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1 Estimation

1.1 The model

We observe the data {(zi1,¥i1),- -, (Tim;, Yim;) : © = 1,...,n}, which we write in vector

form as {(x;,m;,yi):i=1,...,n}. We assume
Yij = 9i(@ij) + nij,

where the g;s are independent identically distributed realizations of a stochastic process
G : . — R and the 7,;s are independent identically distributed N (0, a%) random noise.

We assume G admits a finite Karhunen—Loéve decomposition
P2
Glz) = v(z)+ ) vpthy(2),
k=1

where the 1);s are orthonormal in L?(.#) and the vys are uncorrelated zero-mean random
variables independent of the 7, ;s.

The grid points x;;s are assumed to be realizations of a doubly-stochastic Poisson
process with intensity A(z). Therefore (x;,m;) | A = A; is a realization of a Poisson
process with intensity A;(x) for each i. We assume log A also admits a finite Karhunen—

Loéve decomposition

log A(x) = u(z) + 3 updy(a),
k=1

where the ¢;s are orthonormal in L?(.#) and the us are uncorrelated zero-mean random
variables, also independent of the 7;;s.
Let u and v be the vectors of the ugs and vs, respectively, and o2 and o2 their

variances. We assume the joint distribution of (u,v) is N (0, X) with

5 ( diag(o-i) S ) '

¥,  diag(o?)

For the functional parameters p, v, ¢;s and ;s we assume semiparametric basis func-
tion models. Given a family of basis functions {~;(z),...,7,(®)}, withy; : ¥ — R, let v(z)
be the vector of the ;(z)s. Then we have u(z) = ¢l v(z), ¢(z) = cLv(x), v(z) = dl v (z)
and () = diy(z). Let C = (c1,...,¢p,) and D = (dy, ..., d,,); then ¢(z) = CT()
and 9 (z) = DT~(z), where ¢(x) is the vector of the ¢, (x)s and () is the vector of the
Yi(w)s. For a vector of observations x we define the matrices I'(x) = [y1(x),...,7,(X)],
D(x) = [¢1(x),...,¢,,(x)] and ¥(x) = [1)1(x),...,¥,,(x)], where function evaluation of
univariate functions at x is understood in a componentwise way. For data vectors x; we

will use the shorthands I';, ®; and ¥;, respectively.



1.2 Joint and conditional densities

Then the joint density of the observations and the latent variables is
fg(x,m,y,u,v) = f@(y ‘ X7m7 u7 V)f@(X,m ’ u,V)fg(u,V).

Since fg(y | x,m,u,v) does not explicitly depend on u and fg(x,m | u,v) does not

explicitly depend on v, we have
fo(x,m,y,u,v) = fo(y | x,m,v)fo(x,m | u)fo(u,v),

where

oty 1% m¥) = g o { = ally — ) - \I/<x>v|2}, )

fotom [ w = exp { = [ nu(0 }ﬂf[ o)

where Ay (z) = exp{u(z) + u’ ¢(x)}, and

1 1
folu,v) = (2m)(P1+p2)/2(det 32)1/2 P {_Z(UT’VT)zl(UT’VT)T} ' (3)

Each conditional density is a function of the following model parameters:

fo(ly | x,m,v) — dp, D, and a%
fo(x,m | u) — cp and C
fo(u,v) — o0, 0and ¥,

1.3 EM algorithm

The penalized maximum likelihood estimator 0 is the maximizer of

p2

Zlogfe Xi, i, Vi) — szP (01) = EP(v) = €4 ) Py)

k=1

subject to the constraints cj, Tye = dk Jd; = 6y, 0727 > 0 and ¥ symmetric positive defi-
nite. The penalty functions are quadratic on the basis coefficients: if f(z) = ¢ ~v(z) then
P(f) = c"'Qc for Q that depends only on ~. Explicitly: if the ;s are univariate (temporal
processes) and P(f) = [(f")?, then



If the ;s are bivariate (spatial processes) and P(f) = [[{( a—f + 2( atlaftz)2 + (215)2},
2

then
Q=J11+2J12+ Joo

=[] (o) (i)

1 n
= D log fo(xi,mi,yi) — 164 Qep — &, tr(CTQC) — £3df Qdy — &, tr(DTQD).

with

Then

The EM algorithm (Dempster et al., 1977) works iteratively as follows: given the current

value of the estimator é(k—1), the updated value 9(k) is defined as the maximizer of

. 1 <
Q(e | o(k—l)) = H ;Eé(kl) {log fe(XiamiayiauaV) | Xiam’iayi}

—£,¢t ey — £, tr(CTQC) — ;AT Qdg — £, tr(DTQD)

subject to the parameter constraints. Considering the factorization of the joint density and

the dependence of each factor on the model parameters, we can write

Q8| 6(;,—1)) = Q1(do, D, 02 | B_1)) + Q2(co. C | Bi—1)) + Q3( | Bg,—1)),

where
. 1 —
Q1(do, D, o7 | By—1)) = ﬁz B 1){10gf0(Yz | X, mi, v) | xi,mi, yi}
i=1
—&;dlQdy - ¢, tr(DTQD),
R 1 —
Q2(c0, C [ 1)) = EZEé(k_l){long(Xivmi | u) | xi,m4,yi}
i=1
—&1¢§ Qo — &, tr(CTQC),
and

n

~ 1
QZ’)(2 ’ e(k—l)) = E Z a(k 1){10g f@(u V) ‘ Xumza}’z}

i=1



1.4 Estimating equations

For 0727: Since

m; 1
log fo(yi | xi,mi,v) = *jlog@m’%) - ﬁ”% — v(xi) — ¥ (x;)v|?
n

we have
) 5 2 1< )
@Ql(doyD,% | 0—1)) = nzlE@’(kl){aa%lOg fo(yi | xi,mi, v) | xi,mi,yi}
1=
L lemi
= —= >
1 n
2
+ 12 5o o 13 = (000 = W) P [ sy}
'L
and then

