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Abstract 

This paper describes a search-theoretic model that can be used to determine which 
objects serve as media of exchange, or money. Existing versions of the model are 
generalized to allow arbitrary distributions of agents who specialize in different con- 

sumptionproduction activities. 1 characterize the way the numbers of consumers and 
producers of the various goods help determine which goods serve as money. The 
distribution is then endogenized, so that agents can choose their type. This generates 
a unique equilibrium outcome. Ideas from evolutionary dynamics are employed as a way 
to interpret the model, and to compute equilibria. 

Kc~_r worrls: Search; Evolution; Money 
JEL c/uss~fication: EOO; D83; C73 

1. Introduction 

Two of the classic questions in economics are: (1) why do transactions 
so frequently occur using a medium of exchange, or money, and (2) what 
determines which objects come to serve as media of exchange? Extended 
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discussions of these questions, and some interesting answers, appear in the 
literature dating back at least to Smith (1776), Jevons (1875), Menger (1892), 
Wicksell (191 l), and so on. Nevertheless, my view is that it is useful to formalize 
the insights in this traditional literature using the techniques of modern, dy- 
namic, economic analysis. This not only provides a check on the intuition of the 
classical economists, it often generates new qualitative insights into monetary 
economics, and it provides the first step towards quantitative analysis.’ 

Many attempts have been made to provide a theoretical foundation for 
monetary economics, of course; see, for example, the survey by Ostroy and Starr 
(1990). One thing that is clear is that in order to make any progress along these 
lines one has to depart at least somewhat from the classical general equilibrium 
model, as epitomized by Debreu (1959), for example. The purpose of that model 
is to determine the properties of final (equilibrium) allocations consistent with 
individual maximization at given prices and given initial resources; it is silent on 
the process by which the economy gets from an initial allocation to a final 
allocation. Consequently, it has nothing to say about the role of money, or any 
of the related institutions that seem to be so important for allocating resources 
in actual economies, such as credit, middlemen, stores, banks, and so on.’ 

Recently, monetary economics has progressed by using search theory to 
formalize frictions in the process of exchange, frictions that are crucial for 
generating a role for money and related institutions, but difficult to build 
into standard economic models .3 This paper describes one version of the 

i Not only are the above questions fascinating and challenging from a purely theoretical point of view, it 
is also possible that coming up with answers may be important in terms of practical policy consider- 
ations. I will not pursue this, however, so that I may focus on more technical issues in this paper. 

21 will avoid the temptation to discuss this point at length. I will also avoid critiquing the standard 
perturbations of the classical model, such as imposing a cash-in-advance constraint or assuming 
money enters utility or production functions, except to say that whatever the merits of such 
a reduced-form approach, it has no chance of answering the two questions given in the opening 
paragraph. Extended discussions of these methodological issues can be found in many places, 
including Kareken and Wallace (1980), Starr (1989). and Hellwig (1993). A classic reference that is 
still relevant in this regard is Hicks (1935). 

‘Research in this vein that is explicitly concerned with determining which objects circulate as 
commodity money includes Kiyotaki and Wright (1989), Marimon, McGrattan, and Sargent (1990), 
Aiyagari and Wallace (1991), Kehoe, Kiyotaki, and Wright (1993), Cuadras-Morateo (1993), and Li 
(1993). Versions of the model that are more suitable for analyzing fiat money are contained in 
Kiyotaki and Wright (1991, 1993) Aiyagari and Wallace (1992, 1993), Li (1992, 1993), Burdett et al. 
(1993), Matsuyama, Kiyotaki, and Matsui (1993), Kultti (1995), Trejos (l993), Williamson and 
Wright (1994) Wright (1994), and Zhou (1993). A contribution in the spirit of the search-theoretic 
approach is the model of Jones (1976) and the extensions by Iwai (1988) and Oh (1989). Models that 
use the search framework but get money into the system via a cash-in-advance constraint are 
contained in Diamond (1984), Gale (1986), and Diamond and Yellen (1987, 1990). One deficiency in 
all of these papers (except some of those with cash-in-advance) is that, in order to focus on the 
exchange process, they neglect the determination of exchange rates by assuming that prices are more 
or less fixed exogenously (say, by assuming that objects are indivisible, and so must trade one-for- 
one). Shi (1993) and Trejos and Wright (1993a, 1993b) determine prices endogenously in a search- 
based model of fiat money using bilateral bargaining theory. 



