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SUMMARY

A random sample of curves can be usually thought of as noaisetions of
a compound stochastic process$t) = Z{W (t)}, whereZ(t) produces random
amplitude variation andlV (¢) produces random dynamic or phase variation. In
most applications it is more important to estimate the dedatructural mean
wu(t) = E{Z(t)} than the cross-sectional med X (¢)}, but this estimation
problem is difficult because the proces&) is not directly observable. In this ar-
ticle we propose a nonparametric maximum likelihood edtimef 1.(¢). This es-
timator is shown to bg/n-consistent and asymptotically normal under the model
assumed and robust to model misspecification. Simulatiodsaeal-data exam-
ple show that the proposed estimator is competitive witbmaark registration, of-
ten considered the benchmark, and has the advantage oiraytide-consuming
and often infeasible individual landmark identification.

Some key word<Curve registration; Functional data; Longitudinal dataa$th
variation; Time warping.

1 INTRODUCTION

Multivariate datasets often consist of discrete obsemmatof continuous curves.
A classical example is the longitudinal analysis of grow#tad where height or
other variables are measured at different ages for a sanfipteligiduals. Al-
though the data consist of vectors, classical multivarietdniques that do not
take into account the underlying smoothness of the cunegidner very ineffi-
cient or must resort to strong model assumptions that aredsiin many appli-
cations. Ramsay & Silverman (1997, 2002) make a strong casbdmonpara-
metric approach to the statistical analysis of samples fesu

A characteristic feature of samples of curves, as oppossdrtples of arbi-
trary vectors, is the presence of time variability. Figu¢a)llustrates this prob-
lem well, showing four representative leg growth velocitywes for boys (ver-



tically shifted for better visualisation). These are ravioegy curves, obtained
directly from leg length data without smoothing. The peaksaximal pubertal

growth occur approximately at 14 years of age, but the exaing and ampli-

tude varies from person to person. The cross-sectional (ffégnl(c)) is a poor
estimate of the average growth velocity, not so much becalise roughness (it
can be smoothed out with any of the well-known univeriate agtimog methods)
but mainly because it grossly underestimates the averagettyvelocity at the

pubertal peak, a direct consequence of time variabilitygufé 1(b) shows the
same sample curves smoothed and aligned using the techrtitatevill be intro-

duced in this article, and Fig. 1(d) shows the resultinghestior of mean growth
velocity.

Several methods to handle time variability have been preghosrecent years.
The basic idea behind these methods is to align the curves soramove most
of the time variability prior to averaging. The method geatlgrconsidered the
benchmark is landmark registration (Kneip & Gasser, 1998 procedure con-
sists of (i) identifying a set of salient features in all the curves, sashocal
extrema or zero crossing8i) monotonically transforming the curves so that the
transformed landmarks of each curve coincide with the @estandmarks, and
(iif) computing the average of the aligned curves. The disadgardblandmark
registration is that, in many situations, a completely m#ted identification of
landmarks is not possible. In such situations, the reseanctust identify the
landmarks curve by curve, which is infeasible for large sets. For this reason,
alternative methods have been sought. We can cite Silve(a285), Ramsay
& Li (1998), Kneip, Li, MacGibbon & Ramsay (2000), Wang & Gas$§£999),
Rgnn (2001) and Gervini & Gasser (2004). These methods difésatly in terms
of range of applicability, computational complexity anedhnetical background.

To make the discussion more formal, let us assume that oylsamrves are
n independent realizations of a compound stochastic pra€ess= Z{WW ()},
where Z(t) produces random amplitude variability afid(¢) produces random
time variability, and it is therefore assumed to be monoianezasing with prob-
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Figure 1: Leg growth velocity on boys. (a) Four represemtataw sample curves
and (b) the corresponding aligned and smoothed curves. ¢ssectional sam-
ple mean and (d) nonparametric maximum likelihood estimatahe structural
mean.

ability one. The researcher usually wants to estimdte = E{Z(t)}, the so-
called structural mean (Kneip & Gasser, 1992), rather tim@ncross-sectional
mean E{X (¢)}. Kneip & Engel (1995) showed that the mean of landmark-
registered curves is a consistent estimatoyafnder certain conditions. Con-
sistency, however, holds under the assumption that the eunfbobservations
per individual,m, goes to infinity and the number of individualss held fixed;
moreover, the rate of convergence depends on the smoothmapidth used to
extract the individual landmarks. Consistency of the egtimssof Wang & Gasser
(1999) and Gervini & Gasser (2004) is also proved:fogoing to infinity andn



fixed. This type of asymptotics, however, is intrinsicattpdequate in most appli-
cations, where individuals are random rather than fixe@facOn the other hand,
the articles by Silverman (1995), Ramsay & Li (1998) and Kretipl. (2000) do
not provide any kind of consistency results for their estoma

In contrast, the nonparametric maximum likelihood estonat Rgnn (2001)
is /n-consistent and asymptotically normalsagjoes to infinity andn is fixed
(this has been proved by B. Rgnn and I. Skovgaard in an unpebligchnical
report of the Royal Veterinary and Agricultural UniversiEyederiksberg). Thisis
the relevant type of asymptotics when the number of randawesus large but the
number of observations per curve is fixed and relatively brifale human growth
data shown in Fig. 1 and analysed later in 87 are a typical piaatf this. Rgnn’s
method was derived under the assumption that the warpingepsois a scalar
random shift, which is too simplistic in most applicatiorfe growth curves in
Fig. 1(a), for example, have fixed endpoints and present towi) spurts (the
midgrowth spurt about age 7 and the pubertal spurt about&geHose locations
vary independently of each other; obviously, a single ramabift for the whole
curve is inadequate.

The idea of estimating by maximum likelihood, however, is appealing be-
cause it avoids individual identification of landmarks. éaty, it avoids esti-
mation of individual parameters altogether, since indiaildrandom effects are
integrated out rather than estimated. This is the reasonaehgistency of: as
n goes to infinity is attainable. What we propose in this pap&oisparametric
maximum likelihood estimation with more flexible familiebwarping functions.
As by-products, we derive individual predictors for the piag functionsiv;(t)
and the amplitude proce&s(t). Bootstrap methods to construct confidence bands
for u(t) are also proposed.

