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Abstract

I study equilibrium selection by an evolutionary process in an environment with multiple

equilibria, one of which involves a banking panic. The analysis is built on a repeated version of

the Diamond-Dybvig (1983) model. The optimal (run free) equilibrium is uniquely selected if it

is also \risk dominant." Furthermore, the probability of observing a panic increases as the size

of the banks decreases. I discuss local interaction and contagion e�ects that allow for a bank

run to spread �rst among banks in the same geographic location and then throughout the entire

population.

1I want to thank participants of the money workshop at the University of Minnesota, especially V.V. Chari,

Ed Green, John Kareken, Nobu Kiyotaki, Andy McLennan, Loretta Mester, Neil Wallace, and Warren Weber for

comments and disscussions. All errors are mine. The views expressed in this paper are those of the author and do

not necessarily re
ect those of the Federal Reserve Bank of Philadelphia or the Federal Reserve System.
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I. Introduction

Increasing the stability of the banking system has been one of the main goals of bank regulation

since the Federal Reserve System was established. Correspondingly, understanding why some

banking regimes have been more stable than others has been a major focus of research.

The Diamond and Dybvig (D-D 1983) model of suspension of convertibility versus public

deposit insurance has widely been considered the most satisfactory model of the contrast between

late nineteenth and mid-twentieth century American banking regimes. In the standard version

of this model without either deposit insurance or suspension, there are two Nash equilibria. One

of them involves a Pareto-dominated banking panic. The threat of such a panic has widely been

cited as a justi�cation for a regulatory regime involving government deposit insurance. However,

this argument is not completely satisfactory. The welfare gain from eliminating banking panics

has to be weighed against the cost of incentive problems that deposit insurance places in the way

of banks. While the cost of these distortions will be borne regardless of whether panics would

occur in the absence of insurance, the welfare cost of panics will be roughly proportional to their

frequency in a laisez-faire regime. The simple fact that a panic equilibrium exists in the D-D

model does not provide any help in thinking about the question of how frequently panics might

occur or of what features of the market structure might minimize their frequency. The goal of the

present paper is to investigate these questions.

I �rst consider a repeated version of the model with a single bank. The single bank can be

interpreted as many branches of the same bank or as a coalition of banks that cooperate to a large

extent and for all purposes are viewed as one bank. Agents receive information on the number

of early withdrawals throughout the banking system in each period. They are bounded rational

and take myopic best responses, imitating the action that worked best in the previous period.

Both the optimal equilibrium and the inferior one associated with a bank run are steady states of
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the dynamical system describing the evolution of the agents' behavior. In the presence of noise,

I show that the optimal steady state will be observed most of the time, provided that it is not

\too risky." Then, I turn to the case where there are many banks of equal size, where the size of

a bank is the number of agents that pool their resources into a collective arrangement. The banks

are ex ante identical and agents are randomly matched in the banks within each period. Agents,

therefore, have information about the entire banking system but not about individual banks. I

show that as the size of the representative bank in the economy decreases, each individual bank

becomes subject to increasing uncertainty, and as a result, the probability of observing the panic

equilibrium increases.

Finally, I turn to the case where agents are locally matched in banks close to their own geo-

graphic location. Here, agents have information about the local banking system but, once again,

not about individual banks. Local interaction allows for the possibility of small clusters of panic

withdrawals within the population. This generates contagion e�ects that lead a bank run in one

bank to spread into a local panic in neighboring banks and then into a panic for the entire economy,

a pattern consistent with observations from the history of banking panics in the U.S.

II. The Economy

Here I give a more detailed description of the environment.

Time

There is an in�nite number of periods, labeled t = 0; 1; 2; ::: . Each period is divided into three

subperiods: beginning (t0), middle (t1), and end (t2). The economic environment is the same for

each period and I will drop the index t.

Population and Endowments
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In each period, there are m agents alive. Agents are endowed with one unit of the subperiod 0

good. In subperiod 0 each individual faces a preference shock that determines whether she wants

to consume only in subperiod 1 (type 1, or impatient agent), or whether she is indi�erent between

consumption in subperiod 1 and consumption in subperiod 2 (type 2, or patient agent). Let n be

the number of agents that are patient. I assume that n is a constant and large.2

Technology

A technology is available in subperiod 0 that can transform the subperiod 0 good to subperiod 1

and 2 goods. The technology set is characterized by a triple (y0; y1; y2) such that: y1 � �y0; and

y2 � (�y0 � y1)R; where yi is the amount of input (output) during subperiod i, y0 � 0; y1 � 0;

y2 � 0 and R > 1 for all t. The technology is, therefore, riskless but illiquid. In addition, agents

can privately store the consumption good at no cost, but no investment in the illiquid technology

can start after subperiod 0.