R. Wright/Journal of Economic Dynamics and Control 19 (1995) 181-206 183 

search-theoretic approach to monetary economics and uses it to address the 

above questions. Along the way, some new economic and technical issues arise. 

The goal is to demonstrate how this class of models can be employed both to 
study some substantive questions in monetary economics - in this particular case, 
how do the relative numbers of agents producing and consuming various objects 
interact with the equilibrium choice of which objects serve as media of exchange 
~ and as a laboratory within which one can experiment with new techniques - in 

this case, the evolutionary approach to noncooperative game theory. 
The starting point is the commodity money model described in Kiyotaki and 

Wright (1989). In that framework, agents specialize in both production and 

consumption, and meet randomly over time in a way that implies exchange must 
be bilateral and quid pro quo. Each individual chooses a trading strategy to 
maximize his expected discounted utility from consumption net of production 
and transaction (storage) costs, given the strategies of others and rational 
expectations concerning the endogenous process of meetings. Equilibrium deter- 
mines the trades that occur and, therefore, the good or goods that serve as 
commodity money. (Fiat money can also serve as a medium of exchange in 

this model, but for simplicity I concentrate on commodity money here.) Part 
of what determines which objects serve as money is their intrinsic properties, 
such as storage costs, although this does not tell the whole story. For example, 

a belief by agents that a good will be widely accepted as a medium of exchange 
can be self-fulfilling even if it has intrinsic properties that are relatively inferior 

to other potential monies, but not if they are too inferior to other potential 
monies. 

The first thing I do is to generalize the model to allow arbitrary distributions 
of types across the population, where types are indexed by their consump- 
tionproduction specialties (existing specifications assume equal numbers 

of each type). This is interesting because it expands the set of considerations 
that help determine which objects can or cannot serve as media of exchange, 
and there is a long-held notion that a consideration that ought to be important 
is the number of people who consume or produce different commodities [see 

Menger (1892) or Jones (1976), for example]. The set of equilibria is character- 
ized for any fixed population distribution, and it is shown how the equilibrium 

trading strategies, and therefore media of exchange, depend on both the 
storage costs and the relative numbers of agents who produce and consume the 
different goods. Equilibria studied in previous analyses of this model appear 
as special cases, and new equilibria can also emerge for certain population 
distributions. 

One might argue that the distribution of consumption-production types 
ought to be endogenized. For instance, not only does the number of gold 
producers or gold consumers have a potential impact on whether or not gold 
serves as a medium of exchange, but whether or not gold serves as a medium of 
exchange presumably can have an impact on the number of gold producers and 
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consumers. I therefore also consider the possibility that agents can choose their 
specialization. Several results emerge from this exercise. First, the outcome 
called the ‘fundamental’ equilibrium in Kiyotaki and Wright (1989), and often 
discussed as though it is the most natural equilibrium [see, for example, 
Marimon, McGrattan, and Sargent (1990)], does not even exist when types are 
endogenous. In fact, there is a unique equilibrium and it involves what were 
called the ‘speculative’ trading strategies in Kiyotaki and Wright (1989). In this 
unique equilibrium, except for the degenerate case in which storage costs are 
identical for all goods, the distribution of types will not be uniform, as has been 
assumed exogenously in previous analyses of the model. 

There are some technical and conceptual issues involved in making the 
distribution of types endogenous. Technically, it becomes difficult to solve for 
the equilibrium. Conceptually, to the extent that specialization in consumption 
is determined by agents’ preferences in this model, it may be difficult to motivate 
one’s type as a choice variable. I address both of these issues by introducing 
evolutionary dynamics into the analysis [see Mailath (1992) and the other 
papers in that volume, for an introduction to evolutionary game theory]. For 
a fixed population distribution, depending on parameter values and, also, on 
which equilibrium the economy selects if more than one exists, some types enjoy 
greater payoffs than others. For example, types that specialize in the production 
of low storage cost output or in the production of output that serves as 
a medium of exchange in a particular equilibrium would seem to be in position 
to derive a larger payoff. 

