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SUMMARY

A random sample of curves can be usually thought of as noisy realisations of

a compound stochastic processX(t) = Z{W (t)}, whereZ(t) produces random

amplitude variation andW (t) produces random dynamic or phase variation. In

most applications it is more important to estimate the so-called structural mean

µ(t) = E{Z(t)} than the cross-sectional meanE{X(t)}, but this estimation

problem is difficult because the processZ(t) is not directly observable. In this ar-

ticle we propose a nonparametric maximum likelihood estimator of µ(t). This es-

timator is shown to be
√
n-consistent and asymptotically normal under the model

assumed and robust to model misspecification. Simulations and a real-data exam-

ple show that the proposed estimator is competitive with landmark registration, of-

ten considered the benchmark, and has the advantage of avoiding time-consuming

and often infeasible individual landmark identification.

Some key words:Curve registration; Functional data; Longitudinal data; Phase

variation; Time warping.

1 INTRODUCTION

Multivariate datasets often consist of discrete observations of continuous curves.

A classical example is the longitudinal analysis of growth data, where height or

other variables are measured at different ages for a sample of individuals. Al-

though the data consist of vectors, classical multivariatetechniques that do not

take into account the underlying smoothness of the curves are either very ineffi-

cient or must resort to strong model assumptions that are dubious in many appli-

cations. Ramsay & Silverman (1997, 2002) make a strong case for the nonpara-

metric approach to the statistical analysis of samples of curves.

A characteristic feature of samples of curves, as opposed tosamples of arbi-

trary vectors, is the presence of time variability. Figure 1(a) illustrates this prob-

lem well, showing four representative leg growth velocity curves for boys (ver-
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tically shifted for better visualisation). These are raw velocity curves, obtained

directly from leg length data without smoothing. The peaks of maximal pubertal

growth occur approximately at 14 years of age, but the exact timing and ampli-

tude varies from person to person. The cross-sectional mean(Fig. 1(c)) is a poor

estimate of the average growth velocity, not so much becauseof its roughness (it

can be smoothed out with any of the well-known univeriate smoothing methods)

but mainly because it grossly underestimates the average growth velocity at the

pubertal peak, a direct consequence of time variability. Figure 1(b) shows the

same sample curves smoothed and aligned using the techniques that will be intro-

duced in this article, and Fig. 1(d) shows the resulting estimator of mean growth

velocity.

Several methods to handle time variability have been proposed in recent years.

The basic idea behind these methods is to align the curves so as to remove most

of the time variability prior to averaging. The method generally considered the

benchmark is landmark registration (Kneip & Gasser, 1992).The procedure con-

sists of (i) identifying a set of salient features in all the curves, suchas local

extrema or zero crossings,(ii) monotonically transforming the curves so that the

transformed landmarks of each curve coincide with the average landmarks, and

(iii) computing the average of the aligned curves. The disadvantage of landmark

registration is that, in many situations, a completely automated identification of

landmarks is not possible. In such situations, the researcher must identify the

landmarks curve by curve, which is infeasible for large datasets. For this reason,

alternative methods have been sought. We can cite Silverman(1995), Ramsay

& Li (1998), Kneip, Li, MacGibbon & Ramsay (2000), Wang & Gasser (1999),

Rønn (2001) and Gervini & Gasser (2004). These methods differgreatly in terms

of range of applicability, computational complexity and theoretical background.

To make the discussion more formal, let us assume that our sample curves are

n independent realizations of a compound stochastic processX(t) = Z{W (t)},

whereZ(t) produces random amplitude variability andW (t) produces random

time variability, and it is therefore assumed to be monotoneincreasing with prob-
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Figure 1: Leg growth velocity on boys. (a) Four representative raw sample curves
and (b) the corresponding aligned and smoothed curves. (c) Cross-sectional sam-
ple mean and (d) nonparametric maximum likelihood estimator of the structural
mean.

ability one. The researcher usually wants to estimateµ(t) = E{Z(t)}, the so-

called structural mean (Kneip & Gasser, 1992), rather than the cross-sectional

meanE{X(t)}. Kneip & Engel (1995) showed that the mean of landmark-

registered curves is a consistent estimator ofµ under certain conditions. Con-

sistency, however, holds under the assumption that the number of observations

per individual,m, goes to infinity and the number of individualsn is held fixed;

moreover, the rate of convergence depends on the smoothing bandwidth used to

extract the individual landmarks. Consistency of the estimators of Wang & Gasser

(1999) and Gervini & Gasser (2004) is also proved form going to infinity andn
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fixed. This type of asymptotics, however, is intrinsically inadequate in most appli-

cations, where individuals are random rather than fixed factors. On the other hand,

the articles by Silverman (1995), Ramsay & Li (1998) and Kneipet al. (2000) do

not provide any kind of consistency results for their estimators.

In contrast, the nonparametric maximum likelihood estimator of Rønn (2001)

is
√
n-consistent and asymptotically normal asn goes to infinity andm is fixed

(this has been proved by B. Rønn and I. Skovgaard in an unpublished technical

report of the Royal Veterinary and Agricultural University,Frederiksberg). This is

the relevant type of asymptotics when the number of random curves is large but the

number of observations per curve is fixed and relatively small. The human growth

data shown in Fig. 1 and analysed later in §7 are a typical example of this. Rønn’s

method was derived under the assumption that the warping process is a scalar

random shift, which is too simplistic in most applications.The growth curves in

Fig. 1(a), for example, have fixed endpoints and present two growth spurts (the

midgrowth spurt about age 7 and the pubertal spurt about age 14) whose locations

vary independently of each other; obviously, a single random shift for the whole

curve is inadequate.

The idea of estimatingµ by maximum likelihood, however, is appealing be-

cause it avoids individual identification of landmarks. Actually, it avoids esti-

mation of individual parameters altogether, since individual random effects are

integrated out rather than estimated. This is the reason whyconsistency of̂µ as

n goes to infinity is attainable. What we propose in this paper isnonparametric

maximum likelihood estimation with more flexible families of warping functions.

As by-products, we derive individual predictors for the warping functionsWi(t)

and the amplitude processZi(t). Bootstrap methods to construct confidence bands

for µ(t) are also proposed.

The article is organized as follows. The derivation of the maximum likelihood

estimator and related issues are discussed in §§2 and 3. Consistency and asymp-

totic normality are established in §5, and bootstrap confidence bands are derived.

A Monte Carlo study in §6 compares the performance of the proposed estimator
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with landmark registration and continuous monotone registration. An application

to human growth is given in §7, and §8 briefly discusses the results and relevance

of the proposed method.

