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1 Estimation

1.1 The model

We have a doubly stochastic process (X, A) where X|A = X is a Poisson process with

intensity function A, and A follows the model

A(t,s) = RA(t)As(s) (1)
with
logR=71+ Z, (2)
log A¢(t) ) + Z Uro () (3)
and .
log As(s) = v(s) + > Vitoy(s). (4)
k=1

In (2), Z is a random variable with E(Z) = 0 and 02 = var(Z). In (3) and (4), the
¢ps and ;s are orthonormal functions in their respective spaces, E(Uy) = E(V}) = 0 for
all k, and cov(Uy,Uy) = cov(V, Vi) = 0 for all k # k. Without loss of generality, the
components are arranged in decreasing order of variances 02, = var(Uy) and 02, = var(Vj,).
For identifiability we assume that p, v, the ¢.s and the v¢.s integrate to zero on their
respective domains B; and Bs. In addition, it is sometimes assumed that the temporal
intensity functions are periodic on B; = [t;,t,], in which case we add the constraints
p(t) = p(tu) and @p(t) = ¢p(tu) for all k.
Let U= (Ur,...,Up)", V=V1,.... V)T 00 = (001,...,00 )", 0% = (021, ..., 00,,)"

.. =cov(Z, U, 0., = cov(Z, V)T and 2., = cov(U, V). We concatenate all random
effects into W = (Z,UT, V)T and assume that W follows a multivariate normal distrib-

ution with mean zero and covariance matrix

ol oL, ol
Y=| o0, diag(o?) Y
o T diag(o?)

The functional parameters u, v, ¢,s and ¢,s are semiparametrically modeled using
splines or similar basis functions: u(t) = cfB4(t), ¢(t) = i B.(t), v(s) = df B,(s), and
Vr(s) = dLB,(s), where B,(t) is the vector of g, basis functions of a family %, and 3,(s)

is the vector of ¢ basis functions of a family %;. The orthonormality constraints on

the gbks can be expressed as c;{Jtck/ = Oppr, Where dppr is Kronecker’s delta and J; =
[ B,(t)B,(t)Tdt. Similarly for the s. The zero-integral constraints for 1 and the ¢s
can be expressed as atock =0 for k =0,...,p1, where a;g = th B, (t)dt. Similarly for v



and the ;s. Finally, the periodicity constraints for p and the ¢;s and their respective

derivatives, if present, can be expressed as APck 0 for k = 0,...,p1, with Ap =

By (tu) — B:(tr), Bi(tu) — Bi(t)]"

We collect all model parameters into a single vector
0 = (024, 0 20, VeC EUU,T,O'2 cg, vec C, a' ,dg,vecD, o ) (5)

where C = [c1,...,¢p, ] and D = [dy, ... ,d,,]. For an observation z = {(t1,s1),..., (tm,Sm)}
of the process X on a given bounded region B = B; x By, the joint density of z and the

latent w can be factorized as

fo(z,w) = fo(z | W) fo(w)

with
exp{—rl;(u Kl
fo(z |w) = p{=rli( mH/\t tj;u) H (sj5v (6)
and
fo(w) = ! ex —leE_lw
O = arpi(derm)t2 TP\ T2 ’
where r = exp(7 + 2), It(u) = f Ae(t;u)dt, Is(v) = [ As(s;v)ds, Mi(t;u) = exp{u(t) +
Tot)}, As(s;v) = exp{r(s) + vIy(s)}, and p = p; +p2 + 1. The marginal density of X

is

0) = [[ fotaw)aw

which we evaluate by Laplace’s approximation as explained in Section 1.4.

1.2 EM algorithm

The penalized maximum likelihood estimator 0 is the maximizer of
P2
ZMh% @ZP% &PW)~ €y Py (7)
k=1

for @ in the parameter space (assuming periodicity constraints)

O = {eR" :h50)=0, k=1,...,1, I=1,...,p1; (8)
(@) =0, k=1,...,0, I=1,...,po;
a%ckzo,kzo,...,pl; azz)dkzo,k;zo,...,pg;
Apc, =0, k=0,...,p1; 3> 0},

where 7 is the dimension of @, hkcl(B) =c, T3ic; — 0w, hﬁ(@) = d%Jsdl — 0 and X >0

denotes that 3 is symmetric and positive definite.



The penalty functions are quadratic on the basis coefficients: if f = ¢/'3 then P(f
c?'Qc for Q that depends only on 3. Specifically, for the temporal functions P(f) = [(f")?

and
/ B! (t)3] ()" dt;

for the spatial functions P(f) = ff{(%ﬁ + 2(86 S )24 (22—{)2} and
s s 55

1052

Qs =Ju+2J12+J2

T = // (88258@ > ( ajaij)>TdS'

with

Then
1 n
= - > _log fo(xi) — &1¢5 Qe — & tr(CTRC) — £3d[ Qedp — & tr(D' QD).
=1

The EM algorithm (Dempster et al., 1977) works iteratively as follows: given the current

value of the estimator é(k_l), the updated value 9(k) is defined as the maximizer of

. 1 —
QO |64 1)) = n;Eé(kl){log fo(zi,w) | z;}

—&1ef Qe — &, tr(CTQC) — £3df Qudg — &4 tr(DTQ,D)

subject to the parameter constraints. Considering the factorization of the joint density and

the dependence of each factor on the model parameters, we can write

Q0]8(._1) =Qi1(r,c0,C,do, D | B _1)) + Q2(Z | 8(s_1)),

where
. 1<
Qu(r,¢0,C,do, D [ B -1)) = ”21 0, Lo fo(wi | w) | i}
—&1ct ey — &, tr(CTQ,C)
—£3d{ Q,dg — &, tr(DTQ,D),
and

n

~ 1
Q2% | 0p_1)) = 52 80,y 1108 fo(W) | 2}

=1



1.3 M-step: updating equations

For 7: Since

log fo(z; | w) = —e"T*I(u)Is(v) — logm;!
m; mg
+mi(r +2) + > log Mi(tiziu) + Y log As(sij; v)
j=1 Jj=1
we have 5
g log fo(z; | w) = —€"e*L;(u)I4(v) +m;
and then

