absolute and uniform in both variables, with the identities holding for
each (s1; s2) and each (t1; t2). If the right-hand side of (3) converges uniformly and
absolutely, then the identity also holds for every (s; t).

Theorem 1 implies that the truncated series

�(p)(s; t) =

pX
k=1

�
1=2
k �k(s) k(t) (4)

converges to �(s; t) in the sense of L2(S � T) as p increases, and that the conver-

gence is pointwise for every (s; t) if the right-hand side of (3) converges uniformly

and absolutely. The latter occurs if, for instance, the �ks and the  ks are uniformly

bounded and
P

k�1 �
1=2
k is finite.

In analogy with the multivariate singular value decomposition, the truncated

series �(p) given by (4) provides the best possible approximation of � among linear

combinations of functions of separate variables, in the sense of the L2(S�T) norm.

Theorem 2 Let Hp be the class of functions h(s; t) =
Pp

k=1 akfk(t)gk(s) with ffkg
and fgkg orthonormal in L2(T) and L2(S), respectively. Then

min
h2H p

k�� hk2 = k�� �(p)k2;

with �(p) as in (4).
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The function �(p)(s; t) is the sum of p functions of separate variables, dk(s; t) =

�
1=2
k �k(s) k(t), that we will call “detail functions”. The detail functions are orthog-

onal in both variables, and kdkk = �
1=2
k , so they provide finer levels of detail as k

increases. An appealing feature of the detail functions is that they are often inter-

pretable functions, giving us information about the most relevant characteristics of

the process under investigation.

Of course, all this would be of little practical use if the computation of the �ks

and  ks required a good preliminary estimator of �. But we show below that good

estimators of the eigenfunctions can be obtained from the raw data, and these

estimators are then used to construct a smooth estimator of �.

3 Smooth estimation of the eigenfunctions

Let X1; : : : ; Xn be an i.i.d. sample of the process X. In most cases, the Xis are

observed on a discrete grid fsjg � ftkg � S � T with random error, so the data

follows the model

xijk = Xi(sj; tk) + "ijk; i = 1; : : : ; n; j = 1; : : : ;m; k = 1; : : : ; r: (5)

We will assume that E("ijk) = 0, "ijk is independent of Xi, "ijk and "i0j0k0 are inde-

pendent if i 6= i0, and E("ijk"ij0k0) = �2�jj0�kk0 (where � is Kronecker’s delta).

The simplest estimator of � at the grid points is the cross sectional mean,

�̂(sj; tk) =
Pn

i=1 xijk=n. The corresponding estimators of the kernel functions k1
and k2, using the trapezoid rule for numerical integration, are

k̂1(sj; sj0) =
rX
k=1

uk�̂(sj; tk)�̂(sj0 ; tk)

and

k̂2(tk; tk0) =
mX
j=1

vj�̂(sj; tk)�̂(sj; tk0);

where u1 = (t2 � t1)=2, uk = (tk+1 � tk�1)=2, k = 2; : : : ; r � 1, ur = (tr � tr�1)=2,

and v1 = (s2 � s1)=2, vj = (sj+1 � sj�1)=2, j = 2; : : : ;m� 1, vm = (sm � sm�1)=2.

From k̂1 and k̂2 we can compute smooth estimators of the eigenfunctions f�kg
and f kg using spline models (such as B-splines; de Boor, 2001) as follows. We
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know that

�1 = argmaxkgk=1
RR

k1(s1; s2)g(s1)g(s2)ds1ds2:

Then, given a spline basis f�1; : : : ; �qg in L2(S), we write g(s) =
Pq

j=1 bj�j(s) and

define

b̂1 = argmaxfbT 
̂b : bT�b = 1g;

where 
̂ij =
RR

k̂1(s1; s2)�i(s1)�j(s2)ds1ds2 and �ij =
R
�i(s)�j(s)ds. Then �̂1(s) =Pq

j=1 b̂1j�j(s) is a spline estimator of the first eigenfunction of k1.

For the rest of the eigenfunctions we proceed sequentially: since

�k = argmax
�RR

k1(s1; s2)g(s1)g(s2)ds1ds2 : kgk = 1 and hg; �ji = 0 for j < k
	
;

we define

b̂k = argmaxfbT 
̂b : bT�b = 1;bT�b̂j = 0; j < kg (6)

and set �̂k(s) =
Pq

j=1 b̂kj�j(s). The corresponding eigenvalues can be estimated by

�̂k = b̂
T
k 
̂b̂k.