Preferences

Everyone has the same preferences in subperiod 0. In particular, each agent alive in period t

has a state-dependent utility function (with the state private information), which we assume has

the form: U(C) =

8>><
>>:

u(c1); if impatient;

u(c1 + c2); if patient;

where: u : <+ ! < is C2 in <++; and

�
cu

00

(c)

u
0

(c)
� 1:

Isolation

Agents are isolated during subperiod 1 of each period. This assumption precludes the existence

of an asset market during subperiod 1. It is consistent with the notion that agents hold liquid

assets because they may need to consume at times and places at which accessing asset markets is

2This is only a simplifying assumption and the results generalize to the case where n is random, i.e., when there

is aggregate risk.
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di�cult.

Let cji be the consumption during subperiod i of an agent of type j. Consider the problem the

society faces during subperiod 0 of each period. One possibility is autarky. The autarky allocation

is, for all t, c1
1
= 1; c1

2
= c2

1
= 0; c2

2
= R: However, everybody will be better o� if they pool their

resources in a collective insurance arrangement. The optimal insurance contract is the solution to

the following problem:

max
�
1�

n

m

�
u(c1) +

n

m
u(c1 + c2)

s:t:
�
1�

n

m

�
c1 +

n

m

c2

R
= 1: (1)

As D-D show, the optimal consumption levels satisfy for all t: c�1 > 1; c�2 < R and c�2 > c�1: The

optimal allocation is superior to autarky since people are willing to forgo some of their consumption

if they turn out to be patient in return for greater consumption if they turn out to be impatient.

Banks

A bank is a contract among agents who pull their resources together in the collective arrangement.

I assume that there is a �nite number (k � 1) of banks of equal size o�ering the optimal insurance

contract as a demand deposit contract. The deposit contract gives each agent who withdraws in

subperiod 1 r1 = c�1 units per unit deposited in subperiod 0.

The banks are liquidated in subperiod 2 of each period so agents who do not withdraw in

subperiod 1 get a pro rata share of the banks' assets in subperiod 2. The same number of banks

are \re-born" at the beginning of the next period. In each period the m agents are randomly

matched in the k banks. I assume that the proportion of patient and impatient agents in each

bank is the same as in the population. As in the D-D model, the demand deposit contract can
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achieve the full information optimal risk sharing as an equilibrium and I will assume that all agents

deposit initially.

III. The Game With One Bank

In each period during subperiod 0, there are m identical agents. At the beginning of subperiod 1,

uncertainty is resolved and each agent learns whether she is patient or impatient. There will be n

patient and m� n impatient agents. Impatient agents always withdraw during subperiod 1, so in

what follows they are not viewed as \strategic" players.

The n patient agents play a game of coordination choosing whether to withdraw in subperiod

1 or wait until subperiod 2. I assume that agents act myopically by playing best responses to the

population con�guration from the previous period. What connects two consequent periods is that

the strategy that gives the higher expected payo� increases its representation in the population of

patient agents, and this process continues until a \steady state" is reached.

I �rst describe the stage game. Let S = fs1; s2g be the set of strategies available to an agent

in subperiod 1.3 Here s1 stands for \withdraw in subperiod 1" and s2 stands for \withdraw

in subperiod 2." Let zt be the number of patient agents adopting strategy s2 at time t; t =

1; 2; :::;1. The state space, i.e., the range of zt is Z = f0; 1; :::; ng. Let 
(r1) 2 f0; 1; :::; ng be

the minimum number of patient agents not withdrawing, so that the bank will be able to pay

r1 to every agent in the waiting line during subperiod 1. Here, 
(r1) is a constant for �xed r1 and

m� (m� n)r1 � (n� z)r1 � 0 for z � 
(r1) implies that 
(r1) =
m(r1�1)

r1
. The payo�s of the two

strategies are as follows:

�(s1; z) =

8>><
>>:

u(r1); if z � 
(r1);

m�
(r1)

m�z
u(r1) +


(r1)�z

m�z
u(0); if z � 
(r1);

(2)

3I assume that agents play pure strategies only.
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�(s2; z) =

8>><
>>:

u
�
[m�(m�n)r1�(n�z)r1]R

z

�
; if z � 
(r1);

u(0); if z � 
(r1):

(3)

At the beginning of subperiod 1, in each period t, uncertainty about types is resolved. If every

patient agent chooses s2, the equilibrium providing optimal risk sharing is achieved. It might be,

however, that some patient agents will choose to withdraw early. Because of the illiquidity of

the production technology, the bank in this case might not be able to pay everyone the promised

amount r1 during subperiod 1 (recall that r1 > 1). If the state z is high enough, the bank can still

pay r1 to every depositor who tries to withdraw. Otherwise, the bank serves the agents who try

to withdraw according to the sequential service constraint until it runs out of assets.4 Let E1 be

the n�tuple (s1; :::; s1) and similarly for E2. The following lemma veri�es that both the optimal

allocation and the inferior one that results from a bank panic can be supported by noncooperative

equilibria of this game. The proof is given in the appendix.

Lemma 1: E1 and E2 are the only pure equilibria of the stage game. Furthermore, they are both

strict. There exists a mixed equilibrium.