I then consider alternative specifications by which the distribution of types 
responds over time, including the ‘evolutionary dynamic’ whereby types repro- 
duce in proportion to their average payoff, and the ‘best response dynamic’ 
whereby all new entrants into the population emulate the type that is currently 
enjoying the greatest payoff. It is then possible to analyze the dynamic behavior 
of the population either analytically or numerically. For example, if the distribu- 
tion of types settles down to a steady state where all types derive the same 
payoff, then the limiting distribution constitutes an equilibrium of the larger 
game in which agents choose their type. Hence, in particular, one can use the 
evolutionary process as a computational method for constructing equilibria 
numerically. For some specifications, the outcome can depend on which dy- 
namic process is assumed, and generates cycles rather than convergence to 
a steady state. 

The rest of the paper is organized as follows. Section 2 presents the assump- 
tions underlying the basic model. Section 3 characterizes the set of steady state 
equilibria for a fixed population distribution, and discusses how commodity 
money in equilibrium depends on storage costs and the numbers of agents 
producing or consuming the various objects. Section 4 endogenizes the distribu- 
tion of types, and analyzes the evolutionary dynamics. Some concluding re- 
marks are contained in section 5. 
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2. The basic model 

Time is discrete and continues forever (a similar analysis applies in continu- 
ous time when the meeting technology described below is specified in terms of 
Poisson arrivals). There are three indivisible commodities, labeled j = 1, 2, 3, 
and a continuum of agents, each of whom can be one of three types, labeled 
i = 1,2,3. [The basic model can be generalized to N commodities and N types, 
as in Aiyagari and Wallace (1991); N = 3 is the minimum number that makes 
the analysis interesting.] What distinguishes types is that type i consumes only 

good i and produces only good i + 1, modulo 3: that is, type 1 consumes good 1 
and produces good 2, type 2 consumes good 2 and produces good 3, type 3 
consumes good 3 and produces good 1. Unlike earlier analyses of this model, the 

distribution of types is not necessarily uniform; it is described by 0 = (O,, 02, O,), 
where Oi is the fraction of type i, with Bi > 0 and o1 + G2 + O3 = 1. 

For any agent i, the common utility of consuming one unit of good i is u > 0, 
the disutility cost of producing one unit of good i + 1 is normalized to zero, and 
r > 0 is the discount rate. Any commodity can be stored by any agent, one unit 
at a time. If commodity j is stored between t and t + 1, there is a cost in terms of 
disutility Cj, paid at t + 1, where c1 < c2 < cj < u. (If cj < 0, it can be inter- 
preted as a rate of return rather than a storage cost.) This is the consump- 
tion-production-storage specification called Model A in Kiyotaki and Wright 
(1989). There is another version, called Model B, that reorders production so 

that i produces i - 1 modulo 3 or, equivalently, reorders storage costs so that 
c, > c2 > cj .4 For most of the discussion in this paper I will focus exclusively on 
Model A, although a similar analysis can be performed on Model B. 

Agents meet bilaterally at each date, which implies that the probability of 
meeting an agent of type i is Bi. When two agents meet, they trade if and only if 

mutually agreeable. All trades are quid pro quo, and there are no credit 
arrangements, since two agents who meet at data t will meet again at date t’ > t 
with probability 0. All trades involve a one-for-one swap of inventories, since 
commodities are indivisible.’ When type i acquires good i, he immediately 
consumes it, produces a new unit of good i + 1, and stores it until the next date 
when he meets a new trading partner. Hence, in equilibrium type i always enters 

a trading period with either good i + 1 or good i + 2, and never good i, and 

therefore p(t) = L(t), pz(t), P3(01 completely describes the distribution of in- 
ventories at a point in time, where pi(t) is the proportion of type i agents holding 

“Note that there are only two different versions of the model possible, assuming that no type 
produces his own consumption good; everything else is just a relabeling. 