n

. 1 ) .
7 = S 2 B ¥ = %) = B VI [ i
- 7

For dg: Since

1
Dq, log fo(yi | xi,mi,v) = ﬁ{}’i—V(Xi)—‘I’(Xi)V}TF(Xi)
n
e S Wy A Ay
- 72(}’1_‘1’1") Fz_ﬁdori L
I Ih
and
1 n
Dd0Q1(d0,D,O'727 | a(kfl)) = ﬁz B(k {Ddo logfg(yz ‘ X, My, V ) ‘ Xivmiﬂyi}
i=1
—£52dg @,
we have
5 A 11 AT I~ 1 o T
D, Q1(do, D, o3, | Ok—1) = > i =) T — > —2do T I — 263dg €2,
=1 " i=1 "

where V; = E@(k_l)(V | Xi,m4,¥i), SO

n

-1
. 1 1 1
dg = f§j7rTr- 2£.Q =
0 (n 5’2 i i+ 53 ) n 4 &

=1 "7




For D: We can write ¥;v = I';Dv = (v ® T';) vec D, so

1
Dyecp 10g fo(yi | xi,m4, v) = p{yz‘ —v(x;) — O(x)v (v @Ty).
n

Also, tr(DTQD) = vec DT (I,, ® ) vec D, so

A I~ 1 R
DveenQ1(do, D, 07 | 8x1) = - > poat i v(x)} (] @ Ty)
=1 71
1~ 1 T ol ol
——ZjvecD (viv; @I} TY)
n — 0'77

—2¢,vee DT (1, ® Q).
Then we can write

vvecDQl(dOaDaU% | é(k_l)) = —Q vecD+ b

with
I o opr
Q = - g(vivi @i T5) + 2841, ® Q),
i=1 "
b= 13 Loy —vix)
= = (Vi i — v(x;
n 0_ i yi i) J
where v;v; = Ej - (vvT | x;,m;,y;). The orthogonality constraints can be expressed

as h? (0) = 0, where hP(0) is a pa(p2 + 1)/2-dimensional vector with elements hD(0) =
d;‘g.]dl — 0. We can write d;‘g.]dl = e%’DTJDel = tr(DTJDelef), with e; the kth
canonical vector, so

hb(8) = vec DT (erel @ J) vec D — 6.
We can linearize the constraints by using the current value of D on the left, so
h?(6) = AvecD —f,

where A is the pa(p2 + 1)/2 X gpa matrix with rows vec f)%’;ﬂ_l)(ekelT ® J) and f are the
corresponding dx;s. The Lagrange condition for vec f)(k) to be a local maximizer under the
constraints h” (@) = 0 is then

DvecDQl(d07D70%‘é(k71)) - HTDvethD(a)

= kTA,

where K is the pa(p2 + 1)/2-dimensional vector of Lagrange multipliers. Transposing both



sides on the last equation we get
—Qvec ]f)(k) +b=A%k,
which together with the constraints can be written as a system
(Q AT><vec]5(k)>:<b>
A 0 K £ )

Solving this linear system gives the updated vec ﬁ(k).

For cq: Since

log fo(xisms [w) = = [ Au(t)dt —logmil + 3 log Au(a)
j=1
= — / Au(t)dt —logm;! + Z{’Y(:Uz’j)TCo + 11T¢(95ij)}
j=1
we have

Dco log fO(Xivmi | u) = - / DCO)‘u(t)dt + Z’Y(ajij)T’
j=1

where
DepAu(t) = Au(t)De, log Au(t)
= Aa(t)y(®)".
Then
DeoQ2(co,C | B(j—1)) = —% Zn:/;\i,co,c(t)’Y(t)Tdt + % Zn:i'Y(xij)T
i=1 i=1 j=1
—2§1cgﬂ, j
where
Nicoc(t) = E@(kfl){)\u(t) | x5, M,y }
= By, lexp{y(H)Teo+ (1) Cu} | xi,mi, yil.

A Taylor expansion of A\y(t) on the variable cg at the current &y;_1 gives

Aueo,c(t) A Auggpy,C(t) + DegAueg,_yy,c(t)(Co — Eok-1))
= )‘Uﬁo(kfl),c(t) + )‘u,ég(k,l),C(t)'Y(t)T(CO - éO(k—l))
= Augop_,c®){l - V(t)Téo(k—n} + Au,eo(k_l),c(t)’Y(t)TCO,



SO

Deo@2(Eoey, Crory | Br1) ~ ~Z / D11 — ey (0} (1) e
- Z - [ AsuroTa
+E > Zy(wij)T — 26,80y,

i=1 j=1

where \i(t) = A Equating to zero and solving, we get

i.80(k-1),Cr-1) (t)

{ Z/ )T dt + 26,9 }_lx

{Z/ {1 — )}y (t)dt + = En:Z’ny]

=1 j=1

For C: We can write

log fo(xi,m; |u) = /Au t)dt —logm;! + Z{N Tij) + "/(mza) Cu}
7j=1
= /)\u dt—logmz'—i-z (i) + {u” @ y(zij)T} vec C],
7j=1
SO .
Dyecc log f@(xi;mz’ | u) = - / DvecC)\u(t)dt + Z{UT ®7($ij)T}'
j=1
As before,
DvecC)\u(t) = )\u(t)DvecC log )\u(t)
= M(@O{u" @)},
SO