The article is organized as follows. The derivation of theximmaum likelihood
estimator and related issues are discussed in 882 and 3.stamtsi and asymp-
totic normality are established in 85, and bootstrap confidédands are derived.
A Monte Carlo study in 86 compares the performance of the meg@stimator



with landmark registration and continuous monotone regfisin. An application
to human growth is given in 87, and 88 briefly discusses thdtseand relevance
of the proposed method.

2 THE MAXIMUM LIKELIHOOD ESTIMATOR

As explained in 81, we will assume that the datgset . . ., z, }, with z; €
R™, consists of discrete and noisy realizations of stochasticesses(; : T' —
R, with T" = [a,b], so thatz;; = X;(t;;) + €;;, where{e;;} are independent
and identically distributed random errors aftg, ..., ¢;,} C 7' is an input grid
that may be different for each individual. The proces3g$t), ..., X, (t) are
assumed to be independent and identically distributedzedains of a stochastic
processX (t) = Z{W (t)}. The warping process will be parametrically modelled
asW (t) = g(t,0), whereg is a fixed, known function, monotone increasing in
for everyd. The parametef < R” will be considered an unobservable random
effect. Possible families of warping functiogsand distributions foil¥ will be
discussed in §3.

For the amplitude component a reasonable model would be

Z(t) = u(t) + > &oi(t), (1)

wheren and{¢,} are fixed unknown function%b k()P (t) dt = 0gy, and{&x }
are independent zero-mean random variables with finitaweeis. This is a trun-
cation of the Karhunen—Loéve decompositidfi) = u(t)+> ., &dx(t), which
holds for any square-integrable stochastic process. timfately, simultaneous
maximum likelihood estimation ofi and the componentsp, } is very compli-
cated. For simplicity, we will derive the maximum likelihd@stimator ofu for
a model without variance components. It is shown later, byutations and ex-
ample, that this maximum likelihood estimator providesdyestimates of, even
under the general variance-component model (1).



As working model, then, let us assume the mean-plus-erroleino
Tij = /L{g(tw, 92>} + €ijy Eij N(O,O'2>, ‘91 and&flj independent. (2)

Under this modelz;|0; ~ N[u{g(t:,0:)},0%L,.], wheret; = (tiy,... tim)"
(here and in the rest of the paper, evaluation of a univafistetion at a vector is
understood in a componentwise sense). The log-likelihaadtfon is

Lin.*) = > tog [ a6 m.%) £(6)db.
1=1
where f(x;|0; 1, 0?) denotes the conditional density of givend; = 6 and f(0)

is the density of.
The estimating equation fer is easy to derive. Since

Of (z;10;; b, o i i 500}
we have
OL(p, %)
d(0?)
IR el = ot O,
N ; m/ [_ 202 - 2(02)? f(mi‘e’M’UQ)f(e) o,

wheref(x;; u, o) is the marginal density of,. SincedL(ji,5?)/d(a?) = 0, we
obtain the following fixed-point expression:

. 1 - ok .
7= o 3 [l il O fGli %) b, @)
Zi:l m; i=1
An estimating equation fot can be derived using Gateaux differentials. Let

M be the parametric space @fwhich is a linear subspace 6/ (7", the space of
bounded measurable functiofis— R. Sincej maximizesL(u,d?) for all 4 €



M, the directional log-likelihood.(j + th, 5?) is maximized at = 0 for every
h € M. Then

d
~ L(ii+th,&
= L+ th, 6%)

After straightforward algebra we obtain

=0, forall h € M. 4)

t=0

d
— L th, 62
dt (f1+ 0)

= 2 = ilole O ot 0) 0l 5%

Let w;;(-|z;; p, o*) be the conditional density af(¢;;, 6) givenz;. Then
/ ey — (1700} h{g(15.0)) J (s .5 do
Z / [ — fs) iy (sl 1, 52 (),
S0 (4) is equivalent to
/kn(s;g,&2)h(s) ds = 0 forallh € M, (5)

where k, (s; u, 0%) = o Z Z {zi; — p(s)} wij(s|zs; p, 0°).

=1 j=1

Estimating equations (3) and (5) are asymptotically urddasince for the true
parametersy, o%) we have

{xw ( )}ww( |:L‘Z-;,u,02)]
= /{xj }wlj( |.I’;M,O2)f($;[1,, Uz)d.%’

= frea(s /{xj (5)} atoten ) (2]s: 1, 0%)

= OforallseT,



and

E(E[l|lz: — p{g(t;, 0)}*|2:]) = E(E(llx; — n{g(t;, 0)}HI*10]) = mio™.

The estimating equation (5) fgr is not very useful as it is. But for certain
parametric spaces it is possible to derive more explicibéqns. For example,
if M is the space of continuous functioasC(T"), then (5) holds if and only if
kn(s; i1, 6%) = 0 almost everywhere iii", which implies that

ﬂ(s) o Z?:l Z;nzzl xijwij(3|xi; i, 5‘2)
i 2oy wig(slws; fi, 62)

The space(T'), however, is too large to provide reasonably smooth estisnaft
u. Moreover, there is no guarantee ttiaf:, 5) attains a maximum i€(7"). For
practical and theoretical reasons, discussed in 85 belavinahe technical report
by Rgnn and Skovgaard mentioned earlrmust be restricted to be a compact
subspace o(7T'). SinceL(u,6?) is continuous iny, it attains a maximum in any
compact spacaf.