2 THE MAXIMUM LIKELIHOOD ESTIMATOR

As explained in §1, we will assume that the dataset{x1, . . . , xn}, with xi ∈
R

m, consists of discrete and noisy realizations of stochasticprocessesXi : T →
R, with T = [a, b], so thatxij = Xi(tij) + εij, where{εij} are independent

and identically distributed random errors and{ti1, . . . , tim} ⊂ T is an input grid

that may be different for each individual. The processesX1(t), . . . , Xn(t) are

assumed to be independent and identically distributed realizations of a stochastic

processX(t) = Z{W (t)}. The warping process will be parametrically modelled

asW (t) = g(t, θ), whereg is a fixed, known function, monotone increasing int

for everyθ. The parameterθ ∈ R
p will be considered an unobservable random

effect. Possible families of warping functionsg and distributions forθ will be

discussed in §3.

For the amplitude component a reasonable model would be

Z(t) = µ(t) +

q
∑

k=1

ξkφk(t), (1)

whereµ and{φk} are fixed unknown functions,
∫ b

a
φk(t)φl(t) dt = δkl, and{ξk}

are independent zero-mean random variables with finite variances. This is a trun-

cation of the Karhunen–Loève decompositionZ(t) = µ(t)+
∑∞

k=1 ξkφk(t), which

holds for any square-integrable stochastic process. Unfortunately, simultaneous

maximum likelihood estimation ofµ and the components{φk} is very compli-

cated. For simplicity, we will derive the maximum likelihood estimator ofµ for

a model without variance components. It is shown later, by simulations and ex-

ample, that this maximum likelihood estimator provides good estimates ofµ even

under the general variance-component model (1).
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As working model, then, let us assume the mean-plus-error model

xij = µ{g(tij, θi)} + εij, εij ∼ N(0, σ2), θi andεij independent. (2)

Under this model,xi|θi ∼ N[µ{g(t∗i , θi)}, σ2Imi
], wheret∗i = (ti1, . . . , tim)⊤

(here and in the rest of the paper, evaluation of a univariatefunction at a vector is

understood in a componentwise sense). The log-likelihood function is

L(µ, σ2) =
n

∑

i=1

log

∫

f(xi|θ;µ, σ2)f(θ) dθ,

wheref(xi|θ;µ, σ2) denotes the conditional density ofxi givenθi = θ andf(θ)

is the density ofθ.

The estimating equation for̂σ2 is easy to derive. Since

∂f(xi|θi;µ, σ
2)

∂(σ2)
=

[

− mi

2σ2
+

‖xi − µ{g(t∗i , θi)}‖2

2(σ2)2

]

f(xi|θi;µ, σ
2),

we have

∂L(µ, σ2)

∂(σ2)

=
n

∑

i=1

1

f(xi;µ, σ2)

∫

[

− mi

2σ2
+

‖xi − µ{g(t∗i , θ)}‖2

2(σ2)2

]

f(xi|θ;µ, σ2)f(θ) dθ,

wheref(xi;µ, σ
2) is the marginal density ofxi. Since∂L(µ̂, σ̂2)/∂(σ2) = 0, we

obtain the following fixed-point expression:

σ̂2 =
1

∑n
i=1mi

n
∑

i=1

∫

‖xi − µ̂{g(t∗i , θ)}‖2 f(θ|xi; µ̂, σ̂
2) dθ. (3)

An estimating equation for̂µ can be derived using Gateaux differentials. Let

M be the parametric space ofµ, which is a linear subspace ofL∞(T ), the space of

bounded measurable functionsT → R. Sinceµ̂ maximizesL(µ, σ̂2) for all µ ∈
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M, the directional log-likelihoodL(µ̂ + th, σ̂2) is maximized att = 0 for every

h ∈ M. Then
d

dt
L(µ̂+ th, σ̂2)

∣

∣

∣

t=0
= 0, for all h ∈ M. (4)

After straightforward algebra we obtain

d

dt
L(µ̂+ th, σ̂2)

∣

∣

∣

t=0

=
1

σ̂2

n
∑

i=1

∫

[xi − µ̂{g(t∗i , θ)}]⊤h{g(t∗i , θ)} f(θ|xi; µ̂, σ̂
2) dθ.

Letwij(·|xi;µ, σ
2) be the conditional density ofg(tij, θ) givenxi. Then

∫

[xi − µ̂{g(t∗i , θ)}]⊤h{g(t∗i , θ)} f(θ|xi; µ̂, σ̂
2) dθ

=

mi
∑

j=1

∫

{xij − µ̂(s)}wij(s|xi; µ̂, σ̂
2)h(s)ds,

so (4) is equivalent to

∫

kn(s; µ̂, σ̂2)h(s) ds = 0 for all h ∈ M, (5)

where kn(s;µ, σ2) =
1

σ2

n
∑

i=1

mi
∑

j=1

{xij − µ(s)}wij(s|xi;µ, σ
2).

Estimating equations (3) and (5) are asymptotically unbiased, since for the true

parameters(µ, σ2) we have

E[{xij − µ(s)}wij(s|xi;µ, σ
2)]

=

∫

{xj − µ(s)}wij(s|x;µ, σ2)f(x;µ, σ2)dx

= fg(tij ,θ)(s)

∫

{xj − µ(s)}fx|g(tij ,θ)(x|s;µ, σ2)dx

= 0 for all s ∈ T,
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and

E(E[‖xi − µ{g(t∗i , θ)}‖2|xi]) = E(E[‖xi − µ{g(t∗i , θ)}‖2|θ]) = miσ
2.

The estimating equation (5) for̂µ is not very useful as it is. But for certain

parametric spaces it is possible to derive more explicit equations. For example,

if M is the space of continuous functions= C(T ), then (5) holds if and only if

kn(s; µ̂, σ̂2) = 0 almost everywhere inT , which implies that

µ̂(s) =

∑n
i=1

∑mi

j=1 xijwij(s|xi; µ̂, σ̂
2)

∑n
i=1

∑mi

j=1wij(s|xi; µ̂, σ̂2)
almost everywhere inT . (6)

The spaceC(T ), however, is too large to provide reasonably smooth estimates of

µ. Moreover, there is no guarantee thatL(µ, σ̂2) attains a maximum inC(T ). For

practical and theoretical reasons, discussed in §5 below and in the technical report

by Rønn and Skovgaard mentioned earlier,M must be restricted to be a compact

subspace ofC(T ). SinceL(µ, σ̂2) is continuous inµ, it attains a maximum in any

compact spaceM.