7Q1( ’ (k— :—6*2 e(k {eZIt ) (V)’$Z}+m

So the updating equation for 7z is

() = log | /= ZE% ACL W) | 2}

For cy: Since

log fo(z; | w) = —rL(u)ls(v)—logm;!
+m;logr + Z log A\ (tij; u) + Z log As (Sij§ v
J=1 =

and M\ (t;u) = exp{u(t) + ul'¢(t)}, we have

De, log fo(zi | w) = —T’IS(V)/ Deo At (t; u)dt + Z,@t ti)?,

7j=1
where
DeoAt(t;u) = Ae(t;u)De, log Ae(2; 1)
= /\t(tSU)IBt(t)T-
Then
« - . .
Deo@1(- -y €0,--- | Bp1y) = _72 b ITLs(v )/B/\t(t,u)ﬂt(t) dt | z;}
t

+ﬁ Z Zﬁt(tij)T — 261¢p .

i=1 j=1



Using the Laplace approximation to the conditional expectations, as explained in Section

1.4, we have
By 1) [ Mt at | o} ~ (20 [ (e80T
t t

where 7;, @1; and V; are the current predictors of r, u and v. A Taylor expansion of A\(¢; ;)

on the variable ¢ evaluated at the current €y(,_1) gives

Mt 1)~ Mi(t) + DepMi(t; ;) |egg_y, (co — €o(—1))
= Ailt) + Ma(t)B, (1) (co — Eo(r1))
= 5\ti(t){l - B,@®)" Co(k—1)} + )\tz( £)8,(t)" o,

where ;\tz( t) = exp{,&(k 1)( )+ ﬁ?(}(t)} Similarly, let Xsi(s) = exp{ﬁ(k,l)(s) + \A/'ZT{p(s)}
and ISl = fB s)ds. Then

Deo@1(---,¢0,--- | Bg_1))

~oe= Tz si >‘z HL—f ()}B()Tdt
S A0t a0
—fzn o [ ot o),y a
+ﬁ Z Zﬂt(tij)T — 26,0 .

i=1 j=1

The Lagrange condition for the constraints az;)co = 0 and (if present) Apcy =0 is
Deo@1(- -, &, --- | Bemr)) = KT A,
where A is the matrix with rows a% and A p; transposing both sides, we can write it as
—Qcy) +b = ATk
with

Q - —Zn ; / Si(D)B,(0)8,(6)dt + 26,9,

b = —*Zn / ({1 = ) ()} B, (Dt + — ZZ[% i)

zl]l



Then, including the constraints, we solve the system
Q AT Co(k) _ b
A O K 0

For dy: Given the symmetry of (6) on Ay and A4, from the above derivations for ¢y we
have, for dg, that

and obtain €g(y).

R 1 &
Day@1(.--,do, ... | O-1)) = _an(?(k_l){ﬂt(“)/B Xs(s3v)B(s) " ds | i}
+— ZZIB Szy _2€3dgﬂs~
=1 j=1

A Taylor expansion of A4(s;¥;) on the variable dy evaluated at the current ao(kq) gives,

as above,

Da,Q1(...,do, ... | é(k,l))

~ —% Z #ily; i Asi(s){1 - ’)(k—l)(s)}’@S(S)Tds
1=1 s
- Z TzItz / dTBs( )BS(S)TdS
+— Z Z ,6 52] - 2§3dgn
=1 j=1

where j\ti(t) and 5\52'(8) are as above, and I;; = / B, S\ti(t)dt. The Lagrange condition for
the identifiability constraint azodo =0is

Day@1(- -, dogry, - - - | Bsimr)) = kaly,
which, transposing both sides, can be written as
_an(k) + b = Kkay
with

Q= Tllzf'ifti / Asi(8)B4(s)B,(s)" ds + 26,92,

b = _ZTzItz/ sz {1_Vk 1) ( )}Bs dS—I— ZZBS Sz]

11]1



Then, including the constraint, we solve the system
Q a do(x) _ (P
al 0 K 0

For cj,: The components are estimated sequentially, so we only show the update for

and obtain ao(k).

¢,,. Since
log fo(xzi |w) = —rl(u)Ls(v) —logm;!
+m; logr + Z log A¢(ti;;u) + Z log As (8455 V)
j=1 Jj=1

with (i u) = exp{u(t) + B,()7Cu} = exp{u(t) + By()T 1L, cxug}, we have

De,, log fo(wi | W) = —rL,(v) /B De,, Ae(t; w)dt + > up, By (tij) 7,
t

j=1
where
De,, Ae(t;u) = M(t;u)De,, log A(t;u)
= M(tu)upy, By ().
Then
« 1
Doy, Qi prre | Bn) = =3 By (1) | At B0 | i)
=1 t
1 n m; .
+EZZEé(k71){up1/3t(tij) | zi}
i=1 j=1
—2¢,5¢) Q.

