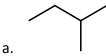
Chapter 9 - Chemical Bonding I: The Covalent Bond

- 1. For the compounds and elements listed, designate the type of bonding present: ionic (I), covalent (C), both ionic and covalent (IC), or neither (N).
 - a. Na₂O
 - b. MgCO₃
 - c. N₂O
 - d. NaNO₂
 - e. NO₂
 - f. Al
 - g. K₂SO₄
 - h. K₂S
 - i. Al_2O_3
 - j. SO₃
 - k. Pd
 - I. PCI₅
 - $m. Cl_2$
 - n. Ne
 - o. NaClO₄
 - p. ICl₃
 - q. FeCl₃
- 2. Give the reaction corresponding to the lattice energy for each ionic compound listed and describe (in general) what is needed to determine the lattice energy in a Born-Haber cycle.
 - a. LiCl
 - b. MgCl₂
 - c. KF
 - d. CaF₂
- 3. Give the Born-Haber cycle for magnesium chloride. The molar enthalpy of sublimation of magnesium is 147.70 kJ·mol⁻¹. What is the lattice energy for magnesium chloride?
- 4. Give the Lewis dot structure, the shape (at the central atom, unless otherwise stated), the hybridization, and the polarity of the following molecules.
 - a. SO_2
 - b. COH₂
 - c. CH₃OH (give shape, etc. for carbon and oxygen)
 - d. HCN
 - e. N_2O
 - f. SOCl₂

- g. CF₂Cl₂
- h. HCCH
- i. H₂CCH₂
- j. N_2O_4
- k. $H_2C_2O_4$ (this is oxalic acid the hydrogen atoms are bonded to oxygen)
- I. Cl₂CCH₂
- m. H₂CO₃
- 5. Give resonance structures for any applicable molecules in number 4, using formal charges comment on the validity of the structures.
- 6. Determine the number and type of bonds broken versus formed for the reactions. Assign which are exothermic and which are endothermic.
 - a. Combustion of 1 mol of methanol (CH₃OH)
 - b. Combustion of 1 mol of acetylene (C₂H₂)
 - c. Formation of 2 mol of ammonia
 - d. Combustion of 1 mol of CO
 - e. Formation of 2 mol of hydrogen fluoride
 - f. Formation of 2 mol of hydrogen chloride
 - g. Dimerization of NO₂ to N₂O₄ (making 1 mol of N₂O₄)
- 7. Using bond enthalpies, assign whether the reactions in number 6 will be exothermic or endothermic.
- 8. Calculate the reaction enthalpies for the reactions in number 6 using standard molar enthalpies of formation.
- 9. Comment on any differences between the values in number 7 to number 8.
- 10. Plot the reactions in number 7 in an enthalpy diagram showing the "intermediate" where all bonds are broken.
- 11. Do you think any "intermediate" you designated in number 10 is a true intermediate for these reactions?

<u>Chapter 10 – Chemical Bonding II: Molecular</u> <u>Geometry and Hybridization of Atomic Orbitals</u>


1. For the molecule shown give the shape, number of σ and π bonds, and hybridization of each marked atom. Give the total number of valence electrons for the molecule and the total number of σ and π bonds.

$$C_1$$
 C_2
 C_4
 C_5
 C_5
 C_5
 C_5
 C_5

- 2. Give the hybridization on all carbons and oxygens in the following molecules.
 - a. CH₃OH
 - b. HCCH
 - c. H₂CCH₂
 - d. H_2CO_3
 - e. $H_2C_2O_4$
- 3. Show σ versus π overlap for 2p orbitals.
- 4. Show π overlap for 2d orbitals can d orbitals orientate for σ overlap?
- 5. Show bonding and antibonding orbitals for both sigma and pi molecular orbitals.
- 6. Give the molecular orbital diagram for Li₂, Li₂ and Li₂. What is the bond order for each molecule or ion and which would be predicted to be the most stable?
- 7. What is the molecular orbital diagram for N_2 , N_2^- , and N_2^{2-} ? What is the bond order for each molecule or ion and which be predicted to have the longest or shortest bond length?

Chapter 11 – Organic Chemistry

- 1. What is the molecular and empirical formula for the organic molecules listed?
 - a. An alkene with 6 carbons (with 1 double bond only). What is the hybridization on one of the carbons in the double bond?
 - b. An alkane with 18 carbons. Do all of the carbon atoms have the same hybridization?
 - c. An alkyne with 2 carbons. What is the shape at one carbon atom? What is the hybridization of this carbon?
 - d. An alkene with 2 carbons. What is the shape at one carbon atom? What is the hybridization of this carbon?
 - e. An alkane alcohol with 4 carbons. How many sigma and pi bonds are in this molecule?
 - f. An alkane carboxylic acid with 4 carbons. Is the hybridization on both oxygen atoms the same?
- 2. What is the formula, the number of sigma and the number of pi bonds in the organic molecules shown?