5This means that relative prices all equal unity. Shi (1993) and Trejos and Wright (1993a, b) assume 
divisible commodities, so that prices can be determined endogenously, in a version of the model with 
fiat money; I prefer to avoid these complications in this paper. 
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their production good i + 1 at the beginning of period t. A steady state 
inventory distribution satisfies p(t) = p for all t. 

Agents choose strategies for deciding when to trade, given the strategies of 
others and the inventory distribution. As agents are always willing to trade for 
their own consumption goods, all that needs to be determined is if they are 
willing to trade their production goods for goods that are not their consumption 
goods. For now, I consider only symmetric, time-invariant, pure strategies 
(mixed or nonsymmetric strategies are also considered below). Such a strategy 
profile is denoted s = (si, s2, ss), where si = 1 if type i wants to trade his 
production good i + 1 for good i + 2, and si = 0 otherwise; by assumption, if 
i trades good j for good k, then he does not trade good k back for good j. If 
si = 1, then type i is willing to make an indirect trade of good i + 1 for i + 2 and 
then use good i + 2 to acquire good i, which makes good i + 2 a medium of 
exchange, or a commodity money. If si = 0, on the other hand, then type i holds 
on to his production good i + 1 until he can trade directly for good i. 

I begin the analysis by solving for the steady state inventory distribution, 
given a strategy vector s and population distribution 8. Consider, for example, 
type 1, who always has either good 2 or good 3. The only way for type 1 to go 
from good 2 to good 3 is to meet a type 2 agent with good 3 and trade, which 
occurs with probability Ozpzsl (notice that the probability of trading is s1 since 
type 2 always accepts good 2). In steady state he will never switch from good 3 to 
good 2 directly, since if he preferred good 2, his production good, then he would 
not have traded it for good 3 in the first place; however, he can switch by trading 
good 3 for good 1, consuming, and producing a new unit of good 2. This 
happens when he meets type 3 with good 1, which occurs with probability t13p3, 

or type 2 with good 1 who wants to trade, which occurs with probability 
&(l - pz) (1 - s2) (notice that 1 - s2 is the probability that type 2 trades good 
1 for good 3, since s2 is the probability that type 2 trades good 3 for good 1). 

Equating the flow of type 1 agents from good 2 to good 3 with the flow of type 
1 agents from good 3 to good 2, a steady state requires 

P1e2P2s1 = (1 - Plm3P3 + ml - P,)(I - s2)i. 

A symmetric equation holds for each i. Therefore, a steady state inventory 
distribution p is a solution to 

Ple2P2sl = (1 - P1w3P3 + e2(1 - pm - s2)l 
P2e3P3s2 = (1 - P2wlPl + e3u - p3)(1 - s3)1 . (1) 

P3e1P1s3 = (1 - P3mzP2 + w -em - ~4 

These equations can actually be simplified slightly further, by using the result 
that si = 0 implies pi = 1, but the above expressions suffice for present purposes. 
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I now describe the individual decision problem. Let I/ij be the expected 

discounted utility at the end of period t for type i with good j (the payoff, or 
value, function). A maximizing strategy for type i then satisfies si = 1 if 
Vi,i+ 1 < Vi,i+z and si = 0 if Vi,i+ 1 > Vi,i+ 2. Thus, if the value of holding 
the production good i + i is less than the value of holding good i + 2, then i 

will set s1 = 1 and opt for an indirect trade whenever the opportunity presents 
itself (although, of course, he may still acquire his consumption good i directly 
if it is offered in exchange for i + 1 before he has the chance to trade for i + 2). 
On the other hand, if the value of holding the production good i + 1 exceeds 
the value of holding good i + 2, then i will not accept good i + 2 and will 
hold on to his production good until he can trade it directly for good i. If 

vi,i+l = vi,i+2, then type i is indifferent between holding goods i + 1 and 
i + 2, and he could randomize between Si = 0 and si = 1. In the analysis of 
pure strategy equilibria, however, I simply assume that agents do not trade if 

they are indifferent. 
To illustrate the workings of the model, consider the payoffs of type 1. 