I now turn to the repeated version of the game. I assume that the better strategy is imitated

and, therefore, better represented in the population in the next period. The deterministic dynamic

zt+1 = b(zt) gives the pro�le of strategies that will be used at t+ 1, given that the time t pro�le

is zt:
5 In this game the deterministic dynamical system has either two or three steady states, 0, n

4The sequential service constraint (see Wallace, 1988) requires that payments to individuals depend only on

the number of people who have previously withdrawn, not on the number of prospective withdrawers. Here it is

assumed that every agent contacts the bank at some random time during subperiod 1. The patient agents will then

have to choose whether to \report untruthfully," i.e., try to withdraw early. I assume that the arrival times are

independent across agents and that an agent's time of arrival relative to other agents is not known to him.

5Formally, the following weak monotonicity property and boundary conditions are assumed: sign (b(z) � z)) =

sign (�(s2; z)� �(s1; z)) ; b(0) = 0; b(n) = n: As an example consider the best reply dynamic:
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and a mixed one.6 The two pure steady states correspond to the optimal and the panic equilibrium

of the stage game, respectively. The multiplicity is resolved if noise is introduced into the system.

Assume that with probability � each player plays each strategy with equal probability.7 This yields

a stochastic dynamical system that de�nes a Markov chain on the �nite state space Z. It is well

known, then, that the Markov chain has a unique invariant distribution for a given rate �. The

invariant distribution satis�es global stability and ergodicity properties and is interpreted as giving

the proportion of time that the society spends in each state. For expository purposes, I consider

the support of the distribution �; which results as the limit case when � is driven to zero. Let

z� 2 [0; n] be the critical state such that8 for all z in Z; sign (�(s2; z)� �(s1; z)) = sign(z � z�):

The following lemma is key9 (see Figure 1).

Lemma 2: The two states 0 and n have basins of attraction under b given by fz < z� g and

fz > z�g, respectively. The limit distribution puts probability one on n if z� <
n
2
and on 0 other-

wise.

The equation �(s2; z)��(s1; z) = 0 has a unique root in Z. This is a result of the coordination

structure of the game and of the fact that �(s2; z)� �(s1; z) is a continuous function of z in the

neighborhood of z�. The sign of z��
n
2
is a function of the risk characteristics of the game. Notice

that if z� <
n
2
, then the optimal equilibrium is also risk dominant. The �rst result of this section

B(z) =

8>>><
>>>:

n; if �(s2; z) > �(s1; z);

z; if �(s2; z) = �(s1; z);

0; if �(s2; z) < �(s1; z):

6For reasons that will become clear later, I ignore the mixed steady state.

7I assume that these probabilities are iid across players and time.

8Here z
�
need not be an element of Z.

9Kandori, Mailath, and Rob (1993) and Young (1993) use this result in a model with random matching in pairs

but the same result can be used for any group size up to n. For a more recent discussion on this and related

dynamics see Binmore, Samuelson, and Vaughan (1995).
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describes conditions under which panics are very rare events. See the appendix for a proof.

Proposition 1: The unique state in the support of � is n if mr1R�mR
nr1R�nr1

< 1

2
and it is 0 if the

inequality is reversed.

Proposition 1 asserts that in environments for which the above condition is satis�ed, bank

panics will be very rare and the economy will spend most of the time in the optimal steady state.

In the presence of noise, some agents withdraw early with positive probability in each period. With

even lower probability, these withdrawals will be signi�cant enough to result in a bank panic, i.e.,

the miscoordination is su�ciently large to shift the population into the basin of attraction of the

panic steady state. In this case a panic is inevitable and the process will spend a number of periods

close to that steady state until it escapes again. In the limit, however, the process will be in the

steady state with the largest basin of attraction with probability one.10

As the following proposition suggests, the condition of the above proposition will tend to be

satis�ed if the fraction of agents who will need to withdraw early (impatient) is low, the technology

is not too illiquid, and the coe�cient of relative risk aversion is not too high. Otherwise, the

optimal equilibrium becomes \too risky" and the agents will decide to withdraw early \most of

the time."11

Proposition 2: Suppose that u(c) = �e�bc; b > 112: Then:

(a) z� increases as the fraction of impatient agents
�
1� n

m

�
increases.

(b) z� increases as the illiquid technology parameter R increases.

10The continuity of � on � implies that for any small � the system will be in the optimal steady state with

probability close to one.

11On the other hand, if this is the case, the assumption that they deposit in the bank at the beginning of each

period might not be convincing.

12For this utility function we have that 1 < c�1 < c�2 < R if �
cu

00

(c)

u
0

(c)
� 1 for c > 1:
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(c) z� increases as the coe�cient of risk aversion b increases.

The proof is given in the appendix. An increase in the fraction of impatient agents increases

the level of illiquidity in the economy. An increase in b leads to an increase in the short-term

interest rate r1; which will have the same e�ect. An increase in R has two e�ects. It decreases z�

directly but increases it indirectly through an increase in r1. However, the second e�ect dominates

the �rst and z� becomes larger as R increases.