Equation (6) has an interesting intuitive interpretatidkt. eachs, ji(t) is a
weighted average dfz;; }, wherew;(s|z;; i1, %) puts more weight on those;s
for whichg(t;;, 0) is expected to be close tandz;; is not far from its current ex-
pected valugi{g(t;;,0)}. Thus, (6) provides a sort of automatic curve alingment
and smoothing, since the weights are smooth functions bifote that, following
this intuition, we can use

almost everywhere if". (6)

>t wijwig(tlas 1, %)

i — (7)
> iy wij(tlzs; i, 62)

Zi(t) =

as estimates of the registered cunzeg) = X;{W, *(¢)}.

Estimating equations similar to (5) can be derived for thamend the compo-
nents of the general variance-component model (1). Howexgficit estimating
equations like (6) or even (5) cannot be obtained, so thmastrs have to be nu-



merically computed using, for instance, a rather cumbeesfumctional Newton-
Raphson method (Luenberger, 1969, ch. 10). A more practicapocomise is to
estimatey with the maximum likelihood estimator of the mean-plussemodel
derived above, and then estimate the facfers} using the principal components
of the registered function@Z}, as in chapter 6 of Ramsay & Silverman (1997).

Estimation of the individual effect§d;} may also be of interest in some sit-
uations, as we will see in 87. This can be done with the camhli expectation
E(0)z;; 1, %) or with the conditional moderg max f(6|x;; /i, 62). The condi-
tional mode estimator has an interesting interpretatiorces

o Tl & A
arg max f(0]x;; fi, 6%) = arg min [@ > i — lg(tiy,0))} — log{ f(0)}|,
j=1

(8)
this is a penalized least squares estimator, with a peretdty + log{ f(0)} that
shrinks#; towards the mode of (0). Except for the penalty term, this is similar to
the Procrustes registration method of Silverman (1995ichvminimizes the sum
of squares with respect twoth parameterg andd. Procrustes registration has a
tendency to “overwarp” the data, producing deformed esemaf;, (see example
on p. 113 of Ramsay & Silverman, 2002). To some extent this iblem of
all registration methods that estimatsimultaneously with the individual effects.
Our method avoids this problem by estimatjmgndependently of thé;s. In (5)
the random effed is integrated out, rather than estimated.

3 WARPING MODEL

In 82 we derived the maximum likelihogdl for a generic warping function
g(t,0) and a generic distributiorf(0) of the random effect. For a successful
practical implementation of the maximum likelihood estiorait is important
to specify a warping model that is versatile enough but de¢ave too many
parameters (note that equations (3) and (5) involve muigdisional integrals in
0).



On possibility is to take (¢, #) as a linear combination of I-splines with fixed
knots (Ramsay, 1988), whefes the vector of basis coefficients. Another posi-
bility is to takeg(t,0) = a + (b — a)c(t,0)/c(b,0), wherec(t, 0) = [ e“=0ds,
w(s, ) is a linear combination of B-splines with fixed knots ahis again the
vector of basis coefficients (Ramsay, 1998). The problem dth of these mod-
els is that it is unclear what a reasonable distributiorfforight be. Moreover, it
may be necessary to use a large number of basis functionsaim @mough model
flexibility, which complicates the computation pf

What we propose is to takéas a vector of knots, rather than basis coeffi-
cients. Intuitively, we may think of as a vector of "hidden landmarks”. With this
interpretation, a reasonable family of distributionsfas the truncated normal

Tk

21 (6,6
f(@)och—kgo(k 0k)]1{a<91<...<9p<b}, (9)

with p; < ... < 6y,. Theby,s can be associated with salient features,&uch as
peaks and troughs, which in many practical situations wdlple a good fit even
with a small dimensiomp. For example, for the growth curves in Fig. 1 we use a
two-dimensionab, where each coordinate is associated with a growth spud. Th
actual form ofy(¢, #) is not so important as long as the monotonicity isensured
and the following identifiability conditions are satisfieflu, 0) = a, g(b,0) = b,
andg(6y,0) = 6o fork =1,... p. In 886 and 7 we use shape-preserving cubic
polynomial interpolation (Fritsch & Carlson, 1980), as iemplented in the Matlab
functionpchi p.

The unknown parametefl andr could, in principle, be incorporated in the
likelihood function and estimated together wjttando2. But in practice this is
very time consuming. A workable alternative is to try outtw# few values of
0, and T suggested by visual inspection of the data, and keep thabdavgest
likelihood. In our experience, this approach works well nagiice because the
maximum likelihood estimator is robust to misspecificatidry () (see 886 and
7).

10



A more refined way to determing 6, andr is by means of the “structural
intensity” method of Gasser & Kneip (1995). This method ¢stissn computing a
nonparametric density estimator of the number of local maxithe modes of the
density reveal the most important landmarks and their agpmiate distribution.
This method only requires identification of teetof local maxima for each curve,
which can be done in a fully automated way, as opposed to laridregistration,
that requirespecificidentification of local maxima and usually cannot be carried
out without human interaction. For example, a given growttve may have more
than just two local maxima, due to undersmoothing or othesywivhile landmark
registration requires precise identification of the grogplrts among these local
maxima, the structural intensity method only requires ifieation of all the local
maxima.

4 COMPUTATIONAL ASPECTS

The estimatorg: and 52 can be iteratively computed using the fixed-point
expressions (3) and (6). As initial estimators, the sinpie®ices ares*? =
Sy o (i — @)% /nm and pO(t) = Y7, T:(t)/n, whered;(t) is obtained
from z;, ..., x;,, Dy interpolation (we use piecewise cubic interpolation). A
potential problem of using equation (6) to update the esénod ;. is that the
algorithm may not converge; remember that estimating egudb) is always
satisfied by, but this is not necessarily the case with equation (6). & laee al-
gorithms with guaranteed convergence, such as the stesegmestt algorithm (Lu-
enberger 1969, ch. 10), that defing® (¢) := a* =Y (t) + agk, (t; a1, 62k-1)
where the stepy, is chosen to maximise the likelihood function in the direati
of k,(s; p*=1, 52(-=1), Finding the optimal step;, however, involves many re-
computations of the likelihood function and is very time soming. We think it is
more practical to use the reweighting algorithm suggesyeetjoiation (6). When
this algorithm converges, it finds a solution of (5) and thusadionary point of
the log-likelihood function. We have used this algorithm &l simulations and

11



data analyses in this paper and have not found any convergeablems.