DveccQ2(co, C | B—1)) = —Z/ B 1) (t){u" @ ~y(t)"} | xi,mi, yildt
+- Z{u ®Z’y 2:;) T} — 265 vec CT (I, @ Q),

where @; = E@(k (u | x4, m;,yi). Expanding A\y(t) as before, but on the variable vec C,

_1)



we get

Auco,c(t) = )\u7C07é(k_1) (t) + )\070070(1@_1) (t){uT ® ’Y(t)T}(VeC C — vec C(kfl))
i k:
= NacoCpy, O 1" dpp) (1)} + A Y (O’ @y} veeC.

uCQC

Then
Dvec cQ2(&0k—1), Ciry | O1—1)) ~

- Z / Blagen ({1 — 0" gy (O HuT ©4(8)7} | xi,ma, yilde

- Z / Elage 1O uu” @ y(0)y()7} | xi,mi, yildt

1 n X m;
+g Z{u;—r ® 27(931]) }—2&; vec C(k)( p © ),
i=1 j=1

where j\u(k—l)(t) = A

linear form as

wé & (t). As we did above for D, this can be expressed in
CO(k—1)»“(k—1)

Dyee cQa(€ok-1), Ciry | B(i—1)) & — vec €Ty Q + b7

with
- % zi; / ElXag—1 O {uu” @ v(&)y(H)"} | xi,mi, yildt + 285(Ip, © Q)
and
_ —Z/E ({1 — 0T 1) (O Hu@ ()} | xi,ma, yildt
+ﬁ ;{ﬁi ® Zlv(fvzj)}
A

The orthogonality constraints are handled as before: h®(0) = AvecC — f with A the
p1(p1 + 1)[2 X gp1 matrix with rows vec Cail)(ekeIT ® J) and f the corresponding dys.
Then vec C ) is obtained by solving the system

() m)-(2)



For 3: Let w = (u?,v1)T. Then

1 1
log fo(u,v) —3 logdet X — §WT271W

1 1
= 5 log det X — 5 tr(Z " twwl),

SO
N 1 1
Qs(3 [ 1)) o —5 log det 33 — 5tr(z—ls>

where

1 n
S = E ZEé(kfn (WWT | Xi,mi,yi) .
=1

This Q3(X | 9(k,1)) is the classical log-likelihood function of a multivariate normal density,
and it is well-known that the (unconstrained) maximizer is S. However, S must be rotated
to satisfy the constraints that the ugs and the vgs be uncorrelated, while maintaining the
positive-definitness of the whole 3. To this end we compute the spectral decompositions
of the blocks S, and S,,,

UL, UT = 8.,
U,L, Ul = s,

with the Us orthogonal and the Ls diagonal, and let

. ul o U, O
E(k) — 1 . S 1 '

Then the blocks fl(k)’uu and i(k),m, are diagonal and equal to L and Lo, respectively. Then
a“'i(k) = diag ﬁl(k)ﬂw, &3(1@ = diag ﬁ](k),m, and f]uv(k) = f](k),uv. The respective component
scores and coefficients must be rotated too, in order that 3y be the covariance matrix of
the W;s and that the values ()7t and 9(z)7¥ be preserved:

@ «— UTay,
Vi — ULy,
C — éUl,
D — ]jUg.

1.5 Algorithm initialization

As initial estimators for the EM algorithm we use the multiplicative component model of
Gervini (2017) for the point process X, which gives us initial &o, C, a“'i and 1;8, and the

reduced-rank principal component model of James et al. (2000) for the process Y, which



~2 A

gives us initial dg, D, &3, &, and ¥;s. As initial 3, we then use the cross-covariance

2
n
matrix of the 01;s and the v;s.

1.6 Laplace approximation of integrals

The marginal densities f(x,m,y) are computed by Laplace approximation. We have

foamy) = [ [ foxm.y | w)s(w)aw

/ / exp g(w)dw

g(w) =log f(x,m,y | w) +log f(w).

with

If W = arg max g(w) then g(w) ~ g(W) 4+ .5(w — W) Hg(W)(w — W) and
f(X, m, y) ~ exp{g(W)}(gﬂ)P/Q det(S)1/2

with p = p1 + p2 and
S = {—Hg(%)} .

In effect, we are approximating
Foemyy | w) f(w) ~ exp{g(%)}(2m)"/* det(S)*p(4,.5) (W)

where (g g)(W) denotes the pdf of a Np(W,S), so W | (x,m,y) ~ Np(W,S). Then we

can also approximate the moments:

EW [x,m,y) ~ W,
EWWT |x,my) ~ S+ww.

We find W by (a few steps of) Newton-Raphson for each (x;,m;,y;). Since

g(w) = —/)\u(t)dt—I—Zlog)\u(a:j) — logm!
j=1

1
—memﬁ—%ﬁy—w@—wwww

1 1
P log2m — ~logdet ™ — —w!/ X lw
2 2 2
the derivatives with respect to w = (u,v) are

[ amed+ S el ]

1
Vg(W) = UL%‘I’(X)T{Y —v(x) — \II(X)V} XT'w

10



and

2 Asymptotics

2.1 Explicit Fisher’s information matrix

Fisher’s information matrix Fo = Eg,{V log f(x,y,m;00)V log f(x,y,m;09)"}, used in

the asymptotic results below, is estimated by

1 < .
= Z log f (xi,mi, yi; )V log f (xi, mi, yi; 0)"
Here we derive V log f(x,m,y; @) by blocks of 8 = (vec Xy, co, vec C, dg, vec D, a2 0'3,0727).

