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We prove the general existence of steady states with positive consumption in an N goods
and fiat money version of the Kiyotaki-Wright model by admitting mixed strategies. We also
show that there always exists a steady state in which everyone accepts a least costly-to-store object.
In particular, if fiat money is one such object, then there always exists a monetary steady state.
We also establish some other properties of steady states and comment on the relationship between
steady states and (incentive) feasible allocations.

I. INTRODUCTION

In Kiyotaki-Wright (1989), the authors describe steady-state patterns of exchange among
indivisible and durable, but costly-to-store objects in a model in which people meet
pairwise and at random. They study versions with three goods and with and without a
fourth object, fiat money, and consider only pure trading strategies. In the version without
fiat money they find, among other things, that there is a region of the parameter space
for which there is no pure strategy steady state. Here we study an N good plus fiat
money version of their model and allow mixed trading strategies. The purpose is to show
the general existence of non-monetary (with fiat money not used) and monetary (with
fiat money used) steady states with positive consumption and with agents neither freely
disposing of goods nor giving gifts." We also establish some trading-pattern properties
of these steady states, and explore the relationship between steady states analysed here
and some notions of incentive feasible allocations.

The outline of this paper is as follows. In Section II, we describe the physical
environment of the model. In Section III, we set up the notation, describe the individual
stationary decision problems, and define monetary and non-monetary steady states. Our
existence results are established in Sections IV-VII. First, in Section IV, we use a fixed
point argument to show that restricted steady states (in dominant strategies) exist when
free disposal is disallowed and agents are prohibited from accepting fiat money. Then
in Section V, we give sufficient conditions (in terms of the parameters of the model) for
these restrictions to be non-binding and to guarantee positive consumption, thus implying

1. Kehoe, Kiyotaki and Wright (1989) have examples of steady states with positive consumption in mixed
strategies for parameters for which there are no such steady states in pure strategies.
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that any Section IV fixed point is a positive consumption (non-monetary) steady state.
Roughly speaking, the sufficient conditions require that the utility costs of storing be
relatively low compared to the utility of consuming. In Section VI, we establish some
trading-pattern properties of non-monetary steady states. One of these is that if there is
a least costly-to-store good and the sufficient conditions of Section V hold, then there
always exists a non-monetary steady state in which everyone accepts the least costly-to-
store good. The logic of this result is used in Section VII to establish the existence of a
monetary steady state whenever fiat money is a least costly-to-store object and a condition
analogous to that of Section V holds.

Lastly, in Section VIII, we discuss the relationship between steady-state allocations
and a notion of stationary incentive feasible allocations. The discussion is motivated by
Kiyotaki-Wright’s observation that in some examples, always-trade strategies lead to
allocations that Pareto dominate some steady-state allocations, even though these (always-
trade) strategies are not individually optimal. We show that there is a concept of feasibility,
which includes incentive compatibility and individual rationality restrictions, that implies
that the set of steady-state allocations and a comparable set of stationary feasible
allocations coincide. According to this concept of feasibility, the allocation resulting
from always-trade strategies is not feasible and necessarily, at least one steady state is
optimal.

II. THE MODEL

Time is discrete. There are N +1 indivisible and storable objects—N (consumption)
goods and fiat money. Thereis a[0, 1/ N] continuum of each of N types of infinitely-lived
agents. (We will generally, but not always, index objects by Latin letters—i, j, . . . , taking
integer values 0,1,2,..., N with object 0 being fiat money, and agent types by Greek
letters—a, B, . .., taking integer values 1,2,..., N.)

An agent of type a maximizes the expected value of discounted utility, with discount
factor p € (0,1) not dependent on a.> Date ¢ utility of type a is an increasing, time-
independent function of a’s date ¢t consumption of good i = @ and a decreasing function
of the amounts of objects a stores from ¢ to t+1.

It turns out that we need to evaluate date ¢ utility at only the following N +3 points.
We let u, be the date ¢ utility for type a of consuming one unit of good i=a at ¢t and
not storing anything from ¢ to t+1, we let —c,; be the date ¢ utility for type a of not
consuming at ¢ and of storing one unit of object i from ¢ to t+1, and we let 0 be the
date ¢ utility of neither consuming nor storing.

For each unit of good i = @ consumed by a type a agent at date ¢, the agent produces
one unit of good j=a+1 (modulo N) which appears at date ¢t+1. That is, there is a
linear technology of the form: each unit of consumption of good i at ¢t gives rise to one
unit of good i+1 at t+1.

At each date, each agent is paired at random with one other agent. Moreover, it is
assumed that paired agents do not know each other’s trading histories. This is plausible
because with a continuum of agents the probability of these agents having met before or
of either having met others who had met others . . . who had met the current trading
partner, is zero. Trading partners are assumed to know each other’s type and current
inventory. Finally, the initial condition, although strictly speaking not used, should be
taken to be that each agent begins with exactly one unit of some object.

The pairwise meetings and the specialized preference and technology assumptions
are intended to imply the need for indirect trades—trades in which agents acquire

2. Nothing important hinges on the discount factors being identical across agent types.
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something other than their consumption good. They do if N > 2, because then a pairwise
meeting between two agents who have their produced goods does not give rise to a double
coincidence in consumed goods.