Computationally, (6) is a very simple problem. Let V = diag(v1; : : : ; vm), B 2
Rq�m with Bij = �i(sj), and K1 2 Rm�m with K1ij = k̂1(si; sj). Then, using the

trapezoid rule for numerical integration, 
̂ = B
T
VK1VB and � = BTVB. If �1=2

denotes the symmetric square root of � and ĉk the kth unit-norm eigenvector of

��1=2
̂�
�1=2

, then b̂k= ��1=2ĉk.

If the true eigenfunctions belong to the space generated by the specified spline

basis, and the eigenvalues of ��1=2
��1=2 (with 
 given below) have multiplicity

one, then the above estimators are consistent. This is a consequence of the next

theorem together with the results of Tyler (1981).

Theorem 3 Let 
 2 Rq�q be given by 
ij =
RR

k1(s1; s2)�i(s1)�j(s2)ds1ds2. If
max vj ! 0 as m ! 1 and maxuk ! 0 as r ! 1, then 
̂ ! 
 in probability
as n, m and r go to infinity.

In practice, though, the eigenfunctions may not belong to a spline space. But

the asymptotic bias will be negligible if the spline basis is appropriately chosen. For

that reason, in this paper we use adaptive free-knot splines as in Gervini (2006).

Another possibility is to use a large number of basis functions with global regular-

ization, as in Silverman (1996), but we prefer the free-knot approach because it
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provides better fits for the local features of the eigenfunctions.

Concretely, the algorithm we implemented aggregates knots by maximizing (6)

over a grid of candidates (usually the grid fsjg itself) until there is no significant

improvement on the objective function (6). Repeated knots are allowed, since they

provide better resolution of the local features of the components (at the expense

of fewer degrees of differentiability). The optimal number of knots can be chosen

either subjectively or by cross-validation. This procedure must be repeated for each

component because the optimal placement and number of knots changes with each

component.

The eigenfunctions f kg of k2 are estimated in a similar way, using a spline

basis in L2(T). Since the choice of sign of the eigenfunctions is always arbitrary,

care must be taken so that �̂
1=2

k =
RR

�̂(s; t)�̂k(s) ̂k(t)dsdt is positive. As before,

we use the trapezoid rule for numerical integration, so �̂
1=2

k = �̂k(s)
TV�XU ̂k(t),

where �̂k(s) is the vector with elements �̂k(sj) and  ̂k(t) is the vector with elements

 ̂k(tj); �X is the average of the matrices Xi with elements (Xi)jk = xijk and U =

diag(u1; : : : ; ur).

The eigenfunctions are estimated sequentially until a given order p, and then

we define

�̂(p)(s; t) =

pX
k=1

�̂
1=2

k �̂k(s) ̂k(t):

The order p must be chosen with care, to reduce bias as much as possible. For

reasons that will become clearer in Sections 4 and 5, we recommend to use a large

p as long as the estimators of the eigenfunctions are not overwhelmed by noise,

even if the corresponding �̂ks seem to be negligibly small.

Interestingly, �̂(p) can be further decomposed into terms that represent the indi-

vidual contributions of theXis, since �̂
1=2

k =
Pn

i=1 ŵik=nwith ŵik = �̂k(s)
TVXiU ̂k(t).

Note that ŵik is an estimator of wik =
RR

Xi(s; t)�k(s) k(t)dsdt. Then we can de-

fine individual predictors of the unobserved sample paths Xi(s; t),

X̂
(p)
i (s; t) =

pX
k=1

ŵik�̂k(s) ̂k(t):

The score vectors ŵi are useful for exploratory data analysis; for example, they

may reveal outliers or unusual groupings in the data, as we show by example in
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Section 4. The predictors X̂(p)
i can also be used to select the best order p by cross-

validation.

4 Example: evolution of human mortality in the 20th

century

The socioeconomic progress experienced by western European countries after the

Second World War is very graphically exemplified by the evolution of human mor-

tality curves. Mortality rates, which are the percentages of people of certain age

who die in a given year, can be seen as longitudinal of functional data in two

senses: for a given year, mortality rates are a function of age; and for each age, the

evolution of mortality rates over the years are a time series. But a thorough sta-

tistical analysis must take into account the interplay between these two variables;

that is, the data must be seen as realizations of a bivariate stochastic process.

