Search, Bargaining, Money, and Prices

Alberto Trejos

Northwestern University and Instituto de Andlisis Econémico de Barcelona

Randall Wright

University of Pennsylvania and Federal Reserve Bank of Minneapolis

The goal of this paper is to extend existing search-theoretic models
of fiat money, which until now have assumed that the price level
is exogenous, by explicitly incorporating bilateral bargaining. This
allows us to determine the price level endogenously and leads to
additional insights concerning the role of money. For example, we
find that monetary equilibria are generally inefficient in the sense
that output and prices differ from the solution to a social planner’s
problem, although the difference can become small as the discount
rate or search friction vanishes. We also find that there exist nonsta-
tionary inflationary equilibria.

I. Introduction

Search-theoretic models can be used to formalize the role of money
as a medium of exchange and thereby provide a theoretical founda-
tion for monetary economics. The framework allows one to be precise
about the frictions that can make monetary exchange an equilibrium
or an efficient arrangement, to determine endogenously which ob-
jects serve as media of exchange, and to address many other substan-
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tive issues in monetary economics. The first generation of models in
this literature is incomplete, however, in the sense that while the
papers analyze in detail the exchange process, they neglect the determi-
nation of exchange rates. That is, either it is assumed that prices are
fixed or it is assumed that all objects are indivisible and therefore
must trade one for one, or some other more or less ad hoc restriction
is imposed on the relative prices of goods and money.!

The goal of this project is to extend these models by endogenizing
prices. In particular, into a search-based model of fiat currency with
divisible commodities, we introduce a standard strategic bargaining
game (which also has a limiting form that is equivalent to a simple
axiomatic bargaining model). This not only allows us to determine
the price level endogenously but also leads to additional insights into
the role of money in the exchange process. Moreover, bargaining is
natural in the context of bilateral exchange and fits into the frame-
work in such a way that we are able to maintain both the spirit and the
simplicity of the search-theoretic approach to monetary economics.

In terms of results, we characterize both steady-state and dynamic
equilibria in several versions of the model. For some specifications
there is a unique steady-state monetary equilibrium; for others there
are multiple monetary steady states. Additionally, there are nonsta-
tionary equilibria that exhibit inflation. We also study the relationship
between prices and the amount of money in the system. If the amount
of money is small (i.e., if few agents are endowed with fiat currency),
then an increase in the money supply could actually cause the price
level to fall because of a liquidity effect; but as the money supply
increases further, prices necessarily begin to rise. In any event, for a
fixed endowment of money, equilibria are generally inefficient in the
sense that output and the price level differ from the solution to a
social planner’s problem. Under certain conditions, however, the dif-
ference becomes small as the discount rate or the search friction van-
ishes.

We present the analysis in the following steps. In Section II, after
describing the basic assumptions, we first consider the “monetary the-
ory” part of the model ignoring the “price theory” part; that is, we
show how a fixed-price search model of fiat currency emerges as a
special case. In Section III, we then consider the “price theory” part
ignoring the “monetary theory” part; that is, we study the bargaining

! Some examples from the literature include Jones (1976), Diamond (1984), Kiyotaki
and Wright (1989, 1991, 1993), Oh (1989), Marimon, McGrattan, and Sargent (1990),
Aiyagari and Wallace (1991, 1992), Matsuyama, Kiyotaki, and Matsui (1993), Trejos
(1993), Zhou (1993), Cuadras-Morato (1994), Williamson and Wright (1994), Li (in
press), and Wright (in press). See Ostroy and Starr (1990) for an extensive survey of
related models of monetary exchange.
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problem taking as given that money has value. In Section IV, we
integrate these two parts of the model in order to characterize the
set of steady-state equilibria and derive our substantive results con-
cerning efficiency and the relationship between money and prices. In
Section V, we consider some alternative assumptions relating to the
search and bargaining processes and show how certain results can
change. In Section VI, we study dynamics. In Section VII, we present
some concluding remarks.?

II. Monetary Theory

The economy is populated by a continuum of infinitely lived agents,
with the total population normalized to unity. Agents produce and
consume services (or, equivalently, nonstorable goods) at discrete
points in continuous time. These services are specialized in the follow-
ing sense: at any point in time, each agent has a demand for a particu-
lar variety of services that can be produced by only a fraction x of
the population; symmetrically, each agent has the ability to produce
a variety of services that is demanded by only a fraction x of the
population. The smaller x is, other things being equal, the more spe-
cialized the economy and the more difficult exchange is. We assume
that agents never produce services for their own consumption (al-
though all that is really necessary is to assume that they do not always
do so). This means that they need to trade in order to consume.
Initially, a fraction M € [0, 1] of the population are each endowed
with one (normalized) unit of fiat money, which by definition is an
object that cannot be consumed or produced by any private individual
and has potential use only as a medium of exchange. For simplicity,
we want it to be the case that when agents with money spend their
money, they always spend all of it, since this implies that it is trivial
to solve for the equilibrium distribution of money holdings: at every
date the population partitions into a group of M buyers with one unit
of currency and a group of 1 — M sellers with no currency.® The

% In independent research, Shi (in press) developed a model that is very similar to
ours in many respects. He also describes some extensions and applications other than
those considered here, including the analysis of economies with multiple currencies
and of equilibria with extrinsic uncertainty. Earlier, Diamond (1984) discussed a way
of endogenizing the price level in a search model of money that was motivated by a
bargaining story, but that approach does not actually model bargaining explicitly.

* We are also implicitly assuming that buyers do not sell to other buyers; i.e., they
never acquire a second unit of money. This can be motivated in a variety of ways; e.g.,
we can suppose that agents must consume in order to produce (see Aiyagari and
Wallace 1991, 1992), or we can suppose that buyers never meet each other in the
search process (see Burdett et al. 1993). As discussed in Sec. V, if agents are allowed
to accumulate more than one unit or to spend fractional parts of their cash balances,
then the equilibrium distribution of money will be complicated and has to be deter-
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most straightforward way to guarantee that buyers always spend all
their cash is simply to assume that the monetary object is indivisible,
and this is what we do for most of the analysis here. However, we
demonstrate in Section V that some key results are robust to relaxing
these assumptions and allowing agents to hold any amount of money.