The hardest part to implement efficiently is the computatitthe p-dimensional
integrals involved in equations (3) and (6). We use Montedatkgration: a ran-
domsamplgd™, ... 6"} is generated fronf(#) and, for instancef (z;; i1, 52) =
[ f(x:]6; 1, 52) f(8)d6 is approximated by ™) (z;) :== SN | f(;|00; 1, 62) /K.
The other integrals are estimated in a similar way.

The computation ofv;;(s|z;; 1, 5%), on the other hand, requires a more careful
approach. Since

wij(slas; 0, 0°%) = i/ﬂ{g(tz‘jre)Ss}f(9|xi§ﬂaé'2)d0
_ ($z|9 fL, & )
- & [ Hot.0) <y EEEEED o) an

we use a kernel-smoothed Monte Carlo integral:

R M) (le9l,ﬂ,5)

As K (t) we take the Epanechnikov kernkl(t) = .75(1 — ¢*)I{|¢| < 1}, and as
tentative\ we take the average oversmoothing bandwidth (Wand & Jorg&§,1
p. 61),

243, 17" 1 G
- { 35N } ST ; ; Sij (11)
wheres,; is the sample standard deviation{af(t;, 0V), ..., g(ti;, 0™}, ¢ =

[ K?*(z)dzx andey = [ 22K (x)dz. In particular, for the Epanechnlkov kernel we
havec, = 3/5 andc, = 1/5.

At this point it is important to remark that the maximum likelod estimator
itself does not depend on any bandwidths. If a closed exiorefs w;; (s|z;; u, o)
existed, it would not be necessary to use the smoattigr” (s|z;). It tuns out,
however, that the conditional density, never has a closed expression in prac-
tice, and must be estimated. The choice\akill determine the smoothness of

12



wgv’”(sm) and this, in turn, will determine the smoothnesgiofin our experi-
ence, (11) provides a reasonable bandwidth or at least aigitiadl guess; a plot

of i will clearly tell the user when a smaller or a larger bandtvidtadvisable.
5 ASYMPTOTICS AND INFERENCE

In this section we prove that the maximum likelihood estwnaf 1. is consis-
tent and asymptotically normal as the number of curvgees to infinity. Let us
assume thafzy, ..., z,} are independent and identically distributedyso= m
and the input gridg¢;1, . . ., t;, } are the same for all For simplicity of notation,
we will also assume that the error varianceis known, but it is clear that Theo-
rem 1 can be extended to simultaneous estimatignasfdo? in a straightforward
manner.

Givenz € R™, letl, (1) = log f(x; u). The maximum likelihood estimator
f maximisesL,, (i) := E,{(.(1)}, whereE,, denotes expectation with respect to
the empirical measure. Theghalways exists ifM is compact, becausg, (x) is
continuous (it is Fréchet differentiable, as shown in Tkeof in the Appendix,
and Fréchet differentiability implies continuity; see Inberger, 1969, p. 173).
Let Lo(u) := Eo{l.(1n)} be the asymptotic log-likelihood function, whekg is
the expectation under the mean-plus-error model (2) withrpater.,. If model
(2) is identifiable, then, is the unique maximiser of,(x) (see the proof of
Theorem 1(i)). The assumption that model (2) is identifiablelearly neces-
sary for consistency. A simple modification of the identifiig§ proof of Gervini
and Gasser (2004) shows that model (2) is identifiable pealidis piecewise
strictly monotone (i.e., without “flat” parts) and the wargimodely(¢, 0) is iden-
tifiable (the cubic spline model proposed in 83 is). For aigeedefinition of the
supremum norm, tensor product and covariance functioreal ursthe following
theorem, see the Appendix.

Theorem 1 If M is compact and model (2) is identifiable, then:

(i) (Strong consistencyP{lim, . ||/t — uol| =0} = 1.

13



(i) (Asymptotic normality). Let := Ey{D/,(10) ® Dl.(10)}, which coincides
with — Eo{D?¢, (1)} under model (2). They/n(ji — 1) converges in dis-
tribution to a Gaussian process with mean zero and covaridaoetional
J~1in the spacéM, ||-||).

The strong consistency @fin the supremum norm implies thatt) — 10(t)
almost surely for alt € T'. The asymptotic normality of/n(ji — 19) as a stochas-
tic element of M, ||-||) implies that the finite-dimensional projections are asymp-
totically Normal in the classical multivariate sense. Tisatgiven an arbitrary
vectort* = (ty,...,ta), vVnf{i(t*) — uo(t*)} converges in distribution to ah/-
variate Normal distribution with covariance matrix exiliccomputable from the
covariance functiondl. In principle, asymptotic confidence bands fgrcould be
derived from this result, but we have found that such barnu$ te be too narrow
in practice, having finite-sample coverage levels much lem#dian the nominal
asymptotic levels. For that reason, we see Theorem 1 mardygaalitative result
that shows that the nonparametric maximum likelihood estiomis able to attain
the parametric consistency rate!/2.

Although Theorem 1, as given above, applies only to the mamintikeli-
hood estimator for the mean-plus-error model (2), a simndault can be obtained
for the maximum likelihood estimator of the general varestomponent model
(1). However, for the reasons indicated in 82, we think thatlatter estimator
is impractical. The simulations and the example in 886 anldowshat the max-
imum likelihood estimator of the mean-plus-error modelgloet have a much
larger bias under the general variance-component mod#hasdootstrap meth-
ods based on this estimator can be used for inference undandine general
model.

To construct confidence bands forwe propose two bootstrap procedures.
The simplest one is based on the so-called wild bootstrp: Rabootstrap sam-
ples{z3,...,z*} from the sample{xy, ..., z,}, find the corresponding maxi-
mum likelihood estimatorg /i (¢),. .., a5(¢)}, and construct confidence bands
for 1 using the empirical percentiles of this sample.