Some of the important observations that can discriminate among alternative models of banking

systems come from the performance of the American banking industry before the Federal Reserve

System was established, i.e., during the National Banking Era.13 This is a period of approximately

50 years (1863-1914), during which there were �ve major panics: 1873, 1884, 1890, 1893, and

1907. These panics were of relatively short duration, and they tended to occur in the fall when,

in a predominantly agricultural economy, demand for currency was particularly high. The two

propositions above suggest that these observations are consistent with a stochastic steady state in

which panics are rare events over a long enough time horizon. In this context the �ve panics during

a period of approximately 50 years are interpreted as relatively infrequent transitions from the

optimal to the panic equilibrium. In addition, the �rst part of proposition 2 suggests that these

transitions are more probable during periods when the demand for early withdrawals increases

exogenously. Next, I turn to the question of how qualitative properties of the two static equilibria

change for di�erent speci�cations of the banking system.

13Sprague (1910) provides a detailed discussion of the banking history of this period. Sprague wrote a history

of the panics under the National Banking System for the National Monetary Commission. His work has been

extensively used by Friedman and Schwartz (1963).
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IV. The Game with Many Banks

Now assume that there are many banks of equal size in the economy. In each period during

subperiod 0, the m agents are randomly matched in k banks. I assume that the seasonal high

demands for currency are experienced the same way by all banks, i.e., that in each period and in

each bank there are nk =
n
k
patient and mk � nk =

m�n
k

impatient agents. However, the relative

representation of the two strategies of the patient players in each bank is random and, as we will

see, subject to increasing variance as the size of the bank decreases. The fact that banks act in

isolation might be the result of spatial separation and branching regulations.

During the National Banking Era evidence from di�erent regions in the United States as well as

a comparison between Canadian and American banking suggests that branching and cooperative

interbank arrangements reduced the likelihood of panics. The failure rate for national banks in

the U.S. during the period 1870-1909 was 0.36, while the one in Canada, based on branches, was

less than 0.1. The di�erent performance of Canadian and American banks is largely attributed to

branching tactics and the degree of cooperation that Canadian banks managed to achieve during

crises.14 The question that I am asking here is the following: Suppose that the size of the banks

in the economy can be in
uenced as a result of government policy, such as geographic restrictions

on expansion for banks. If the government wants to minimize the likelihood of a banking panic,

should this policy favor a centralized banking system with bigger banks or a system with many

small banks?

To answer this question we need to explore the relation of the probability of observing the panic

equilibrium to the number of banks in the economy and, therefore, the size of a representative

bank. Let xjt be the expected number of patient agents adopting strategy s2 at time t in bank j;

j = 1; :::; k; t = 1; :::;1: Here, xjt can be thought of as the expected representation of s2�players

in a sample of size nk, where k � 1. Let 
(r1; k) 2 f0; 1; :::; nkg be the minimum number of patient

agents not withdrawing in a given bank, so that a bank run does not occur during subperiod 1 in

14See, for example, Chari (1989), Calomiris and Gorton (1991), and Sprague (1910).
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this bank, given that there are nk patient depositors in this bank. As before, 
(r1; k) is constant

among banks of the same size and equal to
mk(r1�1)

r1
: Let:


k
z =

n
! = (!1; :::; !k) 2 [0; nk]

k : 0 � !j � nk and
X

k
j=1!j = z

o
; (4)

.

i.e., 
k
z is the set of all possible sample representations of z in the case where there are k banks

in the economy. The payo�s of the two strategies in bank j are as follows:

�(s1; xj ; k) =

8>><
>>:

u(r1); if xj � 
(r1; k);

mk�
(r1;k)

mk�xj
u(r1) +


(r1;k)�xj
mk�xj

u(0); if xj < 
(r1; k);

(5)

�(s2; xj ; k) =

8>><
>>:

u
�
[mk�(mk�nk)r1�(nk�xj)r1]R

xj

�
; if xj � 
(r1; k);

u(0); if xj < 
(r1; k):

(6)

Let �(s1; zt; k) be the expected payo� of a player with strategy s1 against population con�g-

uration zt given that there are k banks in the economy; and similarly for �(s2; zt; k). Then for

sh 2 fs1; s2g ; ! = (!1; :::; !k) we have:

�(sh; z; k) = Pr fx = !g �

�X
k
j=1

1

k
� �(sh; xj ; k)

�
: (7)

The expected payo�s re
ect the uncertainty resulting from the random matching process. Like

before, the game is a coordination one with E1 = (s1; :::; s1) and E2 = (s2; :::; s2) being the only

pure equilibria. I assume that the evolution of the agents' strategies is subject to the same rules

as in the one-bank case. For each level k; a unique zk� determines the basins of attraction of the

two steady states. As before, the steady state with the largest basin of attraction will be observed
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most of the time for small levels of noise. I want to characterize the two basins of attraction as

a function of k. The following lemma simpli�es the analysis. It says that it is the proportion of

strategies in a bank, not the size of the bank, which determines the payo�s. In other words, the

payo� of playing strategy sh when a fraction of
xj
nk

agents are playing this strategy is the same for

any size of a bank nk.