Using Laplace approximations to conditional expectations, as above, we have

Egy_ (r1s(v) /B At wup, B,(0) dt | 2i} =7 Li(¥:) /B Ae(ts 83k, By (1) d,
t t

Eé(k—1>{up1ﬁt(tij)T’$i} R dipy By(tiy)



A Taylor expansion of A(¢;@;) on the variable ¢, evaluated at the current €, (1) gives

~

/\m(t + Dcp1 /\t(t§ ﬁi)|ép1(k—1)(cpl - cpl(kfl))

At (t; ﬁz‘) )

= Au(t) + Mi(D)ip, By (1) (cpy — &, (k1))
)
)

&Q

= Ai(t) + Avi(8) iy By (1) €y — M (8)hipy By (-1 (£)
= Ai(®){1 = i, by, (1) (1)} + Mei ()i, By (8) T ey,

Then
Dcpl Ql( PN Cp17 e | 0(;671))

>\tz ®{1 ﬁipl&pl(kfl)(t)}aipll@t(t)Tdt

%
<l
M
3

—*Zn . / 02, <1, 3,(1)8, (1)

+- Zzulplﬁt Z] - 2§QC£Qt.

Zl]l

e orthonormality constraints c; Jic,, — dx;,, can be linearized using the current values o
The orth lit traints ¢} J;cp, — Ogp, can be linearized using th t values of
the ¢xs. So let A be the matrix with rows é%Jt, k=1,...,p1, in addition to a% and Ap (if
periodicity is imposed). Then the Lagrange condition for &, () is DyeccQ1(- - -, &p, (%), - - - |
9(1@71)) = kT A which, transposing both sides, can be written as

—Q¢), ) tb= ATk

with
Q —Zn ; / Nui(D)i2, By (DB () dt + 26,2,
b - —on [ A0 = By (i By 01+
! Ziﬂ ().
i=1 j—=1

Then, including the constraints, we solve the system

(o) ()-(0)

where f is a vector with elements f,, =1 and fi = 0 for k # p1, and obtain €, ).

For d,,: Again, due to the symmetry of (6) on A\; and As the derivations for d,, are



analogous to those for c,,. We have

log fo(zi | w) = —rli(u)l(v) —logm!
+m;logr + Z log A¢(tij;u) + Z log As(sij5 V)
j=1 j=1
with As(s;v) = exp{v(s) + B,(s)T >0, vgdy}, so

m@mnwwmz—ﬂmqéD%&@ww+§pwuwﬂ,

j=1
where
Da,,As(s;v) = As(s;v)Da,, log As(s; v)
= )\S(S;V)UP2BS(S)T’
Then
R 1 &
DdPQQl( p27 e ‘ a(k—l)) = ané(kl){TIt(u)/B )‘S(S;V)Umﬂs(s)Tds | xz}
-%ZZ%MMﬁme
=1 j=1
-2¢,d;,Q

Using Laplace approximations for the conditional expectations we have

Q

By, Irle(u) )‘S(S;V)Upzﬁs(s)Tds|xi} Fili(@) | As(8390)0ipa By (s)'d

{vp2Bs (Szy) |z} =~ f)ipzﬁs(sij)T-

9<k 1)

A Taylor expansion of A\s(s;¥;) on the variable d, evaluated at the current ap2(k_1) gives

)\s(s; "}2)

Q

Asi(s) + de (S‘A”L)|a )(dp2 - am(k—l))

p2(k—1

Asi(s)

= SZ(S) +/\SZ( )%pzﬁ (s ) (d P2 _apz(kfl))
(s)
(s)

I
>

silS +)‘SZ( )Uzmﬁ (s ) — Asi(s )@iqu)pg(k—l)(s)
si\S {1 - UZP2¢p2(k 1) ( >} + ASl( )viP2BS(S)TdP2

I
>

Then
Da,,@1(- - dp,, .- [ Or—1))



Q

e - < A R
Sl [ A1 By (5) i B, (5) s
=1 s
A . .
i /B Ai(5)82,d7, B, ()8, (s) ds
i=1 S

1 n  m; )
+ DY bipB(sif)” — 26,d], Q.

i=1 j=1

We can write
DdPQQl(' . dp2, - | é(kfl))T ~ —de2 +b

with
I~ - <
Q = " ;Tilti /S Asi(8)07,,84(s)B,(s)" ds + 2£,92s,
1. . . A
b= S ik [ A1~ by (5)) 0B (5)d +
i=1 s
1 n m; A
=~ D UipB(siy).
i=1 j=1
The constraints are handled as before. Let A be the matrix with rows (Ai;‘gJ s k=1...,p9,

in addition to al;. Then the Lagrange condition for apz(k) is Daq,,@1(. .- ,ap2(k), ce

9(/&71)) = kT A. Transposing both sides and using then above approximations we get the
equation
—Qd,,;) +b=A"k,

which together with the constraints can be written as a single system

(o)) (2)

where f is a vector with elements f,, = 1 and fi = 0 for k& # ps. Solving this linear system
gives the updated &m(k).
For 3:: We have

1 1
log fo(w) D) log det X — §WTE_1W
1 1
= —3 logdet ¥ — 3 tr(Z twwl),

SO
N 1 1
Qa3 [ Bg—1)) o —5 log det 33 5tr(2—15)

10



where

1 n
S = - ZEé(k—l) (ww? | 2;).
i=1

This Q2(X | 9(,,3,1)) is the classical log-likelihood function of a multivariate normal density,
and it is well-known that the (unconstrained) maximizer is S. However, S must be rotated
to satisfy the constraints that X,, and X,, are diagonal, while maintaining the positive-
definitness of the whole 3. To this end we compute the spectral decompositions of the
blocks S, and S,

Ll =
oLl =

Suu,
Svu,

with the I's orthogonal and the Ls diagonal, and let

1 o o” 1 of of
Snw=|o0orl o |s|[or O
0 O 1?¥ 0 O Iy

Then the blocks fl(k)’uu and fl(k)’m, are diagonal and equal to L; and Lo, respectively.