In this section we analyze mortality rates between the years of 1930 and 2000,

for people ranging from 0 to 90 years of age. The data was downloaded from the

Human Mortality Database website, www.mortality.org. We only included coun-

tries of western Europe for which complete data was available: Belgium, Denmark,

England, Finland, France, Italy, the Netherlands, Norway, Spain and Sweden. For

country i we defined Xi(s; t) as the logarithm of the mortality rate for age s at year

t; the data was observed on the grid f0; 1; : : : ; 90g � f1930; 1931; : : : ; 2000g.
We computed three pairs of eigenfunctions, which are shown in Fig. 2. The

corresponding root-eigenvalues were �̂
1=2

1 = 435:85, �̂
1=2

2 = 11:09 and �̂
1=2

3 = 6:71.

Clearly, the first eigenvalue is dominant. However, the second and third detail

functions do improve the fit in ways that are visually noticeable (the fact that

obvious visual improvements may be associated with very small eigenvalues was

observed by Dente et al., 1996).

We see that �̂1(s) (Fig. 2(a)) can be interpreted as the basic shape of a human

mortality curve: high infant mortality is followed by a sharp decrease until ado-

lescence, then a sharp increase occurs that levels off at ages 20 to 30, followed

by a steady increase from then on. The companion eigenfunction  ̂1(t) (Fig. 2(b))

is the overall mortality trend over this 71-year period: a modest decrease in the

early 30’s was punctuated by the Second World War, followed by a remarkably fast

8



0 20 40 60 80

­0.15

­0.1

­0.05

Age

Lo
g 

m
or

ta
lit

y

(a)

0 20 40 60 80

­0.1

0

0.1

0.2

0.3

0.4

(c)

0 20 40 60 80
­0.2

­0.1

0

0.1

0.2
(e)

1930 1940 1950 1960 1970 1980 1990 2000

0.1

0.11

0.12

0.13

Year

(b)

1930 1940 1950 1960 1970 1980 1990 2000
­0.2

­0.1

0

0.1

0.2

(d)

1930 1940 1950 1960 1970 1980 1990 2000
­0.2

­0.1

0

0.1

0.2

0.3
(f)

Figure 2: Human Mortality Data. Free-knot spline estimators of the eigenfunctions:
(a) �̂1(s), (b)  ̂1(t), (c) �̂2(s), (d)  ̂2(t), (e) �̂3(s) and (f)  ̂3(t).
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Figure 3: Human Mortality Data. (a) Raw mean and (b) first-order singular value
approximation.

decrease in mortality that has continued until these days. The first-order approx-

imation �̂(1) is depicted in Fig. 3, together with the raw mean. We see that the

approximation is very good, but some flaws are obvious. For example, newborn

mortality (s = 0) remains constant over the years in Fig. 3(b) while it is obviously

decreasing in Fig. 3(a).

The second component �̂2(s) (Fig. 2(c)) is mostly related to infant mortality,

with  ̂2(t) (Fig. 2(d)) showing a steady decrease over the years except for the

war period. Clearly, �̂(2) (Fig. 4(b)) provides a better fit for infant mortality than

�̂(1). The third-order approximation �̂(3) (Fig. 5(b)) improves the fit for the war

years. Note that for this period, �̂(2) underestimates mortality for ages 20 to 30

and overestimates it for ages 60 and over. Higher levels of detail could be added,

but it is hard to see any features of the raw mean that have not been accounted for

by �̂(3).

An analysis of individual countries also reveals interesting facts. The scatter

plot of the component scores (Fig. 6) shows three points that stand apart from

the rest. The most extreme case, having the smallest first-component score and the

largest third-component score, is Finland. This is an unexpected result for someone
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Figure 4: Human Mortality Data. (a) Second-order detail function and (b) second-
order singular value approximation of the mean.

1940

1960

1980

2000

0
20

40
60

80

­0.4

­0.3

­0.2

­0.1

0

0.1

0.2

0.3

0.4

(a)

1940

1960

1980

2000

0
20

40
60

80

­9

­8

­7

­6

­5

­4

­3

­2

­1

(b)

Figure 5: Human Mortality Data. (a) Third-order detail function and (b) third-
order singular value approximation of the mean.