Standard techniques deliver the following expressions for the flow payofSs (the 

flow payoff is simply the rate of time preference multiplied by the value 
function): 

rv12 = - c2 + ~2P25k(V13 - V12) + Ce2u - P2) + &P3%1K 

rV 13= - c3 + f93P3@4 + v12 - V,3). 

The flow payoff from holding good 2 is the disutility of storage, plus the 
probability of meeting a type 2 with good 3 and trading if ‘desirable (i.e., if 
S, = l), plus the expected utility from consumption, which occurs when the 

agent meets either a type 2 with good 1 or a type 3 with good 1 who is willing to 

accept good 2. The flow payoff from holding good 3 is the disutility of storage 
plus the probability of meeting a type 3 with good 1 and trading, consuming, 
and producing a new unit of good 2.6 

Manipulation of the above expressions yields 

Al = c3 - cz + P2U - P2) - bP3U - s3 )I ZJ 3 

61 have used the result that, in steady state, type 1 never switches from good 3 to good 2 without 
consuming, and the result that type 1 can never get good 1 from type 2 in exchange for good 3 (since 
if type 2 preferred good 3 to good 1 he never would have acquired good 1 in the first place). These 
expressions can be derived from the perhaps more intuitive expressions for the value functions in 
Kiyotaki and Wright (1989), although there would be a slight difference because that paper assumes 
the cost of storing a good between t and t + 1 is incurred at t rather than at t + 1. The reason the 
expressions are so much more compact here than in that paper is because they are written in flow 
terms that is, because I have solved for rIJi,. 
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where Ai = (I + &pZsl + &p3) (VI2 - 1/r3) takes the same sign as VIZ - Vi3, 
and therefore the sign of AI is sufficient to determine si . By symmetry, the sign of 
Ai is sufficient to determine Sir where 

Ai = Ci+z - Ci+l + ei+l(l - Pi+l) - ei+ZPi+2(1 - si+2) 3 (2) 

given a normalization u = 1 (and, as always, addition with respect to types is 
understood to be modulo 3). Maximization for type i requires si = 1 if Ai < 0 
and si = 0 if Ai > 0. 

Intuitively, on the right-hand side of (2) ci+z - ci+ 1 represents the cost to 
acquiring a medium of exchange in terms of relative storabilities, while the 
remaining terms represent the change in Eiquidity that results from trading good 
i + 1 for good i + 2, where liquidity reflects the rate at which type i expects to 
acquire his consumption good. If Ai > 0, the net storability plus liquidity cost is 
positive, so type i sets si = 0 and never uses indirect trade. If Ai < 0, then the net 
storability plus liquidity cost is negative, so type i sets si = 1 and acquires 
a medium of exchange whenever he can. 

The above considerations lead to the following definition of an equilibrium 
for the model with 8 fixed. 

Definition 1. Given the storage costs and the population distribution, 
c = (cr , c2, cj) and 0 = (0,) 02, e,), a (symmetric, steady state, pure strategy) 
equilibrium is defined to be a vector of inventories p = (pr, p2, p3) and a vector 
of strategies s = (sr , s2, s3) satisfying: 

(a) the steady state condition (1) 

(b) for each agent of type i, given the strategies of others and p, si satisfies the 
maximization condition: si = 1 if Ai < 0 and Si = 0 if Ai > 0. 

3. Equilibria with a fixed population 

There are exactly 23 = 8 candidate strategy vectors that could potentially 
constitute (symmetric, steady state, pure strategy) equilibria, corresponding to 
each si taking on either a value of 1 or 0. Several cases can be ruled out 
immediately. 

Case 1: s = (1, l,l). This is not an equilibrium because, given these strategies, 
(2) reduces to A, = c3 - c2 + e2(1 - p2) > 0 for type 1, and therefore s1 = 1 is 
not a maximizing strategy. 