2
v

Then &Z(k) = diag i(k),mu (o k) = diag ﬁl(kmv and ﬁ)uv(k) = ﬁ)(kmv. Similarly for &3(k),
&zu(k) and &zv(k)'

The respective component scores and component basis coefficients must be rotated as
well, to preserve the values of g})(t)Tﬁi and {p(s)T\% and preserve the fact that fl(k) is the

covariance matrix of the w;s:

o «— Iy,
v, «— T3,
C — CFI,
D «— 13F2.

1.4 Laplace’s approximation of integrals

The marginal densities f(x) are computed by Laplace approximation. We have

f@ = [[ falwiseaw

= // exp g(w)dw

g(w) =log f(z | w) + log f(w).

with

11



If W = arg max g(w) then g(w) ~ (W) + .5(w — W)" Hg(W)(w — W) and
£ (@) ~ exp{g(W)} (2m)7/2 det(S) >

with p =p1 + p2 + 1 and
S = {—Hg(w)} .

In effect, we are approximating
fx | w)f(w) ~ exp{g(%)}(2m)"/* det(S) (5 (W)

where ¢y g)(W) denotes the pdf of a Np(W,S), so W | z ~ Ny(W,S). Then we can also

approximate the moments:

EW |z) ~ W,
EWWT |2) ~ S+ww’.

We find w by (a few steps of) Newton—Raphson for each z;. Since

gw) = —e T L(u)ly(v) —logm! +m(r + 2)
+ Z log A\¢(tj;u) + Z log As(sj;v)
j=1 j=1

1 1
—g log 2w — 5 log det 3 — §WT271W,

then, defining

) = [ nltwe,

LW = [ Asvwees

B = [ nwenelTd

H) = [ Asvnsee s
the derivatives with respect to w = (z,u, v) are

—rl(u)Is(v) +m
Vo(w) = | —rL ()L + S, 6(t) | - T tw
—rli(W)I(v) + 351, P(s;)

12



and
—rL(w)Iy(v) —rI(V)I[(0)T —rL(u)l(v)T

Hg(w) = | —rj(u)I,(v) —rI,(v)I/(u) —rl(u)l.(v)T | —=""
—rL(v)I;(n) —rL(v)[[(w)" —rL(w)Il(v)
2 Asymptotics

2.1 Explicit Fisher’s information matrix

Fisher’s information matrix Fg = Eg,{V log fa,(X)V log fg,(X)T'}, used in the asymptotic

results below, is estimated by

F=

SRS

> " Vlog f5(zi)Vog fa(zi) "
i=1

Here we derive V log fg(z) by blocks for @ = (0, 0 2y, vec Xy, T, 02, €o, vec C, a2, dg, vec D, 2).

y Y2y

» For o,,, since only f(w) depends on o, we have

va’zu ]'Og fo ($)

_ f@ / / F(@ | W)V, f(W) dw

[[ Lol falwt ) o,
Fw) Jelw)

— [ Vo108 fw) fw | ) dw.

Since ) )
log f(w) —3 log det X — inE_lw,

the differential with respect to X is
1 -1 l w1 -1
dlog f(w) = —3 tr(XdX) + oW YT (dE)E T w.

Differentiating specifically with respect to o ..,

0 dol, of
d¥=| do,, O (0]
0 O O

If we split 3! into nine blocks commensurate with those of X, denoted by 21_11, 21_21, ceey

Zggl, and the vector ¥~ 'w into three sub-vectors of respectively one, p; and po elements,

13



we have
Zf21dazu Eildazu o7
»dY = | 2lde., Z5ldel, O
Y do., X3ldel, O

and
wIZTHdE)S T w = 2(27'w){ (dol,) (27 w),
= 2tr{dol, (ST W) (E7w){}
= 2dol, vec{(Z 7 w)(Z " w)T}.
Then
tr(2 1Y) = (B do.) + tr(Eydel))
= 2tr(d03u2511)
= 2do’, vec(E5),
SO

dlog f(w) = —dazu vec(22_11) + da'zu vec{(Eflw)g(X}*lw)r{},

which implies
Vo [ (W) = —vee(Sg,!) + vee{ (B w)a(E 7 w)T }

and then

V., log fo(x) = —Vec(22_11) + vec Eg {(2*1w)2(2*1w)r{ | x} .

The second term can be written out more explicitly in terms of Eg(ww?! | z): since
(Z7'w)y =1[0,I,,,0] = 'w and (£~ 'w); = [1,07,07] =~'w, we have

1
(= tw)(Etw)T = [0,1,,0]| = 'ww!E"! | 0
0

vy

= (23,25, 85 ww' | 35

ovy

and then we take Eg.

» For o, we proceed as above, since only f(w) depends on o,,. We have

V., log fo(z) = / / V., log f(w) f(w | ) dw

14



and V4, log f(w) is derived via differentials as before. Differentiating 3 with respect to
O, We get
0 o7 dol,
d¥ = o O O
do.,, O O

and then
Y J3do., 07 Zldel,
> = | =lde., O ;5 ldol,
Y0do.,, O Xgldel,

and

wETdD)Ew = 2(37'w)] (do?) (B w)s
= 2tr{del, (T 'w)3(Z"'w){ }
= 2dcrz;v vec{(E_lw)g(E_lw){}‘

Then

tr(7NE) = (25 do,,) + tr(D3tdel))
= 2tr(d0'fv2§11)

— 2do”, vee(S3)),

and following the same steps as above, we get

V., log fo(z) = — Vec(Egll) + vec Eg {(2*1w)3(2*1w)1T | x} .