Consumption goods or services, in contrast to money, are assumed
to be perfectly divisible, and if one unit of fiat currency exchanges
for ¢ units of consumption, the implied price level is p = 1/gq. When
a seller produces ¢ units for a buyer, the buyer enjoys utility u(q) and
the seller suffers disutility ¢(q). We assume that «'(q) > 0 and ¢'(¢q) >
0, for all ¢ > 0. We also assume that «"(g) = 0 and ¢"(g) = 0, with at
least one strict inequality, for all ¢ > 0. We also assume that «(0) =
¢(0) = 0, that »'(0) > ¢’(0) = 0, and that there exists a § > 0 such
that u(§) = c¢(§). As additional notation to describe preferences, let
g* be the value of ¢ in (0, §) that satisfies u'(¢*) = ¢'(¢*), and let r >
0 be the rate of time preference.

For now, we want to consider a version of the model in which there
is no direct barter (but see Sec. V). One way to motivate this is to
assume that buyers search while sellers remain at distinct physical
locations, say, because they must be in a particular place in order to
produce. Then no two sellers ever meet, and in all trades buyers
travel to sellers’ locations and pay in cash.* There are frictions involved
in travel, which are modeled here by assuming that the amount of
time it takes to get to a seller’s location is an exponentially distributed
random variable. This is formally equivalent to the standard assump-
tion in search theory that buyers sample locations according to a
Poisson process. We assume that the rate at which a buyer locates
sellers in this search process is proportional to the number of sellers,
B(1 — M), and the rate at which a seller locates buyers is proportional
to the number of buyers, M.

When a buyer and a random seller meet, the probability that they
can trade is given by x, since this is the proportion of sellers who can
produce the appropriate service.” Hence, the arrival rate of appro-

mined endogenously. See Diamond and Yellin (1987, 1990) for analyses of the problem
in related models.

4 Alternatively, one can rule out direct barter by assuming that because of speciali-
zation, there is never a double coincidence; i.e., the probability that one agent can
produce the service another agent desires and vice versa is zero. In any case, we
shall consider a version of the model with barter in addition to monetary exchange in
Sec. V.

® This assumes that buyers sample sellers randomly. Alternatively, we could assume
that buyers always go directly to the appropriate seller (i.e., one that can produce the
desired service); all that matters is that it takes time to get there. In the version of the
model with no barter, this would be merely a renormalization of the arrival rate, or
the special case in which x = 1. In the generalized version of the model presented in
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priate buyers for a seller is BMx, and the arrival rate of appropriate
sellers for a buyer is (1 — M)x. For most of what follows, we normal-
ize Bx = 1 (with no loss in generality). When an appropriate buyer
and seller meet, they bargain over ¢, the amount of the service to be
provided in exchange for the money. If and when they come to an
agreement, they trade, the buyer becomes a seller, and the seller
becomes a buyer. The nature of the bargaining problem will be de-
scribed in detail below. First we consider the model in which the time
path for the value of money is given exogenously by ¢, = Q,, say,
where Q, is a right-differentiable function of ¢.

Let V, and V,, denote expected lifetime utilities for a seller and a
buyer at date ¢ (the value functions), given a time path for Q,. Consider
first V,,, the value function of a seller. Under the Poisson assumption
and our normalization Bx = 1, in a short discrete time interval of
length A > 0 the probability that exactly one appropriate buyer will
arrive is approximately MA, the probability that no appropriate buyer
will arrive is approximately 1 — MA, and the probability that more
than one will arrive is proportional to o(A), where o(A)/A — 0 as
A — 0. Therefore,

V“_1+ rA

MA[Vyp = c(Qien)] + (1 = MA)V, 4 + 0(A)}.
Simplification yields
TAVy = MA[Vyip = Vara = €Quia)] + Visa = Vi + 0(4).
If we divide by A and take the limit as A — 0, we find
Wy =MV, —V, = cQ)] + V,. (1)
A very similar derivation yields
Wy = (1 = M[u@) + Vy = Vyl + V. @)

In the special case in which Q, = Q is constant with respect to time
(0 < Q < §), (1) and (2) can be solved explicitly for the steady-state
value functions

V,=V(Q) = (1 =Mu@) - +1-M)ec@Q)] (3)

r(l+)

and

=V, Q) = M o + M)u(Q) — Mc(Q)]- 4)

r(1+)

Sec. V, which allows barter, we shall want to assume that buyers sample sellers more
or less at random and that x < 1, since this makes direct barter difficult and thereby
generates an interesting role for a medium of exchange.
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If Q is exogenous, (3) and (4) constitute a version of the standard
fixed-price search model of fiat money. In particular, observe that
V, — ¢(Q) > V, > 0, which means that sellers voluntarily accept
money, if and only if (1 — M)u(Q) > (r + 1 — M)c(Q). The result
V, > 0 implies that money has value or yields indirect utility, even
though it yields no direct utility from consumption.

III. Price Theory

In this section we introduce bargaining over ¢, taking as given that
money has some value V, > 0. For now, we focus on steady states,
where all endogenous variables are constant with respect to time. The
basic bargaining solution can be thought of either as the axiomatic
model of Nash (1950) or as the strategic model of Rubinstein (1982),
since the latter has a reduced form that approaches the former as
the time between rounds in the bargaining game goes to zero. How-
ever, as is well known, the exact Nash representation can depend
critically on details of the underlying strategic formulation (see Bin-
more, Rubinstein, and Wolinsky 1986; Osborne and Rubinstein
1990); hence, it is important to be careful in specifying this part of
the model.

When an appropriate buyer and seller meet, one of them is chosen
at random to propose a value of ¢, to which the other can respond
by either accepting or rejecting. If he accepts, the money changes
hands and services are rendered. If he rejects, he can choose to walk
away from the bargaining table to search for a new partner. The
other agent can also choose to walk away from the bargaining table
to search for a new partner. If either walks away, the agents cannot
reconvene. If neither walks away, they wait a length of time A for
another round, at which point someone is again chosen at random
1© make a proposal, and so the process continues. As is standard in
this type of model, in equilibrium no one ever terminates the bar-
gaining process voluntarily, all offers are made so that they are ac-
cepted, and negotiations are completed in the first round at a quantity
that depends on whether it is the seller or the buyer who gets to go
first.