» For vec X, since only f(w) depends on X, we have

Vyee 2o, 108 f(x,m,y;0)

_ f()(lmy) / / P, m,y | W) Vsees,, f(w) dw
) / / vvecfz(,m,{<w> feemyw)

f(x,m,y)
- // Vyees,, log f(w) f(w|x,m,y) dw

Since ) )
log f(w) —3 log det X — inE_lw,

the differential with respect to X is
1 -1 l 71 -1
dlog f(w) = —3 tr(XdX) + oW YT (dE)E T w

Now, differentiating with respect to 3.,

s © dZw )
= O

Then if we split X1 into four blocks 2;11, Ef21, 2511 and 2521 commensurate with the
four blocks of ¥, and the vector X~ 'w into the first p; coordinates (X~ 'w); and the last

p2 coordinates (X ~'w)y, we have

sigw_ [ Z Hd=l s ldy,
Y dxl 3 ldE,,

uv

11



and then

tr(Z7HE) = tr(ZHdED) 4 tr(25 dS.,)
= 2tr(d=l =)

v

= 2vec(dE,,)T vec(E3)
and
winld2)2lw = 27 'w)l W=l ))(=7w),
— 26{dx],(57 W) (Z 'w)]}
= 2vec(dX,) ! vec{ (T w) (= w)i ).
Then

dlog f(w) = —vec(dZy,) ! vec(E1y) + vec(dEy,) T vec{ (27 w)1 (7 w)i ],
which implies
Viee s, [(W) = = Vec(zl_Ql) +vee{(Z7w)i (27 w); }

and then

Vyees,, log f(x,m,y;0) = — V€C<21_21) + vec Eg {(Eflw)l(zflw)g | x, m,y} .

The second term can be written more explicitly in terms of Eg(ww! | x,m,y): since
(Z7'w); = [I,,,0] T 'w and (¥~ 'w)z = [0,1,,] 7w, we have

O

I,

E=tw)i (" w)l = 1,0 = twwx!

= [21_117 21_21] ww'

and then we take Ey.

» For cg, since only f(x,m | w) depends on ¢y, we have

Ve, log f(x,m,y; 0) = / / Ve, log f(x.m | w) f(w | x,m,y) dw.
Here

log f(x,m | w) = — /)\u(t)dt + Zlog Au(z;) —logm!
j=1

12



with A\y(t) = exp{cg~(t) + ul'¢(t)}, so
Ve, log fxm | w) == [ Au()y(t)dt + Y +(a)
j=1

and then

Ve log f(x.m.y:6) = — [ Bo{ (1) | xm.y}y(1)dt + 3 5(x,).

» For vec C, again only f(x,m | w) depends on vec C, so
vveCCIng(X’mvy;o) = // vvecClng(X7Tn ‘ W) f(W | X’m7Y) dw

as above. Since \y(t) = exp{u(t) + v(t)T Cu} = exp[u(t) + {ul @ v(t)T} vec C], we have

Voo log f(x,m | w) = / OB}t + 3 {u ()}

j=1

and then

vvecC IOg f(X7 muy;g) = - I[EG{)\u(t)u | X7m7Y} ®7<t)]dt + il{EG(u | X7m7Y) ®’7(.’L’])}

» For dg, since only f(y | x,m,Vv) depends on this parameter, we have

Va, log f(x,y,m; 8) = / / Vao log £y | x,m, w) f(w | x,m,y) dw.

Since .
log f(y | x,m, w) o =05 ly = T(x)do — ®(x)v]*,
7
we have .
Va log f(y [ x,m, w) = —T(x)"{y = T(x)do — ®(x)v}
7
and then

Vaolog £ (%,y,m:0) = —T(x)7 {y — T(x)do — ¥ (x)Eo(v | x,m,y)}
n

» For vec D, only f(y | x,m,v) depends on this parameter, so

VyeeD log f(x,y,m;0) = //Vvecnlogf(y | x,m,w) f(w|x,m,y) dw.

13



Since
1 2
log f(y | x,m,w) o —72 511y —v(x) — T'(x)Dv|

= 5, 2Hy—V( x) — {v" @ I'(x)} vec D||?,
we have

Veeenlog £y [xmw) = - {va T Hy — v(x) ~ ¥(x)v)

= % vec[l"(x)T{y —v(x) — ‘I’(X)V}VT]

and then

Vieed log f(x,y,m;0) = — vec(T'(x)T[{y — v(x)}Ee (vl | x,m,y) — ¥(x)Eg(vv! | x,m,y)]).

Q
Se| T

» For 2, we have only f(w) depending on this parameter, so

Vo3 log f(x,m,y; 0 // Vo2 log f(w) f(w[x,m,y) dw

As before,
1 1
dlog f(w) = -3 tr(271dX) + 5szfl(dz)zfl

but now, differentiating with respect to o2,

: 2
45— diag(des) O .
O O

Then
tr(Z7NdE) = tr{2; diag(de?)}
= diag(%y))"do?
and
WS dD)Ew = (37'w)] diag(do?)(Z )y

-1 2\T 4,2
= {(Z7'w){"} doy,
where ©? denotes element-wise squaring. Then

dlogf(w):—fdlag( Hlde? + = {(2 w)P2} do?,

14



SO
1 1
Vo log f(w) = —2 diag(3y) + 5 (7' w)7”

and then

L.
Vo3 log f(x,m,y; 0) = — 7 diag(y1) + Eo{< w)? | x,m, v}

The second term can be written more explicitly in terms of Eg(ww! | x,m,y): since
(=7'w); = [I,,0] " 'w and (27 'w)§? = diag{(Z~'w)1(Z~'w)T}, we have

(=7'w)P? = diag{[I,,, 0] = 'ww!x!

and then we take Eg, which commutes with the diag operator.