The second term can again be written out more explicitly in terms of Eg(ww? | z): since
(Z7'w)3 =1[0,0,I,,] E'w and (£~ 'w); = [1,07,07] =~'w, we have

1
(='w)i(Etw)T = [0,0,L,] = 'wwiE"! | 0
0

Ty

= [Z5, 25, S5 ww’ | X5

e

and then we take [Ey.

» For vec 3, we proceed as above again, since only f(w) depends on ¥,,. We have

vvecZuv lOg fg(il?) = // vveczuu IOg f(W) f(W | :13) dW,

15



and Vyecs,, log f(w) is obtained via differentials. Differentiating 3 with respect to 3,
we get
o o of
d=]10 0O dXZ,
0 dxI O
Then
0 I dxl »ldE,,
s =| 0 2 dxl = lds,,
0 = d¥l »dx,,

and

WIEIEE)S T = 25wl [@EL)(E ),
= 2tr{dXT (=7 'w)o (=" 'w)T}
= 2vec(dEy,) ! vec{(Zw)o (= 1w)l ],

SO

tr(21dX) tr(E55 dBL)) + tr(E5 dEy,)

2tr(d2?, 355

v

2 vec(dB,,)T vec(Ey3)

and then
dlog f(w) = — vec(dZy, )T vec(E53) + vec(dE,,)T vec{ (BT w)2(Z 7 w)i},
which implies
Viee sy, f(W) = = vee(Syy) + vee{ (™ w)a (B w); }

and therefore

Viee s, 10g fo(r) = — vec(E53") + vec Bg {(Ew) (=" w)T |z}

As before, the second term can be written more explicitly in terms of Bg(ww? | x): since

16



(Z7'w)2 =[0,1,,,0] 7 'w and (Z7'w)3 = [0,0,I,,] Z~!w, we have

OT
(= w) (=" 'w)l = [0,I,,,0] = lww’E"1| O

IP2 4

-1
DIPP

21 o1 -1 T -

= [22172227223]“’“’ 2231
by

and then we take [Eg.

» For 7, since only f(z | w) depends on this parameter, we have

o fola //alogwaW) F(w | z) dw

Since

m m
log f(z | w) = —rLi(u)Is(v) — logm! + mlogr + Zlog)\t(tj;u) + g log As(sj; v
j=1 ;

with r = exp(7 + z), we have

D tog o | w) = o () L(v) + m

and then

1o fole) = ~Bo{rL(w,(v) | 2} +m.

» For 02, only f(w) depends on this parameter, so

8 5 log fo(x //8 log f(w) f(w]|z) dw.

As before,
1 1
dlog f(w) = —3 tr(Z1dX) + ngz—l(dz:)z—l

and differentiating with respect to o we have

do? o7 of
d¥ = o O O
0 O O
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Then
»{de? 07 o”
>l =] =;lde? O O
¥;de? O O

and
winldE)E 1w = (Z7w)(de?) (=7 1w),
= (Z7'w)idoZ,
SO
tr(271dY) = 2 do?.
Then
dlog f(w) = —%Zl_lldaz + %(Zflw)%dag,
SO
o3 V08 £ (W) = =5+ 557w
and then

0 T 1 _
§02 08 fola) = —5%0 + 5Be{(Z T w)T | 2}

The second term can be written out more explicitly in terms of Eg(ww’ | z): since
(=7 'w); = [1,0T,0T} >~ 'w, we have

1

(= 'w)i = [0, 07 ] = twwis" | 0
0

-1

2

—1 51 g1 —

= [0, 55, 25 ww’ | 25

and then we take Eg.

» For cg, since only f(z | w) depends on cg, we have

Veo log fo(z) = / / Veolog f(z | W) f(w | ) dw.

Here

log f(x | w) = —rI;(u)ls(v) — logm! + mlogr + Zlog Ae(tj;a) + Zlog As(85;v)
j=1 j=1
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with I;(u) = [ A\(t;u)dt and M\(t;u) = exp{c{ B,(t) + ul p(t)}, so

Ve log f(a | w) = —rI,(v) / (BB (Hdt+ 7 By(t;)
j=1

and then

Voo 10g fo() = —Bo{rL(v) [ M(t;w)B,(t)dt | x} + § By(t;)-

» For vec C, again only f(z | w) depends on vec C, so

vvecClngG //vvecclogf :1;|W) (w\x)

as above. Since A\i(t;u) = exp{u(t) + B;(t)'Cu} = explu(t) + {u’ ® B,(t)T} vec C], we
have

vVev:C IOg f('r | W) = _TIS(V)/)‘t(t;u){u@)ﬂt(t)}dt + Z{u ®18t(tj)}
j=1

and then

Vyecclog fo(z) = —Eg[rI(v) [ M(t;u){u® By(t)}dt | 2] + Eg(u | z) ® iﬁt(tj)-
=

» For 2, only f(w) depends on this parameter, so

Vg2 log Jo(x // Va2 log f(w) f(w]|z) dw.
As before,
1 1
dlog f(w) = —3 tr(X1dX) + inzfl(dz)zflw
and differentiating with respect to o2 we get
0 o” o”

0 diag(de?) O
0 o o

Then

)

>, diag(de?) 07
>, diag(de?) O
¥, diag(da?) O

1d2_

o o
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and

wis i dE)Elw = (Z7'w)! diag(de?) (= 1w),

= {(Z7'w)3*} da?,
where ©2 denotes element-wise squaring. Therefore
tr(Z7MdE) = tr{3;, diag(de?)}
= diag(EQ_QI)Tdo'i,
SO ) )
dlog f(w) = —3 diag(25, ) do? + 5{(271w)2®2}Td0'2

and then ) )
Vo log f(w) = — diag(33;) + 5 (Z7'w)5?,

which implies

1 .. _ 1 _
Vo2 log fo(w) = =5 diag(Tpy) + 5 Be{(X~'w)5” | 2}

The second term can be written more explicitly in terms of Eg(ww? | 2): since (27 'w)y =
0,1,,,0] 2" 'w and (27 'w)$? = diag{(Z~'w)2(Z"'w)1}, we have

OT

(Z7'w)$? = diag{[0,1,,, 0] 'ww'EZ ' | 1, |}
0)

P

= diag{[Z5], B0, B3 | ww! | T |}

2—1

32

Then we take Eg, which commutes with the diag operator.