Equation (6) has an interesting intuitive interpretation.At eachs, µ̂(t) is a

weighted average of{xij}, wherewij(s|xi; µ̂, σ̂
2) puts more weight on thosexijs

for whichg(tij, θ) is expected to be close tos andxij is not far from its current ex-

pected valuêµ{g(tij, θ)}. Thus, (6) provides a sort of automatic curve alingment

and smoothing, since the weights are smooth functions ofs. Note that, following

this intuition, we can use

Ẑi(t) =

∑mi

j=1 xijwij(t|xi; µ̂, σ̂
2)

∑mi

j=1wij(t|xi; µ̂, σ̂2)
. (7)

as estimates of the registered curvesZi(t) = Xi{W−1
i (t)}.

Estimating equations similar to (5) can be derived for the mean and the compo-

nents of the general variance-component model (1). However, explicit estimating

equations like (6) or even (5) cannot be obtained, so the estimators have to be nu-
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merically computed using, for instance, a rather cumbersome functional Newton-

Raphson method (Luenberger, 1969, ch. 10). A more practical compromise is to

estimateµ with the maximum likelihood estimator of the mean-plus-error model

derived above, and then estimate the factors{φk} using the principal components

of the registered functions{Ẑi}, as in chapter 6 of Ramsay & Silverman (1997).

Estimation of the individual effects{θi} may also be of interest in some sit-

uations, as we will see in §7. This can be done with the conditional expectation

E(θ|xi; µ̂, σ̂
2) or with the conditional modearg max f(θ|xi; µ̂, σ̂

2). The condi-

tional mode estimator has an interesting interpretation: since

arg max f(θ|xi; µ̂, σ̂
2) = arg min

[ 1

2σ̂2

mi
∑

j=1

{xij − µ̂(g(tij, θ))}2 − log{f(θ)}
]

,

(8)

this is a penalized least squares estimator, with a penalty term− log{f(θ)} that

shrinksθ̂i towards the mode off(θ). Except for the penalty term, this is similar to

the Procrustes registration method of Silverman (1995), which minimizes the sum

of squares with respect tobothparametersµ andθ. Procrustes registration has a

tendency to “overwarp” the data, producing deformed estimates ofµ (see example

on p. 113 of Ramsay & Silverman, 2002). To some extent this is a problem of

all registration methods that estimateµ simultaneously with the individual effects.

Our method avoids this problem by estimatingµ independently of theθis. In (5)

the random effectθ is integrated out, rather than estimated.

3 WARPING MODEL

In §2 we derived the maximum likelihood̂µ for a generic warping function

g(t, θ) and a generic distributionf(θ) of the random effect. For a successful

practical implementation of the maximum likelihood estimator, it is important

to specify a warping model that is versatile enough but does not have too many

parameters (note that equations (3) and (5) involve multidimensional integrals in

θ).
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On possibility is to takeg(t, θ) as a linear combination of I-splines with fixed

knots (Ramsay, 1988), whereθ is the vector of basis coefficients. Another posi-

bility is to takeg(t, θ) = a + (b − a)c(t, θ)/c(b, θ), wherec(t, θ) =
∫ t

a
ew(s,θ)ds,

w(s, θ) is a linear combination of B-splines with fixed knots andθ is again the

vector of basis coefficients (Ramsay, 1998). The problem withboth of these mod-

els is that it is unclear what a reasonable distribution forθ might be. Moreover, it

may be necessary to use a large number of basis functions to obtain enough model

flexibility, which complicates the computation ofµ̂.

What we propose is to takeθ as a vector of knots, rather than basis coeffi-

cients. Intuitively, we may think ofθ as a vector of ”hidden landmarks”. With this

interpretation, a reasonable family of distributions forθ is the truncated normal

f(θ) ∝
p

∏

k=1

1

τk
ϕ

(

θk − θ0k

τk

)

I{a < θ1 < . . . < θp < b}, (9)

with θ01 < . . . < θ0p. Theθ0ks can be associated with salient features ofµ, such as

peaks and troughs, which in many practical situations will provide a good fit even

with a small dimensionp. For example, for the growth curves in Fig. 1 we use a

two-dimensionalθ, where each coordinate is associated with a growth spurt. The

actual form ofg(t, θ) is not so important as long as the monotonicity int is ensured

and the following identifiability conditions are satisfied:g(a, θ) = a, g(b, θ) = b,

andg(θk, θ) = θ0k for k = 1, . . . , p. In §§6 and 7 we use shape-preserving cubic

polynomial interpolation (Fritsch & Carlson, 1980), as implemented in the Matlab

functionpchip.

The unknown parametersθ0 andτ could, in principle, be incorporated in the

likelihood function and estimated together withµ andσ2. But in practice this is

very time consuming. A workable alternative is to try out with a few values of

θ0 andτ suggested by visual inspection of the data, and keep those with largest

likelihood. In our experience, this approach works well in practice because the

maximum likelihood estimator is robust to misspecificationof f(θ) (see §§6 and

7).
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A more refined way to determinep, θ0 andτ is by means of the “structural

intensity” method of Gasser & Kneip (1995). This method consists in computing a

nonparametric density estimator of the number of local maxima; the modes of the

density reveal the most important landmarks and their approximate distribution.

This method only requires identification of thesetof local maxima for each curve,

which can be done in a fully automated way, as opposed to landmark registration,

that requiresspecificidentification of local maxima and usually cannot be carried

out without human interaction. For example, a given growth curve may have more

than just two local maxima, due to undersmoothing or otherwise; while landmark

registration requires precise identification of the growthspurts among these local

maxima, the structural intensity method only requires identification of all the local

maxima.

4 COMPUTATIONAL ASPECTS

The estimatorŝµ and σ̂2 can be iteratively computed using the fixed-point

expressions (3) and (6). As initial estimators, the simplest choices arêσ2(0) =
∑n

i=1

∑mi

j=1(xij − x̄)2/nm andµ̂(0)(t) =
∑n

i=1 x̃i(t)/n, wherex̃i(t) is obtained

from xi1, . . . , ximi
by interpolation (we use piecewise cubic interpolation). A

potential problem of using equation (6) to update the estimate of µ is that the

algorithm may not converge; remember that estimating equation (5) is always

satisfied bŷµ, but this is not necessarily the case with equation (6). There are al-

gorithms with guaranteed convergence, such as the steepestascent algorithm (Lu-

enberger 1969, ch. 10), that definesµ̂(k)(t) := µ̂(k−1)(t)+αkkn(t; µ̂(k−1), σ̂2(k−1))

where the stepαk is chosen to maximise the likelihood function in the direction

of kn(s; µ̂(k−1), σ̂2(k−1)). Finding the optimal stepαk, however, involves many re-

computations of the likelihood function and is very time consuming. We think it is

more practical to use the reweighting algorithm suggested by equation (6). When

this algorithm converges, it finds a solution of (5) and thus astationary point of

the log-likelihood function. We have used this algorithm for all simulations and
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data analyses in this paper and have not found any convergence problems.