» Similarly, for o2 we have

Vo3 log f(x,m,y; 0 // Vo2 log f(w) f(w|x,m,y) dw

Since . .
dlog f(w) = =3 tr(Z1dX) + inz:—l(dz:)z—l

differentiating with respect to o2 we get

43— O O
O diag(do?)

and then
tr(271dY) = tr{Z,, diag(de?)}
= diag(E5y) do?
and
wInHdE)Elw = (Z7'w)! diag(de?)(Z 7 w),

= (W) de?.

So, as before,
1 1
Vo2 log f(w) = D) diag(X55) + 5(2_1W)§2

15



and then

1. _ 1 _
Vos log f(x,m, ;) = — diag(25) + 5Eol (5 w)§? | x,m.y}.

Again, the second term can be written out in terms of Eg(ww’ | x,m,y) using that
(Z7'w)2 = [0,1,,] 7w and (27'w)$? = diag{(Z~'w)2 (=" 'w)I}, so

@)

(=7'w)$? = diag{[0,I,,] = 'ww!x ! }

P2
~1

X
—1
22

= diag{ [25117 2521] ww! }-

Then we take Eg, which commutes with the diag operator.

» Finally, for 0727, which is only present in f(y | x,m,w), we have

0 0
87%logf(x,m,y, 0) —/ éft%logf(y | x,m,w) f(w|x,m,y) dw,

where .
logf(y | X,m,W) =5 10g27r0n - 272||77||2
n
with n =y — v(x) — ¥(x)v. Then
log £y | x,m,w) = o+ s [
—log f(y | x,m,w) = ——
do? 202 2(02)?
and consequently
0 m 1
—1 10)=—— + —=E 2 .

2.2 Consistency

The consistency proof follows the usual steps for maximum likelihood estimators and M-
estimators; see e.g. Pollard (1984) and Van der Vaart (2000). First we show that the
asymptotic objective function has a unique maximum at the true parameter g, then that
{9n} is bounded in probability, and finally, via the Argmax Theorem, that @,, converges
to B¢ in probability. In the following we use Z = (x,m,y) to simplify the notation. Also,

we define én = (51na£2n7£3n7£4n)T and P(a) = (P(M)a £1:1 P(gf)k),P(I/), £2:1 P(wk))T

Lemma 1 Under assumption A2, the function M(0) = Eg, {log f(Z;0)} has a unique

mazimum at 8 = 0.
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Proof. This is a consequence of Jensen’s Inequality and model identifiability:

because

for all 8. Moreover, inequality (4) is strict unless Py, {f(Z;0)/f(Z;0¢) = 1} = 1, which
happens only if @ = 6y by identifiability. Then Eg, {log f(Z;0)} < Eg, {log f(Z;60)} for
any 0 #6,. m

Lemma 2 Under assumptions Al and A3, |0, = Op(1).
Proof. Let o

Mn(0) =3 2 log f(Z:0)
By definition, #,, maximizes

(n(8) = My (6) — £, P(8),

so we have
M, (8,,) — M, (60) > &7{P(8,,) — P (o)}
Since P(6) > 0 for all @, this implies

- Zi; én
> tog T2 > elp(en) )
i—1 13

with the right-hand side going to zero as n — oo. As in Van der Vaart (2000, p. 63),

consider the surrogate functions

f(20) +f(2;00)}

o0 =1 { 5

which satisfy (2) + f(2;60)
c(z Z; U0
© 2f(%60) }

where ¢(z) > f(z;0) for all 8. By concavity of the logarithm,

log(%) <g(%0) < log{

, Lo f(%0) 1 1o f(%0)
9(z:0) = g log 57,y T3 o) = g o8 gy
so (5) implies
3" 0(Z50) = S{-€TP(00)}, ()

=1

17



For any K > 0, if |0,|| > K we have

n

LS g8 < > w(Z) (7)
=1

with

Y(z) = sup g(z;0).
l6l|>K

By Law of Large Numbers n=1 "%  4(Z;) il FEg,{¢(Z)}, and by Bounded Convergence

Theorem we can switch supremum and expectation:

Ego{¢(2)} = sup Eg,{9(Z;0)}.
lel=x

Now, as in the proof of Lemma 1, by Jensen’s Inequality we have

f(Z;0)+ f(Z;69)
2f(Z;60)

Fou (9(2:6) < 1os Ea, { b= 0= £ ta(z:00)

with strict inequality for any 6 # 6g. So max Eg,{g(Z;0)} = 0 and the maximum is
attained only at the 8ps. We can rule out the possibility of Eg,{g(Z;0)} approaching zero
at infinity because lim|jg| o f(2;60) = 0 and then

. . 1
JimEo,{9(Z:6)) = Eao{ Jim_9(Z:6)) =log(;) <0.
Therefore, there exists an ¢ > 0 and a K > 0 such that Eg,{¢(Z)} < —e. This fact
together with (6) and (7) imply that P(||0,| > K) goes to zero as n — co. ®

Lemma 3 Under assumptions A1-A3, 0, il 0y as n — oo.

Proof. By Lemma 2, for any ¢ > 0 we can choose K > 0 such that P{||0,| > K} < /2
for all n, and we can choose it so that K > ||@||. On the other hand, for ||8,|| < K we
have

0, = argmax £y, (0).
en{le<K}

The penalty function P(0) is continuous and therefore uniformly continuous on compact
sets, and the process M,(0) is stochastically equicontinuous (Pollard, 1984, ch. 7), so
£,(0) converges in probability to M (@) uniformly over bounded sets. Then by the Argmax
Theorem (Van der Vaart, 2000, ch. 5.9),

argmax £, (0) LN argmax M (0) = 0y,
en{llol<K} en{llo] <K}
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so for any d > 0 we can choose N such that P{[|0,| < K, |8, — 8o|| > 6} < £/2 for every
n > N. This completes the proof. m

2.3 Asymptotic normality

To prove the asymptotic normality of 8,, we will follow the approach of Geyer (1994), which
makes use of the tangent cone of the parameter space. The definition and properties of
tangent cones can be found in Rockafellar and Wets (1998, ch. 6). Using Theorem 6.31 of
Rockafellar and Wets (1998), the tangent cone of © at 6 is

Ty = {6eR*:VhS(00)T6=0, k=1,....0, I=1,...,p1,
VhE00) 16 =0, k=1,...,1, 1=1,...,pa}.
Note that cg10 and dyyo are strictly positive, so they do not contribute restrictions to
the tangent cone. The explicit forms of VA (0) and VAL (6) are derived in Section 2.4.