» For dg, given the symmetry of f(x,w) on the parameters of \; and A, we have

Vo 108 fo() = —Bo{rL,(w) [ As(s; v)B,(s)ds | =} + il B,(s)).

» For vec D, again by the symmetry of f(x,w) on the parameters, we have

m

VveeD 10g fo(z) = —Eg[rLi(u) [ As(s; v){v @ B,(s)}ds | 2] + Bo(v | 2) @ 2 Bs(s;)-
j=
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» For o2, given the symmetry of the dependence of ¥ on o2 and o2, we have

1 . _ 1 _
Vg2 log fo(x) = -5 diag(Sg5) + 5Ee{ (X w)5? | 2}.

Again, the second term can be written out in terms of Eg(ww? | z) as
-1
i3
“1,3\02 _ ; —1 31 g1 T —1
(7 w)57 = diag{[25, By, B | ww' | B3 |}
»-1
33

Then we take Eg, which commutes with the diag operator.

2.2 Consistency

The consistency proof follows the usual steps for maximum likelihood estimators and M-
estimators; see e.g. Pollard (1984) and Van der Vaart (2000). First we show that the asymp-
totic objective function has a unique maximum at the true parameter 6y, then that {én}
is bounded in probability, and finally, via the Argmax Theorem, that 8,, converges to 6y
in probability. We define &, = (£1,,, €90, 3y Ean) T and P(0) = (P(u), Y 2L, P(¢y), P(v),

vy Pe)™
For identifiability of the components we need to constrain the parameter space © fur-

ther, so as to rule out sign ambiguity. Then we take

O = {eR :h0)=0, k=1,...,1, I=1,...,p1; (9)
hD@) =0, k=1,...,1, 1=1,...,p;
a%ckzo,k:(),...,pl;
azodkzo,k‘:(),...,pg;
Apcy, =0, k=0,...,p1;
X>0; 0u1 > >0up, >0; 0p1 >0 > 0yp, > 05
k1 >0, k=1,...,p1; dk1 >0, k=1,...,p2}.

We make the following assumptions:

A1 The signs of the functional components éﬁk’n and szk,n are specified so that the first
non-zero basis coefficient of each ékn and {p,m is positive (then 8,, € © for © defined

in (9).)

A2 The true functional parameters pg, Vo, ¢pos and 1;0s of models (3) and (4) belong to
the functional spaces %; and %, used for estimation, and the basis coefficients c1 o

and dj1 0 are not zero. The signs of ¢,y and 1, are then specified so that c;10 > 0
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and dj1 0 > 0; therefore there is a unique @y in © such that fg,(x) is the true density
of the data.

A3 ¢, — 0 asn — oo, where &, = (£1,,, 9, E3ny E4n) T is the vector of smoothing para-

meters in (7).

A4 /n€, — Kk as n — oo, for a finite K.

Lemma 1 Under assumption A2, the function M(6) = Eg, {log fo(X)} has a unique

mazximum at 6 = 6.

Proof. This is a consequence of Jensen’s Inequality and model identifiability:

o, 108 701 < 108 B oy | =0 (10

oo oy | =

for all 8. Moreover, inequality (10) is strict unless Py, {fo(X)/fo,(X) = 1} = 1, which
happens only for @ = 6y by identifiability. Then Eg, {log fo(X)} < Epg, {log fe,(X)} for
any 0 # 6,. m

because

Lemma 2 Under assumptions Al and A3, |0, = Op(1).
Proof. Let .
Ma(0) = 3" log fo(Xo)
i=1
By definition, 6,, maximizes
(n(0) = Mn(0) — €, P(8),

so we have

Mn(én) - Mn(ao) > §£{P(én) - P(OO)}-

Since P(@) > 0 for all @, this implies

1, o, (X5)
n;log o) > —£TP(0,), (11)

with the right-hand side going to zero as n — oo. As in Van der Vaart (2000, p. 63),

consider the surrogate functions

g(2;0) = log {M}

2o, <x)
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which satisfy

1
log (5

5) < 9(x:0) glog{c(gc)jLM}

2fe, ()
where c¢(z) > fo(x) for all 8. By concavity of the logarithm,

o (11) implies
LS (b, > L-elp(n)). )

For any K > 0, if |0, > K we have

fZg Xi;0,) Zzp (13)

with

Y(z) = sup g(z;0).
lel|>K

By Law of Large Numbers n=1 Y"1 1(X;) L Eo,{t)(X)}, and by Bounded Convergence

Theorem we can switch supremum and expectation:

Eoo{¢)(X)} = sup FEgy{9(X;0)}.
l6]>K

Now, as in the proof of Lemma 1, by Jensen’s Inequality we have

X) + foo(X)
2f90(X)

Eo,{g(X;0)} < log Eg, {fe( } — 0= Eg,{g(X:60)}

with strict inequality for any 6 # 6y. So max Eg,{¢g(X;60)} = 0 and the maximum is
attained only at 6y. We can rule out the possibility of Eg,{g(X;0)} approaching zero at
infinity because lim|g|— fo(2) = 0 and then

Jim_Fa,(9(X:0)} = Fo{ Jim_g(X:6)} = log(3) < 0.