This model is the Kiyotaki-Wright model except in one respect. They assume that
agents can store at most one unit and can at any time choose between storing the object
they have and disposing of it and producing their production good. We assume that
consumption at ¢ is the sole input into production at ¢+1 and that there is no storage
capacity. The difference does not matter for the existence question. Their non-monetary
steady states correspond to ours without any moneyholders; the monetary steady states
are the same. The difference matters for comparing welfare between monetary and
non-monetary steady states, something we do not undertake in this paper.

III. DEFINITION OF A STEADY STATE

We use a notation that presumes that each person enters each period with one unit of
some object. Thus, the notation presumes that agents never dispose of any object nor
do they give it away to another agent for nothing. Our notation also presumes that trading
strategies are non-discriminatory (willingness to trade does not depend on the type of
agent one meets) and symmetric (all agents of a given type in the same trading situation
use the same strategy). We show that equilibria of this kind exist and that these remain
equilibria even if agents are permitted to freely dispose and strategies are permitted to
be discriminatory.

We let s7; be the strategy of agent a holding object i who meets with an opportunity
to trade i for j. We interpret it as the probability that « is willing to trade. Accordingly,
we assume s’ € I =[0,1]. We let se IN*DN+*DN denote the vector of these strategies.
We assume that the consumption storage strategies are also symmetric and let ¢, € I be
the probability that a type a agent will consume good « given that he ends up with good
a after trading. Then, (1—1,) is the probability that he will store good a. We let te I N
denote the vector of these strategies.

The timing of various activities within a period is shown in Figure 1 and described
below. Period ¢ extends from date ¢ to date ¢+ 1. At date ¢, each agent begins with one
unit of some object. At time A within period ¢, each agent meets another agent to trade.
At time B, each agent ends up with some object after the trading round. At time C, each
agent decides whether to store the object he has, or to consume it (if it is his consumption
good) and produce his production good. Thus, he starts period ¢+1 with one unit of
some object. We let p,; be the proportion who are type a agents and who hold object i
at the start of any period. These proportions must satisfy the following

Zi pal' = 1/ N (l)
t A B C t+1
| | - | | |
Pai(t) r8i(0) a,(1) Pai(t+1)
Wai(1) () W, (t+1)
an agent starts meets another ends up with stores or starts with one
with one unit agent to trade some object consumes and unit of some
of some object after trading produces object

FIGURE 1
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We let m denote the fraction of agents who hold money so that Y p,o=m. We let
pe INN*Y denote the vector of p,,’s.

For any agent, the probability of meeting a type a agent holding object i is p,;. We
let a,; denote the fraction of agents who are type a and end up with object i after trading,
i.e. at time B in Figure 1. In a steady state, the p,;, a.;, and s’; satisfy the following:

ai(8, P) = Pai = Pai Lp Xjwi PoiSciSpit Lp Ljwi PajPpiS 0jSBi> (2a)
pai = (1 - taaai)aai(sa P) + taai,a+laaa(s’ P), (Zb)
where 8; =1 if i=j and 0 otherwise.

If (p, s, t) on the right-hand sides of (2a) and (2b) pertain to one date, then the
right-hand side function in (2b) gives p,; at the next date. On the right-hand side of (2a),
the first term is the proportion who are type a and hold i prior to trade; the second term
consists of the fraction of those who trade for a different object; and the third term is
the proportion who are type a and trade some other object for object i. The explanation
for (2b) is the following. If i is neither a nor a +1 (which is a’s produced good), then
necessarily p,; equals a,;. If i is a, then p,; is the stored fraction (1—1,) of a,;. Lastly,
if i is @+ 1 then p,; is a,; plus the consumed fraction ¢, of a,,.

We now define the individual stationary decision problems in terms of optimal values.
Let r% € R be the optimal value (expected discounted utility) of type a with object i who
meets a type B with object j, i.e. at time A in Figure 1. Let v,; € R be the optimal value
for type a ending with object i after trading but before consuming or storing, i.e. at time
B in Figure 1. Lastly, let w,; € R denote the optimal value for type a beginning a period
with object i. We let ve RN™™*Y be the vector of v,,’s.

The values satisfy the following version of Bellman’s equation:

r¥ =max c; [x8f0u+ (1~ X55;) Vai] = Vo + Sfg MaX e [X(Vaj — Vai) ], (3a)

Wi =Zp Zj ijrﬁ]lzs (3b)
PWai — Cai ifi#a,0,

Vo =4 max [0, pw,; — Coi] if i=0, (3¢c)

maxzel [z(ua + pwa,i+1) + (1 - z)(pwai - cai)] if i =a.

Definition. A steady state with positive consumption consists of (s, p, t, v) such that

(s, p, t) satisfies equation (2), (4a)
(s, p, v) satisfies equation (3), (4b)
z=t, attains v,q, (4¢)
x = sJ; attains r% for all B, (4d)
(positive consumption) ta; >0, (4e)
(free disposal) v,; = 0. (4f)
and either (for a monetary steady state)
Yo Pao=m, (4g)
PaoShosg;ipsi>0 for some (a, B, j) with j#0, (4h)