Although offers are never rejected in equilibrium, it is the threat
of rejecting and delaying settlement that drives the solution. The
extent to which this threat matters depends on what happens during
the interval A between a rejection and the next offer. In this section,
we adopt the assumption that agents never meet other potential trad-
ing partners during this interval; in Section V we consider an alterna-
tive assumption and show how it makes a difference. However, under
either assumption, there will be a unique subgame perfect equilib-
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rium to the bargaining game (when V, and V, are taken as given),
and this equilibrium has the property that a seller always proposes

s = ¢,(A), a buyer always proposes g, = ¢,(A), and these proposals
are always accepted. Furthermore, as A becomes small, ¢, and ¢, con-
verge to the same limit, ¢, which has a convenient representation in
terms of a Nash bargaining solution.

To see how this works, note that the offers ¢, and ¢, are constructed
so that the proposer gets as much utility as possible, subject to the
responder’s acceptance of his offer. Therefore, they satisfy the fol-
lowing relations:

V. + u(g,) = [V, + You(g,) + Y2u(gy)l,

1+7rA

— clg) = T [V, = helq,) = Yec(gy)].

The left-hand side of the first equation is the value to the buyer of
accepting the seller’s offer ¢, which is the utility of consuming ¢, and
becoming a seller. The right-hand side is the expected discounted
value of rejecting: with equal probability each of the agents gets to
make the next offer; in either case the offer is accepted (in equilib-
rium), and so the expected payoff next period is V, + Yeu(q,) +
Y2u(q,). The second equation has a similar interpretation for a seller
evaluating a buyer’s proposal.
Rearranging these relations, we get

2A7[V, + u(q,)] = u(g,) — u(g,),
2Ar[V, — ¢(qp)] = c(gp) — c(gy)-

As A — 0, the left-hand sides vanish. This implies that in the limit
s = ¢, = q. Furthermore, if we take the ratio of the previous two
conditions and then let A — 0, we get

Vi +ulg _v'(@
Vy—clg) ¢
Hence, the limit ¢ can be represented as
q = argmaX[Vs + u(Q)][Vb - 5(‘])]» (5)

which means that it is the solution to a Nash bargaining problem.®

®In general, a bilateral Nash bargaining problem takes the form max(U; -
U))(Uy — Uy), where U; is the payoff and U is the threat point of agent j. Here the
payoffs are V, + u(q) for the buyer and V, — ¢(g) for the seller, and the threat pomts
are zero. The threat points are nonzero under the alternative assumption made in
Sec. V that agents can meet other potential trading partners during the bargaining
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In bargaining over ¢, the individuals take V, and V, as given. One
way to interpret this is to observe that V, and V, are both functions
of the value of Q prevailing in the market, as given in (3) and (4),
and in any bilateral meeting the agents negotiate over ¢ taking Q as
given. In equilibrium, of course, ¢ = Q. Additionally, as is standard,
we have to be sure that it is individually rational for both sellers and
buyers to accept the g generated by (5). In the present context, this
imposes the following constraints:

V(@) — ¢l9) = V,(Q) (6)

and

Vi(Q) + u(g) = Vy(Q)- @)

We take as our bargaining solution the ¢ that satisfies (5) subject to
(6) and (7).

IV. Equilibrium: Integrating Monetary and Price
Theory

A steady-state equilibrium is a list (Q, V,, V,) satisfying the following
conditions: (i) ¢ = Q solves the bargaining problem (5) subject to
constraints (6) and (7), taking V, = V,(Q) and V, = V(Q) as given;
and (ii) V, and V, satisfy (3) and (4), taking Q as given. In principle,
equilibria can be of two types. An unconstrained equilibrium occurs
when ¢ = Q solves the unconstrained Nash problem (5) and does
not violate (6) or (7). A constrained equilibrium occurs when Q satisfies
constraints (6) and (7) and one of them is binding, and the uncon-
strained solution to the Nash problem violates the binding constraint.
We also distinguish between nonmonetary steady-state equilibria with
Q = 0 and monetary steady-state equilibria with Q > 0.

In equilibrium, ¢ = Q, and we can substitute V,(g) and V,(q) into
the constraints and simplify to yield the following results: (6) holds
if and only if

el@=(1—-Mug) — (r+ 1 - M)c(g) =0; ®
and (7) holds if and only if
b(g) = (r + M)u(q) — Mc(g) = 0. )

Any ¢ that satisfies ¢(g) = 0 also satisfies Y(q) = 0; hence, we need to
check only that the former is satisfied in order to verify both con-
straints. Further, our assumptions imply ¢(0) = 0, ¢’(0) > 0, ¢"(g) =

game, as is consistent with standard results in bargaining theory (see, e.g., Osborne
and Rubinstein 1990).
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0 for all ¢, and ¢(¢q) < 0 for large g. Therefore, the constraints are
satisfied if and only if ¢ is below some critical value § = g(r, M).”

The discussion above leads to the following method for con-
structing steady-state equilibria. To construct an unconstrained equi-
librium, find a solution ¢ to the unconstrained Nash problem, and
show that it is less than the critical value g. To construct a constrained
equilibrium, show that when Q = 7 is taken as given the uncon-
strained solution to the Nash problem exceeds g, which means that g
constitutes a constrained equilibrium.

ProrosiTION 1. For any r > 0 and M € (0, 1), there exists a non-
monetary steady-state equilibrium and a unique monetary steady-
state equilibrium. The monetary equilibrium is unconstrained, and it
satisfies u'(q) > ¢'(g).