Lemma 3: Suppose that � = ak, a � 1 and
xj
nk

=
xj
n�

. Then �(sh; xj ; k) = �(sh; xj ; �), for h=1,2,

j=1,...,k.

The next lemma relates the �rst two moments of the proportion of players playing each strategy

in a bank to the size of the bank. The proof relies on standard results on the hypergeometric

distribution and is given in the appendix.

Lemma 4: For all k � 1, a > 1, j=1,...,k, suppose �= ak . Then:

(a) E
�
xj
n�

�
= E

�
xj
nk

�
= z

n
; for all j = 1 ; :::; k ; and

(b) V ar
�
xj
n�

�
> V ar

�
xj
nk

�
:

The following lemma describes the curvature of the di�erence of the expected payo�s of the

two strategies as a function of the proportion of patient agents in the bank. Its proof is given in

the appendix.

Lemma 5: The function �(s2; z)� �(s1; z) is a concave function of z for z � 
(r1).

Given lemmas 3, 4, 5, and risk aversion, we have the following proposition:

Proposition 3: Suppose that u(0) �M(m;n; b; R) and k � 1; a > 1; � = ak: Then z�� > zk� , i.e.,
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the basin of attraction of the panic equilibrium increases as the size of the banks in the economy

decreases.

The proof of proposition 3 is given in the appendix. As the number of banks increases, each

individual bank becomes subject to more uncertainty. Since the returns to s2�players change

dramatically across states, withdrawing late then becomes increasingly risky while strategy s1,

providing a relatively constant return across states, remains relatively \safe." Therefore, in the

presence of increasing uncertainty, agents will shift to withdrawing early. Since z� determines the

two basins of attraction, the basin of attraction of the panic equilibrium becomes larger as the

number of banks increases (see Figure 1). It is worth mentioning that this can change equilibrium

selection, leading to the panic steady state having the larger basin of attraction in cases where

this would not happen, should there be a smaller number of banks in the economy.

V. The Game with Local Interaction

The assumption of uniform matching expresses the idea that depositors have no local or other

information about individual banks. In contrast, local matching rules describe situations where

depositors are less likely to interact with the banking system as a whole than with local banks in

the same geographic region. In addition, local matching rules allow for an overlap in the groups

of depositors in neighboring banks so that a bank's neighboring bank is likely to be a neighboring

bank as well. As Ellison (1993) showed, this allows for the existence of small clusters within the

population, and the possibility of a new strategy's gaining a foothold within one of these clusters

allows a more rapid transition to steady state than in the model with uniform matching.

Here I assume that the m agents and the k banks are uniformly arranged around a circle. As

before, each bank has the same constant fraction of patient and impatient agents as the population,

and I concentrate on the behavior of patient agents. In contrast to the uniform matching model,
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here I assume that each depositor is matched with probability 1 � a with the bank in his own

location, and with probability a with each of the other two banks in the region, directly to the

east and directly to the west of his location. For simplicity, I �x a = 1

3
. As before, I am interested

in equilibrium selection as a function of the size of the representative bank in the economy nk.

In the model with local interaction, I denote the possible states by n�tuples (s1; :::; sn) 2

fs1; s2g
n
in order to keep track of the locations of the patient depositors using each strategy. I

also assume that the payo�s are such that depositors will switch to s1 if at least one of the three

banks in their region experienced a run in the previous period.15 As before, this re
ects a situation

where agents have information on the status of the \local banking system" but not on individual

banks.

First, consider the case without noise. Once again there are two steady states, E1 = (s1; :::; s1)

and E2 = (s2; :::; s2) with a nontrivial basin of attraction. First, suppose that a bank run is

experienced in one bank at time t; let us say bank B (see Figure 2). Then each depositor in

banks A, B, and C will play s1 in t+1 . This way a local panic is created in period t+1 that will

continue to spread to neighboring banks of the neighboring banks::: until the panic steady state E1

is reached. One important feature of this dynamic is that a small \cluster" of depositors creating

bank runs in one region is su�cient to ensure rapid convergence to the panic equilibrium. On the

other hand, as I will show, another important feature of this dynamic is that a panic becomes

far more probable as the size of the banks in the economy decreases. More precisely, we have the

following analogue of proposition 4:

Proposition 4: Under the conditions of proposition 3 the probability of observing the panic

equilibrium increases as k increases.