11



415
420

425
430

435
440

445
450

455

9

10

11

12

13

14

15
3

4

5

6

7

8

9

10

11

First componentSecond component

T
hi

rd
 c

om
po

ne
nt

Figure 6: Human Mortality Data. Individual component scores of the ten countries.

unfamiliar with Finnish history, but it turns out that Finland was fighting on two

different fronts during the war years. A quick comparison of the individual mortal-

ity plots (shown in the Technical Report) reveals that Finland, indeed, experienced

the largest increase in mortality rate for the 20-40 age bracket during the war years

among the countries in this sample (this is precisely what a small first-component

score accompanied by a large third-component score indicates, according to our

interpretation of the components).

The other two atypical points are Spain and Italy. Spain did not participate

in the Second World War but went through a civil war in the 1930s, showing a

different mortality pattern from the rest of the countries; in particular, the decrease

in child mortality after 1945 was not as fast as for the other countries. Italy, by

contrast, has the largest second-component score and is the country with the fastest

post-war decrease in infant mortality.

This example illustrates the kind of insight that can be gained from the func-

tional singular value decomposition. While other methods (like tensor-product

splines) can provide estimators of the mean function, the FSVD also offers an in-

terpretable decomposition of the mean that can reveal interesting aspects of the

data.
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5 Simulations

As mentioned before, we see the FSVD mainly as a tool for graphical and ex-

ploratory data analysis, but since (4) can be used as an estimator of �, we ran

a Monte Carlo study to compare its performance with that of tensor-product spline

estimators. Specifically, we wanted to assess the ability of our free-knot component

estimators to adapt to local features of �, and the potential dangers of underesti-

mating the approximation order p.

We generated data from a mean-plus-error model xijk = �(sj; tk) + "ijk. Two

different means were considered, �1(s; t) =
P2

k=1 �
1=2
k �k(s) k(t) and �2(s; t) =P3

k=1 �
1=2
k �k(s) k(t), with �k(s) =

p
2 sin(2k�s),  k(t) =

p
2 cos(2k�t), �1 = 1,

�2 = 1=2 and �3 = 1=32. The grids fsjg and ftkg consisted of m = r equispaced

points in [0; 1], and the errors "ijk were independent N(0; �2). We considered two

grid sizes, m = 20 and m = 30, two sample sizes, n = 10 and n = 50, and two error

variances, �2 = 1 and �2 = 4. Each model was replicated 200 times (although not

all combinations of factors were considered; see Table 1).

For the tensor-product spline estimator, we took two bases of cubic B-splines

with knots placed at the grid points. The estimator was regularized by penalizing

the integrated squared partial derivatives, as explained in Hastie et al. (2001, ch.

5). The choice of a good smoothing parameter is crucial for the behavior of these

estimators. To be as fair as possible with tensor-product splines, we chose the

optimal smoothing parameter: the minimizer of k�̂ � �k. In practice this cannot

be done because � is unknown, so the estimation errors reported in Table 1 (under

“TPS”) will be lower than those attainable in practice.

As FSVD estimator of � we took a two-component decomposition, �̂(2), with

�̂ks and  ̂ks estimated by free-knot cubic splines, as explained in Section 3. Here

the number of knots plays the role of smoothing parameter, so we considered two

possibilities: a fixed number of knots (3 for �1, 5 for �2, 2 for  1 and 4 for  2), and

an optimal number of knots (the number that minimizes k�̂k��kk or k ̂k� kk, up

to a maximum of 10 knots). The estimation errors are reported in Table 1 as “SVf”

and “SVo”, respectively. These two are extreme cases, so the actual estimation

error of �̂(2) when the number of knots is selected by the user will fall somewhere

between these two.

Table 1 shows the root integrated squared errors, E1=2(k�̂� �k2). Standard
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Model parameters Root ISE
Mean � m n TPS SVf SVo

�1 1 20 10 .159 .111 .097
50 .085 .075 .047

30 10 .114 .090 .069
50 .063 .070 .034

�1 2 20 10 .277 .196 .184
50 .147 .103 .089

30 10 .197 .140 .124
50 .104 .086 .062

�2 2 20 10 .285 .264 .255
50 .160 .205 .197

30 10 .212 .225 .217
50 .110 .196 .187

Table 1: Simulation Results. Root mean integrated squared errors for tensor-
product spline estimator (TPS) and FSVD estimators with fixed number of knots
(SVf) and optimal number of knots (SVo).

errors are not given, to avoid overcrowding the table, but all the differences are

significant (the Technical Report shows boxplots of the simulated squared errors).