14



The second method, that we call model-based bootstrapfiti@ass:

Step 1. Find the maximum likelihood estimatofsands?, individual predictors
{0;} and registered curvesZ;(t)} (as defined in (7)).

Step 2. Using the spectral decomposition of the covariance matiix4(t)},
find estimates of the componenis, } and the individual score§t,;} of
the variance-component model (1), and choose the numbemagbe@nents
g. Define the residuals

éij = T — ,u{g } Z gzkgbk{g )}

Step 3. Repeat B times:

a. Take independent bootstrap samglles} from {4}, {(&;, ..., &)} from
{(&1,.-.,&q)}, and{&;;} from {¢;;}. Define the pseudo-observations

:Czy:/l{g t]79:< }+Z'Sk¢k{g Jo z)}+€

b. Find the maximum likelihood estimatgr* for the bootstrapped dataset

{z5,..., 25},

Step 4. Construct confidence bands fousing the empirical percentiles ofi; (),

()
6 SIMULATIONS
In this section we study by simulation the finite-sample gaerfance of the

maximum likelihood estimator and of the bootstrap confidelbands. In partic-
ular, we compare the performance of maximum likelihood stegtion with the

15
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Figure 2: Mean function(t) and amplitude variance componentt) of simu-
lated models. Asterisks indicate function values at inpidat goints.

two most commonly used methods, landmark registration antirmious mono-
tone registration (Ramsay & Li, 1998), under different madsfl amplitude and
time variability.

The variance-component model (1) is very general and offénsge number
of interesting sampling situations to consider. But our dmak is not to exhaust
all possible scenarios, but to focus on a few non-trivialaibns where dealing
with time variability is problematic and the advantagesisadvantages of differ-
ent methods are easy to see.

Therefore, as structural meatit) we took a function with three prominent
landmarks: two peaks and a trough (Fig. 2). Specifically) = 35(t) — B4(t) +
Bs(t), wherepy(t), ..., 8:(t) are the cubic B-spline basis functions|in 1] with
knots{0.4,0.5,0.6}. Samples were generated from the mean-plus-error model (2)
and also from the variance-component model (1) with 1 and;(t) = [4(t),
shown in Fig. 2. As input grid we tooke = 30 equispaced points if), 1|. The
componentp, was standardized so tha’", i(t;)/m = 1. The component
scores{¢y;} followed aN(0, A;) distribution with\; = 0.75 x 0.10%. The errors

16



{ei;} had aN(0, ¢?) distribution withc = 0.10 for the mean-plus-error model
ando = 0.101/0.25 for the variance-component model. Note that both models
have the same overall amplitude variari¢g) >7" | Z*(t;)} = 0.10°m, only that
differently split between systematic amplitude varidpind random noise. For
the variance-component model, 75% of the amplitude vagi@associated with
¢1. As warping model we took a piecewise cubic monotone functio, 6) with ¢
following a truncated normal distribution, with parametéy = (0.25, 0.50, 0.75)
(corresponding to the peaks and the trough)sindr = 0.05 x (1,1, 1).

The maximum likelihood estimator was computed with the atgm described
in 84, which implicitly assumes that the mean-plus-errordeids the correct
one. Forg(t,0) we used the correct model and also two misspecified models:
0o = (0.25,0.75) andf, = 0.50 (the scale parameters were always equal to 0.05).
Explicitly, we considered the following situation:

S1. The data is generated from the mean-plus-error model, sodaxenum like-
lihood estimator assumes the right amplitude variability &me warping
models.

S2. The data is generated from the variance-component moded. midximum
likelihood estimator assumes the right warping model bet dimplitude
variability model is misspecified.

S3. The data is generated from the mean-plus error model. Thamoax like-
lihood estimator assumes the right amplitude variabilitydel but a mis-
specified two-landmark model (corresponding to the peakis3ed.

SA. The data is generated from the mean-plus error model. Thenmax like-
lihood estimator assumes the right amplitude variabilityded but a mis-
specified one-landmark model (corresponding to the troisghged.
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Figure 3: Bias (a-d) and root mean square error (e-h) of maxirikelihood es-
timation (solid line), oracle landmark registration (degtine) and raw landmark
registration (dotted line) for sampling situations desed in the text (S1-S4, from
left to right). Note the different scales for the verticakaof (c) and (g).

6.1 Comparison with landmark registration

Proper landmark registration is impossible to simulatehis setup, since it
requires individual smoothing of the curves and carefuhidieation of the land-
marks, which cannot be done in a fully automated way. Theeefwe had to
consider two simplified procedures: one that we denominattacie” landmark
registration and uses the actual realization a$ landmarks, and one that we de-
nominate “raw” landmark registration and uses the two lotakima and the min-
imum of the LOWESS smoother of the curves as landmarks. A popeple-
mented landmark registration will show an intermediateavedr between these
two simplified methods. For sampling situations S3 and S4 la@ eonsidered
two misspecified warping models, one that takes only thepaakandmarks and
one that takes only the trough as landmark, respectively.

Each sampling situation was replicated 1000 times. As sasipes we took
n = 50 andn = 100, but the results were qualitatively similar, so we only nepo
results forn = 50. Simulated biases and root mean squared errors (as fuaction
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of t) are shown in Fig. 3. The performance of the maximum likedthestimator
when both amplitude and warping components are well spddi§ampling sit-

uation S1) is comparable to that of oracle landmark redistra Misspecifying

amplitude variability (sampling situation S2) increadas variance of the maxi-
mum likelihood estimator but not the bias; in fact, the bietha trough is smaller
here than for sampling situation S1.

The robustness of the maximum likelihood estimator to usyeeification of
landmarks is remarkable. As Fig. 3(c) shows, the bias ofrtear#t registration at
the trough is four times as large as the bias of the maximuetitikod estimator;
it is practically as large as the bias of the cross-sectioredn (not shown). This
behavior has a simple explanation: the maximum likelihostthgator minimises
a lack-of-fit criterion that, although not optimal for sitiems S2 to S4, still penal-
izes large shape deviations from the structural mean. Oaottiex hand, landmark
registration relies solely on the specified landmarks;esimz lack-of-fit criterion
is minimised, the method cannot “make up” for missing landkeaeven when it
is plain to see that the shape of the resulting estimatortisapoesentative of the
sample curves, as in situation S3.