Proof. The existence of the nonmonetary equilibrium is immediate,
since Q = V, = V, = 0 satisfies all the equilibrium conditions. Con-
sider unconstrained monetary equilibria. The necessary and suffi-
cient condition for (5) can be written [V, — c(q)lu'(q9) — [V, +
u(g)]c'(q9) = 0. If we insert V_ and V, and set Q = ¢, this reduces to
T(q) = 0, where

T(g)=[(r + M)(1 = M)u(q) — Pc(g)]u'(g)
= [Pu(g) = M(r + 1 = M)c(g)]¢'(q)
and ® =r(1 + r) + M(1 — M). One can show T(0) = 0, T'(0) > 0,
and T(g) < 0. By continuity, there exists a ¢ € (0, g) such that
T(q) = 0.
This establishes the existence of an unconstrained equilibrium. To

show that the unconstrained equilibrium is unique, rewrite T(q) = 0
as

(10)

c¢'(q) _ (r+ M)A — M)u(g) — Pec(9)
u'(g Pulg) — M+ 1-Mec)’

and note that the left-hand side is strictly increasing and the right-
hand side is strictly decreasing in the interval (0, g). To show that
there does not exist a constrained equilibrium, note that T(g) < 0
implies that, when Q = 7 is taken as given, the unconstrained solution
to the Nash bargaining problem does not violate the constraint. Fi-
nally, to show u'(g) > ¢'(¢) in equilibrium, let ¢* solve u'(q*) = ¢'(g*)
and observe that T(¢*) < 0. Q.E.D.

This establishes the existence of equilibrium where our intrinsically

7By comparing (8) and (9) with (3) and (4), we see that the constraints on the
bargaining problem are equivalent to the conditions that V; and V, are nonnegative in
the steady state. Hence, they guarantee that agents do not want to drop out of the
economy.
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worthless asset has value determined by bargaining. The proposition
also establishes the uniqueness of monetary equilibrium, although
this depends critically on the assumption that there is no barter: in
the generalized model with barter in addition to monetary exchange
discussed in Section V, monetary equilibria generically come in pairs.

Perhaps the key result is u'(q) > ¢'(¢g). That is, ¢ is less than the ¢*
that equates marginal utility and marginal cost. Define welfare by
W = MV, + (1 — M)V, which is interpretable as average utility in
the steady state or as the ex ante expected utility of all agents before
the initial endowment of money is randomly distributed. Equations
(3) and (4) imply

W= M(1 — M)[u(g) — c(9)]-

Hence, g* is the value of q that a social planner would dictate, if he
could, in order to maximize welfare. Since ¢ < ¢*, the monetary
equilibrium is socially inefficient. This is so despite the fact that ¢ is
bilaterally efficient, in the sense that it is on the frontier of the payoff
space in the bargaining game, with V, and V, taken as given.

Indeed, a stronger result is actually true. Not only is the equilib-
rium ¢ too low according to the criterion W, it is also inefficiently low
according to the ex post Pareto criterion. Let ¢* and ¢§ denote the
values of ¢ that, if imposed on all agents, maximize V, and V,. It is
not hard to verify that ¢} < ¢* < ¢§. Given the distribution of money,
any q € [q¥, g¥] is Pareto efficient, because if we either increase or
decrease such a ¢, we make either buyers or sellers worse off. Simple
algebra implies that ¢ < ¢ in equilibrium. Hence, even sellers would
prefer a lower price, if that price could be imposed on all transactions.

It might be suspected that the result ¢ < ¢* is an artifact of our
assumption that buyers always spend all their money. We show in
Section V that it is not; that is, the result continues to hold in a
generalized version of the model in which agents can store and trade
any amount of money. The economic reason that ¢ is inefficiently
low is that sellers are receiving for their services cash that can be
spent only in the future, and since they discount the future, they
are willing to provide less than if they could turn the proceeds into
immediate consumption (see Townsend [1980] for a similar finding).
To confirm that it is discounting that drives the result, note from (10)
that ¢ — ¢* as r > 0. If we do not normalize the arrival rate B, an
equivalent statement is that g — ¢* as § — « (since it is only the ratio
r/@ that matters in the model). Further, it is shown in the Appendix
that d¢/dr < 0 and 9¢/0B > 0; hence, the greater the discount rate or
the search friction, the greater the distance between ¢* and 4.

We close this section by considering the effect of changes in M,
where M equals the money supply and also the number of buyers,
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since by assumption each buyer has one unit of money. In the Appen-
dix it is verified that there exists a critical value pw = p(r), which is
strictly positive for small , such that dg/0M = 0 if and only if M =
p. Hence, when M is small, an increase in M may actually increase ¢
and decrease p. However, p < 2 for all r > 0; so as M increases, the
price level eventually begins to rise. The heuristic explanation for the
result that p could fall with M is this: when M is small, an increase in M
will increase the number of meetings between buyers and sellers—a
“liquidity effect”—which can increase the amount of production and
exchange. It is possible for this to dominate the tendency for increases
in M to reduce the value of money.

We emphasize that the experiment above involves giving the indi-
visible monetary object to a larger number of agents.® When we
change the number of agents with money, we affect the number of
meetings between buyers and sellers, and this affects real economic
activity. In particular, differentiating welfare with respect to M, we
get

T%V =@w-c(1-2M)+ M1 -M)@u —c) :—]31
The first term is the liquidity effect. It implies that if ¢ is fixed exoge-
nously, then W is maximized at M = ‘.. In equilibrium, however, the
second term is negative at M = 2 (since dq/0M < 0 at M = 'z and
q < ¢*). Hence, in a model with divisible commodities, the welfare-
maximizing value of M balances the trade-off between providing
liquidity and raising the price level.?

V. Alternative Assumptions

In this section we present some extensions of the basic model. One
is to consider an alternative bargaining environment in which there
is the possibility of meeting other trading partners during the period
of delay after a rejected offer. Another is to allow direct barter in
addition to monetary exchange. We also sketch a version of the model
with divisible money; although we cannot solve this model completely,
we show how the key result ¢ < ¢* will continue to hold. We also
discuss in this section the relation between our results and those of
some previous literature.

To describe the alternative bargaining environment, first note that

8 An alternative experiment is to give each of the agents with money a larger-
denomination object, which is obviously neutral.

