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Abstract

This Technical Report provides additional material to the paper.



1. Introduction

This Technical Report provides additional material that was omitted in the paper

for reasons of space and readability, specifically:

1. a more detailed report of the simulation results;

2. derivation of the maximum likelihood estimating equations;

3. derivation of the EM algorithm steps;

4. proofs of the theorems (including an explicit expression for the matrix M);

2. Simulation Results

This section shows some simulation results that were omitted in the paper:

� Boxplots of k�̂� �k and k�̂1 � �1k for all the non-contaminated sampling sit-

uations (the three designs and the three sample sizes described in the paper)

are shown in Figs. 1 and 2.

� Boxplots of k�̂ � �k for contaminated samples, with both K = 4 and K = 8,

are shown in Figs. 3 and 4 (for endogenous and exogenous outliers, respec-

tively).

� Boxplots of k�̂1��1k for contaminated samples, with both K = 4 and K = 8,

are shown in Figs. 5 and 6 (for endogenous and exogenous outliers, respec-

tively). Figure 7 shows barplots of k�̂1 � �1k for endogenously contaminated

samples, which make the bimodal nature of the distribution more evident

(for better visualization, only the results for " = :10 and " = :20 are shown,

and only for the Normal and Cauchy estimators).
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Figure 1: Simulation Results. Box-plots of estimation errors of �̂ under the nor-
mal model, for Normal (N), Cauchy (C) and t5 (t5) estimators. Designs are fixed
uniform (a,b,c), random uniform with fixed m (d,e,f), and random uniform with
varying m (g,h,i). Sample sizes are 50 (a,d,g), 100 (b,e,h) and 200 (c,f,i).
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Figure 2: Simulation Results. Box-plots of estimation errors of �̂1 under the nor-
mal model, for Normal (N), Cauchy (C) and t5 (t5) estimators. Designs are fixed
uniform (a,b,c), random uniform with fixed m (d,e,f), and random uniform with
varying m (g,h,i). Sample sizes are 50 (a,d,g), 100 (b,e,h) and 200 (c,f,i).
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Figure 3: Simulation Results. Box-plots of estimation errors of �̂ under the
contaminated-normal model (with endogenous outliers), for Normal (N), Cauchy
(C) and t5 (t5) estimators.
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Figure 4: Simulation Results. Box-plots of estimation errors of �̂ under the
contaminated-normal model (with exogenous outliers), for Normal (N), Cauchy
(C) and t5 (t5) estimators.
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Figure 5: Simulation Results. Box-plots of estimation errors of �̂1 under the
contaminated-normal model (with endogenous outliers), for Normal (N), Cauchy
(C) and t5 (t5) estimators.
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Figure 6: Simulation Results. Box-plots of estimation errors of �̂1 under the
contaminated-normal model (with exogenous outliers), for Normal (N), Cauchy
(C) and t5 (t5) estimators.
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Figure 7: Simulation Results. Bar plots of estimation errors of �̂1 under the con-
taminated Normal model (with endogenous outliers), for Normal (light grey) and
Cauchy (black) estimators.
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3. Maximum likelihood estimating equations

The density function of a t�(�;�) distribution in Rm is

f(x) =
�f(� +m)=2g

�(�=2)
(��)�m=2 j�j�1=2

�
1 +

s

�

��(�+m)=2
;

with s = (x� �)T��1(x� �). Then

log f(x) / �1
2
log j�j �

�
� +m

2

�
log
�
1 +

s

�

�
:

To find the derivatives of log f(x) with respect to the parameters we use differen-

tials, as in Magnus and Neudecker (1999).

Differentiating with respect to � we obtain

d log f(x) = �
�
� +m

2

��
1 +

s

�

��1 1
�
ds

and

ds = �2(x� �)T��1d�:

Therefore

d log f(x) =

�
� +m

� + s

�
(x� �)T��1d�:

If � = B�, d� = Bd� and then

@ log f(x)

@�T
=

�
� +m

� + s

�
(x� �)T��1B:

Differentiating with respect to �, and using that

d log j�j = tr
�
��1d�

�
;

d(��1) = ���1(d�)��1;

we have

d log f(x) = �1
2
tr
�
��1d�

�
�
�
� +m

2

��
1 +

s

�

��1 1
�
ds

and

ds = �(x� �)T��1(d�)��1(x� �);

9



so

d log f(x) = �1
2
tr
�
��1d�

�
+
1

2

�
� +m

� + s

�
(x� �)T��1(d�)��1(x� �):

For � = �2Im +BH�HTBT we have

d� = Imd�
2;

d� = B(dH)�HTBT +BH�(dH)TBT ;

d� = BH(d�)HTBT :

Then
@ log f(x)

@�2
= �1

2
tr
�
��1

�
+
1

2

�
� +m

� + s

�
(x� �)T��2(x� �):

Note that d�k is the kth column of dH, so dH =
Pd

k=1(d�k)e
T
k , where ek is the kth

canonical vector in Rd. Then

d� =
dX

k=1

fB(d�k)eTk�HTBT +BH�ek(d�k)
TBTg

=
dX

k=1

fB(d�k)�k�TkBT +B�k�k(d�k)
TBTg;

which implies that

d log f(x) =
dX

k=1

f��k�TkBT��1B(d�k)