6.2 Comparison with continuous monotone registration

Continuous monotone registration was proposed by Ramsay &998) as
a fully nonparametric alternative to landmark registnatid his method does not
require identification (or even existence) of landmarks. cdmpare maximum
likelihood estimation with continuous monotone registnat then, we simulated
the data using a warping model that is not associated withlamymarks. We
took g(t, #) such that

logfg™'(1,0)} _ ¢
S =2l
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Figure 4: Bias (a-d) and root mean square error (e-h) of maxitikelihood es-
timation (solid line) and continuous monotone registratidashed line) for sam-
pling situations described in the text (S1-S4, from leftigint).

with {5x(¢)} cubic B-spline basis functions with equispaced knotfirl] and
{cr} independent and identically distributed coefficientsdeihg all(—1, 1) dis-
tribution. The same B-spline basis was used for registratmavoid roughness
penalization of the warping functions and the consequeaiilpm of choosing the
smoothing parameter, which is excessively time consunonghis method. We
used the software provided by James Ramsay in his website.

The raw data was generated from the same mean-plus errorl modea
variance-component model as in 86.1. But since continuousotnoe registra-
tion cannot be applied to raw data, we pre-smoothed the wdus@ns using pe-
nalized regression splines with 20 cubic B-spline basistfans with equispaced
knots, choosing the smoothing parameter by generalizesssralidation. The
maximum likelihood estimator was computed on discretiregiof these smooth

curves on a grid ofn = 30 equispaced points. As regards the warping models

assumed for maximum likelihood registration, we considexgain the four situ-
ations S1-S4 as in 86.1. Each sampling situation was reetcE000 times, with
n = 50 curves per sample.

The results are summarized in Fig. 4. Biases and mean squaiogs were
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Figure 5: Pointwise coverage level and mean length of mbdséd (solid line)
and wild (dashed line) bootstrapped confidence bands fonpkss-error model
(a,c) and variance-component model (b,d).

computed with 10% trimmed means because a few samples @odecy out-
lying estimates for the continuous monotone registraticthod. We see that
it makes little difference which warping model is used foe thhaximum likeli-
hood estimator. This method outperforms continuous maretegistration in all
situations. In particular, maximum likelihood providesechunore acurate estima-
tion than continuous monotone registration at the peaks.€kplanation for this
behavior is that continuous monotone registration mingsia criterion that pe-
nalizes misalignment at the trough much more strongly thesallgnment at the
peaks. In contrast, maximum likelihood estimation expgligoenalizes misalign-
ment at the peaks in sampling situations S1 to S3, thus praylktter estimates
even when the assumed warping models were not the true ones.
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6.3 Confidence band coverage

Finally, we ran some simulations to evaluate the finite-darapcuracy of the
bootstrapped confidence intervals proposed in 85. Two lehdatasets were
generated for sampling scenarios S1 and S2, witk 50 andm = 30. Five
hundred bootstrap samples were taken for each dataset afideswwe bands of
nominal level 90% were constructed. Fig. 5 shows the siradlabverage levels
and average lengths. As expected, the coverage levelareties at the peaks and
the trough, as it usually happens with nonparametric estirsa Wild bootstrap
intervals show a more stable coverage level around the radivétue, and while
they tend to be wider, in the present situation they seem tprékerable over
model-based bootstrap bands. In models with more variamecganents, how-
ever, model-based bootstrap may produce wider confidemzstzand have better
coverage, as in the example shown in §7.

7 APPLICATION: ANALYSIS OF HUMAN GROWTH DATA

The First Zurich Growth Longitudinal Study produced a langenber of datasets,
consisting of measurements of different parts of the bokigrtérom birth to adult-
hood. One of the goals of the researchers was to estimatesidue gnowth velocity
curve, in order to characterize the growth spurts. Gassal €1991) estimated
individual velocity and acceleration curves using Gadgéter kernel smoothers
and computed landmark registration means using eight landsr(the four zero
crossings and the four local extrema observable in typioaglaration curves).

Here we will analyze leg growth velocity from 3 to 21 years géaWe chose
leg measurements because these curves have prominentowithgpurts, in ad-
dition to the well-known pubertal spurt. For girls, both ggwoccur in close suc-
cession and are roughly of the same size, complicating tjistration process.
The observed data consisted of leg length measurementsdakeally from 3 to
9 years and biannually from then on. From these measuremverdemputed raw
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Figure 6: Leg growth velocity on children. Estimators of megowth velocity
for girls (a) and boys (c) obtained by nonparametric maxintikelihood (solid
line), landmark registration (dashed line) and crossiseat mean (dotted line).
Scatter plots of midgrowth-spurt location versijs(circles) and pubertal-spurt
location versu#, (asterisks) for girls (b) and boys (d).

velocities by finite differenciation, taking the midpoirdgsage intervals as input
grid. This yields a total ofn = 29 observations per person, for 112 girls and 120
boys.

The maximum likelihood estimator was computed using a tweedsional
warping model. Implicitly, we are interpretingj as the location of the growth
spurts. We tried several valuestgfandr and chose those that maximised the log-
likelihood function: for girls,§, = (7,12) andr = (1, 1); for boys,f, = (7, 14)
and7r = (1,1). The maximum likelihood estimator was computed on an output
grid of 100 equispaced points between 3.5 and 20.5 years.