The proof of proposition 4 can be found in the appendix. For an example suppose that n = 18

15Alternatively, I could assume that the payo�s are such that agents will withdraw if more than 1
3
of the population

in their region played s1 in the previous period.
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and consider two cases: k = 3 and k
0

= 6, i.e., nk = 6 and nk0 = 3. Also assume that 
 = 6

when k = 1 so that 
(3) = 2 and 
(6) = 1, and suppose that payo�s are such that a depositor will

play s1 if one of the three banks in the region experienced a bank run in period t. I will denote

the probability of transition from E1 to E2, along the minimum mutation path, when there are

k banks in the economy by pk and the probability of transition from E2 to E1 when there are k

banks in the economy by qk. I de�ne pk0 and qk0 similarly for the case with k
0

banks. We then

have:

pk

qk
=

�2 � �2 � �2

�4 + �4 + �4
=

1

3
��2; and (8)

pk0

qk0
=

� � � � � � � � � � �

�2 + �2 + �2 + �2 + �2 + �2
=

1

6
��1: (9)

The arguments above suggest that the orders of pk
qk

and
p
k
0

q
k
0

are ��2and ��1, respectively, so

we have:

p
k
0

q
k
0

pk
qk

! 0 as �! 0:

Local interaction allows for faster convergence to steady state as well as for interesting dynamics

as the previous example shows. Furthermore, the panic is more probable in a system consisting

of small banks for reasons that are di�erent from the uniform matching model and are related

to \neighborhood e�ects." The study by Calomiris and Gorton (1991) suggests that these e�ects

were important in the banking panics experienced in the U.S. during the National Banking Era.

According to this study panics did not suddenly occur at di�erent locations simultaneously, and

the typical pattern of a panic was that banks in the same geographic location simultaneously

experienced a run and subsequently runs spread to other locations.
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VI. Concluding Remarks

In this paper I have presented a model of banking panics consistent with some basic facts from the

National Banking Era, the period before the Federal Reserve System was established. Panics in

that period were recurrent but relatively infrequent phenomena. This pattern is consistent with

a stochastic steady state in which panics occur in each period with positive probability but are

relatively infrequent events over a long time horizon. These results challenge the view that any

banking system without deposit insurance must be plagued by ever-increasing instability. The

model is also consistent with observations that suggest that more centralized banking systems

can better diversify against withdrawal risk and, therefore, are more likely to perform better in

terms of stability than banking systems consisting of many banks that are small and isolated as

a result of government regulation. Finally, local interaction generates contagion e�ects that allow

bank runs to spread �rst among banks in the same geographic region and subsequently in other

locations, a pattern consistent with historical observations from the same period. These e�ects

become stronger as the size of the banks decreases.

In this version of the model, I assume that banks act in isolation. Even though here a bank can

be interpreted as a coalition of banks that cooperate closely, by dropping this assumption, liquidity

risk-sharing by banks and interbank lending could arise. I believe that the main conclusions of

the model will still be true in this case. The model is also believed to be robust to di�erent

speci�cations of the dynamical system describing the learning process. However, it is not entirely

clear how the results will change once the assumption that banks are not strategic is dropped.

Introducing cyclical behavior in the demand for liquidity would provide a framework for strategic

banks to adjust the interest rates over time in order to minimize the probability of a bank run.
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VIII. Appendix: Proofs

Proof of Lemma 1: Since the payo�s of the game satisfy the inequalities listed before the

statement of the lemma, the unique best response to (s1; :::; s
i; :::; s1) is s

i
1
and the unique best
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response to (s2; :::; s
i; :::; s2) is s

i
2
. So E1 and E2 are pure strategy strict Nash equilibria. The

mixed equilibrium comes from the unique solution of the equation �(s2; z)��(s1; z) = 0, in Z.

Proof of Proposition 1: The two basins of attraction are determined by the unique so-

lution z� to the equation �(s2; z) � �(s1; z) = 0, in Z. Clearly z� > 
(r1) and, therefore,

[m�(m�n)r1�(n�z)r1]R

z
= r1 implies that z� =

mr1R�mR
r1R�r1

.

Proof of Proposition 2: First, recall that the coe�cient of relative risk aversion is bc, which

increases as b increases. Also, by proposition 3, z� =
mr1R�mR
r1R�r1

. The �rst order conditions for the

social planner's problem give: u
0

(r�1) = Ru
0

(r�2) or r
�
2 = r�1 +

ln(R)

b
: The feasibility condition is:

(m� n)r1 +
nr2
R

= m. Combining the two, gives: r�
1
=

mbR�n ln(R)

b(Rm�Rn+n)
.