+

�
� +m

� + s

�
(x� �)T��1B(d�k)�k�TkBT��1(x� �)g:

Then

@ log f(x)

@�Tk
= ��k�TkBT��1B +

�
� +m

� + s

�
�k�

T
kB

T��1(x� �)(x� �)T��1B;

or more succinctly
@ log f(x)

@�Tk
= �k�

T
k S;

10



with

S = �BT��1B +

�
� +m

� + s

�
BT��1(x� �)(x� �)T��1B:

Similarly, since d� =
Pd

k=1(d�k)eke
T
k , we have

d� =

dX
k=1

(d�k)B�k�
T
kB

T

and then

d log f(x) =
dX

k=1

f�1
2
�TkB

T��1B�kd�k

+
1

2

�
� +m

� + s

�
(x� �)T��1(d�k)B�k�TkBT��1(x� �)g;

which implies that
@ log f(x)

@�k
=
1

2
�Tk S�k:

To compute the derivatives of the Lagrangian function, note that

1

2

dX
j=1

wjj(1� �Tj J�j)�
dX
j=2

j�1X
k=1

wjk�
T
j J�k =

1

2
trfW (Id �HTJH)g;

with W symmetric and Wij = wij. Then the differential with respect to H is

�1
2
trfW (dH)TJH +WHTJ(dH)g = �trfWHTJ(dH)g

= �
dX

k=1

eTkWHTJ(d�k):

This implies that
@L(�)

@�Tk
= �k�

T
k Sn � eTkWHTJ:

Since this is equal to zero at �̂ and HTJH = Id, the multiplier matrix W satisfies

the equation

�k�
T
k SnH � eTkW = 0;

11



from which we derive the estimating equation

�k�
T
k Sn � �k�

T
k SnHH

TJ = 0:

4. Derivation of the EM algorithm steps

Under the central model,

xi = Bi� +Bi�zi + �"i

= Bi� + (�Imi
; Bi�)vi;

where vi = ("Ti ; z
T
i )

T is assumed to have a t�(0; Imi+d) distribution. Then vi =

~vi=
p
ui, where ~vi � N(0; Imi+d), ui � ��1�2� , and ~vi and ui are independent. Note

that ui � �(�=2; 2=�), so

f(ui) / u
�=2�1
i exp(�ui�

2
):

If we decompose ~vi as (~"Ti ;~z
T
i )

T we have that ~zi � N(0; Id), ~"i � N(0; Imi
), and ~zi

and ~"i are independent. Then

xij(~zi; ui) � N(Bi� +Bi�~zi=
p
ui; �

2Imi
=ui):

Treating f(~zi; ui)g as “missing data,” the joint density function factors as f(xi;~zi; ui) =

f(xij~zi; ui)f(~zi)f(ui) and the complete-data likelihood is

l�(�) =
nX
i=1

log f(xi;~zi; ui)

/
nX
i=1

f�mi

2
log
�
�2
�
� ui
2�2

kxi �Bi� �
1
p
ui
Bi�~zik2 + h(~zi; ui)g

=

nX
i=1

f�mi

2
log
�
�2
�
� ui
2�2

kxi �Bi�k2 �
1

2�2
kBi�~zik2

+

p
ui
�2
(xi �Bi�)

TBi�~zi + h(~zi; ui)g;

where h(~zi; ui) is a function that does not depend on �. The expectation step of the

EM algorithm defines Q(�) = Eoldfl�(�)jx1; : : : ;xng, where Eold denotes expecta-
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tion with respect to the current parameters �̂
old

. The maximization step of the EM

algorithm defines �̂
new

as the maximizer of Q(�).

Explicitly,

Q(�) /
nX
i=1

[�mi

2
log
�
�2
�
� E

old(uijxi)
2�2

kxi �Bi�k2

� 1

2�2
trfBi�E

old(~zi~z
T
i jxi)�TBT

i g

+
1

�2
(xi �Bi�)

TBi�E
old(
p
ui~zijxi) + Eoldfh(~zi; ui)jxig]:

Since tr(ABCD) = vec(BT )T (AT 
 C)vec(D) (see e.g. Magnus and Neudecker

1999), we have

trfBi�E
old(~zi~z

T
i jxi)�TBT

i g = trfEold(~zi~zTi jxi)�TBT
i Bi�g

= vec(�)TfEold(~zi~zTi jxi)
BT
i Bigvec(�);

(xi �Bi�)
TBi�E

old(
p
ui~zijxi) = trfEold(pui~zijxi)(xi �Bi�)

TBi�g
= (xi �Bi�)

TfEold(pui~zijxi)T 
Bigvec(�):

Then

@Q

@�T
=
1

�2

nX
i=1

fEold(uijxi)(xi �Bi�)
TBi � Eold(

p
ui~zijxi)T�TBT

i Big; (1)