For comparison, we also computed landmark registratiomsefsmooth ve-
locities, using the growth spurts as landmarks. The coraparis somewhat un-
fair with the maximum likelihood estimator, which is compdton much noisier

23



Growth (cm/year)
N

3 6 9 12 15 18 21 3 6 9 12 15 18 21
Age (years)

3 6 9 12 15 18 21 3 6 9 12 15 18 21

Figure 7: Confidence bands of level 90% (solid lines) and laartmegistration
means (dashed lines) of leg growth velocities for girls)(ar@ boys (b,d). Confi-
dence bands obtained by model-based bootstrap (a,b) amtb@atstrap (c,d).
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raw velocities. Nevertheless, we can see in Fig. 6 that tharman likelihood
estimator is very close to the landmark registration mearbfh sexes and, in
particular, the midgrowth spurts are well determined.

Fig. 6 also plots individual predictof®;; } and{f;,} against growth spurt lo-
cations. The strong association observed supports oupretation of the random
effectsd; as “hidden landmarks”.

We also obtained 90% confidence bands for the means, bas€aDOrbaot-
strap samples for each method and each sex. As explained tio &dply model-
based bootstrap the number of variance components in madelohbe deter-
mined. For each sex we estimated the 50 leading componeshthein variances,
obtaining that the first six components explain, respelgtias, 16, 15, 14, 9 and
7 percent of the total variance for girls, and 24, 15, 13, 14n8 6 percent of
the total variance for boys. We choge= 4 for both sexes, discarding those
components that explain less than 10% of the amplitude megiaThe resulting
confidence bands are shown in Fig. 7 together with landmaiktration means,
which can be seen as the “true means” in this example. We wabseat model-
based bootstrap produces somewhat wider confidence baamsvtld bootstrap
and has better coverage. Among other things, a useful iméerthat can be drawn
from the confidence bands is that the midgrowth spurt is asteattural feature
of the growth process and not just an artifact of undersmogttSince most clas-
sical parametric models miss the growth spurt, its actustenxce was debated
in the early 80’s, when it was first detected and character®enonparametric
methods.

8 DISCUSSION
The registration method proposed in this paper has a nunflethvantages
over existing methodology. Compared with landmark redistna maximum like-

lihood does not require tiresome and error-prone indiMitaradmark identifica-
tion, and it is more robust to underspecification of the nunob&andmarks. Com-
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pared with continuous monotone registration, it does nqiire presmoothing of
the data and from a computational point of view it is consatdyr less time con-
suming and easy to implement. As we see it, maximum liketheegistration
combines appealing properties of the other two methods: ddatinuous mono-
tone registration, it minimizes a lack-of-fit criterion aisd¢hus robust to misspeci-
fication of the warping model; like landmark registratiarexplicitly models time
variability at the salient features of the curves, which esthe warping model
flexible and parsimonious at the same time.

As far as we can extrapolate from the simulations and the pleaamalysed in
this paper, the proposed method is competitive with lan&megistration and bet-
ter than continuous monotone registration in many nonafrsituations. From a
theoretical point of view, it is one of the few methods witleyed,/n-consistency
and asymptotic normality as the number of curvegoes to infinity, at least when
the model is well specified.

We foresee a number of extensions and modifications of thieadehat can
be better suited for some particular situations. For ircsgamwhen the number of
observations per curve is large and the data very noisy,ytlmeavorth consider-
ing spline models fop, rather than the full nonparametric approach of this paper.
This will reduce the estimation problem to a more managefatite dimensional
optimization, and simultaneous estimation of the mean had/ariance compo-
nents may be less cumbersome. Of course, this would alsminte the prob-
lem of knot placement and selection, or roughness penalizand selection of
smoothing parameters, so more reasearch is needed befa@nweake claims
about the relative merits of each approach.

We also think that this method can be extended to fields ofieafmns that
require more complex warping models, such as image alighmunme easily than
other registration methods. This is currently being ingeded by the authors.
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APPENDIX
Tecnical details on asymptotic results

In this section we introduce some basic concepts on difteton in func-
tional spaces; a more detailed treatment, with applicatioptimization of func-
tionals, is given in ch. 7 of Luenberger (1969). L&, || - ||,) and(Sy, || - [|2)
be normed linear spaces artd : §; — 8,. [ is said to be Fréchet differ-
entiable ata € 8, if there is a linear functionaDF'(a) : 8; — 8, such that
|F(a+0b) — F(a) — DF(a)b|l2 = o(]|b]|1). WhenDF(a) is itself differentiable
as a function ofz in the norm||DF(a)|| = sup{||DF(a)b||2 : ||b]s < 1}, F'is
said to be twice Fréchet differentiable and the secondréifiital is denoted by
D?F(a). These definitions will be applied & = M C L£°(T) equipped with
thesup norm, || f|| = sup,er | f(¢)|, @andS, = R with the usual absolute value as
norm. For Theorem 1 we also need to define the tensor produanofionals:
for eachh € 8, F1 ® Fyh is defined as the function&Fyh) Fy, and for a pair
(hi, hy) € 82, F1 @ Fy(hy, hy) = (Fyhy)(Fihs).

Theorem 2 Givenz € R™, let/,(u) = log f(x; u). Thenl, : L°(T) — R is
twice Fréchet differentiable at everye L°°(7T'). The first differential is given by

DL, ()h = / ko (s: 1)h(s) ds,

where
1
0-2

ko(s; ) = Z {zj — pl(s)}w;(s|z; p)
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andw;(s|z; i) is the conditional density af(t;, #) givenz. The second differen-
tial is given by

D2£( ]’Ll,hg //pxSthl hQ )det+

1e(8)ha(s)ha(s) ds — Dlo(p) ®@ Dl () (ha, ha),

—

where

1
p$(87t> - _4

{j = p(s) Haw — p(t) foju(s, tlas; p),

Q
<.
l‘

NE
SiNgE

—~— Pkl
PO
.

1
771(5) = ;

NE

{z; — pu(s)}? — o®w; (s|z; ),

1

<.
Il

andv;,(s, t|z; u) is the joint conditional density df(¢;,6), g(tx, 0)) givenz.