(a) Let �z 2 [0; 1] be the fraction of s2�players in the population of patient agents. Then �z� =

mr1R�mR
nr1R�nR

and we have16:

@�z�

@
�
n
m

� = �
(r1R�R)�

n
m

�2
(r1R� r1)

< 0; (10)

d�z�

dr1
=

mnR(R� 1)

(nr1R� nr1)2
> 0; (11)

dr1

d
�
n
m

� = 1�R
1�a

a�
1� n

m
+ n

m
R

1�a

a

�2 > 0: (12)

So :
d�z�

d
�
n
m

� = @�z�

@
�
n
m

� + d�z�

dr1
�

dr1

d
�
n
m

� = (13)

16Here the state space is considered to be the interval [0; 1].
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m2R(b� bR+ ln(R))(�bmR+ b2mR+ n ln(R))

n(1�R)(�bmR+ n ln(R))2
< 0: (14)

(b) We have:

d�z�

dr1
=

mnR(R� 1)

(nr1R� nr1)2
> 0; (15)

@�z�

@R
=

mnr1(�r1 + 1)

(nr1R� nr1)2
< 0; (16)

dr1

dR
=

mnb2 �mnb+ n2b� (n
2b
R
) + bmn ln(R)� bn2 ln(R)

(bRm� brn+ nb)2
> 0; (17)

and, �nally,

d�z�

dR
=

@�z�

@R
+

dr1

dR
�
d�z�

dr1
> 017: (18)

(c) We have:

dr1

db
=

Rmn ln(R)�Rn2 ln(R) + n2 ln(R)

(bRm� bRn+ nb)2
> 0:

Therefore,

17This is true since:
@�z�
@R

+
dr1

dR
�
d�z�
dr1

=

[m(bn+bmR�2bnR�bmR
2+bnR2

�bn ln(R)+3bnR ln(R)+bmR
2 ln(R)�bnR2 ln(R)�n ln(R)2)]

(�1+R)2(�bmR+n ln(R))2
> 0:
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d�z�

db
> 0:

Proof of Lemma 3: Without loss of generality consider the case with k banks and the case with

� banks where � = ak; a > 1 and, therefore, nk = an� and mk = am�. Then:


(r1; �) =
m
�
(r1 � 1)

r1
=

m
ak
(r1 � 1)

r1
=

1

a

m
k
(r1 � 1)

r1
=

1

a

(r1; k):

First suppose
xj
n�

<

(r1;�)

n�
and, therefore,

xj
nk

<

(r1;k)

nk
. Then:

�(s2; xj ; �)� �(s1; xj ; �)

= u(0)�
m� � 
(r1; �)

m� � xj
u(r1)�


(r1; �)� xj

m� � xj
u(0)

= u(0)�
mk

a
�


(r1;k)

a
mk

a
�

xj
a

u(r1)�


(r1;k)

a
�

xj
a

mk

a
�

xj
a

u(0)

= u(0)�
mk � 
(r1; k)

mk � xj
u(r1)�


(r1; k)� xj

mk � xj
u(0)

= �(s2; xj ; k)� �(s1; xj ; k):

Next suppose
xj
n�

>

(r1;�)

n�
and, therefore,

xj
nk

>

(r1;k)

nk
. Then:

�(s2; xj ; �)� �(s1; xj ; �) = u

�
[m� � (m� � n�)r1 � (n� � xj)r1]R

xj

�
� u(r1)
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= u

 �
mk

a
�
�
mk

a
�

nk
a

�
r1 �

�
nk
a
�

xj
a

�
r1
�
R

xj
a

!
� u(r1)

= u

�
[mk � (mk � nk)r1 � (nk � xj)r1]R

xj

�
� u(r1)

= �(s2; xj ; k)� �(s1; xj ; k):

Proof of Lemma 4: (a) Let n be the population of patient agents. Suppose that z agents play

strategy s2 and n�z agents play strategy s1 in the population and that a sample of nk =
n
k
agents

is taken from the population. Let 1 stand for a draw of an s2 strategist and 0 stand for a draw of

an s1 strategist. Let fI1; :::; Inkg be the sequence of indicator functions describing the outcome of

the draws, where:

Ii =

8>><
>>:

1; if s2 player in draw i;

0; if s1 player in draw i:

(19)

De�ne xnk = I1+:::+Ink , the number of s2 players drawn from nk trials. The Is are identically

distributed. We then have: PrfIi = 1g = z
n
; for all i: With regard to the number of 1s among the

nk objects drawn, it does not matter whether we draw one at a time or we simultaneously draw

nk objects. So18:

Pr fxnk = !g = f(!;n; z; nk) =

�
z
!

��
n�z
nk�!

�
�
n
nk

� : (20)

18I assume that the agents do not exclude themselves in this calculation. This is consistent with a large population

of agents.
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Now, E(xnk ) = E(I1; :::; Ink ) =
z
n
+ ::: + z

n
= n

k
z
n
= z

k
: So E

�
xnk
nk

�
= z

n
, i.e., the expected

proportion of 1s among the nk objects is the same regardless of the sample size.