@Q

@vec(�)T
=

1

�2

nX
i=1

[�vec(�)TfEold(~zi~zTi jxi)
BT
i Big (2)

+(xi �Bi�)
TfEold(pui~zijxi)T 
Big];

and

@Q

@�2
=

nX
i=1

[� mi

2�2
+
Eold(uijxi)
2(�2)2

kxi �Bi�k2 (3)

+
1

2(�2)2
trfBi�E

old(~zi~z
T
i jxi)�TBT

i g

� 1

(�2)2
(xi �Bi�)

TBi�E
old(
p
ui~zijxi)]:

13



For simplicity, we solve (1) and (2) separately. That is, we replace � by �̂old

on the right-hand side of (1) and � by �̂
old

on the right-hand side of (2). Then we

obtain

�̂
new

=

(
nX
i=1

Eold(uijxi)BT
i Bi

)�1

�
nX
i=1

fEold(uijxi)BT
i xi �BT

i Bi�̂
oldEold(

p
ui~zijxi)g;

vec(�̂new) =

"
nX
i=1

fEold(~zi~zTi jxi)
BT
i Big

#�1

�
nX
i=1

fEold(pui~zijxi)
BT
i g(xi �Bi�̂

old
);

and

(�̂2)new =
1Pn

i=1mi

nX
i=1

[Eold(uijxi)kxi �Bi�̂
newk2

+trfBi�̂
newEold(~zi~z

T
i jxi)(�̂new)TBT

i g
�2(xi �Bi�̂

new
)TBi�̂

newEold(
p
ui~zijxi)]:

Note that

Q(�̂
new
) / �(

nX
i=1

mi

2
)[logf(�̂2)newg+ 1];

so �̂ is the minimizer of �̂2 = �2(�).

Now we derive explicit expressions for E(uijxi), E(
p
ui~zijxi) and E(~zi~zTi jxi).

Since xijui � N(Bi�;�i=ui) and ui � �(�=2; 2=�), we have

f(xi; ui) / j�ij�1=2 u�mi=2
i exp(�uisi

2
) u

�=2�1
i exp(�ui�

2
);

which implies that uijxi � �f(� +mi)=2; 2=(� + si)g and then

E(uijxi) =
� +mi

� + si
:

14



To find E(
p
ui~zijxi) and E(~zi~zTi jxi) we need the distribution of ~zij(ui;xi). Since"

xi

~zi

#
=

"
Bi�

0

#
+

"
�Imi

=
p
ui Bi�=

p
ui

0 Id

#
~vi

and ~vi � N(0; Id+mi
),"

xi

~zi

#
� N

 "
Bi�

0

#
;

"
�2Imi

=ui Bi�=
p
ui

�TBT
i =
p
ui Id

#!
:

Well-known properties of the multivariate normal distribution (see e.g. Bilodeau

and Brenner 1999) imply that

~zij(ui;xi) � N(
p
ui�

TBT
i �

�1
i (xi �Bi�); Id � �TBT

i �
�1
i Bi�):

Written out more explicitly,

Id � �TBT
i �

�1
i Bi� = Id �

1
p
ui
�TBT

i (
1

ui
�i)

�1 1
p
ui
Bi�

and
1

ui
�i =

�2

ui
Imi

+
1
p
ui
Bi�I

�1
d

1
p
ui
�TBT

i :

Note that Id � �TBT
i �

�1
i Bi� = V �1

i , where Vi = Id + �
TBT

i Bi�=�
2, which follows

from the identity

(A+ UV )�1 = A�1 � A�1U(I + V A�1U)�1V A�1:

Since f(ui;~zijxi) = f(~zijui;xi)f(uijxi),

E(
p
ui~zijxi) = E(uijxi)�TBT

i �
�1
i (xi �Bi�)

and also

E(zijxi) = E(u
�1=2
i ~zijxi)

= �TBT
i �

�1
i (xi �Bi�);

15



so ẑi is as claimed. Then

E(
p
ui~zijxi) = E(uijxi)ẑi

and

E(~zi~z
T
i jxi) = V �1

i + E(uijxi)ẑiẑTi :

5. Asymptotic properties

If Fn denotes the empirical distribution of wi = (ti;xi), i = 1; : : : ; n, the maximum

likelihood estimating equations can be succinctly expressed as EFnf (w; �̂)g = 0,

where  : R2m � R(p+1)(d+1) ! R(p+1)(d+1) can be broken down as follows:

 1(w; �) =

�
� +m

� + s(w; �)

�
BT (t)��1(t; �)fx�B(t)�g;

 2(w; �) = vecf(Ip � JHHT )S(w; �)Hg;

 3(w; �) = [�
T
1 S(w; �)�1; : : : ;�

T
d S(w; �)�d]

T ;

and

 4(w; �) = �1
2
trf��1(t; �)g

+
1

2

�
� +m

� + s(w; �)

�
fx�B(t)�gT��2(t; �)fx�B(t)�g;

where

S(w; �) = �BT (t)��1(t; �)B(t)

+

�
� +m

� + s(w; �)

�
BT (t)��1(t; �)fx�B(t)�g

�fx�B(t)�gT��1(t; �)B(t);

�(t; �) = B(t)H�HTBT (t) + �2Im;

and

s(w; �) = fx�B(t)�gT��1(t; �)fx�B(t)�g:
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Let us denote the true model parameters by a null subindex, and let �� = �(F ).