The hardest part to implement efficiently is the computationof thep-dimensional

integrals involved in equations (3) and (6). We use Monte Carlo integration: a ran-

dom sample{θ(1), . . . , θ(N)} is generated fromf(θ) and, for instance,f(xi; µ̂, σ̂
2) =

∫

f(xi|θ; µ̂, σ̂2)f(θ)dθ is approximated bŷf (N)(xi) :=
∑N

l=1 f(xi|θ(l); µ̂, σ̂2)/K.

The other integrals are estimated in a similar way.

The computation ofwij(s|xi; µ̂, σ̂
2), on the other hand, requires a more careful

approach. Since

wij(s|xi; µ̂, σ̂
2) =

d

ds

∫

I{g(tij, θ) ≤ s}f(θ|xi; µ̂, σ̂
2)dθ

=
d

ds

∫

I{g(tij, θ) ≤ s} f(xi|θ; µ̂, σ̂2)

f(xi; µ̂, σ̂2)
f(θ) dθ,

we use a kernel-smoothed Monte Carlo integral:

ŵ
(N,λ)
ij (s|xi) :=

1

N

N
∑

l=1

1

λ
K

(

g(tij, θ
(l)) − s

λ

)

f(xi|θ(l); µ̂, σ̂2)

f̂ (N)(xi)
. (10)

AsK(t) we take the Epanechnikov kernelK(t) = .75(1 − t2)I{|t| ≤ 1}, and as

tentativeλ we take the average oversmoothing bandwidth (Wand & Jones, 1995,

p. 61),

λ =

{

243c1
35c22N

}1/5
1

∑n
i=1mi

n
∑

i=1

mi
∑

j=1

sij, (11)

wheresij is the sample standard deviation of{g(tij, θ(1)), . . . , g(tij, θ
(N))}, c1 =

∫

K2(x)dx andc2 =
∫

x2K(x)dx. In particular, for the Epanechnikov kernel we

havec1 = 3/5 andc2 = 1/5.

At this point it is important to remark that the maximum likelihood estimator

itself does not depend on any bandwidths. If a closed expression forwij(s|xi;µ, σ
2)

existed, it would not be necessary to use the smootherŵ
(N,λ)
ij (s|xi). It turns out,

however, that the conditional densitywij never has a closed expression in prac-

tice, and must be estimated. The choice ofλ will determine the smoothness of
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ŵ
(N,λ)
ij (s|xi) and this, in turn, will determine the smoothness ofµ̂. In our experi-

ence, (11) provides a reasonable bandwidth or at least a goodinitial guess; a plot

of µ̂ will clearly tell the user when a smaller or a larger bandwidth is advisable.

5 ASYMPTOTICS AND INFERENCE

In this section we prove that the maximum likelihood estimator of µ is consis-

tent and asymptotically normal as the number of curvesn goes to infinity. Let us

assume that{x1, . . . , xn} are independent and identically distributed, somi = m

and the input grids{ti1, . . . , tim} are the same for alli. For simplicity of notation,

we will also assume that the error varianceσ2 is known, but it is clear that Theo-

rem 1 can be extended to simultaneous estimation ofµ andσ2 in a straightforward

manner.

Givenx ∈ R
m, let ℓx(µ) = log f(x;µ). The maximum likelihood estimator

µ̂ maximisesLn(µ) := En{ℓx(µ)}, whereEn denotes expectation with respect to

the empirical measure. Then̂µ always exists ifM is compact, becauseLn(µ) is

continuous (it is Fréchet differentiable, as shown in Theorem 2 in the Appendix,

and Fréchet differentiability implies continuity; see Luenberger, 1969, p. 173).

Let L0(µ) := E0{ℓx(µ)} be the asymptotic log-likelihood function, whereE0 is

the expectation under the mean-plus-error model (2) with parameterµ0. If model

(2) is identifiable, thenµ0 is the unique maximiser ofL0(µ) (see the proof of

Theorem 1(i)). The assumption that model (2) is identifiableis clearly neces-

sary for consistency. A simple modification of the identifiability proof of Gervini

and Gasser (2004) shows that model (2) is identifiable provided µ is piecewise

strictly monotone (i.e., without “flat” parts) and the warping modelg(t, θ) is iden-

tifiable (the cubic spline model proposed in §3 is). For a precise definition of the

supremum norm, tensor product and covariance functional used in the following

theorem, see the Appendix.

Theorem 1 If M is compact and model (2) is identifiable, then:

(i) (Strong consistency).P{limn→∞ ‖µ̂− µ0‖ = 0} = 1.
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(ii) (Asymptotic normality). LetI := E0{Dℓx(µ0) ⊗ Dℓx(µ0)}, which coincides

with −E0{D2ℓx(µ0)} under model (2). Then
√
n(µ̂− µ0) converges in dis-

tribution to a Gaussian process with mean zero and covariancefunctional

I−1 in the space(M, ‖·‖).

The strong consistency of̂µ in the supremum norm implies thatµ̂(t) → µ0(t)

almost surely for allt ∈ T . The asymptotic normality of
√
n(µ̂−µ0) as a stochas-

tic element of(M, ‖·‖) implies that the finite-dimensional projections are asymp-

totically Normal in the classical multivariate sense. Thatis: given an arbitrary

vectort∗ = (t1, . . . , tM),
√
n{µ̂(t∗) − µ0(t

∗)} converges in distribution to anM -

variate Normal distribution with covariance matrix explicitly computable from the

covariance functionalI. In principle, asymptotic confidence bands forµ0 could be

derived from this result, but we have found that such bands tend to be too narrow

in practice, having finite-sample coverage levels much smaller than the nominal

asymptotic levels. For that reason, we see Theorem 1 mainly as a qualitative result

that shows that the nonparametric maximum likelihood estimator is able to attain

the parametric consistency raten−1/2.

Although Theorem 1, as given above, applies only to the maximum likeli-

hood estimator for the mean-plus-error model (2), a similarresult can be obtained

for the maximum likelihood estimator of the general variance-component model

(1). However, for the reasons indicated in §2, we think that the latter estimator

is impractical. The simulations and the example in §§6 and 7 show that the max-

imum likelihood estimator of the mean-plus-error model does not have a much

larger bias under the general variance-component model, sothat bootstrap meth-

ods based on this estimator can be used for inference under the more general

model.

To construct confidence bands forµ we propose two bootstrap procedures.