Fisher’s information matrix Fo, which appears in the results below, was derived in Section
2.1.

Lemma 4 |8, — 60| = Op(n~'/?) if V/n||&,| = Op(1).

Proof. The estimator 6, maximizes £,(0), or equivalently
Zn(e) = n{ln(60) — £n(60)},
over 6 € O©. Let 7(z,0,600) be such that

log f(2,0) = log f(z,00)+ Vlog f(z,60)" (8 — 69)
+ ||0 - 00” T(Za 07 00)7

and M (0) = Eg, {log f(Z;0)} as above. Then

n

M,(0) = ) Vlogf(Z.00)" (6 - 60)

=1

+116 - 00” Z[T<Zi7 6,60) — Eﬂo{r(Zﬂ 0, 90)}]
i=1

+n{M(8) — M(8o)} — n&y {P(6) — P(6o)}.

Note that Eg,{Vlog f(Z,00)} = VM(60y) = 0 because f(z,0) is a density function; the
fact that 8y maximizes M (€) does not necessarily imply VM () = 0 because 6y may be
on the border of ©. Let

n
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and

1 n
Zn= = ; Vlog f(Zi, 60).
Since gn(én) > gn(Og) =0,

ViZL (8, — 80) + /|8y, — 80l| Ru(8) — el {P(B,) — P(60)}
> —n{M(8,) - M(6)}. (8)

Clearly ||Z,|| = Op(1) because Z, A N(0,Fp). The mean value theorem applied to P(8)

implies

né, {P(8,) —P(00)} = nl&,]0p(6 — 60l)
= Vn|€,10p(1)v/n]8, — |-

The process R,,(0) is equicontinuous in 6 (Pollard, 1984, ch. 7) and R,,(6) A N(0,v(8, 69))

with (69, 80) = 0, s0 Rn(8,) 5 0. Then it follows from (8) that

{Op(1) +op(1) = Vnl&,|Op(1)} V1|8, — 6|l
> —n{M(8,) — M(6o)}.

Now,
. 1. . .
M(6,) — M(6y) = 5(9n — 00)" V> M (00)(0n — 09) + op(]|6n — 0o|?)

and V2M (0y) = —Fy, so if \; > 0 is the smallest eigenvalue of Fy,
—n{M(8,) — M(80)} = nl|8,, — 60]|*M1 — nop (|0, — 6o]).
Then from the last two inequalities we have
{Op(1) +op(1) = Vnl&,[Op(1)}vl|8n — 80|l = 1]18n — 8ol {A1 — 0p (1)},
which implies v/n||0, — 8| = Op(1). m
Theorem 5 Under assumption A4, \/n(8, — o) 2 0(Z), with 6(Z) the mazimizer of
W () = {Z" — KTDP(89)}6 — %5TF06

over 6 € 9, where Z ~ N(0,Fy).
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Proof. Let W,,(8) = £,(80 + 8/+/n) with £, () as in the previous lemma. Then

Wo(8) = ZIs
+ 6] Rn (60 + 6/+/n)
+n{M (8o + 6/v/n) — M(60)}
—n&, {P(60 +8/v/n) — P(6y)},
and &, = \/n(6,, — 0y) maximizes W, () over .7, = /n(© — {0y}). Having already proved

that ||8,,]| = Op(1), given € > 0 we can take K such that P(]|d,]| < K) > 1 — ¢ for every

n, and focus on the set .7, N {||d]| < K}. In the limit, as n — oo, we have:
I — T, the tangent cone of © at O

(Geyer, 1994);

Z, 2 7 ~ N(0,Fy);

R, (60 + 8,/v/n) L0 for any bounded sequence {d,,}

by stochastic equicontinuity of R, (8);

n{M(80 -+ 8/v/n) — M(80)} = 367 {~Fo + 0p(1)}5;

and

ng {P(0o +6/v/n) — P(6o)} = V&L {DP(6g) + op(1)}8.

All this implies that W, (8) = W(8) with
1
W(d) = {ZT — kTDP(8y)}d — §6TF06,
and the convergence is uniform in 4, i.e. sup g ns<xy |Wn(8) — W ()| £ 0. Then

argmax W, (6) 2 argmax W (4),
Tn{|18]|<K} To

which implies that d,, A 0(Z) as stated. m

We have %p = {6 € R®* : Ad = 0}, with A the {pi1(p1 + 1)/2 + p2(p2 + 1)/2} x s
matrix with rows Vh§;(80)T and VAL (00)T. Let s1 = {p1(p1 +1)/2+pa(p2 +1)/2}. Then
ad € Jpis of the form & = B”8 with B an orthogonal (s — s1) X s matrix with rows
orthogonal to those of A and 6 € R¥51 free. So we can reparameterize the process W (9)

above in terms of &:

W (8) =W (BT8) = {z" — k"DP(6,)}B”5 — %STBFOBTS,
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which is maximized by 8(Z) = (BFgBT)"'B{Z — DP(68y)"k}, and then §(Z) = BT§(Z).
Since Z ~ N(0, Fy), we have §(Z) ~ N(—(BFoB”)"'BDP(6,)” k, (BFyB”)~!) and then

0(Z) ~N(—=VDP(0y) 'k, V)
with V = BT (BF¢B?)'B. The explicit form of DP(8y) is derived in Section 2.4.