Then �(t; ��) = �0�0(t), s(w; �
�) = s0(w)=�0 and S(w; ��) = S0(w)=�0, where

S0(w) = �BT (t)��10 (t)B(t)

+

�
� +m

�0� + s0(w)

�
BT (t)��10 (t)fx� �0(t)g

�fx� �0(t)gT��10 (t)B(t):

5.1. Proof of Theorem 1

In this proof we will use certain properties of spherical distributions that can be

found, for instance, in Bilodeau and Brenner (1999). Under the model we have

x = �0(t) + A(t)v, where A(t) = [B(t)H0�
1=2
0 ; �0Im] and v = (zT ; "T )T . Note that

�0(t) = A(t)AT (t) and rankfA(t)g = m for all t. Let A(t)T = Q(t)R(t) be the

QR-decomposition of A(t)T , with Q(t) 2 R(d+m)�m orthogonal and R(t) 2 Rm�m

invertible (hence �0(t) = RT (t)R(t).) Since v has a spherical distribution in Rd+m,

y = Q(t)Tv has a spherical distribution in Rm (which does not depend on t.) Then

we can write x = �0(t) + RT (t)y and, as a consequence, s0(w) = kyk2. Note that

y can be factorized as y = kykU, where kyk and U are independent and U has

the uniform distribution on the unit sphere in Rm, implying that E(U) = 0 and

E(UUT ) = Im=m.

Since

 1(w; �
�) =

�
� +m

��0 + kyk
2

�
BT (t)��10 (t)R

T (t)y

=

�
(� +m) kyk
��0 + kyk

2

�
BT (t)R�1(t)U;

it is clear that E0f 1(w; ��)g = 0 regardless of the value of �0. Note that

E

�
(� +m) kyk
��0 + kyk

2

�
� E

1
2

�
� +m

��0 + kyk
2

�
E

1
2

(
(� +m) kyk2

��0 + kyk
2

)

�
�
� +m

��0

� 1
2

(� +m)
1
2 ;

which is finite even if kyk does not have finite moments of any order.
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Similarly,

S0(w) = �BT (t)��10 (t)B(t)

+

(
(� +m) kyk2

�0� + kyk
2

)
BT (t)R�1(t)UUTfR�1(t)gTB(t)

and then

E0fS0(w)g =
"
�1 + E

(
(� +m) kyk2

�0� + kyk
2

)
1

m

#
EfBT (t)��10 (t)B(t)g;

which is going to be zero as long as �0 satisfies

E

(
(� +m) kyk2

�0� + kyk
2

)
= m: (4)

The fact that E0fS0(w)g = 0 clearly implies E0f 2(w; ��)g = 0 and E0f 3(w; ��)g =
0. Note that (4) always has a positive solution �0, since

lim
�&0

E

(
(� +m) kyk2

�� + kyk2

)
= � +m

and

lim
�%1

E

(
(� +m) kyk2

�� + kyk2

)
= 0:

Again, note that

E

(
(� +m) kyk2

�0� + kyk
2

)
� � +m;

so the expectation is finite even if kyk does note have finite moments of any order.
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Finally,

 4(w; �
�) = �1

2

1

�0
trf��10 (t)g

+
1

2

�
� +m

� + kyk2 =�0

�
1

�20
yTR(t)��20 (t)R

T (t)y

= �1
2

1

�0
trf��10 (t)g

+
1

2

(
(� +m) kyk2

�0� + kyk
2

)
1

�0
UTfRT (t)g�1R�1(t)U:

Since

UTfRT (t)g�1R�1(t)U =tr[R�1(t)UUTfRT (t)g�1];

we have

E0[U
TfRT (t)g�1R�1(t)U] = 1

m
E0(tr[R

�1(t)fRT (t)g�1])

=
1

m
E0[trf��10 (t)g]

and then

E0f 4(w; ��)g =
1

2�0
E0[trf��10 (t)g]

"
�1 + E

(
(� +m) kyk2

�0� + kyk
2

)
1

m

#

which again is equal to zero by (4).

5.2. Proof of Theorem 2

Since  (w; �) is (up to constants) the gradient of log f(x), @ =@�T is (up to con-

stants) the Hessian of log f(x) and then M is symmetric. Concretely,

@ 

@�T
=

266664
@ 1
@�T

� � �
@ 2
@�T

@ 2
@vec(H)T

� �
@ 3
@�T

@ 3
@vec(H)T

@ 3
@�T

�
@ 4
@�T

@ 4
@vec(H)T

@ 4
@�T

@ 4
@�2

377775 (5)
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and

M11 = E0

�
@ 1(w; �

�)

@�T

�
:

To prove Theorem 2 we need to find M11 explicitly and show that the expectations

of the other three blocks in the first column of (5) are zero. We split the proof into

different subsections to make it easier to follow.