Therefore, there exists an € > 0 and a K > 0 such that Eg,{¢/(X)} < —e. This fact
together with (12) and (13) imply that P(||,] > K) goes to zero as n — co. ®

Lemma 3 Under assumptions A1-AS3, 0., it 6y as n — oo.
Proof. By Lemma 2, for any ¢ > 0 we can choose K > 0 such that P{||@,| > K} < /2

for all n, and we can choose it so that K > ||@g||. On the other hand, for ||8,|| < K we
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have

0, = argmax (,(6).
en{||el<K}

The penalty function P(0) is continuous and therefore uniformly continuous on compact
sets, and the process M, (@) is stochastically equicontinuous (Pollard, 1984, ch. 7), so
£,(0) converges in probability to M (@) uniformly over bounded sets. Then by the Argmax
Theorem (Van der Vaart, 2000, ch. 5.9),

argmax £, (0) LN argmax M (0) = 0y,
en{llol<K} en{llo] <K}

so for any & > 0 we can choose N such that P{||0,| < K,||0,, — 6o|| > 0} < £/2 for every
n > N. This completes the proof. m

2.3 Asymptotic normality

To prove the asymptotic normality of 6,, we will follow the approach of Geyer (1994), which
makes use of the tangent cone of the parameter space. The definition and properties of
tangent cones can be found in Rockafellar and Wets (1998, ch. 6). Using Theorem 6.31 of
Rockafellar and Wets (1998), the tangent cone of © at 6 is

Ty = {0eR" :Vh(00)T6=0, k=1,...,1, l=1,...,p1;
VhE00) 6 =0, k=1,...,1, 1=1,...,po;
al K, 6 =0, k=0,...,p1;
aZOde(s:O, k=0,...,p9;
ApK6=0, k=0,...,p1},

where Kq, and K¢, are the ‘extraction’ matrices such that dy = Kgq, 0 and c;, = K¢, 6.
Note that cg10 and dj1,0 are strictly positive, so they do not contribute restrictions to
the tangent cone. The explicit forms of VA (0) and VAL (6) are derived in Section 2.4.
Fisher’s information matrix Fg, which appears in the results below, was derived in Section
2.1.

Lemma 4 |8, — 60| = Op(n~"/?) if V/n||&,| = Op(1).

Proof. The estimator 6, maximizes £,(8), or equivalently
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over 0 € O. Let r(x,0,0)) be such that

log fo(z) = log fo,(x) + Vlog fo,(z)" (6 — 6o)
+ Ht‘) — 90” 7’(.%', 9, 90),

and M(0) = Eg, {log fo(X)} as above. Then

M,(8) = Y Vlog fo,(Xi)"(6 — 60)
=1

+1/0 — 60| Z[T(Xiv 6,6o) — Eeo{r(Xv 6,60)}]

=1

+n{M(6) — M(60)} — n&; {P(6) — P(o)}.

Note that Eyg,{V log fo,(X)} = VM (6y) = 0 because fg(z) is a density function; the fact
that 6y maximizes M (€) does not necessarily imply VM (6y) = 0 because 8y may be on
the border of ©. Let

1

Ry (0) = —= > [r(X:,6,60) — Eg{r(X,0,60)}]
=1

R

and

1 n
7, = — log £(Zs, 60).
N ;V og f(Zi, 60)
Since £,,(0,) > £,(0) = 0,

VIZE (B, — 80) + Vnl|B,, — 00| Ru(8,) — gl {P(B,) — P(60)}
> —n{M(0,) — M(60)}. (14)

Clearly ||Z,|| = Op(1) because Z,, 2 N(0,Fp). The mean value theorem applied to P(8)

implies

&, {P(8,) —P(60)} = n[&,]0p(6, — 60l)
= Vnl&,10p(1)vn]8, — |-

The process R, (0) is equicontinuous in 6 (Pollard, 1984, ch. 7) and R,,(6) 2 N(0,v(8,8y))

with v(6g,0p) =0, so R,(0,) L. 0. Then it follows from (14) that

{0p(1) + 0p(1) = Vall&,l0p(1) 118, — 60|
> —n{M(d,) — M(6)}.
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Now,
M(B,) — M(80) = (B — 00)" VM (80) @, — 00) + o1 (18, — 60])
and V2M(0,) = —Fy, so if \; > 0 is the smallest eigenvalue of Fy,
—n{M(8,) — M(80)} = |8, — Bol*A1 —nop(]|6, — 6ol
Then from the last two inequalities we have
{Op(1) + 0p(1) = V/n||€,[|0p(1)}v/n]|B, — B0l = n]|B,, — B0l {A1 — op(1)},
which implies \/n||@,, — 0o = Op(1). =
Theorem 5 Under assumption A4, \/n(8, — o) 20 0(Z), with 6(Z) the mazimizer of
W(8) = (2" ~ KTDP(80)}6 — 16" Fod
over § € J, where Z ~ N(0,Fy).