or (for a non-monetary steady state)
Pao=m/N, (48
PaoShosh P =0 for all (a, B,j) with j#0. (4n")
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Remark. Given that no one else gives objects away, an agent’s expected discounted
utility from disposing of any object is 0. Therefore, condition (4f) implies that there is
no gain from disposing of any object. Note that condition (4f) is equivalent to r%=0.
This follows from (3a) because, r%=v,,=r2. In (4e), t:a; represents consumption of
good i. In a steady state this must equal production of good i which in turn must equal
consumption of good (i—1), and so on. This may be verified by summing (2b) over «
and using (2a) to note that }_ p.; =Y., a.;. Condition (4h) defines monetary trade; it
says that some trade of money for goods occurs. For a steady state to be non-monetary,
condition (4h’) requires that money never trade for goods. It follows that any initial
distribution of money holdings will be maintained. We assume that in a non-monetary
steady state money is equally distributed over types; this is condition (4g’). From equations
(3), it is easy to see that in a non-monetary steady state v,o=max [0, —c,o/(1—p)]. If
C,0>> 0, then this is to be interpreted to mean that money holders have disposed of money
and attained zero expected discounted utility. Accordingly, in a non-monetary steady
state we interpret p,o as the proportion who hold at most money.?

IV. EXISTENCE OF RESTRICTED NON-MONETARY STEADY STATES

We pursue the strategy outlined in the introduction for our existence result. We prohibit
goods holders from trading for money and we disallow disposal of goods. A fixed point
argument is used to establish the existence of such a steady state (in dominant strategies)
which satisfies conditions (4a)-(4c), (4d) except possibly for j=0, and (4g’). We then
give a sufficient condition involving utilities for any such fixed point to also satisfy the
remaining part of (4d), (4e), and (4f). Absent some such conditions, the fixed point could
have agents unwilling to trade, even for their consumption good.

Let,
b, =min [0, —c,0, —Ca1,---» —Can, Ua 1/ (1—p), (5a)
B, =max [0, —C,0, —Ca1,-- -5 —Can, Ua ]/ (1—p), (5b)
V,=[b., B.1, ‘ (5¢)
V=X Xi Ve, (54)
S={se INTDIN+*DON |0 —0}, (5e)
P={peINN*V|p,, satisfy (1) and p,o=m/N}. (5f)

We now define four mappings.* The first, u:Sx Px V-V, is defined by way of
(3a)-(3c) as follows:

(6a)

al

o {right-hand side of (3a), j #0,
. vai,j = 0,

3. In non-monetary steady states, those endowed with money are unable to trade for goods. Nevertheless,
meetings occur pairwise at random among all agents. This is consistent with the assumed exogeneity of the
meeting process in this model (people do not choose any aspect of who to meet and when to meet). Although
money holders may attain zero discounted utility, that need not be interpreted as zero consumption. All
significant aspects of the model are unaffected by assuming, for example, that every person is endowed each
period with some non-durable amount of consumption which does not serve as an input and which, by itself,
implies zero utility.

4. For the present analysis of non-monetary steady states it is possible to omit 0 and c,, on the right
sides of (5a) and (5b). However, including these is convenient since then the V,’s and V do not have to be
redefined for the analysis of monetary steady states.
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Wai=2p2; Paire (6b)

right-hand side of (3¢), i#0,

max [0, —¢,o/(1-p)],  i=0. (6¢)

(#«(S, D, v))ai = {

It follows from the Berge maximum theorem that (6a) defines a continuous function
r?: §x V> V, and hence (6b) defines a continuous function w,;: Sx Px V- V,. Apply-
ing the theorem again to (6c) shows that u is a continuous function.

Next we are interested in the maximizers in (3a) for j # 0 and in (3c) for i = a. The
first equality in (3a) suggests that, in general, the maximizing trading strategy correspon-
dence for (e, i) facing (,j) will depend on sj;, v, and v,.. However, the second
equality in (3a) shows that there exists a maximizing trading strategy correspondence for
(a, i) facing j that is independent of the strategy chosen by (,j) and independent of
type B. For this reason, we call this a dominant trading strategy correspondence and
denote it by o’;: V- I Inspection of the second equality in (3a) shows that

{1} if vaj—vm->0,j¢0,
0'{;" = I if vaj —Vni = 0, j # 0, (7a)
{0} if vaj = Uyi < 0, j # 0.

For j =0 we have the restriction
oai={0} (7b)

We also define the following consumption/storage strategy correspondences derived
from maximization in (3¢) for i = a. This is denoted 7, :Sx P x V- I Inspection of (3¢c)
for i = a reveals that

{1} if ua+pwa,a+l>pwaa — Caas
To =31 if uy+PpWeoi1=PWaa — Caa>s ®)
{0} if Uy +pwa,a+l < pwaa —Caa-

Inspection of (7) and (8) and application of the Berge maximum theorem shows that the
correspondences o’; and 7, are each non-empty, convex-valued and upper hemicon-
tinuous.

Finally, let m,;: X Px I > R be given by: m,(s, p, t) =right-hand side of (2b). It
follows that 7,;(+) is a continuous function.