Case 2: s = (1, 0,l). This is not an equilibrium because, given these strat- 
egies, (2) reduces to AI = c3 - c2 > 0 for type 1, and again sl = 1 is not 
a maximizing strategy. 
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Case 3: s = (1, 0,O). This is not an equilibrium because, given these strat- 
egies, (2) reduces to A2 = cl - c3 < 0 for type 2, and therefore s2 = 0 is not 
a maximizing strategy. 

Case 4: s = (0, 1, 1). This is not an equilibrium because, given these strat- 
egies, (2) reduces to A3 = c2 - cl > 0 for type 3, and therefore s3 = 1 is not 
a maximizing strategy. 

Case 5: s = (0, 0,O). This is not an equilibrium because, given these strat- 
egies, (2) reduces to A, = cl - c 3 - d,p, < 0 for type 2, and therefore s2 = 0 is 
not a maximizing strategy for type 2. 

This leaves three cases, s = (0, 1, 0), s = (1, 1, 0), and s = (0, 0, 1). The first two 
possibilities were found to be equilibria for some specifications of storage costs 
in Kiyotaki and Wright (1989) when 19~ = e2 = O3 = 3, and were referred to 
there as the fundamental and speculative equilibria, respectively. The third 
possibility cannot be an equilibrium when O1 = t32 = O3 = f, but it remains to be 
seen what happens for other 8. The steady state inventory distributions for each 
of the three cases, which can 

s = (0, 1,0) implies 

s = (1, 1,0) implies 

where 

p1 = 2&(1 - 0,) co1 

be found by solving (1) is given by 

P = Cl, &/(l - 0,) 11; 

P = [PI? P2> 11, 

p2 = & [& - 1 + J(l - 02)’ + 4tlld,] ; 

and 

s = (O,O, 1) implies p = [l, 1, Q,/(l - 0,)] . 

Consider first s = (0, l,O). In this case, type 2 uses good 1 as a medium of 
exchange, while types 1 and 3 opt for direct exchange. Type 2 agents therefore 
act as middlemen, acquiring good 1 from type 3 and trading it to type 1, and 
good 1 becomes commodity money. Under what circumstances will this be an 
equilibrium? Given s and the implied distribution for p, condition (2) implies: 

A, = c3 - c2 - Q3(1 - 28,)/(1 - 0,)) 

A2 = cl - c3 - 0i , 

A3 = c2 - c, . 



190 R. Wright/Journal of Economic Dynamics and Control 19 (1995) 181-206 

Hence, A2 < 0 and A3 > 0, and so s2 = 1 and s3 = 0 are maximizing strategies 
for types 2 and 3, while Al 2 0 and s1 = 0 is a maximizing strategy for type 1 if 
and only if the following condition holds: BZ 2 4, or e2 < 4 and 

e3 I (c3 - c2)(l - 0,)/U - 202) = e(e2). (3) 

A graphical illustration of the region of parameter space in which these condi- 
tions are satisfied - and,therefore, in which s = (0, 1,O) constitutes an equilib- 
rium - is provided below. 

In the special case where d1 = 19~ = e3 = 4, (3) implies that s = (0, 1,0) is an 
equilibrium if and only if c3 - c2 2 4. This is the same as the condition in 
Kiyotaki and Wright (1989, Theorem 1 (a)) - although the discount rate does not 
appear because it is assumed here that storage costs between t and t + 1 are 
incurred at t + 1, rather than at t. Another special case of interest is the one 
where Cj + 0 for allj, which implies that s = (0, 1,0) is an equilibrium if and only 
if e2 2 4. As the storability factor vanishes, all that matters is liquidity, and type 
1 will accept good 3 as a medium of exchange if and only if it allows him to 
acquire his consumption good more quickly. He can acquire his consumption 
good more quickly in exchange for good 2 than in exchange for good 3 if and 
only if e2(1 - p2) 2 e3p3, which reduces to e2 2 4, because this equilibrium 
implies p2 = e,/(l - t9,) and p3 = 1. Therefore, in the absence of storage costs, 
s = (0, 1,0) is an equilibrium if and only if the majority of the population are 
type 2 agents - that is, consumers of type l’s output. 