5.2.1. Block (1,1): M11

Differentiation of  1 with respect to � gives

d 1 = � (� +m)

f� + s(w; �)g2fds(w; �)gB
T (t)��1(t; �)fx�B(t)�g

�
�

� +m

� + s(w; �)

�
BT (t)��1(t; �)B(t)d�;

and

ds(w; �) = �2fx�B(t)�gT��1(t; �)B(t)d�:

Therefore

@ 1(w; �)

@�T
=

2(� +m)

f� + s(w; �)g2B
T (t)��1(t; �)fx�B(t)�gfx�B(t)�gT��1(t; �)B(t)

�
�

� +m

� + s(w; �)

�
BT (t)��1(t; �)B(t):

Evaluating at � = �� and using the notation of the proof of Theorem 1, under F0
we have

@ 1(w; �
�)

@�T
=

2(� +m)

(� + kyk2 =�0)2
BT (t)

1

�0
��10 (t)R

T (t)yyR(t)
1

�0
��10 (t)B(t)

�
�

� +m

� + kyk2 =�0

�
BT (t)

1

�0
��10 (t)B(t)

=

(
2(� +m) kyk2 =�0
(� + kyk2 =�0)2

)
BT (t)

1

�0
��10 (t)R

T (t)UUTR(t)��10 (t)B(t)

�
�

� +m

� + kyk2 =�0

�
BT (t)

1

�0
��10 (t)B(t):
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Since E(UUT ) = m�1Im and RT (t)R(t) = �0(t), the expression given for M11 in

the statement of Theorem 2 follows (noting that s0(w) = kyk2 under F0.) It is easy

to see that M11 is invertible (in fact, negative definite) because

2

m

(
(� +m) kyk2 =�0
(� + kyk2 =�0)2

)
�
�

� +m

� + kyk2 =�20

�
=

(� +m)f(2=m� 1) kyk2 =�0 � �g
(� + kyk2 =�0)2

< 0:

Block (2,1)

Since

 2(w; �) = vecf(Id � JHHT )S(w; �)Hg
= fHT 
 (Id � JHHT )gvecfS(w; �)g;

[using the property vec(ABC) = (CT 
 A)vec(B),] it is clear that

E0

�
@ 2(w; �

�)

@�T

�
= 0, E0

�
@vecfS(w; ��)g

@�T

�
= 0;

so we will prove the latter. Differentiating with respect to � we get

dS = � � +m

(� + s)2
ds BT��1(x� �)(x� �)T��1B

�
�
� +m

� + s

�
BT��1 d� (x� �)T��1B

�
�
� +m

� + s

�
BT��1(x� �) (d�)T��1B;

with ds = �2(x� �)T��1d� and d� = Bd�. Then we can write

dS =
2(� +m)

(� + s)2
BT��1(x� �)(x� �)T��1B d� (x� �)T��1B (6)

�
�
� +m

� + s

�
BT��1B d� (x� �)T��1B

�
�
� +m

� + s

�
BT��1(x� �)(d�)TBT��1B;
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so

vec(dS) =

�
2(� +m)

(� + s)2

�
fBT��1(x� �)
BT��1(x� �)(x� �)T��1Bg d�

�
�
� +m

� + s

�
fBT��1(x� �)
BT��1Bg d�

�
�
� +m

� + s

�
fBT��1B 
BT��1(x� �)g d�

(in the last line we used that vecf(d�)Tg = d�, since d� is a vector.)

Then, using the notation of the proof of Theorem 1, under F0 we have

@vecfS(w; ��)g
@�T

=

1

�30

(
2(� +m) kyk3

(� + kyk2 =�0)2

)
(BT��10 U
BT��10 UU

T��10 B)

� 1

�20

�
(� +m) kyk
� + kyk2 =�0

�
(BT��10 U
BT��10 B)

� 1

�20

�
(� +m) kyk
� + kyk2 =�0

�
(BT��10 B 
BT��10 U);

where the dependence on t has been omitted for ease of notation. It is clear that

the last two terms have zero expectation because E(U) = 0. As for the first term,

note that

E(BT��10 U
BT��10 UU
T��10 B jt) = BT��10 E(U
UUT��10 B jt)

which is zero because E(UkUUT ) = 0 for all k = 1; : : : ;m.

5.2.2. Block (3,1)

From the preceding discussion it is immediate that this block is zero, since

 3k(w; �) = �
T
k S(w; �)�k = (�

T
k 
 �Tk )vecfS(w; �)g
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and then

E0

�
@ 3k(w; �

�)

@�T

�
= (�Tk 
 �Tk )E0

�
@vecfS(w; ��)g

@�T

�
= 0:

Block (4,1)

Differentiating with respect to � we see that

d 4 = �1
2

�
� +m

(� + s)2

�
ds (x� �)T��2(x� �)

�1
2

�
� +m

� + s

�
(d�)T��2(x� �)

�1
2

�
� +m

� + s

�
(x� �)T��2 d�;

and since ds involves a factor x � �, it is clear that d 4 follows the same pattern

as dS in (6): the first term involves the factor x � � three times and the last two

terms involve the factor x� � once each, so the three terms will be zero under F0
when � = ��.