(b) Here, the variance of xnk is not the sum of the variances of the Is, since the latter are not

independent. Following the convention that
�
�

�

�
= 0, when 0 < � < � we obtain that:

V ar(xnk ) =
nk

z
n
n�z
n

(n� nk)

n� 1
; therefore,

V ar

�
xnk
nk

�
=

1

(nk)2
V ar (xnk ) =

1

nk

z
n
n�z
n

(n� nk)

n� 1
:

Now suppose n� = ank, a > 1. Let p = z
n
and 1� p = n�z

n
. Then:

V ar
�
xnk
nk

�
V ar

�
xn�
n�

� =

p(1�p)(n�nk)

nk(n�1)

p(1�p)(n�n�)

n�(n�1)

=

p(1�p)(n�nk)

nk(n�1)

p(1�p)(n�ank)

ank(n�1)

=
an� an

k

n� an
k

> 1:

i:e: V ar

�
xnk
nk

�
> V ar

�
xn�
n�

�
:

Proof of Lemma 5: We have: �(s2; z) = u
�
[m�(m�n)r1�(n�z)r1]R

z

�
:

Now:
d
�
[m�(m�n)r1�(n�z)r1]R

z

�
dz

=
mr1R�mR

z2
> 0;

and
d2
�
[m�(m�n)r1�(n�z)r1]R

z

�
dz2

=
�2mR(r1 � 1)

z3
< 0:
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Therefore, �(s2; z) is a concave function of z as a composition of two concave functions. Next,

�(s1; z) is also concave since it is a composition of a linear (constant) function and a concave

function. So �(s2; z)� �(s1; z) is concave in z:

Proof of Proposition 3: I will prove this proposition for the case where k = 1 and a = 2. The

proof generalizes for any a > 1. By lemma 5, it is su�cient to show that for any � 2 (0; 1) and

any z
0

; z
00

2 [0; n] such that �(s2; �z
0

+ (1� �)z
00

)� �(s1; �z
0

+ (1� �)z
00

) � 0: We have:

�
�
�(s2; z

0

)� �(s1; z
0

)
�
+ (1� �)

�
�(s2; z

0

)� �(s1; z
0

)
�

� �(s2; �z
0

+ (1� �)z
00

)� �(s1; �z
0

+ (1� �)z
00

):

I consider three cases: (a) First let z
0

; z
00

2 [0; 
(r1)). In this case:

�(s2; �z
0

+ (1� �)z
00

)� �(s1; �z
0

+ (1� �)z
00

) < 0:

(b) Next, consider the case where z
0

; z
00

2 [
(r1); 1]. In this case concavity follows from lemma 6.

(c) Finally, consider the case where z
0

2 [0; 
(r1)) and z
00

2 [
(r1); 1]. Here I �rst need to de�ne

the following function:

~�(s2; z)� ~�(s1; z) =

8>><
>>:

�(s2; z)� �(s1; z); if z � 
(r1);

�f(z); if 0 � z � 
(r1);

(21)

where:

�f(z) = (�(s2; 
(r1))� �(s1; 
(r1)))
0

(z � 
(r1)) + (�(s2; 
(r1))� �(s1; 
(r1))) : (22)
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Next, de�ne M(m;n; r1) = �f(0). The function ar �f(z) is concave and for all � 2 (0; 1) and all

z
0

2 [0; 
(r1)) and for all z
00

2 [
(r1); 1] such that �z
0

+ (1� �)z
00

= z, we have:

�(s2; z)� �(s1; z) � ~�(s2; �z
0

+ (1� �)z
00

)� ~�(s1; �z
0

+ (1� �)z
00

)

� �(s2; �z
0

+ (1� �)z
00

)� �(s1; �z
0

+ (1� �)z
00

);

where the �rst inequality is strict if z
0

; z
00

or both belong to the interval [
(r1); 1]: Since (a),(b), and

(c) are the only possible cases and since �(s2; z)� �(s1; z) is strictly concave in the neighborhood

of z�, we have that z
2
� > z1� .

Proof of Proposition 4: Here I consider two cases. In the �rst case there are k banks of size

nk = n
k
and in the second case there are k

0

banks of size nk0 =
n

k
0 . Since 
 = n

3
when k = 1, a

bank run occurs in the �rst case if the number of s2 players in a given bank is less than nk
3
. Recall

that E1 = (s1; :::; s1) and E2 = (s2; :::; s2). The weight of state E1 in the steady state distribution

�kE1
(�) can be characterized by19: �kE1

(�) = c(�)
P

h2HE1

Q
i6=E1

pk
h(i)

i�; where c is a constant, h is

any E1�tree, and HE1
is the set of E1�trees on fs1; s2g

n
and similarly for �kE2

(�). First, I show

that �k
0

E1
(�) > �kE1

(�) for k
0

> k. In the case of k banks the least costly E1�tree is of order �
2

3
nk

since a run in at least one bank is needed in order to lead the system to the E1 state. In the case

of k
0

banks the similar E1�tree is of order �
2

3
n
k
0 . Since nk0 < nk, we have that �

k
0

E1
(�) > �kE1

(�).

On the other hand, we need that no bank experiences a run in period t in order for the system

to converge to E2 in period t + 1. So we have that �kE2
(�) = �k

1

3
nk and �k

0

E2
(�) = �k

0
1

3
n
k
0 and,

therefore, �k
0

E2
(�) = �kE2

(�).

19See Ellison (1993).
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