We can now show the existence of restricted non-monetary steady states. Let

0=Xau Xi X;j0h: V>S5, (92)
m=Xa Ximai:SXPxIN > P, (9b)
T=XaTa:SXPX V>IN, (9¢)
v=(o,m1,pu):SXPxINxV->8xPxINxV. (9d)

Proposition 1. There exists a fixed point for the correspondence y; i.e. there exists
(s,p,t,v) e SX PxI" XV such that (s, p, t,v)€ ¢(s,p, t,v).
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Proof. From definitions (9) and earlier remarks, we have that ¢ is non-empty,
convex-valued, and upper hemicontinuous. Since §x Px IN x V is non-empty, compact
and convex, Kakutani’s fixed point theorem applies. ||

V. EXISTENCE OF NON-MONETARY STEADY STATES WITH
POSITIVE CONSUMPTION

Note that a restricted non-monetary steady state (a Proposition 1 fixed point) satisfies
conditions (4a)-(4c), and (4d) for j # 0 in the definition of a steady state. We now give
a sufficient condition for the fixed point to satisfy the remaining conditions for a non-
monetary steady state. The argument, which is rather long, proceeds as follows. We first
show, using part of the sufficient condition, that the fixed point is such that people want
to trade for and consume their consumption good (Proposition 2). That implies that the
fixed point is such that no one holds their own consumption good; p; =0 for all i. A
consequence is that the proportion of each type holding some other good is bounded
below. This, in turn, implies that there is a trading route using the lower bound proportions
and involving no more than N trades that produces a positive lower bound on the rate
of consumption for some type (Proposition 3). This immediately implies the same bound
for all types and the same bound for the proportion of each type holding their production
good, a lower bound for p;;., for all i. Finally, the uniform bound on p;;,, implies a
trading route for anyone starting with any good to their consumption good in no more
than N trades; namely, trade the good held to the person who consumes that good and
holds their production good and then repeat such trades, trading good i for good i+1,
until the consumption good is obtained. This and the entire sufficient condition imply a
lower bound on expected utility for any type holding any good, a bound which assures
that agents do not dispose of their goods (Proposition 4) and do not want to trade for
fiat money (Proposition 5).
First we introduce some notation. Let

p=Q0-m)/N(N-1), (10)
A, (6, n)=0"[Uy — pCaor1/(1—p)]+(1-6") min (0, -C,)/(1-p), (11)

where C, = max; .o Cy. It will turn out that p,; = p for some i #0, a. A,(6, n)is a weighted
average of two terms. The first is expected utility from consuming and producing and
storing the produced good forever. It is a lower bound on v,,. The second term is the
minimum of zero and the expected utility of storing the most costly-to-store good forever.
One part of the sufficient condition we use is

(C1) A,(6, N)>max (0, —c,)/(1-p),
where ¢, =min;., ¢,; and
§=pp/[1-p(1-Pp)]- (12)
Note that since 0< <1, (11) and (C1) imply
Uy = PCaas1/ (1= p) = As(6,0)> A (6,1)>- - -> A, (6, N), (13)
U+ Coi1 = Aa(0,0)+ Coasr/ (1= p) Z As(6,0) + ¢,/ (1—p)>0. (14)

We now show that if (C1) holds, then in any restricted non-monetary steady state agents
with goods always want to trade for and consume their consumption good.
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Proposition 2. Let (s, p, t,v) be a restricted non-monetary steady state and suppose
that condition (C1) holds. Then (a) si;=1 for i#0 and (b) t, =1.

Proof. (a)Suppose not. Then by (3a) for some (a, i) with i # a, 0; V,; = V,,. Without
loss of generality, let this i be such that v,; = v,; for all j#0. Then by (3a), r& = v, for
all (B,j). Substituting these values into (3b) we get w,; = U, = pWai — € from (3c).
Therefore, Vi =—Cai/ (1 —p)=—c¢,/(1—p). But Voo = [Ue — PCoa1/(1—p)]>
—¢,/(1—p) from (13) and (C1). That is, 0., > Va;, Which contradicts Ua; = Upq-

(b) Suppose not. Then by (3c) for some @, Vyo = PWae — Can- BY part (@), Upn > Uai
for all i#0, a. Therefore, by (3b) and (3a), W, = Vse = PWaa — Cae- It follows that
Vga = — Caa/(1 —p)=—c,/(1—p), which contradicts the lower bound on v,, used in part
(a). |

We can now show that (C1) implies that a restricted non-monetary steady state
satisfies the positive consumption condition (4e). We begin by setting out an expression
for a,, that will be used to establish a positive lower bound for some a,, and hence, in
view of the remark following the definition of a steady state, for all a,,.

In the appendix, we derive the following equation:

Zi;&o paivai = [aaap(ua + ca,a+l) _Zi#o paicai]/(l _P)- (15)

This says that the expectation of v,; is a sum of two discounted values: the average
probability of consuming, a,., multiplied by the utility implied by consuming, and average
storage costs. Since, by (14), u, + ¢, +1>0, we can solve (15) for a,, obtaining

Apo =Zi#0 pal'[(l _p)vai + cal']/p(ua + ca,a+l)' (16)

Since v,; = — c,;/(1—p), (storing good i forever is an option), a,, is a sum of non-negative
terms, a fact used below.

Proposition 3. Let (s, p, t, v) be a restricted non-monetary steady state. If condition
(C1) holds, then ta; >0 for all i.

Proof. We do this proof in steps.

Step 1. For some (k, I) there is a loop of the form (pys, Pim, - - - » Px-» P-x) Where each
p..=p (see 10) and the length of the loop (denoted K) is at most N. To see this start
with any i and let j# 0 be such that p; = max;., p;. Therefore, p; =p. By part (b) of
Proposition 2, ;=1 and hence (2b) implies that p; =0. Therefore, j# i. Now choose
k # 0 such that p; =max, .o py and continue the process in the obvious fashion. In at
most N steps we obtain a sequence of p’s containing a loop of the required form. (Note
that the k which begins the loop is not necessarily the same as the arbitrary i that begins
the sequence.)