The simplest one is based on the so-called wild bootstrap: takeB bootstrap sam-

ples {x∗1, . . . , x∗n} from the sample{x1, . . . , xn}, find the corresponding maxi-

mum likelihood estimators{µ̂∗
1(t), . . . , µ̂

∗
B(t)}, and construct confidence bands

for µ using the empirical percentiles of this sample.
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The second method, that we call model-based bootstrap, is asfollows:

Step 1. Find the maximum likelihood estimatorŝµ andσ̂2, individual predictors

{θ̂i} and registered curves{Ẑi(t)} (as defined in (7)).

Step 2. Using the spectral decomposition of the covariance matrix of {Ẑi(t)},

find estimates of the components{φ̂k} and the individual scores{ξ̂ik} of

the variance-component model (1), and choose the number of components

q. Define the residuals

ε̂ij = xij − µ̂{g(tj, θ̂i)} −
q

∑

k=1

ξ̂ikφ̂k{g(tj, θ̂i)}.

Step 3. Repeat B times:

a. Take independent bootstrap samples{θ̂∗i } from{θ̂i}, {(ξ̂∗i1, . . . , ξ̂∗iq)} from

{(ξ̂i1, . . . , ξ̂iq)}, and{ε̂∗ij} from {ε̂ij}. Define the pseudo-observations

x∗ij = µ̂{g(tj, θ̂∗i )} +

q
∑

k=1

ξ̂∗ikφ̂k{g(tj, θ̂∗i )} + ε̂∗ij.

b. Find the maximum likelihood estimator̂µ∗ for the bootstrapped dataset

{x∗1, . . . , x∗n}.

Step 4. Construct confidence bands forµ using the empirical percentiles of{µ̂∗
1(t),

. . . , µ̂∗
B(t)}.

6 SIMULATIONS

In this section we study by simulation the finite-sample performance of the

maximum likelihood estimator and of the bootstrap confidence bands. In partic-

ular, we compare the performance of maximum likelihood registration with the
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Figure 2: Mean functionµ(t) and amplitude variance componentφ1(t) of simu-
lated models. Asterisks indicate function values at input grid points.

two most commonly used methods, landmark registration and continuous mono-

tone registration (Ramsay & Li, 1998), under different models of amplitude and

time variability.

The variance-component model (1) is very general and offersa huge number

of interesting sampling situations to consider. But our goalhere is not to exhaust

all possible scenarios, but to focus on a few non-trivial situations where dealing

with time variability is problematic and the advantages or disadvantages of differ-

ent methods are easy to see.

Therefore, as structural meanµ(t) we took a function with three prominent

landmarks: two peaks and a trough (Fig. 2). Specifically,µ(t) = β3(t) − β4(t) +

β5(t), whereβ1(t), . . . , β7(t) are the cubic B-spline basis functions in[0, 1] with

knots{0.4, 0.5, 0.6}. Samples were generated from the mean-plus-error model (2)

and also from the variance-component model (1) withq = 1 andφ1(t) = β4(t),

shown in Fig. 2. As input grid we tookm = 30 equispaced points in[0, 1]. The

componentφ1 was standardized so that
∑m

j=1 φ
2
1(tj)/m = 1. The component

scores{ξ1i} followed aN(0, λ1) distribution withλ1 = 0.75 × 0.102. The errors
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{εij} had aN(0, σ2) distribution withσ = 0.10 for the mean-plus-error model

andσ = 0.10
√

0.25 for the variance-component model. Note that both models

have the same overall amplitude varianceE{
∑m

j=1 Z
2(tj)} = 0.102m, only that

differently split between systematic amplitude variability and random noise. For

the variance-component model, 75% of the amplitude variance is associated with

φ1. As warping model we took a piecewise cubic monotone function g(t, θ) with θ

following a truncated normal distribution, with parametersθ0 = (0.25, 0.50, 0.75)

(corresponding to the peaks and the trough ofµ) andτ = 0.05 × (1, 1, 1).

The maximum likelihood estimator was computed with the algorithm described

in §4, which implicitly assumes that the mean-plus-error model is the correct

one. Forg(t, θ) we used the correct model and also two misspecified models:

θ0 = (0.25, 0.75) andθ0 = 0.50 (the scale parameters were always equal to 0.05).

Explicitly, we considered the following situation:

S1. The data is generated from the mean-plus-error model, so themaximum like-

lihood estimator assumes the right amplitude variability and time warping

models.

S2. The data is generated from the variance-component model. The maximum

likelihood estimator assumes the right warping model but the amplitude

variability model is misspecified.

S3. The data is generated from the mean-plus error model. The maximum like-

lihood estimator assumes the right amplitude variability model but a mis-

specified two-landmark model (corresponding to the peaks) is used.

S4. The data is generated from the mean-plus error model. The maximum like-

lihood estimator assumes the right amplitude variability model but a mis-

specified one-landmark model (corresponding to the trough)is used.

17
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Figure 3: Bias (a-d) and root mean square error (e-h) of maximum likelihood es-
timation (solid line), oracle landmark registration (dashed line) and raw landmark
registration (dotted line) for sampling situations described in the text (S1-S4, from
left to right). Note the different scales for the vertical axes of (c) and (g).

6.1 Comparison with landmark registration

Proper landmark registration is impossible to simulate in this setup, since it

requires individual smoothing of the curves and careful identification of the land-

marks, which cannot be done in a fully automated way. Therefore, we had to

consider two simplified procedures: one that we denominate “oracle” landmark

registration and uses the actual realizations ofθ as landmarks, and one that we de-

nominate “raw” landmark registration and uses the two localmaxima and the min-

imum of the LOWESS smoother of the curves as landmarks. A properly imple-

mented landmark registration will show an intermediate behavior between these

two simplified methods. For sampling situations S3 and S4 we also considered

two misspecified warping models, one that takes only the peaks as landmarks and

one that takes only the trough as landmark, respectively.

Each sampling situation was replicated 1000 times. As sample sizes we took

n = 50 andn = 100, but the results were qualitatively similar, so we only report

results forn = 50. Simulated biases and root mean squared errors (as functions
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of t) are shown in Fig. 3. The performance of the maximum likelihood estimator

when both amplitude and warping components are well specified (sampling sit-

uation S1) is comparable to that of oracle landmark registration. Misspecifying

amplitude variability (sampling situation S2) increases the variance of the maxi-

mum likelihood estimator but not the bias; in fact, the bias at the trough is smaller

here than for sampling situation S1.