We see that for �1, for which the order p of �̂ is correctly specified, the FSVD

estimator with a fixed number of knots outperforms the tensor-product spline esti-

mator in all situations but one (� = 1, m = 30, n = 50), while the FSVD estimator

with optimal number of knots outperforms the tensor-product spline estimator in

all situations (usually by a considerable margin).

For �2 the situation reverses, as expected, since the order p is now underspeci-

fied and then the bias does not vanish, even as m or n increase. Of course, it can be

argued that p in practice is also chosen in a data-driven way: for large m and n, the

estimators �̂3 and  ̂3 will be regular enough to call for a three-component estima-

tor, which will make the FSVD estimator competitive again. The conclusion of this

Monte Carlo study, then, is that FSVD estimators are competitive and even better

than tensor-product splines as long as the number of components is not severely

underspecified. Even if the estimated eigenvalues are small, for estimation pur-

poses it is safer to include as many eigenfunctions as possible, as long as they are

14



not overwhelmed by noise.
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A Appendix

The following proofs use functional analysis results that can be found, for instance,

in Gohberg et al. (2003). Given � 2 L2(S � T), define the operator M : L2(T) !
L2(S) as (Mf)(s) =

R
T �(s; t)f(t)dt. The adjoint of M is the operator M� : L2(S)!

L2(T) given by (M�g)(t) =
R

S�(s; t)g(s)ds. Let K1 = MM� and K2 = M�M. They

are self-adjoint operators, K1 : L2(S)! L2(S) and K2 : L2(T)! L2(T), with kernels

k1(s1; s2) =
R
�(s1; t)�(s2; t)dt and k2(t1; t2) =

R
�(s; t1)�(s; t2)ds, respectively.

Remember that for f 2 H1 and g 2 H2, the tensor-product operator g 
 f :

H1 ! H2 is defined as (g 
 f)(h) = hf; hig.

A.1 Proof of Theorem 1

Since K2 is a self-adjoint integral operator, the spectral decomposition implies that

K2 =
P
�k k 
  k, where �k > 0 and f kg is an orthonormal system of eigenfunc-

tions of K2, which can be completed to a basis of L2(T) by adding an orthonormal

basis of ker(K2), say f~ kg (Gohberg et al., 2003, p. 180). This proves (2) of Theo-

rem 1. Note that ker(K2) = ker(M): clearly ker(M) � ker(K2) because K2 =M�M;

but for any f 2 ker(K2), 0 = hf;K2fi = kMfk2, which implies f 2 ker(M) and then

ker(K2) � ker(M).
Now define �k = �

�1=2
k M k:The �ks are orthonormal in L2(S), since

h�j; �ki = �
�1=2
j �

�1=2
k hM j;M ki

= �
�1=2
j �

�1=2
k h j;K2 ki = �

�1=2
j �

�1=2
k �k�jk:

To prove (3) of Theorem 1, define the operator L =
P
�
1=2
k �k
 k. This operator

15



is well defined, since for any f 2 L2(T), we have Lf =
P
�
1=2
k h k; fi�k and

kLfk2 =
X

�kjh k; fij2 � kfk2
X

�k <1:

Direct calculation shows that L k =M k, and L~ k =M~ k = 0 because ker(K2) =

ker(M). Since f kg [ f~ kg is a basis of L2(T), it follows that L =M, which is (3)

of Theorem 1 in different words.

The identity (1) of Theorem 1 follows from (3), since K1 =MM�. In particular,

this shows that the positive eigenvalues of K1 are the same as those of K2, and the

�ks can be taken as the corresponding eigenfunctions.

If the mean function �(s; t) is continuous, Mercer’s Theorem (Gohberg et al.,

2003, p. 198) implies that the  ks are continuous and k2 satisfies (2) in Theorem

1 in a pointwise manner, with the series converging absolutely and uniformly.

The �ks are continuous by definition when � is continuous. To prove that the

identity (1) in Theorem 1 holds pointwise and that the series converges absolutely

and uniformly, we essentially mimic the proof of Mercer’s Theorem. See the Tech-

nical Report for details.