Step 2. au = pl(1—p)vu+ cul/ p(u+ cp+1) ]
Here we have set a =k in (16) and used as the lower bound for a;; the i=1 term
in the summation with p,, replaced by p = py. ‘

Step 3. Ar > 0.
This will be established by deriving a lower bound for v,;. Suppose (i, i’) are two
of the goods in the Step 1 loop (the second subscripts) with i’ directly following i. Then

Vi Z p[ pir i+ (1 = i) Vi1 — Cias
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where the mequahty follows from r§ = v,; (not trading is alwayg an option) and ri; = vy
(trading for i’ is an option by the definition of the loop since sj=1). This implies

vkigoii’vki'_(l_ou)ckl/(l_p)’ (17)
where 6, = pp./[1—p(1—p;)]. Since p;- = p, 6,-= 0. Therefore, it follows from (17) that
Ui Z 0,0+ (1—0) min (0, —C,)/(1 - p). (18)

Now we use (18) to work backward from vy to vy. We know that vkszk((i, 0)>0.
Therefore, using 0,;=0, v,..=60A;(6,0)+(1—0)min(0,—C,)/(1—p)=Ai(6,1)>0.
Proceeding this way and using the recursion
Aa(oa n) = oAa(o’ h— 1)+ (1 - 0) min (03 _Ca)/(l _P),

we obtain

vz Au(8, K)Z Ac(6, N), (19)
since K = N.

Therefore
(1—-p)ou+cuz(1—p)Ac(6, N)+cy=(1-p)Ai(, N)+c.
Using this in the Step 2 inequality for a,,, we have
a Z pL(1—p) Ak(6, N)+ 1/ p(uye + Cicjerr) = a.

By (C1) (and (14)), a, >0 for all k, which completes Step 3.

To complete the proof of Proposition 3, we recall that in a steady state, we must
have a; = a; for all i, j#0. |

Now let p=min; a,. By (C1) p>0. We use p to state the additional part of the
sufficient condition. Let

6=pp/[1-p(1-5)] (20)
and note that, 0 < 6<1.
The additional part of the sufficient condition is
(C2) Aq(6, N)>max [0, —cao/ (1-p)].

Proposition 4. Let (s, p, t, v) be a restricted non-monetary steady state. If conditions
(C1) and (C2) hold, then v,;>0 for all (a,i) with i# 0 (implying that no one wishes to
dispose of a good).

Proof. We do this proof also in steps.

Step 1. Dii+1 gﬁ.
This follows from (2b), part (b) of Proposition 2 and Step 3 of Proposition 3, since
Piit1= G+ a; Z0+p.

Step 2. For any (i, j) with i,j#0, and i#j we can construct a loop of the form
Dijs Dj,j+15 Pi+1,j+25 - - - s Pi1,; Where each p (except possibly p;) is at least as large as p.
Therefore, by repeatmg the argument of Step 3 in Proposition 3 with 6 in place of 6 we
obtain

v; ZA; (6, N). (21)
We also have that (21) holds for j =i Therefore (C2) implies the result. ||

Proposition 5. Let (s, p, t, v) be a restricted non-monetary steady state. If conditions
(C1) and (C2) hold then s°; =0 uniquely attains the maximum in (3a) for j=0.
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Proof. 1t is sufficient to show that v,;> v, for all (a, i) with i#0. Since the
right-hand side of (C2) is v,, (see (6¢)), (21) gives the result. ||

Theorem 1. There exists a non-empty open set of parameter values for which there
exist non-monetary steady states with positive consumption.

Proof. By Proposition (2), (3), (4), and (5), any restricted non-monetary steady
state for parameters satisfying conditions (C1) and (C2) is a non-monetary steady state
with positive consumption. Note that u, >0 for all @ and c,; =0 for all (a, i) satisfy
conditions (C1) and (C2). By continuity, there is an e-neighbourhood of parameter
values around the above values which also satisfy (C1) and (C2).° ||

VI. SOME PROPERTIES OF NON-MONETARY STEADY STATES WITH
POSITIVE CONSUMPTION

Here we show that Theorem 1 steady states generally display non-trivial trading patterns.

Proposition 6. If N>2, then in a Theorem 1 steady state some types trade for other
than their consumption goods.

Proof. From (16) and Proposition 3, we have that for each i and some j#0, p; >0
and v;> —c¢;/(1—p). That is, type i is trading from position j with positive probability
and hence is also trading into that position with positive probability. If j# i+1 then
type i is trading for other than his consumption good. So, suppose that j=i+1. If i
trades for good i, then pg; > 0 for some type B #i. Now, either B#i+1or B=i+1. In
the former case B trades for other than B’s consumption good. In the latter case 8 was
holding other than 8’s production good, and so had to trade for it. ||

Next we show that if there is a good that is least costly to store for all agents, then
there is a steady state in which everyone accepts it.

Proposition 7. If there exists a good, without loss of generality call it good 1, that is
a least costly-to-store good for all agents and if conditions (C1) and (C2) hold, then there
exists a non-monetary steady state with s%;=1, i # a.