Proof. Let W, (8) = ,(60 + 8/+/n) with £,(8) as in the previous lemma. Then

Wo(6) = Zl¢
+|6]| Bn (80 + 6/+/n)
+n{M (60 +6/v/n) — M(6o)}
—n&n{P(60+ 6/v/n) — P(60)},

and 8,, = \/n(0,, — 6y) maximizes W, (8) over .7, = /n(© — {8y}). Having already proved
that ||8,]| = Op(1), given € > 0 we can take K such that P(||8,| < K) > 1 — ¢ for every

n, and focus on the set 7, N {||d]| < K}. In the limit, as n — oo, we have:
Iy — T, the tangent cone of © at O

(Geyer, 1994);

Z, 2 7 ~ N(0, Fy);

R, (60 + 8,/v/n) 20 for any bounded sequence {6y}
by stochastic equicontinuity of R,,(0);

n{M (80 + 6//m) ~ M(80)} = 38" {~Fo + op(1)}5;

and

&, {P (60 +8/vn) — P(60)} = V&, {DP(8o) + op(1)}9.
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All this implies that W, (8) 2 W (8) with

1
W () ={ZT — kTDP(6¢)}6 — §5TF05,
and the convergence is uniform in 4, i.e. SUp 7, A {||5||<K} W (8) — W ()| R 0. Then

argmax W, (4) 2 argmax W (4),
Tn0{||0]| <K} To

which implies that &, A 0(Z) as stated. =

We have Z) = {§ € R" : A§ = 0}, with A the r; x r matrix with rows Vh{;(6o)7,
VhE(60)T, al K, , alyKg, and ApK,. Then a § € Jp is of the form § = BT with B
an orthogonal (r — r1) X r matrix with rows orthogonal to those of A and d € R"™" free.

So we can reparameterize the process W (4) above in terms of 5:
~ -~ 1~ ~
W () = W(BT3) = {27 — k'DP(8y)}BT5 — 55TBFOBT<5,

which is maximized by 8(Z) = (BFgBT)"'B{Z — DP(68y)"k}, and then §(Z) = BT§(Z).
Since Z ~ N(0, Fy), we have §(Z) ~ N(—(BFoB”)"'BDP(6,)” k, (BFyB”)~!) and then

0(Z) ~N(—=VDP(0y) 'k, V)
with V = BT (BF¢B?)!'B. The explicit form of DP(8y) is derived in Section 2.4.

2.4 Derivatives of constraints and smoothness penalties

The explicit forms of VA(8) and VhD(0) can be derived as follows. Let K, be the
q1 X r matrix that ‘extracts’ ¢ from 0, that is, ¢, = K¢, 0. Then we can write hg,(e) =
6"KI J K0 — 6 and it follows that

Vhi(0) = (KL I Ke, +KL 1K, )0.

k

Similarly, if Kgq, is the g2 xr matrix such that d, = Kgq, 8, we have hﬁ(@) = OTngJSdeH—
d; and then
Vhiy(0) = (K JKq,+K§ I Ka,)6.

The explicit form of DP(0) is derived in a similar way. Using extraction matrices

K as above and the smoothing matrices €2; and €2 specified in Section 1.2, we have
P(0) = (P(u), 4L, P(¢), P(v), 202, P(¥))" with

P(p) = clQco
= 0"K! 0,K.6,

0
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> Plo) = tr(CTC)

k=1
= vecCT(I,, ® Q) vecC
= GTKg;eCC(Im ® Qt)Kvec Cg,
P(V) = dgﬂst
= 0"KJ] 9.Kq,b,
and
p2
S P(y,) = t(DTQ,D)
k=1
= OTK\T/LCD(Ipz ® Qs)]KvecDO-
Then
20" KZ K,
DP(Q) — 20TK3:ecC(Ip1 ® Qt)KvecC

260"K7 Q.Kaq,
20TI<\7;ec D (IP2 ® QS)K"eC D

3 Simulations

We provide here some additional plots with simulation outputs, specifically for the temporal
mean and components u, ¢; and ¢o; the spatial mean and components, unfortunately,
cannot be visualized this way. Figures 1 and 2 show plots of the true u and the simulated
is for different sample sizes, for 7 = log 10 and 7 = log 30 respectively. Figures 3 and 4 do
the same for qAﬁl, and Figures 5 and 6 for <Ab2.

4 Application: Chicago’s Divvy bike sharing system

In this section we include additional plots for the Divvy data analysis presented in the
paper.
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(@) (b) ©

Figure 1: Simulation results. (a) True temporal mean p and (b)—(e) simulated estimators
i for sample sizes (b) n = 50, (¢) n = 100, (d) n = 200 and (e) n = 400. Rate parameter
7 = log 10.
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@ (b) (©

Figure 2: Simulation results. (a) True temporal mean p and (b)—(e) simulated estimators
f for sample sizes (b) n = 50, (c) n = 100, (d) » = 200 and (e) n = 400. Rate parameter
7 = log 30.
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Figure 3: Simulation results. (a) True temporal component ¢; and (b)-(e) simulated
estimators ¢, for sample sizes (b) n = 50, (c) n = 100, (d) n = 200 and (e) n = 400. Rate
parameter 7 = log 10.
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@) (b) (©

0 0.5 1

(d) (e)

Figure 4: Simulation results. (a) True temporal component ¢; and (b)-(e) simulated
estimators ¢; for sample sizes (b) n = 50, (c¢) n = 100, (d) n = 200 and (e) n = 400. Rate
parameter 7 = log 30.
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Figure 5: Simulation results. (a) True temporal component ¢, and (b)—(e) simulated
estimators ¢4 for sample sizes (b) n = 50, (c¢) n = 100, (d) n = 200 and (e) n = 400. Rate
parameter 7 = log 10.
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@ (b)

Figure 6: Simulation results. (a) True temporal component ¢, and (b)-(e) simulated
estimators ¢, for sample sizes (b) n = 50, (c) n = 100, (d) n = 200 and (e) n = 400. Rate
parameter 7 = log 30.
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Figure 7: Divvy Data Analysis. Component scores for (a) first temporal component, (b)
second temporal component, (c) first spatial component, and (d) second spatial component.
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Figure 8: Divvy Data Analysis. Effect of the first spatial component on the baseline
intensity. Contour plots show baseline intensity minus [(a)] and plus [(b)] a multiple of the

component.
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