5.2.3. Block (2,2)

Differentiating with respect to H we have

d 2(w; �) = �vecfJ(dH)HTS(w; �)Hg
�vecfJH(dHT )S(w; �)Hg
+vecf(Ip � JHHT )dS(w; �)Hg
+vecf(Ip � JHHT )S(w; �)dHg:

When proving Theorem 1 we saw that E0fS(w; ��)g = 0, so only the third term of

the preceding display will be non-zero for � = �� when expectations under F0 are

taken.
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Differentiating S with respect to H we obtain

dS = BT��1(d�)��1B

�
�
� +m

(� + s)2

�
ds BT��1(x� �)(x� �)T��1B

�
�
� +m

� + s

�
BT��1(d�)��1(x� �)(x� �)T��1B

�
�
� +m

� + s

�
BT��1(x� �)(x� �)T��1(d�)��1B;

where

ds = �(x� �)T��1(d�)��1(x� �);

and

d� = B(dH)�HTBT +BH�(dH)TBT :

To simplify notation let us call 
 = ��1(x� �)(x� �)T��1. Then

dS = BT��1(d�)��1B

+

�
� +m

(� + s)2

�
BT
(d�)
B

�
�
� +m

� + s

�
BT��1(d�)
B

�
�
� +m

� + s

�
BT
(d�)��1B:

At � = �� and under model F0 the matrix 
 comes down to


0 =
1

�20
R�1yyT (R�1)T

and then

E0(
0j kyk ; t) = kyk2
1

�20m
��10 : (7)

Also, using that

E(UUT 
UUT ) =
1

m(m+ 2)
fIm2 +Kmm + vec(Im)vec(Im)

Tg;

where Kmm is the commutation matrix (see e.g. proposition 13.2 of Bilodeau and
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Brenner 1999,) we see that

E0fvec(
0(d�)
0)j kyk ; tg = E0(
0 
 
0j kyk ; t)vec(d�)

=
kyk4

�40
(R�1 
R�1)E(UUT 
UUT )f(R�1)T 
 (R�1)Tgvec(d�)

=
kyk4

�40m(m+ 2)
(R�1 
R�1)fIm2 +Kmm + vec(Im)vec(Im)

Tgvecf(R�1)Td�R�1g

=
kyk4

�40m(m+ 2)
[vecf��10 (d�)��10 g+ vecf��10 (d�)T��10 g+ vec(��10 )trf(d�)��10 g]:

Note that d� is symmetric in this case. Therefore, “unstacking” the preceding

expression we obtain

E0f
0(d�)
0j kykg = (8)

kyk4

�40m(m+ 2)
[2��10 (d�)�

�1
0 + trf(d�)��10 g��10 ]:

Putting everything together,

E0fdS(w; ��)g =

1

�20
EfBT��10 (d�)�

�1
0 Bg

+
1

�40m(m+ 2)
E

(
(� +m) kyk4

(� + kyk2 =�0)2

)
E[2BT��10 (d�)�

�1
0 B + trf(d�)��10 gBT��10 B]

� 2

�30m

(
(� +m) kyk2

� + kyk2 =�0

)
EfBT��10 (d�)�

�1
0 Bg:

Using (4) we can simplify this further:

E0fdS(w; ��)g =

�
� 1

�20
+

2�0
�20m(m+ 2)

�
EfBT��10 (d�)�

�1
0 Bg (9)

+
�0

�20m(m+ 2)
E[trf(d�)��10 gBT��10 B];
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where

�0 = E

(
(� +m) kyk4

(�0� + kyk
2)2

)
:

Then

E0[vecfdS(w; ��)g] =
�
� 1

�20
+

2�0
�20m(m+ 2)

�
Ef(BT��10 
BT��10 )vec(d�)g

+
�0

�20m(m+ 2)
Efvec(BT��10 B)vec(��10 )

Tvec(d�)g:

(This expression will be used again many times, since only d� changes when dif-

ferentiating with respect to � or �2.) For the particular case we are dealing with,

d� at � = �� it comes down to

d� = �0fB(dH)�0HT
0 B

T +BH0�0(dH)
TBTg

and then

(d�) = (�0BH0�0 
B)vec(dH) + (�0B 
BH0�0)Kpdvec(dH):

Using the properties (i) Ktr(A 
 B)Ksu = B 
 A for any A 2 Rr�s and B 2 Rt�u,
and (ii) KT

su = K�1
su = Kus, we can write

(d�) = f(�0BH0�0 
B) +Kmm(�0BH0�0 
B)gvec(dH)
= �0(Imm +Kmm)(BH0�0 
B)vec(dH):

Since

E0 fd 2(w; ��)g = fHT
0 
 (Ip � JH0H

T
0 )gvec[E0fdS(w; ��)g]
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we finally obtain

E0

�
@ 2(w; �

�)