2.4 Derivatives of constraints and smoothness penalties

The explicit forms of VAS(8) and VAL (0) can be derived as follows. Let K, be the
g X s matrix that “extracts” cj from 6, that is, ¢, = K¢, 0. Then we can write h,?l(e) =
6"KI JK,0 — 65y and it follows that

Vhiz(0) = (KL IK¢,+K. IK,)0.

Similarly, if Kgq, is the ¢ x s matrix such that d, = Kq, 0, we have hﬁ(@) = HTngJdeB—
d; and then
Vhiy(0) = (K, JKq,+Kj3 JKq,)0.

The explicit form of DP(0) is derived in a similar way. Using extraction matri-

ces K as above and the smoothing matrix € derived in Section 1.3, we have P(0) =
(P(1), 22511 P(y), P(v), 372, P(ty))" with

P(u) = clQcy
6"K! OK.,0,

Y P(g) = t(CTRO)

= vecCT (I, ® Q)vecC
= 0"Kl.c(I, ® 2)Kyecch,

vec C

P(v) = dladg
= 07K} 9K4q,0,
and
> P(y,) = tr(D'QD)

= "KL . p(T,, ® Q)Kyenb.

vec D
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Then
20"KT OK,,
T
DP(H) = QBTKiecC(Im ® Q)Kvecc
26" K7 QKq,
20TKT (1, ® Q) KyeeD

vec D

3 Simulations

For the simulations reported in the paper, we used the following choices of smoothing para-
meters &, = (£,1,En2,Ens, Ena)- For five-knot spline bases we took &5 = (1074,1075,1074,
107%), €190 = (1072,107%,107%,107°), €950 = (1077,107%,1077,1077) and &4y = (1077,
1075,1078,1078). For ten-knot spline bases we took &5, = (1074,1075,1074,107%), &0 =
(1074,1072,1074,107%), €999 = (107%,107°,107%,107°) and & 4o = (1075,1076,1076,1076).
The same &s were used for both rates 7.

Estimation errors for ten-knot spline estimators and variance proportion o = .75 are
reported in Table 1, for five-knot spline estimators and « = .60 in Table 2, and for ten-knot
spline estimators and o = .60 in Table 3.

True finite-sample standard deviations of the elements of 3, along with median and
median absolute errors of their asymptotic estimators are given in Table 4 for estimators
based on ten-knot splines and models with variance proportion a = .75; for five-knot splines
and o« = .60 they are given in Table 5, and for ten-knot splines and o = .60 in Table 6.

Figures 1-6 are plots of functional estimators based on five-knot splines, for variance
proportion a = .75, rates 10 and 30, and sample sizes between 50 to 200. In each figure,
the six rows correspond to [, &1, &2, U, 1&1 and 7]}2, respectively; the first column shows the
300 simulated estimators, the second column shows the pointwise mean of the estimators
(solid line) and the true functions (dashed line), and the third column shows the pointwise

standard deviation of the estimators.

4 Application: online auction data

The plots of functional estimators obtained for different smoothing parameters are shown in
Figures 7 and 8. They suggest the choices &; = &, = £, = 107* and ¢35 = 1076 as reasonable
values for the parameters, but other choices are clearly possible since the estimators do not
change much for nearby &s.

Normal probability plots of the estimated component scores 4;;s and 0;,s are shown
in Figure 9 and of the residuals 7);; in Figure 10. The latter shows tails somewhat heavier
than Gaussian. Figure 11 shows root mean squared errors of the 7);;s for each 7; no gross

outliers are evident.
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r=10 r =30
Parameter n=50 n=100 n =200 n=50 n=100 n =200

Yuw,11 .054 .031 .023 .037 .026 .018
Yuw,21 .056 .038 .023 .027 .017 .012
Yuw,12 .036 .023 .014 .021 .014 .010
Yuw,22 .022 .018 .013 .014 .009 .006
W 122 .087 .068 .097 077 .063
v 126 .098 .086 .163 144 .136
0N 735 .516 .359 430 .263 175
o .883 723 .566 .585 391 279
N 219 .259 .233 139 .105 .062
(I 212 .238 .206 .146 .108 .068
Oul .068 .057 .051 .039 .028 .020
Ou2 067 .070 .060 .034 .024 .018
Ol .069 .056 .091 .062 .047 .036
02 .062 .093 .093 .037 .033 .018
oy 057 .084 .076 .013 .021 .010
Uil 218 184 170 .154 139 134
U2 163 .140 122 118 .104 .097
Vi1 167 157 .149 .168 151 143
V2 .150 .152 129 105 .085 .072

Table 1: Simulation Results. Root mean squared errors of estimators based on ten-knot
B-splines under different baseline rates r and sampling sizes n, for model with variance
proportion o = .75.
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r=10 r =30
Parameter n=50 n=100 n =200 n=50 n=100 n =200

Yuw,11 .063 .041 .037 .047 .032 .020
Yuw,21 .058 .050 .046 .041 .035 .028
Yuw,12 057 .046 .039 .039 .032 .025
Yuw,22 .044 .030 .024 .030 .021 .012
W 123 .100 .089 .093 .081 .070
v 113 .095 .081 145 .130 126
o} 900 773 .688 672 .539 414
o 957 .849 719 .719 .565 433
N .510 351 295 418 311 .163
(I 507 325 241 419 312 .164
Oul .089 .047 .032 .035 .023 .019
Ou2 .042 .031 .026 .030 .022 .016
Ol .058 .041 .062 .054 .041 .032
Ov2 .090 078 .080 .047 .033 .023
oy .068 .063 .069 .012 .011 .011
Uil 237 .204 189 174 .156 143
U2 194 178 .166 158 144 129
Vi1 .259 .193 277 .229 .190 .149
V2 276 .205 175 225 174 .109