9 One can also study the effect of M on other variables, such as nominal output,
real output, and velocity (see Trejos and Wright 1993b).
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we continue to assume that the proposer is chosen at random and
the responder can accept or reject; if he rejects, they can either walk
away or wait an interval of time A for another round. However, now
buyers and sellers continue to meet new partners at rates 1 — M and
M between rounds. We assume that traders continue to meet new
partners irrespective of any actions they take; also, when a new part-
ner who can demand or supply the appropriate service arrives, a
trader automatically enters a bargaining game with him and aban-
dons his old partner. There are no choices along these dimensions.
The essential distinction between this model and the one employed
earlier is that now there is a chance of being left without a partner if
delay occurs; following the literature, we call this bargaining with the
possibility of exogenous breakdowns."®

It is still the case that there is a unique subgame perfect equilibrium
when V, and V, are taken as given, with the property that a seller
always proposes ¢, = ¢,(A), a buyer always proposes ¢, = ¢,(A), and
these proposals are always accepted. And as A — 0, ¢, and ¢, converge
to the same limit g. To derive the properties of ¢ in this case, let A,
and \, denote the probabilities that sellers and buyers are left without
partners if there is delay. Then A, = A(1 — M) and A\, = AM if we
ignore higher-order terms that become irrelevant as A — 0.!' Now g,
and g, satisfy

Vet ug) = Tox Ve + (1= NIV, + Yeulq,) + Yeulg,) ]}

and
1
V, —c(gp) = m{MV; + (1 = N[V, — ke(g,) — Yac(gp)]}s

which have interpretations very similar to those of the analogous
equations in the model with no exogenous breakdowns.
Rearranging these conditions, letting A — 0, and simplifying, one
can show that
V,+ulg) — V, u'(g
Vo—elg) =V, (g

1% Other possibilities also could be considered. For example, if we take seriously the
notion that sellers remain at fixed locations and buyers travel to them, it might be
natural to assume that sellers can meet new buyers but not vice versa. One can also
endogenize the search intensity decisions and hence the arrival rates, as in Wolinsky
(1987).

!! Since agents will never terminate bargaining voluntarily, one agent ends up with
no partner only when his current partner meets a new trader and he does not. This
probability is A(1 — M)(1 — AM) + o(A) for a seller and AM[1 — A(1 — M)] + o(4)
for a buyer; but we ignore second- and higher-order terms since we are going to let
A—0.
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Hence, the limiting value of ¢ solves
max [V, + u(q) — V4]V, — ¢(g) — VI, (11)

which is a Nash bargaining problem similar to (5), except that now
the threat points are V, for the buyer and V| for the seller. To make
sure the g that solves the Nash problem is acceptable, we continue to
impose constraints (6) and (7), which continue to hold if and only if
q is below some g.

ProrosiTION 2. Consider the model with exogenous breakdowns.
For any r > 0 and M € (0, 1), there exists a nonmonetary steady-state
equilibrium and a unique monetary steady-state equilibrium. The
monetary equilibrium is unconstrained but does not necessarily sat-
isfy u'(q) > ¢'(g).

Proof. See the Appendix.

The substantive difference that results from exogenous break-
downs is that we do not necessarily have u'(q) > ¢'(q). The intuition
developed in the previous section concerning the effect of dis-
counting is still relevant, but the outcome is complicated here by the
effect of exogenous breakdowns on relative bargaining power. For
instance, when M becomes small and there are relatively few buyers,
the threat of being abandoned between bargaining rounds impinges
more severely on sellers than on buyers; this tilts settlement in favor
of the buyer, and ¢ goes up. If this effect is large, we can have ¢ >
g*. In the proof of proposition 2, it is shown that in the limit, as r —
0, we have (1 — M)u'(q) = Mc'(q). Therefore, when M = 'z and the
threat of a breakdown is the same for both parties, ¢ > ¢* as r — 0,
exactly as in the previous section.'?

The next step is to allow barter, which means that sellers must meet
other sellers in addition to buyers.'® The rate at which a seller meets
other sellers is B(1 — M). When they meet, the probability that they
can trade is x?, since each has to be able to provide the service desired
by the other. Given our normalization Bx = 1, the rate at which
appropriate barter partners arrive is therefore (1 — M)x. When bar-
ter occurs, it is easy to show that the outcome of the bargaining game
is that each seller provides the other with ¢*, the quantity that satisfies
u'(g*) = ¢'(¢*). What needs to be determined is, What quantity does
a seller provide in exchange for cash, and how is this affected by the
possibility of barter?

21t is still the case that dg/dr < 0 and 3¢/3B > 0 here, as in the model with no
exogenous breakdowns. However, now it can be shown that dg/dM < 0 and ap/dM >
0 for all M and r.

2 The only trades that we allow are those in which a buyer and seller exchange cash
for services and those in which two sellers barter services directly; we do not allow
buyers to provide services (but see the next extension in this section).
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The generalizations of (1) and (2) (in the steady state) are
V=MV, -V, —¢c(Q)] +Q (12)
and
W, = (1 = M)[u@Q) + V, - V], (13)

where Q = (1 — M)x[u(g*) — c(¢*)]. The generalization of the rele-
vant constraint is

o) =1, (14)

where ¢ is defined in (8). This is satisfied for all 4 in the interval [q,
4], where both ¢ and ¢ depend on M and x, and ¢ < g as long as r is
not too big. The model with no barter corresponds to setting 0 = 0,
in which case ¢ = 0 and (14) is satisfied as long as ¢ = 3.

We can consider the barter model either with or without exogenous
breakdowns. In either case, it turns out that whether or not a mone-
tary equilibrium exists depends on r, M, and x; but whenever one
exists, multiple monetary equilibria exist.

ProrosiTIiON 3. Consider the model with barter and no exogenous
breakdowns. There is a critical value 7 = #(M, x), ¥ > 0, with the
following properties: if r > #, there are no monetary equilibria; if
r < 7, there are two monetary equilibria, one constrained and one
unconstrained.

Proof. See the Appendix.

ProposiTiON 4. Consider the model with barter and exogenous
breakdowns. There is a critical value # = #(M, x), where # > 0 at least
if x is sufficiently small, with the following properties: if r > #, there
are no monetary equilibria; if r < #, there generically exists an even
number of monetary equilibria, all of which are unconstrained.

Proof. See the Appendix.

In contrast to the model without barter, where the monetary equi-
librium is unique, now there exist (generically) multiple monetary
equilibria. Also, without barter, monetary equilibria exist for all , but
now they exist only if r is sufficiently low. The models without barter
can be interpreted formally as limiting cases of the models with barter
in which x = 0 (and B — «, to keep our normalization fx = 1). In
the limit, all but the monetary equilibrium with the highest ¢ either
disappear or coalesce with the nonmonetary equilibrium, which ex-
plains the uniqueness of monetary equilibrium when barter is not
possible.