The robustness of the maximum likelihood estimator to underspecification of

landmarks is remarkable. As Fig. 3(c) shows, the bias of landmark registration at

the trough is four times as large as the bias of the maximum likelihood estimator;

it is practically as large as the bias of the cross-sectionalmean (not shown). This

behavior has a simple explanation: the maximum likelihood estimator minimises

a lack-of-fit criterion that, although not optimal for situations S2 to S4, still penal-

izes large shape deviations from the structural mean. On theother hand, landmark

registration relies solely on the specified landmarks; since no lack-of-fit criterion

is minimised, the method cannot “make up” for missing landmarks, even when it

is plain to see that the shape of the resulting estimator is not representative of the

sample curves, as in situation S3.

6.2 Comparison with continuous monotone registration

Continuous monotone registration was proposed by Ramsay & Li (1998) as

a fully nonparametric alternative to landmark registration. This method does not

require identification (or even existence) of landmarks. Tocompare maximum

likelihood estimation with continuous monotone registration, then, we simulated

the data using a warping model that is not associated with anylandmarks. We

tookg(t, θ) such that

∂2 log{g−1(t, θ)}
∂t2

=
5

∑

k=1

ckβk(t),
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Figure 4: Bias (a-d) and root mean square error (e-h) of maximum likelihood es-
timation (solid line) and continuous monotone registration (dashed line) for sam-
pling situations described in the text (S1-S4, from left to right).

with {βk(t)} cubic B-spline basis functions with equispaced knots in[0, 1] and

{ck} independent and identically distributed coefficients following aU(−1, 1) dis-

tribution. The same B-spline basis was used for registration, to avoid roughness

penalization of the warping functions and the consequent problem of choosing the

smoothing parameter, which is excessively time consuming for this method. We

used the software provided by James Ramsay in his website.

The raw data was generated from the same mean-plus error model and a

variance-component model as in §6.1. But since continuous monotone registra-

tion cannot be applied to raw data, we pre-smoothed the observations using pe-

nalized regression splines with 20 cubic B-spline basis functions with equispaced

knots, choosing the smoothing parameter by generalized cross-validation. The

maximum likelihood estimator was computed on discretizations of these smooth

curves on a grid ofm = 30 equispaced points. As regards the warping models

assumed for maximum likelihood registration, we considered again the four situ-

ations S1-S4 as in §6.1. Each sampling situation was replicated 1000 times, with

n = 50 curves per sample.

The results are summarized in Fig. 4. Biases and mean squared errors were
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Figure 5: Pointwise coverage level and mean length of model-based (solid line)
and wild (dashed line) bootstrapped confidence bands for mean-plus-error model
(a,c) and variance-component model (b,d).

computed with 10% trimmed means because a few samples produced very out-

lying estimates for the continuous monotone registration method. We see that

it makes little difference which warping model is used for the maximum likeli-

hood estimator. This method outperforms continuous monotone registration in all

situations. In particular, maximum likelihood provides much more acurate estima-

tion than continuous monotone registration at the peaks. The explanation for this

behavior is that continuous monotone registration minimizes a criterion that pe-

nalizes misalignment at the trough much more strongly than misalignment at the

peaks. In contrast, maximum likelihood estimation explicitly penalizes misalign-

ment at the peaks in sampling situations S1 to S3, thus providing better estimates

even when the assumed warping models were not the true ones.
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6.3 Confidence band coverage

Finally, we ran some simulations to evaluate the finite-sample accuracy of the

bootstrapped confidence intervals proposed in §5. Two hundred datasets were

generated for sampling scenarios S1 and S2, withn = 50 andm = 30. Five

hundred bootstrap samples were taken for each dataset and confidence bands of

nominal level 90% were constructed. Fig. 5 shows the simulated coverage levels

and average lengths. As expected, the coverage level deteriorates at the peaks and

the trough, as it usually happens with nonparametric estimators. Wild bootstrap

intervals show a more stable coverage level around the nominal value, and while

they tend to be wider, in the present situation they seem to bepreferable over

model-based bootstrap bands. In models with more variance components, how-

ever, model-based bootstrap may produce wider confidence bands and have better

coverage, as in the example shown in §7.

7 APPLICATION: ANALYSIS OF HUMAN GROWTH DATA

The First Zurich Growth Longitudinal Study produced a largenumber of datasets,

consisting of measurements of different parts of the body taken from birth to adult-

hood. One of the goals of the researchers was to estimate the mean growth velocity

curve, in order to characterize the growth spurts. Gasser etal. (1991) estimated

individual velocity and acceleration curves using Gasser–Müller kernel smoothers

and computed landmark registration means using eight landmarks (the four zero

crossings and the four local extrema observable in typical acceleration curves).

Here we will analyze leg growth velocity from 3 to 21 years of age. We chose

leg measurements because these curves have prominent mid-growth spurts, in ad-

dition to the well-known pubertal spurt. For girls, both spurts occur in close suc-

cession and are roughly of the same size, complicating the registration process.

The observed data consisted of leg length measurements taken annually from 3 to

9 years and biannually from then on. From these measurementswe computed raw
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Figure 6: Leg growth velocity on children. Estimators of mean growth velocity
for girls (a) and boys (c) obtained by nonparametric maximumlikelihood (solid
line), landmark registration (dashed line) and cross-sectional mean (dotted line).
Scatter plots of midgrowth-spurt location versusθ̂1 (circles) and pubertal-spurt
location versuŝθ2 (asterisks) for girls (b) and boys (d).

velocities by finite differenciation, taking the midpointsof age intervals as input

grid. This yields a total ofm = 29 observations per person, for 112 girls and 120

boys.

The maximum likelihood estimator was computed using a two-dimensional

warping model. Implicitly, we are interpretingθ as the location of the growth

spurts. We tried several values ofθ0 andτ and chose those that maximised the log-

likelihood function: for girls,θ0 = (7, 12) andτ = (1, 1); for boys,θ0 = (7, 14)

andτ = (1, 1). The maximum likelihood estimator was computed on an output

grid of 100 equispaced points between 3.5 and 20.5 years.

For comparison, we also computed landmark registration means of smooth ve-

locities, using the growth spurts as landmarks. The comparison is somewhat un-

fair with the maximum likelihood estimator, which is computed on much noisier
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Figure 7: Confidence bands of level 90% (solid lines) and landmark registration
means (dashed lines) of leg growth velocities for girls (a,c) and boys (b,d). Confi-
dence bands obtained by model-based bootstrap (a,b) and wild bootstrap (c,d).
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raw velocities. Nevertheless, we can see in Fig. 6 that the maximum likelihood

estimator is very close to the landmark registration mean for both sexes and, in

particular, the midgrowth spurts are well determined.

Fig. 6 also plots individual predictors{θ̂i1} and{θ̂i2} against growth spurt lo-

cations. The strong association observed supports our interpretation of the random

effectsθi as “hidden landmarks”.