Table 2: Simulation Results. Root mean squared errors of estimators based on five-knot
B-splines under different baseline rates r and sampling sizes n, for model with variance
proportion « = .60.
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r=10 r =30
Parameter n=50 n=100 n =200 n=50 n=100 n =200

Yuw,11 .061 .041 .036 .047 .033 .020
Yuw,21 .059 .051 .046 .042 .035 .028
Yuv,12 055 .046 .040 .040 .032 .025
Yuw,22 .042 .030 .025 .030 .021 .013
W 120 .087 .065 .095 .076 .062
v 114 .092 077 145 129 126
01 902 775 707 .678 .b43 416
09 958 .848 .746 724 .568 438
N 507 .349 .296 418 312 .163
(I 494 .326 .250 420 313 .164
Oul 072 .048 .030 .036 .024 .019
Ou2 .043 .032 .027 .029 .021 .015
Ol .058 .042 .034 .055 .041 .032
o2 .090 .079 .084 .047 .033 .023
o .069 .068 .072 .013 .011 .011
Uil 230 204 191 175 .156 143
U2 194 179 .169 158 144 .130
Vi1 .258 .189 167 .230 .190 .149
Vi2 275 .205 176 225 174 .109

Table 3: Simulation Results. Root mean squared errors of estimators based on ten-knot
B-splines under different baseline rates r and sampling sizes n, for model with variance
proportion o = .60.

r =10
n = 100 n = 200 n = 400
Parameter True Med MAE True Med MAE True Med MAE
Yuw11 31 1.35  1.04 .23 .33 .10 A7 .18 .01
Yuw,21 38 149 1.11 .23 41 17 15 .22 .07
Y12 .23 .87 .63 A7 .25 .08 10 13 .03
Y22 .18 .64 .46 12 A7 .05 13 .09 .04
r =30
Y11 .25 .87 .62 .18 .26 .07 12 14 .02
Yuw,21 17 .65 AT 12 18 .07 .08 .10 .03
Y12 14 .49 .35 .10 14 .04 .06 .08 .02
Y22 .09 .36 .27 .06 11 .04 .04 .06 .01

Table 4: Simulation Results. True standard deviations and median and median absolute
errors of estimated asymptotic standard deviations (x10) of estimators under different
baseline rates r and sampling sizes n, for estimators based on ten-knot B-splines and
variance proportion a = .75
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Parameter

Eu'v,ll
Euv,Ql
Z]uv,12
Z:uv,22

2uv,ll
Zuv,21
Euv,12
Eu'v,22

Table 5: Simulation Results. True standard deviations and median and median absolute
errors of estimated asymptotic standard deviations (x10) of estimators under different
baseline rates r and sampling sizes n, for estimators based on five-knot B-splines and

True

.39
.50
.46
23

.32
.35
.32
18

n = 100
Med MAE
77 .38
77 27
.65 .20
.46 .23
45 13
.b4 .19
49 A7
.26 .08

variance proportion o = .60

Parameter

2uv,ll
Eu'v,21
2uv,12
Zu'v,22

Zuv,ll
2uv,Zl
Zuv,lQ
2uv,22

Table 6: Simulation Results. True standard deviations and median and median absolute
errors of estimated asymptotic standard deviations (x10) of estimators under different
baseline rates r and sampling sizes n, for estimators based on ten-knot B-splines and

True

.39
51
.46
.23

.32
.35
.32
A8

n = 100
Med MAE
1.64 1.24
1.56 1.05
1.35 .89
.99 .76
94 .62
1.10 .74
.98 .66
.53 .35

variance proportion a = .60

True

.36
.46
.39
.20

.20
.28
.25
A1

True

33
.46
40
.20

.20
.28
.25
A1

27

r =10

n = 200
Med MAE
.35 11
.48 .14
.39 12
.23 .05

r =230
21 .02
.29 .07
.26 .06
13 .02

r=10

n = 200
Med MAE
44 11
.53 .15
.45 .13
.27 .08

r =30
.25 .05
.34 .07
31 .07
15 .04

True

23
.36
.32
18

12
18
A7
.07

True

23
.36
.32
A8

12
A8
A7
.07

n = 400

Med MAE
.19 .07
.32 A1
.26 .10
13 .06
12 .01
18 .03
A7 .03
.08 .01

n = 400
Med MAE
21 .06
.34 10
.28 10
.14 .06
13 .01
.20 .04
18 .03
.08 .01
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Figure 1: Simulation Results. Plots for » = 10 and n = 50.
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Figure 2: Simulation Results. Plots for » = 10 and n = 100.
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Figure 3: Simulation Results. Plots for » = 10 and n = 200.
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Figure 4: Simulation Results. Plots for » = 30 and n = 50.
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Figure 5: Simulation Results. Plots for » = 30 and n = 100.
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Figure 6: Simulation Results. Plots for » = 30 and n = 200.
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Figure 7: Online Auction Data. FEstimators of mean and components of X process for
various smoothing parameters &.
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Figure 8: Online Auction Data. Estimators of mean and components of Y process for

various smoothing parameters &.
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Figure 9: Online Auction Data. Normal probability plots of the estimated component
scores of (a) the bid-time process and (b) the bid-price process.
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Figure 10: Online Auction Data. Normal probability plot of the residuals of fitted bid
prices.
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Figure 11: Online Auction Data. Boxplot of root mean squared errors of individual bid
price trajectories.
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