These results bring out an analogy between the set of equilibria in
fixed-price search models of money and the models in this paper.
For example, in the model of Kiyotaki and Wright (1993), with ¢
exogenous, there are three equilibria: a nonmonetary equilibrium in
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which no one accepts money, a pure monetary equilibrium in which
money is accepted with probability one, and a mixed-strategy equilib-
rium in which money is accepted with probability x. In the limit as
x — 0, the mixed-strategy monetary equilibrium and nonmonetary
equilibrium coalesce. This corresponds to the results in proposition
3, with pure and mixed-strategy monetary equilibria replaced by un-
constrained and constrained monetary equilibria. Further, in the
fixed-price model, sellers are indifferent about accepting or rejecting
money in a mixed-strategy equilibrium, and here sellers are indiffer-
ent about accepting or rejecting money in a constrained equilibrium.
Further still, in the fixed-price model, equilibria can be welfare-
ranked (under assumptions discussed in Kiyotaki and Wright [1993]),
and the same is true here.'*

There is also a relationship between our results and those that
emerge from models such as the one in Rubinstein and Wolinsky
(1985). Consider a model with an indivisible consumption good and
a divisible object that Rubinstein and Wolinsky call “money,” although
it has little in common with the fiat money in our model (see below).
There are M buyers with one unit of money and 1 — M sellers with
one unit of the good. Meetings occur randomly, with arrival rates
for sellers and buyers given by M and 1 — M. When a buyer and
seller meet, they bargain over the money price of the good, p. Rubin-
stein and Wolinsky assume that the seller and buyer derive utilities
u(p) = p and u,(p) = 1 — p from a completed transaction, after
which they exit the market and are replaced by a new pair. As in our
model, the distribution of money holdings across the population is
fixed. In contrast to our model, the utility of money is exogenous
and the total surplus from trade is fixed at u;, + u, = 1.

The value functions now satisfy

V. = Mlu,(p) — V]
and

V= (1 = M)[uy(p) — V,].

Depending on whether or not we allow exogenous breakdowns, an
underlying strategic model yields one of the following Nash bar-
gaining solutions as a reduced form when A — 0:

' Note that there are no mixed-strategy monetary equilibria in the model in this
paper, since if a seller is indifferent about accepting or rejecting fiat currency, a buyer
can always entice him to strictly prefer accepting by reducing ¢ by an arbitrarily small
amount. The mixed-strategy equilibrium in the fixed-price search model is an artifact
of indivisibilities.
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p = argmax u,(p)u,p),
p = argmax[u,(p) — Vyllu(p) — V,].

The former implies p = '2. The latter implies p = Ye(1 + V. — V),
which simplifies to p = (r + M)/(1 + 27) after the value functions
are eliminated.

The most important distinction between the Rubinstein-Wolinsky
model and our model is that we assume that agents do not exit the
economy after trade. Rather, the buyer becomes a seller, the seller
becomes a buyer, and the money stays within the system. This is how
fiat currency can have value without being an argument of anyone’s
utility function: money is valued today for what it will buy in the
future. The basic search and bargaining setup is the same in the two
models, and therefore some results are similar (e.g., the importance
of exogenous breakdowns). However, the fact that the value of money
is endogenous here makes a crucial difference. For instance, while
the Rubinstein-Wolinsky model has a unique equilibrium, our model
generates multiplicity. In some sense, the framework here seems to
have more in common with earlier search models of money, despite
the fact that they impose exogenous prices.

To close this section, we briefly consider a version of the model in
which money is divisible and agents can hold any amount m € R.,.
Let F(m) be the distribution of money holdings across agents and
V(m) the value function of an agent with m dollars. For simplicity,
assume that there is no barter, that meetings occur at Poisson rate 8,
and that in any meeting an agent will have an opportunity to buy
with probability x and also to sell with probability x (which is why V
does not have a subscript for buyer or seller). Hence, the arrival
rate of both potential sales and potential purchases is Bx, which we
normalize to one. Let d(m,, m) and q(m,, m,) be the amount of dollars
and services that are traded between an agent holding m, units of
money and an agent holding m, units of money when the former
desires the services of the latter (i.e., when the former turns out to
be a buyer and the latter a seller in a particular meeting).

Generalizing the arguments leading to (1) and (2), we get

rV(m) = [{ulg(m,m)] + Vim — d(m, m,)] — V(m)}dF (m) (15)
+ [{—clg(my, m)] + V[m + d(m,, m)] — V(m)}dF (m;).

The first term is the expected gain from buying from someone with

m, dollars, and the second term is the expected gain from selling to

someone with m, dollars, where m, and m, are random draws from
F(m). Also, if we assume no exogenous breakdowns, d(m;, m,) and
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q(my, m,) solve the Nash problem

max [u(g) + V(m, — d))[—c(g) + V(m, + d)] (16)
subject to u(g) + V(m, — d) = V(m,) and —c(q) + V(m, + d) =
V(m,). Given the total stock of money, M = [ mdF(m), a steady-state
equilibrium is now defined to be a list of four functions (V, d, ¢, F)
such that (i) given F and (d, ¢), V satisfies (15); (ii) given V, (d, q)
solves the bargaining problem; and (iii) given (d, ¢), F is a stationary
distribution for money holdings.

We have not yet been able either to prove existence or to completely
characterize monetary equilibria in this model. However, at least as
long as V is concave, it is possible to say some things about the proper-
ties of equilibrium using only the conditions that follow directly from
bargaining. In particular, we claim that g(m,, m,) < ¢* for all (m,, m,).
To see this, first note that the first-order conditions from (16) imply

Viim, —d) w'(q) ul(g) +V(m, —d)
Viim, +d) ¢ (@) Vim,+d)—cg)

Suppose by way of contradiction that u'(q) < ¢'(q). Then m, — d =
m, + d by the first equality, given that V is concave, and, a fortiori,
Vim, + d) — c(q) < u(q) + V(m, — d). Hence, u'(q) > ¢'(g) by the
second equality.