Finally, to show that expression (3) in Theorem 1 holds pointwise when the se-

ries on the right-hand side converges absolutely and uniformly, note that both sides

of expression (3) define the same operator from L2(T) to L2(S), so the identity must

hold almost everywhere, and by continuity, it must actually hold everywhere.�

Remark. As by-products of the proof of Theorem 1 we obtain the identities

�k(s) =
1

�
1=2
k

(M k)(s) =
1

�
1=2
k

Z
�(s; t) k(t)dt;

and

 k(t) =
1

�
1=2
k

(M��k)(t) =
1

�
1=2
k

Z
�(s; t)�k(s)ds:

A.2 Proof of Theorem 2

Since ffkg and fgkg are orthonormal,

k�� hk2 = k�k2 � 2
pX
k=1

akhgk;Mfki+
pX
k=1

a2k;
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which is minimized by ak = hgk;Mfki; k = 1; : : : ; p. Then, minimizing k�� hk2 is

equivalent to maximizing
Pp

k=1 jhgk;Mfkij2. By Cauchy-Schwartz inequality,

pX
k=1

jhgk;Mfkij2 �
pX
k=1

kgkk2 kMfkk2

=

pX
k=1

jhMfk;Mfkij2 =
pX
k=1

jhfk;K2fkij2 : (7)

It is well known (or see Gohberg et al., 2003, Section 4.9) that (7) is maximized by

the leading p eigenfunctions of K2, and the maximum value is
Pp

k=1 �k. ThereforePp
k=1 jhgk;Mfkij2 �

Pp
k=1 �k and equality holds for fk =  k and gk = �k, which

completes the proof. �

A.3 Proof of Theorem 3

Let zijk = xijk � �(sj; tk), and define M0 = [�(sj; tk)](j;k), Xi = [xijk](j;k) and Zi =

[zijk](j;k). Since 
̂ = B
>
VK1VB and K1= �XU�X

>, we can write


̂hh0 = �h(s)
>V�XU�X

>
V�h0(s)

= �h(s)
>VM0UM

>
0V�h0(s) (8)

+2�h(s)
>V�ZUM

>
0V�h0(s) (9)

+�h(s)
>V�ZU�Z

>
V�h0(s): (10)

We will show that (8) goes to 
hh0 as m and r go to infinity, and that (9) and (10)

go to zero in probability as n goes to infinity, uniformly in m and r.

Since

�h(s)
>V�XU�X

>
V�h0(s) =

mX
j=1

mX
j0=1

�h(sj)vj

(
rX
k=1

uk�(sj; tk)�(sj0 ; tk)

)
vj0�h0(sj0);

it is clear that (8) goes to 
hh0 as m and r go to infinity, because both max vj and

maxuk go to zero as m and r go to infinity.

With respect to (9), note that we can write it as 2�y, with

yi = �h(s)
>VZiUM

>
0V�h0(s):
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The yis are i.i.d. with E(yi) = 0 and V(yi) = V
nPm

j=1

Pr
k=1 �h(sj)vjzijkukakh0

o
,

with akh0 =
Pm

j0=1 �(sj0 ; tk)vj0�h0(sj0). It can be proved that

lim
m!1
r!1

V(yi) =

ZZZZ
�h(s1)�h0(t1)�h(s2)�h0(t2)�f(s1; t1); (s2; t2)gds1ds2dt1dt2;

where �h0(tk) =
R
�(s; tk)�h0(s)ds as m ! 1 (see Technical Report). Then V(yi)

is bounded for any m and r, and a simple application of Tchebyshev’s Inequality

implies that (9) goes to zero in probability as n goes to infinity, uniformly in m and

r.

Regarding (10), note that

�h(s)
>V�ZU�Z

>
V�h0(s) � kU1=2�Z>V�h(s)kkU1=2�Z>V�h0(s)k:

For a given index h, we can write U1=2�Z>V�h(s) = �w, with wi = U1=2Z>i V�h(s).

The wis are i.i.d. with E(wi) = 0 and

lim
m!1
r!1

rX
k=1

V(wik) =

ZZZ
�h(s1)�h(s2)�f(s1; t); (s2; t)gds1ds2dt

(again, see Technical Report). Since E(k�wk2) = n�1
Pr

k=1V(wik), a straightforward

application of Markov’s Inequality implies that k�wk goes to zero in probability as n

goes to infinity, uniformly in m and r, and consequently the same is true for (10).

�
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