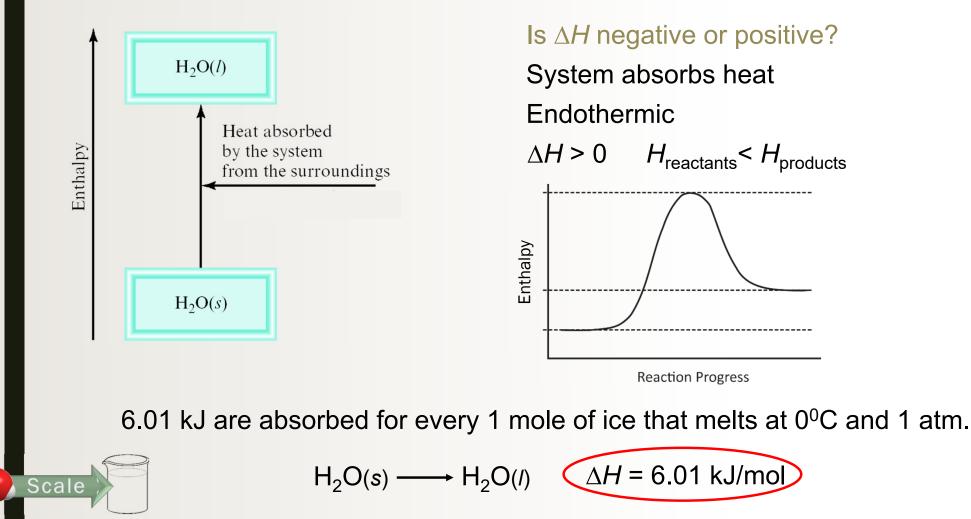
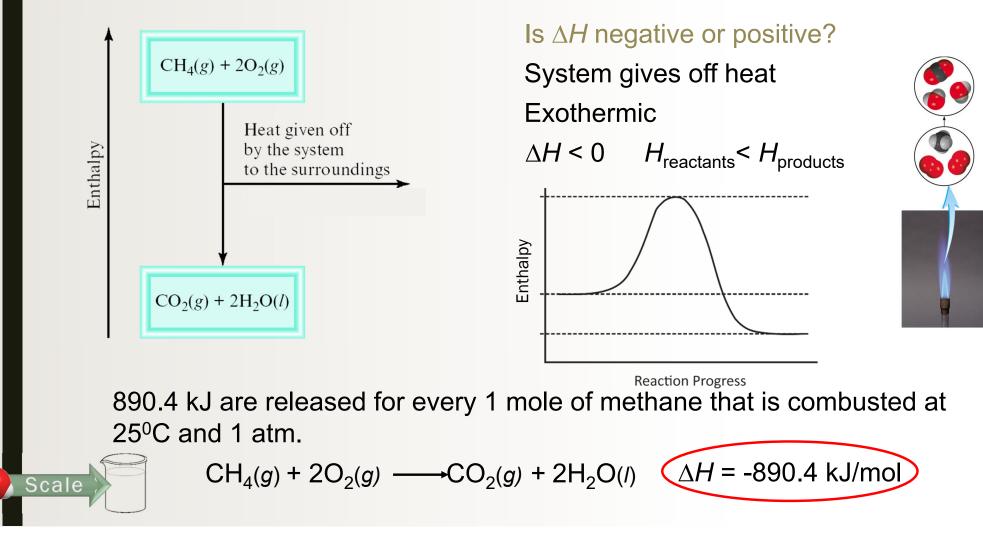
ENERGY RELATIONSHIPS IN CHEMICAL REACTIONS

Chapter 6 – Energy Relationships in Chemical Reactions

- The nature of energy and types of energy (6.1)
- Energy changes in chemical reactions (6.2)
- Introduction to thermodynamics (6.3)
- Calorimetry (6.5)
- Enthalpy of chemical reactions (6.4)
- Standard enthalpy of formation and reaction (6.6)


Chapter 6 – Energy Relationships in Chemical Reactions

- The nature of energy and types of energy (6.1)
- Energy changes in chemical reactions (6.2)
- Introduction to thermodynamics (6.3)
- Calorimetry (6.5)
- Enthalpy of chemical reactions (6.4)
- Standard enthalpy of formation and reaction (6.6)


- What is heat?
- What is a state function?
- What is enthalpy?
 - Heat content of a reaction or a quantity to describe the heat flow into or out of a system in a process that occurs at constant pressure
- Is enthalpy a state function?
 - What does this mean in terms of a reaction?
- How can we visualize this?