This establishes that the result ¢ < ¢* is not an artifact of the indivisi-
ble money assumption, but is actually quite general. Some other prop-
erties of monetary equilibria (if they exist and if V is concave) are the
following. When trade occurs, the seller leaves with more money and
the buyer leaves with more utility: m; + d > m, — d and u(q) +
V(m, — d)> —c(q) + V(m; + d). Also, when trade occurs, the quanti-
ties ¢, m; + d, and m, — d depend only on m = m;, + m, not on m,
or m, individually. One can show d(m, + d)/om > 0 and d(m, —
d)/dm > 0. The sign of d¢/dm is indeterminate, in general, although
both u(q) + V(m, — d) and —c(q) + V(m, + d) are increasing in m.
The quantity d depends on m; and m,, not just on m, and satisfies
dd/om; < 0 and dd/dm, > 0; that is, ceteris paribus, richer agents get
less money when they sell and pay more money when they buy.

VI. Dynamics

In this section we return to the simple version of the model in which
agents always hold either zero or one unit of money, and we consider
non-steady-state equilibria. We do not analyze the underlying strate-
gic bargaining game; rather, we adopt as a primitive assumption that
q, solves a Nash bargaining problem at each point in time. The equi-
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librium path for ¢, can still vary over time if the value functions V,
and V,, do, and the value functions can vary over time if agents expect
that Q, will.”

Suppose that there are no exogenous breakdowns (the other case
is similar; see Trejos and Wright [19934a]). Also, we rule out barter.
For given values of V, and V,, let the unique solution to the uncon-
strained Nash bargaining problem (5) be ¢, = q(V,, V},). If we substi-
tute this into (1) and (2), we get

=@+ MV, — MV, + Mclg(V,,V,)] (17)
and
Vi=(r+1-M)V,— (1 - MV, — (1 — M)ulq(V,,Vy)], (18)

where time subscripts are ignored from now on when there is no risk
of confusion. This defines a dynamical system V = f(V), where V =
(V,, V). Further, if we substitute ¢ = ¢(V|, V,) into constraints (6) and
(7), they can be written as

cfqV,, V)=V, =V, (19)
and
ulg(V, V)=V, — V.. (20)

Inequalities (19) and (20) define a region of the (V,, V,) plane called
the admissible region and denoted by A.

A rational expectatzons equilibrium is defined to be a solution to V =
f(V) that remains in ¢ for all time. Any solution that remains in
must be bounded, since it must satisfy u(q) =V, — V, = ¢(q) for all ¢
and hence ¢, = § for all ¢, where u(§) = ¢(§). This implies that V; and
V, are bounded above by u(§)/r, which is the value of consuming § at
the arrival rate of trading partners for the rest of time. Note that
there are no initial conditions in the definition of equilibrium because
V is not predetermined at ¢t = 0; V, and V, can assume any starting
values, as long as the 1mplled path from this point stays in 4.

The locus of points in (V;, V,) space satisfying V, = 0 is called the
V, curve, and the locus of points satisfying V, = 0 is called the V,
curve. Intersections of the two curves constitute steady states of the
system and correspond, of course, to the steady-state equilibria stud-
ied in Section IV. Both curves go through the origin, which is the
nonmonetary steady state. Given our assumptions on u(g) and ¢(g),
the V, curve has a flatter slope than the V, curve at the origin. As

5 In recent work, Coles and Wright (1994) solve the strategic bargaining game ex-
plicitly and discuss how this compares to imposing the Nash solution outside of the
steady state.
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shown in figure 1, the V| curve is upward sloping, and the V, curve
rises to the northwest from the origin, then turns and heads north-
east. We know from proposition 1 that the curves intersect exactly
once in the positive quadrant, since there is a unique monetary steady
state. We also know that at the monetary steady state the constraints
do not bind, and so this intersection is in the interior of .

Figure 1 also shows the flow of the dynamical system. Given our
assumptions on u(q) and ¢(g), the interior steady state is a source and
the origin is a saddle point. Hence, in addition to the steady states,
there exist only two other types of orbits: the saddle path that origi-
nates at the interior steady state and converges to the origin, and
all other paths, which eventually become unbounded and leave the
constraint set. The latter class of solutions cannot be equilibria. Paths
beginning on the saddle path are equilibria if we can guarantee that
the saddle path is contained in #{. Now the saddle path is contained
in the region between the V, curve and the V, curve, in which V, < 0
and V, < 0. Whenever V,< 0 and V, < 0 in the positive quadrant,
(17) and (18) indicate that c[g(V,, V})] = V, — V, < u[q(V,, V,)], and
so both constraints are satisfied. Hence, the saddle path lies entirely
within .

Summarizing the discussion above, we have the following result.

ProposITION 5. The set of equilibria consists of a nonmonetary
steady state, a monetary steady state, and a one-dimensional contin-
uum that is described as follows. For any initial V, in the open interval
between the two steady-state values, there is a unique V, such that

0.0

5%
o000
23282585855

%
52525

»
1624

F16. 1.—Dynamic equilibria



SEARCH 137

the path beginning at these initial conditions and converging to the
origin is an equilibrium.

The equilibria starting on the saddle path and converging to the
origin imply that g, = 0 and therefore p, = ®. Such an outcome is
simply due to self-fulfilling expectations. If the initial value of ¢ is too
low and therefore the initial value of p is too high, as compared to
the monetary steady state, the economy sets off on an inflationary
spiral. Expectations that prices are going to rise lead agents to agree
to fewer and fewer services per dollar over time, which rationalizes
the expectation of rising prices, and so on. The analogy between
the set of equilibria here and the set of equilibria in the standard
overlapping generations model of fiat money (see, e.g., Azariadis
1993) should be apparent.'®

VII. Conclusion

This paper has introduced bargaining into a simple model of mone-
tary exchange in order to determine the nominal price level endoge-
nously. This also yields some new insights into the role of money.
For example, we discovered a tendency for the price level to be too
high in equilibrium, in the sense that the quantity produced and sold
for a dollar is less than the amount a social planner would like. As
the rate of time preference or the frictions in the exchange process
vanish, the monetary equilibrium does converge to the planner’s solu-
tion in at least some versions of the model. In other versions, the
result has to be qualified on the basis of considerations associated
with relative bargaining power.