@vec(H)T

�
=

1

�0
fHT

0 
 (Ip � JH0H
T
0 )g �

E[f(�1 + 2�0
m(m+ 2)

)(BT��10 
BT��10 )

+
�0

m(m+ 2)
vec(BT��10 B)vec(��10 )

Tg

�(Imm +Kmm)(BH0�0 
B)];

or equivalently,

E0

�
@ 2(w; �

�)

@vec(H)T

�
=

1

�0
E[f(�1 + 2�0

m(m+ 2)
)(HT

0 B
T��10 
 (Ip � JH0H

T
0 )B

T��10 )

+
�0

m(m+ 2)
vec((Ip � JH0H

T
0 )B

T��10 BH0)vec(�
�1
0 )

Tg

�(Imm +Kmm)(BH0�0 
B)]

and also

E0

�
@ 2(w; �

�)

@vec(H)T

�
=

1

�0
Ef(�1 + 2�0

m(m+ 2)
)(HT

0 B
T��10 BH0�0 
 (Ip � JH0H

T
0 )B

T��10 B)

+(�1 + 2�0
m(m+ 2)

)(HT
0 B

T��10 B 
 (Ip � JH0H
T
0 )B

T��10 BH0�0)Kpd

+
�0

m(m+ 2)
vec((Ip � JH0H

T
0 )B

T��10 BH0)vec(B
T��10 BH0�0)

T

+
�0

m(m+ 2)
vec((Ip � JH0H

T
0 )B

T��10 BH0)vec(�0H
T
0 B

T��10 B)TKpdg:
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5.2.4. Block (3,2)

To compute d 3, note that we can write

 3(w; �) =

dX
k=1

ek�
T
k S(w; �)�k

=

dX
k=1

eke
T
kH

TS(w; �)Hek

= (

dX
k=1

eTk 
 ekeTk )(HT 
HT )vecfS(w; �)g;

with ek 2 Rd. Differentiating with respect to H,

d 3(w; �) = (
dX

k=1

eTk 
 ekeTk )d(HT 
HT )vecfS(w; �)g

+(
dX

k=1

eTk 
 ekeTk )(HT 
HT )vecfdS(w; �)g:

The first term on the right hand side will vanish when expectations are taken under

F0 at � = ��, because E0fS(w; ��)g. Then

E0fd 3(w; �)g = (
dX

k=1

eTk 
 ekeTk )(HT
0 
HT

0 )vec[E0fdS(w; ��)g];

where E0fdS(w; ��)g is exactly as in (9), including d�, since we are still differen-

tiating with respect to H. Then

E0

�
@ 3(w; �

�)

@vec(H)T

�
=

1

�0
(
dX

k=1

eTk 
 ekeTk )(HT
0 
HT

0 )�

E[f(�1 + 2�0
m(m+ 2)

)(BT��10 
BT��10 )

+
�0

m(m+ 2)
vec(BT��10 B)vec(��10 )

Tg

�(Imm +Kmm)(BH0�0 
B)];
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or, more explicitly,

E0

�
@ 3(w; �

�)

@vec(H)T

�
=
1

�0
(

dX
k=1

eTk 
 ekeTk )�

Ef(�1 + 2�0
m(m+ 2)

)(HT
0 B

T��10 BH0�0 
HT
0 B

T��10 B)

+(�1 + 2�0
m(m+ 2)

)(HT
0 B

T��10 B 
HT
0 B

T��10 BH0�0)Kpd

+
�0

m(m+ 2)
vec(HT

0 B
T��10 BH0)vec(B

T��10 BH0�0)
T

+
�0

m(m+ 2)
vec(HT

0 B
T��10 BH0)vec(�0H

T
0 B

T��10 B)TKpdg:

5.2.5. Block (4,2)

Differentiating  4 with respect to H we get

d 4 =
1

2
trf��1(d�)��1g

�1
2

�
� +m

(� + s)2

�
(ds)(x� �)T��2(x� �)

+
1

2

�
� +m

� + s

�
(x� �)T (d��2)(x� �);

where

ds = �(x� �)T��1(d�)��1(x� �)

and

d��2 = (d��1)��1 + ��1(d��1)

= ���1(d�)��2 + ��2(d�)��1:

Taking traces and rearranging factors, we obtain

d 4 =
1

2
trf��1(d�)��1g+ 1

2

�
� +m

(� + s)2

�
trf
(d�)
g
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�1
2

�
� +m

� + s

�
trf(d�)��1
g � 1

2

�
� +m

� + s

�
trf
��1(d�)g:

Using (7) and (8) we get

E0fd 4(w; ��)g =
1

2�20
E[trf��10 (d�)��10 g]

+
1

2�40m(m+ 2)
E

(
(� +m) kyk4

(� + kyk2 =�0)2

)
�

E[2trf��10 (d�)��10 g+ trf(d�)��10 gtr(��10 )]

� 1

�30m
E

(
(� +m) kyk2

� + kyk2 =�0

)
E[trf��10 (d�)��10 g]:

Using (4) we can simplify this expression to

E0fd 4(w; ��)g = �
1

2�20
E[trf��10 (d�)��10 g] (10)

+
�0

2�20m(m+ 2)
E[2trf��10 (d�)��10 g+ trf(d�)��10 gtr(��10 )]

=
1

2�20
E[f�1 + 2�0

m(m+ 2)
gvec(��20 )Tvec(d�)

+
�0

m(m+ 2)
tr(��10 )vec(�

�1
0 )

Tvec(d�)]

and then

E0

�
@ 4(w; �

�)

@vec(H)T

�
=

1

2�0
E[f(�1 + 2�0

m(m+ 2)
)vec(��20 )

T

+
�0

m(m+ 2)
tr(��10 )vec(�

�1
0 )

Tg �

(Imm +Kmm)(BH0�0 
B)]:
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Now, since �0 is symmetric, vec(��20 )
TKmm = vec(��20 )

T and similarly for ��10 .

Then

E0

�
@ 4(w; �

�)

@vec(H)T

�
=

1

�0
Ef(�1 + 2�0

m(m+ 2)
)vec(BT��20 BH0�0)

T

+
�0

m(m+ 2)
tr(��10 )vec(B

T��10 BH0�0)
Tg:

5.2.6. Block (3,3)

Since  3k(w; �) = �Tk S(w; �)�k, differentiating with respect to � we obtain

E0fd 3(w; ��)g =
dX

k=1

ek�
T
0kE0fdS(w; ��)g�0k

with E0fdS(w; ��)g as in (9), except that

d� =
dX

k=1

(d�k)B�0k�
T
0kB

T :

Then

E0

�
@ 3k(w; �

�)

@�j

�
=

�
� 1

�20
+

2�0
�20m(m+ 2)

�
Ef�T0kBT��10 B�0j�

T
0jB

T��10 B�0kg

+
�0

�20m(m+ 2)
Eftr(B�0j�T0jBT��10 )�

T
0kB

T��10 B�0kg:

Since

�T0kB
T��10 B�0j�

T
0jB

T��10 B�0k

= eTkH
T
0 B

T��10 BH0eje
T
j H

T
0 B

T��10 BH0ek

= tr(eke
T
kH

T
0 B

T��10 BH0eje
T
j H

T
0 B

T��10 BH0)

= vec(eke
T
k )

T (HT
0 B

T��10 BH0 
HT
0 B

T��10 BH0)vec(eje
T
j );
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[where we used the property tr(ABCD) = vec(AT )T (DT 
B)vec(C),]

tr(B�0j�
T
0jB

T��10 ) = tr(HT
0 B

T��10 BH0eje
T
j )

= vec(HT
0 B

T��10 BH0)
Tvec(eje

T
j );

and

�T0kB
T��10 B�0k = tr(eke

T
kH

T
0 B

T��10 BH0)

= vec(eke
T
k )

Tvec(HT
0 B

T��10 BH0);

we have

E0

�
@ 3k(w; �

�)

@�j

�
= vec(eke

T
k )

T�vec(eje
T
j );

with

� =

�
� 1

�20
+

2�0
�20m(m+ 2)

�
E(HT

0 B
T��10 BH0 
HT

0 B
T��10 BH0)

+
�0

�20m(m+ 2)
Efvec(HT

0 B
T��10 BH0)vec(H

T
0 B

T��10 BH0)
Tg:

Then

E0

�
@ 3(w; �

�)

@�T

�
=

dX
k=1

dX
j=1

E0

�
@ 3k(w; �

�)

@�j

�
eke

T
j

= f
dX

k=1

ekvec(eke
T
k )

Tg�f
dX
j=1

vec(eje
T
j )e

T
j g

= (
dX
j=1

eje
T
j 
 ej)T�(

dX
j=1

eje
T
j 
 ej):

32



5.2.7. Block (4,3)

It is clear that we can use expression (10) for this block, too; the only difference is

that d� is as in block (3,3). Then

E0

�
@ 4(w; �

�)

@�j

�
=

�
� 1

2�20
+

2�0
2�20m(m+ 2)

�
E(�T0jB

T��20 B�0j)

+
�0

2�20m(m+ 2)
Ef(�T0jBT��10 B�0j)tr(�

�1
0 )g:

As above, we have

�T0jB
T��20 B�0j = vec(H

T
0 B

T��20 BH0)
Tvec(eje

T
j )

and similarly for the second term, so

E0

�
@ 4(w; �

�)

@�T

�
=

1

2�20
Ef(�1 + 2�0

m(m+ 2)
)vec(HT

0 B
T��20 BH0)

T

+
�0

m(m+ 2)
tr(��10 )vec(H

T
0 B

T��10 BH0)
Tg(

dX
j=1

eje
T
j 
 ej):

5.2.8. Block (4,4)

Finally, using expression (10) once more, this time with d� = (d�2)Im, we see that

E0

�
@ 4(w; �

�)

@�2

�
=

1

2�20
Ef(�1 + 2�0

m(m+ 2)
)tr(��20 ) +

�0
m(m+ 2)

tr(��10 )
2g:
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