Final Exam Worksheet

Chapter 12 – Intermolecular Forces and Liquids and Solids

- 1. Give the intermolecular forces of the following pairs of substances
 - a. CO₂ and O₂
 - b. CH₃CN and CH₃OH
 - c. CH₃CH₂OH and NH₃
 - d. CH₃OCH₃ and CH₃CH₂OH
 - e. Cl₂ and Br₂
 - f. HCl and HF
 - g. N₂ and CO
 - h. CH₃(CH₂)₈OH and H₂O
- 2. For the preceding substances, select which substance would have a higher boiling point (based on intermolecular forces).
- 3. For the substances in number 1, once mixed together, give the forces between the substances and comment on the degree of solubility.
- 4. What type(s) of intermolecular forces are present in a mixture of potassium nitrate with the solvents? In which substance is potassium nitrate most soluble?
 - a. Carbon tetrachloride
 - b. Benzene
 - c. Acetonitrile, CH₃CN
 - d. Ethanol
 - e. Hexane

- 5. Show hydrogen bonding between molecules of formic acid (HCOOH) and also with formic acid and water.
- 6. Show the interaction of a soluble ionic salt (like KCl) and water. Is it correct to simply show 1 water molecule interacting for every 1 ion in solution? What happens (macroscopically) when the number of ions exceeds the capacity of water to solvate? What is this called?
- 7. Describe cohesion and adhesion and how these work together for water in a glass capillary tube. Why does water form a meniscus with a concave shape?
- 8. What is viscosity and which substance is more viscous?
 - a. Water or carbon tetrachloride
 - b. Diethyl ether or ethanol
 - c. Ethylene glycol (HOCH₂CH₂OH) or glycerol
- 9. Determine the volume of the unit cells with the given interatomic distances in Å.
 - a. Palladium, (FCC), 2.751
 - b. Gold, (FCC), 2.884
 - c. Barium, (BCC), 4.347
 - d. Cesium, (BCC), 5.32
- 10. Determine the atomic radius of the atoms, given the packing efficiency and volume.
 - a. Nickel (FCC), 74.0 %, 0.04377 nm³
 - b. Potassium (BCC), 68.0 %, 0.1508 nm³
 - c. Polonium (PC), 52.4 %, 0.03743 nm³
- 11. Determine the type of unit (cubic) cell given the atomic radius, volume of the unit cell, and packing efficiency (determine the number of atoms per unit cell).
 - a. Copper, 1.278 Å, 0.04723 nm³, 74%
 - b. Thallium, 1.681 Å, 0.05851 nm³, 68.0%
- 12. Metallic sodium (BCC) has a density of 0.97 g·cm⁻³. Determine the length of an edge of the unit cell. What is the atomic radius of sodium?
- 13. Gold (FCC) has a unit cell length of 407.86 pm and a density of 19.31 g⋅cm⁻³. Determine Avogadro's number using this information.
- 14. Silver has an atomic radius of 144 pm. Determine the density of silver if it crystallized in PC, BCC, or FCC. The density of silver is 10.6 g·cm⁻³, which cubic lattice does silver have?
- 15. Why is the melting point for ionic or covalent solids so high? How are these solids similar and how are they different?

- 16. You have a solid which has a melting point of 800°C, is soluble in water and does not conduct electricity in the solid state. What type of solid is this?
- 17. You have a solid which has a melting point of 1650°C, is insoluble in water or hexane and does not conduct electricity in the solid state. What type of solid is this?
- 18. You have a solid which has a melting point of 175°C, does not conduct electricity in the solid state and is soluble in hexane. What type of solid is this?
- 19. What is the correlation between vapor pressure and intermolecular forces?
- 20. What is the correlation between enthalpy of vaporization and intermolecular forces?
- 21. Determine the normal boiling point of the substances given the vapor pressure at 25°C and the ΔH_{vap} :
 - a. CCl_4 (P = 98.28 mm Hg; $\Delta H_{vap} = 30.0 \text{ kJ} \cdot \text{mol}^{-1}$)
 - b. C_6H_6 (P = 72.53 mm Hg; $\Delta H_{\text{vap}} = 30.8 \text{ kJ} \cdot \text{mol}^{-1}$)
 - c. I_2 (P = 6.264 mm Hg at 40°C; $\Delta H_{\text{vap}} = 41.80 \text{ kJ·mol}^{-1}$)
 - d. Hg (P = 0.001646 mm Hg; $\Delta H_{\text{vap}} = 59.30 \text{ kJ} \cdot \text{mol}^{-1}$)
- 22. Determine the vapor pressure of the following substances at room temperature (25°C) given the normal boiling point and ΔH_{vap} :
 - a. Br₂ (T_b = 332.4 K; ΔH_{vap} = 29.45 kJ·mol⁻¹)
 - b. H_2O ($T_b = 373 \text{ K}; \Delta H_{vap} = 40.656 \text{ kJ} \cdot \text{mol}^{-1}$)
 - c. $CS_2 (T_b = 319.4 \text{ K}; \Delta H_{vap} = 26.74 \text{ kJ} \cdot \text{mol}^{-1})$
- 23. Explain the correlation of pressure to boiling point and explain how to find this on a phase diagram.