We also obtained 90% confidence bands for the means, based on 1000 boot-

strap samples for each method and each sex. As explained in §5, to apply model-

based bootstrap the number of variance components in model has to be deter-

mined. For each sex we estimated the 50 leading components and their variances,

obtaining that the first six components explain, respectively, 23, 16, 15, 14, 9 and

7 percent of the total variance for girls, and 24, 15, 13, 11, 8and 6 percent of

the total variance for boys. We choseq = 4 for both sexes, discarding those

components that explain less than 10% of the amplitude variance. The resulting

confidence bands are shown in Fig. 7 together with landmark registration means,

which can be seen as the “true means” in this example. We observe that model-

based bootstrap produces somewhat wider confidence bands than wild bootstrap

and has better coverage. Among other things, a useful inference that can be drawn

from the confidence bands is that the midgrowth spurt is a realstructural feature

of the growth process and not just an artifact of undersmoothing. Since most clas-

sical parametric models miss the growth spurt, its actual existence was debated

in the early 80’s, when it was first detected and characterized by nonparametric

methods.

8 DISCUSSION

The registration method proposed in this paper has a number of advantages

over existing methodology. Compared with landmark registration, maximum like-

lihood does not require tiresome and error-prone individual landmark identifica-

tion, and it is more robust to underspecification of the number of landmarks. Com-
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pared with continuous monotone registration, it does not require presmoothing of

the data and from a computational point of view it is considerably less time con-

suming and easy to implement. As we see it, maximum likelihood registration

combines appealing properties of the other two methods: like continuous mono-

tone registration, it minimizes a lack-of-fit criterion andis thus robust to misspeci-

fication of the warping model; like landmark registration, it explicitly models time

variability at the salient features of the curves, which makes the warping model

flexible and parsimonious at the same time.

As far as we can extrapolate from the simulations and the example analysed in

this paper, the proposed method is competitive with landmark registration and bet-

ter than continuous monotone registration in many non-trivial situations. From a

theoretical point of view, it is one of the few methods with proved
√
n-consistency

and asymptotic normality as the number of curvesn goes to infinity, at least when

the model is well specified.

We foresee a number of extensions and modifications of this method that can

be better suited for some particular situations. For instance, when the number of

observations per curve is large and the data very noisy, it may be worth consider-

ing spline models forµ, rather than the full nonparametric approach of this paper.

This will reduce the estimation problem to a more manageablefinite dimensional

optimization, and simultaneous estimation of the mean and the variance compo-

nents may be less cumbersome. Of course, this would also introduce the prob-

lem of knot placement and selection, or roughness penalization and selection of

smoothing parameters, so more reasearch is needed before wecan make claims

about the relative merits of each approach.

We also think that this method can be extended to fields of applications that

require more complex warping models, such as image alignment, more easily than

other registration methods. This is currently being investigated by the authors.
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APPENDIX

Tecnical details on asymptotic results

In this section we introduce some basic concepts on differentiation in func-

tional spaces; a more detailed treatment, with applications to optimization of func-

tionals, is given in ch. 7 of Luenberger (1969). Let(S1, ‖ · ‖1) and(S2, ‖ · ‖2)

be normed linear spaces andF : S1 → S2. F is said to be Fréchet differ-

entiable ata ∈ S1 if there is a linear functionalDF (a) : S1 → S2 such that

‖F (a + b) − F (a) − DF (a)b‖2 = o(‖b‖1). WhenDF (a) is itself differentiable

as a function ofa in the norm‖DF (a)‖ = sup{‖DF (a)b‖2 : ‖b‖1 ≤ 1}, F is

said to be twice Fréchet differentiable and the second differential is denoted by

D
2F (a). These definitions will be applied toS1 = M ⊆ L∞(T ) equipped with

thesup norm,‖f‖ = supt∈T |f(t)|, andS2 = R with the usual absolute value as

norm. For Theorem 1 we also need to define the tensor product offunctionals:

for eachh ∈ S1, F1 ⊗ F2h is defined as the functional(F2h)F1, and for a pair

(h1, h2) ∈ S2
1, F1 ⊗ F2(h1, h2) = (F2h1)(F1h2).

Theorem 2 Givenx ∈ R
m, let ℓx(µ) = log f(x;µ). Thenℓx : L∞(T ) → R is

twice Fréchet differentiable at everyµ ∈ L∞(T ). The first differential is given by

Dℓx(µ)h =

∫

kx(s;µ)h(s) ds,

where

kx(s;µ) =
1

σ2

m
∑

j=1

{xj − µ(s)}wj(s|x;µ)
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andwj(s|x;µ) is the conditional density ofg(tj, θ) givenx. The second differen-

tial is given by

D
2ℓx(µ)(h1, h2) =

∫ ∫

ρx(s, t)h1(s)h2(t) ds dt+
∫

ηx(s)h1(s)h2(s) ds− Dℓx(µ) ⊗ Dℓx(µ)(h1, h2),

where

ρx(s, t) =
1

σ4

m
∑

j=1

m
∑

k=1
k 6=j

{xj − µ(s)}{xk − µ(t)}vjk(s, t|x;µ),

ηx(s) =
1

σ4

m
∑

j=1

[{xj − µ(s)}2 − σ2]wj(s|x;µ),

andvjk(s, t|x;µ) is the joint conditional density of(g(tj, θ), g(tk, θ)) givenx.

Proof: We only need to show thatf(x;µ) is twice differentiable as a function

of µ for eachx, and it will follow thatDℓx(µ) = Df(x;µ)/f(x;µ) andD
2ℓx(µ) =

D
2f(x;µ)/f(x;µ)−{Df(x;µ)⊗Df(x;µ)}/f 2(x;µ). Givenx ∈ R

m, letFx(v) =

(2πσ2)−
m
2 exp{−‖x − v‖2/2σ2}. This function is twice differentiable for every

v ∈ R
m, and the differentials areDFx(v) = Fx(v)σ

−2(x − v)⊤ andD
2Fx(v) =

Fx(v)σ
−4(x− v)(x− v)⊤ − Fx(v)σ

−2I. Then the residualsR(1)
x (v, w) = Fx(v +

w)−Fx(v)−DFx(v)w andR(2)
x (v, w) = DFx(v+w)−DFx(v)−D

2Fx(v)w are

o(‖w‖) for eachv.

Now, sincef(x;µ) =
∫

Fx[µ{g(t∗, θ)}]f(θ) dθ, it is not difficult to show that

Df(x;µ)h =

∫

DFx[µ{g(t∗, θ)}]h{g(t∗, θ)}f(θ) dθ (12)
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and

D
2f(x;µ)(h1, h2) (13)

=

∫

h2{g(t∗, θ)}⊤D
2Fx[µ{g(t∗, θ)}]h1{g(t∗, θ)}f(θ) dθ.