Thermochemical Equations

Thermochemical Equations

- How is energy released in a reaction?
- How are enthalpy and heat related?
- How are enthalpy and energy related?
- Are all reactions that are exothermic spontaneous?
- Are all reactions that are endothermic spontaneous?

Consider the role of the surroundings

- What are the rules for enthalpy?
 - 1. Writing a thermochemical equation
 - 2. Direction of the equation (reactants vs. products)
 - 3. Extensive property increasing or decreasing the amounts of products or reactants
 - 4. State property one reaction or multiple reactions to an overall reaction

- Key Definitions:
 - Standard conditions
 - Enthalpy of formation
 - Enthalpy of combustion
 - Enthalpy of solution
 - Enthalpy of vaporization (heat of vaporization)
 - Enthalpy of fusion (heat of fusion)
- Where will you find these data?

Table 6.3	Heats of Some Typical Reactions Measured at Constant Pressure				
Type of Reac	tion	Example	ΔH (kJ)		
Heat of neutra	lization	$HCl(aq) + NaOH(aq) \longrightarrow NaCl(aq) + H_2O(l)$	-56.2		
Heat of ioniza	tion	$H_2O(l) \longrightarrow H^+(aq) + OH^-(aq)$	56.2		

Heat of fusion	$H_2O(s) \longrightarrow H_2O(l)$	6.01
Heat of vaporization	$H_2O(l) \longrightarrow H_2O(g)$	44.0*
Heat of reaction	$MgCl_2(s) + 2Na(l) \longrightarrow 2NaCl(s) + Mg(s)$	-180.2

*Measured at 25°C. At 100°C, the value is 40.79 kJ.

Table 6.4	Standard Enthalpies Substances at 25°C	of Formation of So	ome Inorganic
Substance	$\Delta H_{\rm f}^{\circ}$ (kJ/mol)	Substance	$\Delta H_{\rm f}^{\circ}$ (kJ/mol)
Ag(s)	0	$H_2O_2(l)$	-187.6
AgCl(s)	-127.04	Hg(l)	0
Al(s)	0	$I_2(s)$	0
$Al_2O_3(s)$	-1669.8	HI(g)	25.94
$\operatorname{Br}_2(l)$	0	Mg(<i>s</i>)	0
HBr(g)	-36.2	MgO(s)	-601.8
C(graphite)	0	$MgCO_3(s)$	-1112.9
C(diamond)	1.90	$N_2(g)$	0
$\mathrm{CO}(g)$	-110.5	$NH_3(g)$	-46.3
$CO_2(g)$	-393.5	NO(g)	90.4
Ca(s)	0	$NO_2(g)$	33.85
CaO(s)	-635.6	$N_2O_4(g)$	9.66
$CaCO_3(s)$	-1206.9	$N_2O(g)$	81.56
$\operatorname{Cl}_2(g)$	0	O(g)	249.4
HCl(g)	-92.3	$O_2(g)$	0
Cu(s)	0	$O_3(g)$	142.2
CuO(s)	-155.2	S(rhombic)	0
$F_2(g)$	0	S(monoclinic)	0.30
HF(g)	-268.61	$SO_2(g)$	-296.1
H(g)	218.2	$SO_3(g)$	-395.2
$H_2(g)$	0	$H_2S(g)$	-20.15
$H_2O(g)$	-241.8	ZnO(s)	-347.98
$H_2O(l)$	-285.8	ZnS(s)	-202.9

p. 206 of LA book

More complete listing in Appendix 2 of your textbook.

Appendix 2 (or the information from here) will be provided on all tests or quizzes.

Table 6.4, p. 199

What is an energy diagram?

Practice:

- What is the thermochemical equation and energy diagram for the enthalpy of formation of ammonium nitrate?
- What is the thermochemical equation and energy diagram for the enthalpy of solution of ammonium nitrate?