We also found that if liquidity is sufficiently scarce, the value of
money can actually rise with an increase in the money supply. How-
ever, as the money supply increases further, the value of money even-
tually begins to fall. This effect implies that the welfare-maximizing
amount of money in the model is less than that predicted by fixed-
price search models. Some other findings, such as the multiplicity of
equilibria, are very similar to those obtained in earlier formulations.
Still others, such as the dynamic inflationary equilibria, could not
even be discussed without endogenous prices. Future research in this
area may concentrate on analysis of the version of the model in which
the distribution of money holdings is generalized and determined
endogenously, or may use simple versions of the model to address
some more applied issues in monetary economics.

16 If we allow barter, there are two monetary steady states, one of which is a saddle
and the other a source. This is similar to overlapping generations models when govern-
ment spending is added (see Azariadis 1993).
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Appendix

CramM 1. With or without exogenous breakdowns, d¢/dr < 0 and d¢/ap > 0.
Proof. Consider the model with no exogenous breakdowns. Differentiating
condition (10), we see that d¢/dr has the same sign as

a=aM,r)=(1 — M)uu' + Mcc' — (1 + 2r)(uc’ + cu').

For any M, r = 0 implies a < 0. If « = 0 for some 7, then da/dr = 0 at the
lowest value of 7 such that @ = 0. But it is easy to see that da/d7 < 0 whenever
a = 0. We conclude that o < 0, and thus d¢/dr < 0, for all r and M. The
proof for the model with exogenous breakdowns is similar. Finally, notice
that d¢/9p always takes the opposite sign of d¢/9r, because all that matters in
the model is the ratio r/B. Q.E.D.

CramM 2. With exogenous breakdowns, dg/0M = 0; with no exogenous
breakdowns, there exists p = w(r), with w > 0 for small », such that dq/aM
=0ifand only if M = .

Proof. With exogenous breakdowns, the result follows from differentiating
the equilibrium condition S(q) = 0, where S(¢) is defined in the proof of
proposition 2. With no exogenous breakdowns, differentiation of T'(q) = 0
implies that d¢/0M has the same sign as

y=yM,r)=(1 - 2M)(u — ¢)(u' — ¢') — r(uu’ — cc').
There exists a unique @ = w(r) such that y = 0 if M = p, because v is
decreasing in M whenever y = 0. The critical w satisfies
_ 1 ru — )
k=39 2w’ — ¢ Yu —¢)
By construction, d¢/dM = 0 if and only if M = p. To show p > 0 for small
7, note that p — o as r = 0, where
C 1 M= M)[u(g?) = e(g¥)]
M7 9 T 9 Mu(gh) + (1 - M)c(g™)]

QE.D.

Proof of Proposition 2

Consider unconstrained monetary equilibria. The analogous condition to (10)
is S(g) = 0, where

S(g) = e(@u'(g) — b(c'(@,

and ¢(q) and ¥(q) are defined in (8) and (9). For ¢ > 0, S(g) = 0 can be
rewritten ¢'(q)/u’'(g) = ¢(¢9)/¥b(¢g). The left-hand side is zero at ¢ = 0 and
strictly increasing. The right-hand side is positive at ¢ = 0, zero at ¢ = g,
and strictly decreasing for all ¢ in (0, §). By continuity, there exists a unique
solution to S(g) = 0 in (0, ). This establishes the existence of a unique
unconstrained equilibrium. Since §(§) < 0, there are no constrained equilib-
ria. Finally, to show that equilibrium does not necessarily satisfy u'(q) > ¢'(q),
consider the limiting case of r — 0. Then S(¢g) = 0 implies (1 — M)u'(q) =
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Mc'(g), so q can be greater or less than ¢*, depending on the value of M.
Q.ED.

Proof of Proposition 3
The generalization of (10) is
T() = [r + M)(1 — Myu(g) — Pe(g)]u'(q)
— [Du(g) — M@ + 1 — M)c(q)lc'(g)
+ [u'(@)(1 = M) — c'(g)(r + 1 — M)]Q.

By an argument analogous to that in proposition 1, there is a unique solution
to T(g) = 0in [0, g]. If r = 0, then T(¢q) = 0 at ¢ = ¢*, where ¢* > g > 0.
As r increases, the solution ¢ to T(q) = 0 decreases monotonically to zero
and ¢ increases. Hence, there exists a unique 7 > 0 (which depends on M
and x) such that T(q) = 0.

If r > #, then there are no unconstrained equilibria since the solution to
T(q) = Ois less than ¢. Also, when Q = ¢ is taken as given, the unconstrained
Nash solution is less than ¢; and when_Q = g is taken as given, the uncon-
strained Nash solution is less than § (since T is negative at ¢ and 7). Hence,
neither ¢ nor § is a constrained equilibrium. We conclude that if r > 7, then
there exist neither unconstrained nor constrained monetary equilibria.

Now suppose r < 7. Then the solution in [0, §] to T(gq) = 0 satisfies ¢ < ¢
< g, and so it is an unconstrained equilibrium. Also, when Q = ¢ is taken as
given, the unconstrained Nash solution is greater than ¢, and when Q = §is
taken as given, the unconstrained Nash solution is less than g, since T is
positive at ¢ and negative at g. Hence, ¢ is a constrained equilibrium but 7 is
not. We conclude that if r < #, there exist exactly two monetary equilibria,
one unconstrained and one constrained. Q.E.D.

Proof of Proposition 4
The generalization of (11) is

S(@) = e(@u'(g) — b(g)c'(g) — (1 — M)Q[u'(g) + ¢'(9)].

Let # (which depends on M and x) be the smallest value of r such that S(g) is
nonnegative for some ¢ in [g, g]. Note that S(g) is monotonically decreasing
in 7, and S(¢g) < O for all ¢ in [g, g] when 7 is large. Also, at least when x is
not too big, S(g) > 0 for some ¢ in [¢, g] at r = 0. Hence, when x is not too
big, 7 > 0. -

Now note the following: when Q = ¢ is taken as given, the unconstrained
Nash solution is less than ¢; when Q =7 is taken as given, the unconstrained
Nash solution is less than g, since S is negative at ¢ and §. This means that
there are no constrained equilibria. The fact that S(¢) < 0 and () < 0 also
implies that if S(g) = 0 has a solution in [q, 7], it generically has (an even
number of) multiple solutions. This means that there are multiple uncon-
strained monetary equilibria (generically an even number) when r < # and
no monetary equilibria when r > 7. Q.E.D.
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