To prove this, note that

f(x;µ+ h) − f(x;µ) − Df(x;µ)h

=

∫

R(1)
x [µ{g(t∗, θ)}, h{g(t∗, θ)}]f(θ) dθ

and since‖h{g(t∗, θ)}‖ ≤ √
m‖h‖,

|f(x;µ+ h) − f(x;µ) − Df(x;µ)h|
‖h‖

≤
√
m

∫ |R(1)
x [µ{g(t∗, θ)}, h{g(t∗, θ)}]|

‖h{g(t∗, θ)}‖ f(θ) dθ.

By dominated convergence, the right-hand side goes to zero as‖h‖ goes to zero

and then (12) holds. For the second differential, we have that

{Df(x;µ+ h1) − Df(x;µ) − D
2f(x;µ)h1}h2

=

∫

h2{g(t∗, θ)}⊤R(2)
x [µ{g(t∗, θ)}, h1{g(t∗, θ)}]f(θ) dθ

and then

‖Df(x;µ+ h1) − Df(x;µ) − D
2f(x;µ)h1‖

≤
∫

‖R(2)
x [µ{g(t∗, θ)}, h1{g(t∗, θ)}]‖f(θ) dθ.

Again, this implies that‖Df(x;µ + h1) − Df(x;µ) − D
2f(x;µ)h1‖ = o(‖h1‖)

and then (13) holds.�
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The first and second differentials ofLn(µ) are Ψn(µ) := EnDℓx(µ) and

Ψ̇n(µ) := EnD
2ℓx(µ), respectively. The asymptotic versions of these function-

als are obtained by substitutingEn with E0, and will be respectively denoted by

Ψ0 andΨ̇0. Being a maximum ofLn, µ̂ is zero ofΨn in the functional sense; that

is, Ψn(µ̂)h = 0 for all h ∈ M. Similarly,µ0 maximizesL0 and thenΨ0(µ0)h = 0

for all h ∈ M (which can be verified by direct calculation).

Proof of Theorem 1. (i) First, note thatL0 has a unique maximum atµ0: since

log x ≤ 2(
√
x− 1) for all x ≥ 0, we have

L0(µ) − L0(µ0) =

∫

log

{

f(x;µ)

f(x;µ0)

}

f(x;µ0) dx

≤ 2
{

∫

√

f(x;µ)
√

f(x;µ0) dx− 1
}

= −
∫

{
√

f(x;µ) −
√

f(x;µ0)
}2
dx.

ThenL0(µ) < L0(µ0) wheneverµ 6= µ0, because the integral on the third line of

the display is strictly negative for allµ 6= µ0, by identifiability.

On the other hand, by Theorem 19.4 of van der Vaart (1998) we have

supµ∈M |Ln(µ)−L0(µ)| → 0 almost surely. This theorem applies because|ℓx(µ1)−
ℓx(µ2)| ≤ maxµ∈M‖Dℓx(µ)‖‖µ1−µ2‖, then the finiteness of the bracketing num-

bers required by this theorem follows from the compactness of M.

In a compact space, almost sure uniform convergence ofLn and uniqueness of

the maximizer ofL0 imply strong consistency of̂µn. To see this, take a realization

{µ̂(ω)
n } such that‖µ̂(ω)

n − µ0‖ 9 0 (hereω denotes an element in the underlying

probability space). By compactness ofM, there is a subsequenceµ̂(ω)
nk that con-

verges to certainµ∗ 6= µ0. For this subsequence we haveL0(µ̂
(ω)
nk ) → L0(µ

∗),

and alsoL(ω)
nk (µ0) ≤ L

(ω)
nk (µ̂

(ω)
nk ); if ω was such that‖L(ω)

n − L0‖ → 0, this

would imply thatL0(µ0) ≤ L0(µ
∗), contradicting the uniqueness ofµ0 as max-

imizer of L0. Therefore‖µ̂(ω)
n − µ0‖ 9 0 implies ‖L(ω)

n − L‖ 9 0, hence

P (‖µ̂n − µ0‖ 9 0) = 0.
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(ii) Since Ψn(µ̂) = Ψ0(µ0) = 0 in the functional sense, we can write

−√
n(Ψ0(µ̂)−Ψ0(µ0)) =

√
n(Ψn−Ψ0)(µ0)+rn with rn =

√
n(Ψn−Ψ0)(µ̂−µ0).

The first step of this proof is to show that‖rn‖ = oP (1). Let Gn =
√
n(En −

E0) denote the empirical process. Then
√
n(Ψn − Ψ0)(µ̂ − µ0)h = Gnψµ̂,h,

whereψµ,h(x) = (Dℓx(µ) − Dℓx(µ0))h. The family {ψµ,h : (µ, h) ∈ M ×
M} is a Donsker class because it is Lipschitz in(µ, h), with a square-integrable

Lipschitz factor, and the parametric spaceM × M is compact (van der Vaart

1998, Theorem 19.5). Then, sinceµ̂
P→ µ0, we have thatsuph∈M |Gnψµ̂,h| D→

suph∈M |Gψµ0,h|, whereG is a Gaussian element with zero mean and covariance

E{Gψµ1,h1
Gψµ2,h2

} = E0{ψµ1,h1
(x)ψµ2,h2

(x)} − E0{ψµ1,h1
(x)}E{ψµ2,h2

(x)}.

Sinceψµ0,h ≡ 0 for all h, it follows that suph∈M |Gnψµ̂,h| D→ 0, which is just

another way of writing‖rn‖ = oP (1).

Let us find now the limit distribution of
√
n(Ψn − Ψ0)(µ0). Again, we can

write
√
n(Ψn − Ψ0)(µ0)h = Gnξh whereξh(x) = Dℓx(µ0)h. As before,{ξh :

h ∈ M} is a Donsker family, so thatGnξh
D→ Gξh uniformly in h, whereG

is a zero-mean Gaussian element with covariances given byE{Gξh1
Gξh2

} =

E0{ξh1
(x)ξh2

(x)} −E0{ξh1
(x)}E0{ξh2

(x)} = Ih1h2. This together with‖rn‖ =

oP (1) imply that
√
n(Ψ0(µ̂) − Ψ0(µ0)) converges to a Gaussian random element

with mean zero and covariance operatorI. SinceΨ̇0(µ0) = E0{D2ℓx(µ0)} =

−I 6= 0, the functional delta method (van der Vaart 1998, Theorem 20.8) applied

to Ψ−1
0 implies that

√
n(µ̂ − µ0) converges in distribution to a Gaussian random

element with mean zero and covariance operatorI−1. �
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