Proof: We only need to show that(z; 1) is twice differentiable as a function
of i for eachz, and it will follow that D¢, (1) = D f(x; p)/ f (x; 1) andD?{, () =
D?f(x; )/ f (s 1) —{Df (z; ) @D f (w3 1)}/ f?(w; ). Givenz € R™, let Fy(v) =
(2m0?)~% exp{—||z — v||?/20?}. This function is twice differentiable for every
v € R™, and the differentials alBF,(v) = F,(v)o2(x — v)"T andD?F,(v) =
F,(v)o™(z —v)(z —v)" — F,(v)o2I. Then the residualBS)(v, w) = F,(v+
w) — F,(v) — DF,(v)w and R (v, w) = DF, (v +w) — DF,(v) — D2F,(v)w are
o(||w]|) for eachw.

Now, sincef (z; ) = [ F.[u{g(t*,0)}]f(0) db, itis not difficult to show that

Df (w: p)h = / DE, [u{g(t*,0)}h{g(t". 6)} 1(6) db (12)
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and

D* f (w3 1) (ha, ha)

[ batalt 00 D Eululg(e O} ha{o(t” 0)}16) .

To prove this, note that

(13)

flzyp+h) — fla;p) — Df(x; p)h
- / RO {g(t*,0)}. hg(t,0)}]/(6) db

and since|a{g(t", 0) }|| < v/ml|A],

|f(z;p+h) — f(z;u) — Df(; p)hl
Al

— [ 1R [pfg (", 0)}, g (", 6)})
< v [ e O

By dominated convergence, the right-hand side goes to z€fh|ggoes to zero
and then (12) holds. For the second differential, we havie tha

{Df(z; 4 h1) = Df(w; ) — D* f(; ) b o

[ halote 0)TROlulo(e. )} malae )1 (0) s

and then

IDf(2; 11+ h1) — Df (w5 ) — D f (; ) ha |
< [ IR ol 0)), hu{ale” O} 16) do.

Again, this implies that|D f (x; i + hy) — Df (x; ) — D2f(z; w)hal| = o(||ha])
and then (13) holdd
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The first and second differentials df, () are ¥, (1) = E,D¢,(n) and
W, (n) == E,D%0,(u), respectively. The asymptotic versions of these function-
als are obtained by substitutirig, with £, and will be respectively denoted by
U, and¥,,. Being a maximum of.,,, /1 is zero of¥,, in the functional sense; that
is, ¥,,(f1)h = 0 for all h € M. Similarly, ;1o maximizesL, and thenV(up)h =0
for all h € M (which can be verified by direct calculation).

Proof of Theorem 1. (i) First, note thaf., has a unigue maximum ag: since
logx < 2(y/z — 1) forall z > 0, we have

Lo(p) = Lo(po) = / log{fg;ﬁ)) }f (23 po) da

< o [Vl do - 1}
= —/{\/f(x;u)—\/f(x;uo)}lef-

ThenLy(p) < Lo(po) wheneven: # 1o, because the integral on the third line of
the display is strictly negative for gll # 1, by identifiability.

On the other hand, by Theorem 19.4 of van der Vaart (1998) we ha
sup et | Ln (1) —Lo(p)| — 0 @almost surely. This theorem applies becdésg: ) —
Cp(p2)] < maxgen ||DC (1) |||l g1 — p22|], then the finiteness of the bracketing num-
bers required by this theorem follows from the compactné&sg.o

In a compact space, almost sure uniform convergendg ahd uniqueness of
the maximizer of., imply strong consistency ¢f,,. To see this, take a realization
{28} such that| 3 — 1] - 0 (herew denotes an element in the underlying
probability space). By compactnessidi, there is a subsequenﬁé,j) that con-
verges to certaim* # puq. For this subsequence we haﬂg(ﬂ,(f;)) — Lo(p*),
and alsoL\ (ug) < L& (a%)); if w was such that|L) — Lo| — 0, this
would imply thatLy(uo) < Lo(p*), contradicting the uniqueness @f as max-
imizer of L. Thereforel|f” — pol| - 0 implies ||Ly” — L|| - 0, hence
P(l[ftn = poll = 0) = 0.
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(i) Since V¥, (1) = WYo(up) = 0 in the functional sense, we can write
—v/n(Wo(ft)—Wo(to)) = v/n(Wn—Wo)(po)+rn With 7, = v/n(¥,,— Vo) (fi—po).
The first step of this proof is to show tht,| = op(1). LetG,, = /n(E, —
Ey) denote the empirical process. Them (¥, — ¥o)(i — po)h = Guibup,
where v, n(z) = (Dl,(1) — Dly(po))h. The family {¢,, : (u,h) € M x
M} is a Donsker class because it is LipschitZ inh), with a square-integrable
Lipschitz factor, and the parametric spake x M is compact (van der Vaart
1998, Theorem 19.5). Then, singe>> 1, we have thatup;,cng | Grthpn 2
suppent |G 1], WhereG is a Gaussian element with zero mean and covariance
E{GU 1 Gy} = Eo{tp s (0001 (8)} = Bty ()} E {1 ()}
Since,,, = 0 for all h, it follows thatsup;,cng |Gniy | 2.0, which is just
another way of writind|r,,|| = op(1).

Let us find now the limit distribution of/n(¥,, — ¥,)(u). Again, we can
write \/n(V,, — Uo)(uo)h = GL&, where,(x) = Dl (uo)h. As before,{¢, :

h € M} is a Donsker family, so thak, ¢, A G¢&;, uniformly in h, whereG

is a zero-mean Gaussian element with covariances giveB{®y¢,, G¢,} =
Eo{én ()61, (2)} — Eo{én, ()} Eo{én, (2)} = Thihy. This together withjr, || =
op(1) imply thaty/n(Vo(i1) — Wo(ue)) converges to a Gaussian random element
with mean zero and covariance operatorSince W, (uy) = Eo{D*(,(110)} =

—J # 0, the functional delta method (van der Vaart 1998, Theorer@)2{pplied

to U, ' implies that,/n(j1 — o) converges in distribution to a Gaussian random
element with mean zero and covariance operétor Bl
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