Proof. The idea of the proof is to restrict agents’ strategies so that they always trade
for good 1 and then show that this is not binding. It is straightforward to modify (6a)
and (7a) accordingly, to find a fixed point as in Proposition 1, and to show that Proposition
2 continues to hold. For this more restricted fixed point, we let g,; be the probability of
consuming for type a holding good i. Obviously, q.; =q.,. Since type 1 always accepts
good 1, we let @ #1. Let i*#0, a be such that v« = v, for all i#0, a. It follows that

Vgi* = p[qai*vaa + (l - qai*)vai*] — Cai*
Vo1 Z Pl Ga1Vaa + (1= Ga1)Var] = Car-
5. In an earlier version of this paper, this result was established indirectly by using the upper hemi-
continuity of the fixed point (see Proposition 1) in the parameters. The present approach involves much explicit

algebra but seems preferable since it is constructive and leads to explicit sufficient conditions in terms of the
parameters. These can be used to construct valid examples without relying on hit or miss calculations.
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That is,
(1= p) Vai* = Pai*(Vaa — Vair) — Cai*
(1 _p)val g pqal(vaa - val) - cotl g pqal(vaa - vai*) - cal .

Then, SiNCe Vaq — Vai* >0, —Co1 = — Coir, aNA Go1 = Guiv, it follows that v,,=v,+. This
implies v,, = v+, Wwhich completes the proof. ||

Note that the conclusion of Proposition 7 cannot be strengthened to say that any
non-monetary steady state is such that everyone accepts the least costly good; Kiyotaki-
Wright have a counter-example (see their Figure 6 and Theorem 2).

We now extend the above proposition to monetary steady states. Specifically, we
wish to show that if money is a least costly-to-store object for all agents and if slightly
modified versions of (C1) and (C2) hold, then there always exists a monetary steady state
with positive consumption in which everyone accepts money.

VII. EXISTENCE OF MONETARY STEADY STATES WITH
POSITIVE CONSUMPTION

Since the method here is very similar to that for non-monetary steady states, we only
outline the proof. We restrict agents to always accept money and then give sufficient
conditions for this not to be binding. The spaces S and P are replaced by the following:

S={seINTVN+IN| 0 =1, i#a},
P={peIV™*V|p,, satisfy (1) and ¥, pao=m}.
The mapping u: S§x Px V-V is defined by:

b {right-hand side of (3a), j#0, or (i,j)=(e,0), (22)
o S;jvaj+(l—s;3j)vai ’ j=0,i;'E «,
Wai = 23 Zj ijrgJ; s (22b)
_ [right-hand side of (3c), i#0,
(/,L(S, D, v))ai - {pWa.- — Cais i= 0' (220)

The dominant trading strategy correspondences o’; are defined as in (7a) for j #0, and
(7b) is modified to the following:

ao={1},i#a. (23)

The consumption/storage strategy correspondences 7, are defined exactly as before in
(8). Finally, m,; is taken to be the right-hand side of (2b). The argument of Proposition
1 can be applied to the modified mapping to produce a fixed point.

The modified version of (C1), labeled (C1)’, is obtained from (C1) by replacing C,
with C the max taken over all objects, by replacing ¢, with ¢,, the min taken over all
objects, and by replacing p in (12) with p’=min (p, 1/ N 2) The (Cl) condition is written

(cry A’ (6, N)>max (0, -¢,)/(1-p)

where AL(0, N) is A,(0, N) with ¢, in place of C,.
We now add the assumption that money is a least costly-to-store object for all agents.
That is,

(C3) Ea = Ca0-
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With this assumption, v,; = — c,;/ (1 — p) continues to hold even though agents with goods
are being forced to accept money, because taking and holding money forever only lowers
storage costs. Proposition 2 can now be easily extended to show that agents holding any
object will always want to trade for and consume their consumption good. Then we can
use (C3) and modify Proposition 7 to show that the restriction that agents always take
money is not binding. It only remains to show that in this steady state there is positive
consumption and that the free disposal condition (4f) is satisfied.
It is easy to modify (16) to obtain

Qoo =Zi Pai[(l _p)vai + cai]/p(ua + ca,a+l)'

We now indicate the steps involved in extending Proposition 3 (under conditions (C1)’
and (C3)) to the present case.

Let i be such that p;o= p, for all . Then p;,,=m/N. This implies that there exists
Jj #0, isuchthat p; = p’ (see (10)). Let k # j be such that p; = p’. There are two possibilities
for k, k=0, k#0.

k=0: Here type j gets to consume with probability no less than p; because type i
accepts money. This implies Vi Z p[ piv; + (1 — py) v ] — Cix or Vi =
0,v; +(1—0;)ci/(1—p). Using 6;= 6 and v; = A(8,0)), this implies as in the derivation
of (18), that i

v = Aj( 6,1) for some (j, k) for which PikZP. (24)

This permits the derivation of a positive lower bound for g; and hence, for a,, for all
a, as in Proposition 3.

k#0: Here choose I such that p,=p’. If =0, then the previous argument is used
to obtain (24) for vy. If 1# 0, then continue the chain of p’s in the same manner.

Eventually, either we find a loop of the sort in Step 1 of Proposition 3 or we conclude
that (24) holds. In the former case, the argument in Steps 2 and 3 of Proposition 3 can
be used to reach the desired conclusion.

We can now easily extend Proposition 4 to show that the free disposal condition is
satisfied. For this, condition (C2) is modified to the following

(c2y AL(6, N)>0.