- How do we measure change in enthalpy for a reaction?
 - Direct method
 - Indirect methods
 - Using a series of reactions (Hess's Law)
 - Using tables of data (enthalpy of formation)

Table 6.4	Standard Enthalpies Substances at 25°C		ome Inorganic
Substance	$\Delta H_{\rm f}^{\rm o}$ (kJ/mol)	Substance	$\Delta H_{\rm f}^{\circ}$ (kJ/mol)
$\overline{\mathrm{Ag}(s)}$	0	$H_2O_2(l)$	-187.6
AgCl(s)	-127.04	Hg(l)	0
Al(s)	0	$I_2(s)$	0
$Al_2O_3(s)$	-1669.8	HI(g)	25.94
$\operatorname{Br}_2(l)$	0	Mg(s)	0
HBr(g)	-36.2	MgO(s)	-601.8
C(graphite)	0	$MgCO_3(s)$	-1112.9
C(diamond)	1.90	$N_2(g)$	0
$\mathrm{CO}(g)$	-110.5	$NH_3(g)$	-46.3
$CO_2(g)$	-393.5	NO(g)	90.4
Ca(s)	0	$NO_2(g)$	33.85
CaO(s)	-635.6	$N_2O_4(g)$	9.66
$CaCO_3(s)$	-1206.9	$N_2O(g)$	81.56
$\operatorname{Cl}_2(g)$	0	O(g)	249.4
HCl(g)	-92.3	$O_2(g)$	0
Cu(s)	0	$O_3(g)$	142.2
CuO(s)	-155.2	S(rhombic)	0
$F_2(g)$	0	S(monoclinic)	0.30
HF(g)	-268.61	$SO_2(g)$	-296.1
H(g)	218.2	$SO_3(g)$	-395.2
$H_2(g)$	0	$H_2S(g)$	-20.15
$H_2O(g)$	-241.8	ZnO(s)	-347.98
$H_2O(l)$	-285.8	ZnS(s)	-202.9

More complete listing in Appendix 2 of your textbook.

Appendix 2 (or the information from here) will be provided on all tests or quizzes.

Table 6.4, p. 199

p. 209 of LA book

Practice

- What is the enthalpy of combustion for methane?
- What volume of methane at 1 atm and 25°C is needed to heat 500 mL of water from 5°C to 95°C?
- If the current price of natural gas is \$0.10 per cubic foot, (and we assume natural gas is all methane) how much does it cost to heat the water?

Practice

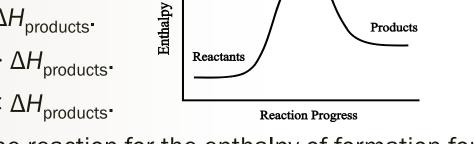
- What is the thermochemical equation for the molar enthalpy of solution of calcium chloride?
- What is the enthalpy of formation for dinitrogen pentoxide given:

$$2H_{2}(g) + O_{2}(g) \rightarrow 2H_{2}O(I) \qquad \Delta H = -571.5 \text{ k.}$$

$$N_{2}O_{5}(g) + H_{2}O(I) \rightarrow 2HNO_{3}(I) \qquad \Delta H = -76.6 \text{ kJ}$$

$$\frac{1}{2}N_{2}(g) + \frac{3}{2}O_{2}(g) + \frac{1}{2}H_{2}(g) \rightarrow HNO_{3}(I) \qquad \Delta H = -174 \text{ kJ}$$

Practice


- Which substance(s) will have an enthalpy of formation equal to zero?
 - a. O(g)
 - b. $O_2(g)$
 - c. O₂(I)
 - d. $H_2O(I)$
 - e. OH-(aq)

Products

6.4 and 6.6 Enthalpy

For the reaction energy diagram shown to the right, the reaction is

- A. exothermic with $\Delta H_{\text{reactants}} > \Delta H_{\text{products}}$.
- **B.** exothermic with $\Delta H_{\text{reactants}} < \Delta H_{\text{products}}$.
- **C.** endothermic with $\Delta H_{\text{reactants}} > \Delta H_{\text{products}}$.
- **D.** endothermic with $\Delta H_{\text{reactants}} < \Delta H_{\text{products}}$.

Which reaction corresponds to the reaction for the enthalpy of formation for methanol, CH₃OH(I)?

- A. $2CH_3OH(I) + 3O_2(g) \rightarrow 2CO_2(g) + 4H_2O(I)$
- **B.** $CH_3OH(I) + \frac{3}{2}O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$
- C. 2C(s, graphite) + $O_2(g)$ + $4H_2(g) \rightarrow 2CH_3OH(I)$
- **D.** C(s, graphite) + $\frac{1}{2}O_2(g) + 2H_2(g) \rightarrow CH_3OH(I)$

Hess's Law states when reactants are converted to products, the change in enthalpy is the same whether the reaction takes place in one step or in a series of steps. This is valid because change in enthalpy is

- A. extensive.
- B. a state function.
- C. a type of energy.
- D. equal to energy when no work is done.