We can now show that under conditions (C1)’, (C3), and (C2)’, v,;=0. Clearly, the
argument of Steps 1 and 2 of Proposition 4 implies that v,; =0, i # 0. Since the constraint
that agents always accept money is not binding, v,0= v,; =0, i # a. Thus the following
result has been established.

Theorem 2. If conditions (C1)', (C3), and (C2)’ hold, then there always exists a
monetary steady state with positive consumption in which everyone accepts money.

VIII. (INCENTIVE) FEASIBLE, OPTIMAL AND
EQUILIBRIUM ALLOCATIONS

It is natural to ask if all or any of the steady states we have shown to exist are in some
sense optimal. Kiyotaki-Wright demonstrate that there are parameters for which any
pure-strategy steady state is Pareto-dominated (in a sense we need not go into) by a
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simple scheme called always-trade. In this scheme any two agents who meet exchange
whatever they have. Moreover, as Kiyotaki-Wright suggest, always-trade is itself almost
never a steady state. (In the Appendix we show that always-trade is a steady state if and
only if all goods are equally costly.) As they also note (p. 948), “Unfortunately, these
(always-trade) strategies are not implementable; in a given match, trade may not be in
an individual’s self-interest, and he has incentive to reject offers of high-storage-cost
goods . . . ” In what follows we elaborate on these issues.

We will show that there is a reasonable concept of feasibility, one which includes
incentive compatibility and individual rationality restrictions, that implies that the set of
steady-state allocations and a comparable set of stationary (in the sense of constant-over-
time p and v) feasible allocations coincide. According to this concept of feasibility,
always-trade is not feasible and, necessarily, at least one steady state is optimal.®

As a way of introducing the feasibility concept, consider a planning or mechanism
design problem at date 0. Whatever the objective, the following three constraints define
our feasibility concept: (i) the obvious physical resource constraint in each pairwise
meeting; (ii) each agent’s trading history is private information; (iii) at each date, each
agent is free to keep his endowment or to dispose of it (sequential individual rationality).
This concept of feasibility has as an obvious consequence the following proposition.

Proposition 8. The set of positive consumption stationary allocations that satisfy
(i)-(iii) and are consistent with (a) no discrimination, and (b) no gift giving is the same
as the set of steady-state allocations.”

That the set of steady-state allocations is a subset of such stationary allocations is
clear. That any such stationary allocation is a steady-state allocation follows from the
fact that individual rationality in the context of pairwise meetings with each agent holding
only one indivisible object is equivalent to optimization as defined in (3a).

We now show that always-trade is not feasible (does not satisfy (i)-(iii)) unless all
objects are equally costly to store. Suppose to the contrary that there is a mechanism
satisfying (i)-(iii) that gives rise to always-trade and that person a with object i meets
someone with object j, which is not a’s consumption good and which is more costly to
store for a than is object i. By (ii), future allocations are independent of current and
past trades. Therefore, under always-trade the agent’s future trading opportunities and,
hence, future expected discounted utility are the same no matter which object he carries
over. Since object i is less costly to store than object j, agent @ would be better off not
trading. Therefore, always-trade violates condition (iii).

Note that if the planner could keep track of individual histories, then always-trade
could be feasible. In effect, agents could be “punished” in the future for sending “wrong”
messages. For example, the planner could set up a game with the following rules: (1)
In the first round of pairwise meetings, people trade if everyone sends a “‘yes” message;

6. A steady-state allocation is a ( p, v) for which there exists an (s, t) such that (s, p, t, v) is a steady state.
Comparable stationary allocations are defined below.

7. A stationary allocation satisfying (b) is a ( p, v) for which there exist probabilities of trade when («, i)
meets (B, j), denoted g?}, and t (probabilities of consuming) such that (p, 1, g) satisfies (2) when s{;is},j is
replaced by g?/ and (p, v, ¢, g) satisfies (3) when the maximizations are dropped and xsg; in (32) and z in (3¢c)
are replaced by g/ and t,, respectively. Such a (p, v) also satisfies () if there exists a vector y in [(N*D(N*DN
such that g =y/, y}; for all (e, i) and (B, j).
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if someone sends a “no” message, then he and his partner do not trade. (2) In subsequent
rounds, there is no trade in a pairwise meeting if one of the agents had sent a “no”
message at any time previously. Otherwise, rule (1) is used. These rules do not violate (iii).

According to our notion of feasibility, there always exists a steady state which is
optimal.® We also know that not any steady state is optimal. Aiyagari-Wallace (1989)
display examples in which monetary equilibria are Pareto Superior to non-monetary
equilibria, in much the same way that monetary equilibria can be Pareto Superior to
non-monetary equilibria in overlapping-generations models.

We also know that the optimal allocation satisfying the Proposition 8 conditions can
be one that displays the somewhat paradoxical feature that trade does not occur in some
pairwise meetings in which one agent wants to trade and the other is indifferent. Our
equilibrium concept permits this to happen and all the steady states for the class of
examples referred to in Footnote 1 have this feature. Therefore, Proposition 8 implies
that one of these is optimal. This class of examples also implies that condition (iii) cannot
be strengthened to require group rationality—the requirement that no coalition of agents
(in this model there are only coalitions of two agents) be able to improve by trading
among themselves—without making empty the set of feasible allocations satisfying the
conditions in Proposition 8. Further, (iii) cannot be strengthened even if strategies are
permitted to be discriminatory. This follows from the fact that when N =3 (and there
is no fiat money) there is no loss of generality in not allowing such strategies. In that
case, each type a can meet only two other types. If they have the same good, which is
the only situation that gives scope to discriminatory policies, then that good must be
good i = a since it cannot be the consumption good of either of the other types. Hence,
type a wants to trade for it. :

The equivalence between feasible and equilibrium allocations is more general than
Proposition 8 may suggest. We have stated the equivalence between feasible and equili-
brium allocations only for the very restrictive kind of equilibrium (steady-state) we have
defined. If the definition of equilibrium is broadened, then the class of feasible allocations
can be broadened comparably. Among the ways to broaden the equilibrium concept are
the following: define equilibrium paths from arbitrary initial conditions (see Aiyagari-
Wallace (1989)); allow for discriminatory strategies; allow for the occurrence of free
disposal and zero consumption. For any of the equilibrium concepts, there will be
equivalence between equilibrium and comparably chosen feasible allocations that satisfy
(i)-(iii) and no gift-giving.

The no gift-giving requirement cannot be dropped without changing the model.
There can, in fact, be steady states with gift giving and gift giving can be feasible (satisfy
(i)-(iii)). An example of this, from Aiyagari-Wallace (1989), is an N =2 mixed-strategy
steady state in which agents with goods are indifferent between accepting and rejecting
fiat money which is costless to store. Agents holding fiat money can be interpreted as
holding nothing and an agent giving up another object to get fiat money can be interpreted
as giving a gift. However, gift-giving is not robust to the following small and otherwise
innocuous change in the model: allow agents to derive at least some utility from consuming
any good. For such a model, the equivalence between equilibrium and feasible allocations
holds without any proviso about gift-giving because gift-giving is neither feasible nor an
equilibrium strategy in such a model.

8. The set of steady states is closed since if (s,, P,, 1, v,,) is a steady state for each n and (s,, p,, t,, V) =
(s, p, t, v), then (s, p, t, v) is a steady state. Since the set of admissible (s, p, ¢, v) is compact, it follows that the
set of steady states is compact. Therefore, any continuous welfare criterion will imply that an optimal steady
state exists.
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APPENDIX

Here we fill in the details involved in deriving equation (15).
Note that, by part (b) of Proposition 2, we can set t, =1 in (2b) which implies that p,, =0 and that
Po,a+1=Qua + a4 +1- Then we can use equations (3c) and (3b) to obtain

L0 Pailai = =L 0 PaciCai ¥ P L 20 Y6l PaiPaite- (A1)
Now,
X Zp ZJ Paiij'g{ =, ZB Pathi'£;+z; ZB Zi;&j pm‘ijrE{
=%, 2,3 PaiPpi¥ai T2, ZB Zj¢j paipﬂj[s{xlsgjvaj-"(l _Sf;iS;;j)vai]
=%, YailL g PaiPpi + L L} PaiPpi(1 = 85i5p) 1+, L6 L) i Paci P %iS i Va
=Z,~ Vil ay _Zg Zj,égpajppisijséi]‘*'zi Z,g Z,,q Paippjs'iis;;j”aj (using (2a))
=Z.- AUy _Z, ZB Zj Pajppisfzjs;j;il’ai +Z, ZB paipﬂisfxislpt Vgi
+Z,~ Z,g Z, paipﬂjsiislﬁjvaj _Zi ZB Pail’pisiﬂs:ai”ai
=Z,~ AUy
= zl#a,i#a+l,i¢0 AoiVai F Balae + a0 +1Va,a+1 + Aa0Va0
=Y ikairattizo Qailai t Gaa(Ua + Coai1 ¥ Vaart) T @oariVaasit daolao
=220 PaiVai + Qaa(Ua + Copar1) + Paolao  (using (2)).
Therefore,
Yivolalj Paiij"g{: =Y 120 PaiVai t Gaa (U + Co ai)-

Substituting the right-hand side into (A1) and re-arranging yields (15).
2.

Proposition 9. (a) There is a Theorem 1 steady state with si, =1 for all (e, i,j) with a #i; j#0, if and
only if ¢,; (for i # @, 0) is independent of i. (b) There is a Theorem 2 steady state with s, =1 for all (a, i, j) with
a # i, if and only if c,; (for a # i) is independent of i.

Proof. We only give the proof for Theorem 1 steady states. The proof for Theorem 2 steady states is similar.
(i) Sufficiency: Let ¢ =c,; for i # a,0. It can be verified that the following is a steady state: s, =1 for
all (e, i,j), a#i,j#0; t, =1 for all a;

2(1-m)/N? ifi=a+1,
Pi ={(l—m)/N2 if i a+1; i %0,
3l={pwaj—c:',‘ if j#a,j#0,
Nyt pWa ey Ifj=ea;
and
Woi = (1—m)[u, —c¥(N -1)]/(1-p)N, a#ii#0.
(ii) Necessity. For i,j# a, 0, si,=si; =1 and (3c) imply
PWoj — Coj = PWo; — Coi = A, (A2)
Then (3b) implies that for k #0,
Wak =ZB [Pgal(u, +oWaar)tX, .0 Paital
=Z,, [pBa(ua +ca,a+l+/\a)+Aa(l/N_pBa)]
=[(uy + o a+1) Zp Pgat Aol
Hence, w,, does not depend on k for k #0. Then, by (A2), c,; does not depend on j for j # a, 0. |
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