Consider now s = (1, l,O). In this case, types 2 and 3 are using the same 
strategies they used in the previous case, but now type 1 is accepting good 3 as 
a medium of exchange; hence, both goods 1 and 3 serve as commodity money. 
Given s and the implied distribution for p, 

dl = c3 - c2 + 4 {I + e2 - 2e3 - J(i - e2)2 + 4e2(i - e2 - e,)} , 

A2 = cl - c3, 

A3 = c2 - Cl + &(i - ~1). 

Hence, A2 -c 0 and A3 > 0, and so s2 = 1 and s3 = 0 are maximizing strategies 
for types 2 and 3, while Al < 0 and s1 = 1 is a maximizing strategy for type 1 if 
and only if 

e3 > c3 - c2 + 4 - f Ji - 4e2(e2 + c3 - c2) =f(e,). (4) 

A graphical depiction of the region of parameter space in which this is satisfied 
will also be provided below. 
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In the special case in which 8i = O2 = ti3 = f, (4) is satisfied and therefore 

s = (1, 1,0) is an equilibrium if and only if cJ - c2 < (Vh - 1)/3. This is the 
same as the condition in Kiyotaki and Wright (1989, Theorem 1 (b)) - again, 
except that the discount rate does not appear. In general, (4) indicates that good 
3 has to be not too much more costly to store than good 2, and there has to be 
a sufficiently large number of type 3 agents relative to type 2 agents in order for 
type 1 to wish to use indirect trade. This is reasonable, since the advantage to 
type 1 of using good 3 as a medium of exchange is that he can always trade it to 
type 3 and type 3 always carries good 1. If the probability of meeting a type 3 
agent is great - in other words, if there is a large number of agents who demand 
good 3 for consumption purposes - then acquiring good 3 reduces the time it 
takes type 1 to acquire his consumption good. In this case, type 1 opts for 
liquidity over storability. 

Finally, consider s = (0, 0, 1). In this case, type 3 accepts good 2 as a medium 
of exchange, while types 1 and 2 hold on to their production goods, and good 2 
becomes the unique commodity money - a complete reversal of the situation in 
the previous case, where goods 1 and 3 are commodity monies but good 2 was 
not. With these strategies and the implied distribution for p, 

Al=c3-c2, 

AZ = ci - cj + 81(283 - l)/(l - 0,)) 

A3 = c2 - cl - O2 

Hence, si = 0 is a maximizing strategy for type 1, s2 = 0 is a maxi- 
mizing strategy for type 2 if and only if A2 2 0, which holds if and only if O3 2 4 
and 

d2 I(1 - &)(I + C3 - Cl - 28,)/(1 - 203) = @,), (5) 

and s3 = 1 is a maximizing strategy for type 3 if and only if A3 < 0, which holds 
if and only if 

02 > c2 - Cl . (6) 

In the limit as Cj + 0 for all j, this equilibrium exists if and only if o3 2 4 . 
Figs. la-d depict regions in the (e2, 19,) plane in which the various equilibria 

exist, for various values of the storage costs. There are several things to notice 
about the results. First, because conditions (3) and (4) can never be satisfied 
simultaneously, the two equilibria s = (0, 1,0) and s = (1, 1,0) never coexist. 
Furthermore, there always exist values of 0 such that neither (3) nor (4) is 
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213 I 

m s=(l,l,O) 
% 

m S=(1.1,0) and s=(o,o,l) 

Fig. la. Existence of equilibria, c = (0, 0,O). 

satisfied, and so neither the s = (0, 1,0) nor the s = (1, 1,0) equilibrium exists (a 
mixed strategy equilibrium will be constructed below for these parameter 
values). These findings generalize known results for the case 13~ = f$ = e3 = 4. 
The new equilibrium s = (0, 0, 1) can exist for some values of c and 0, although 
not for any c when (J1 = f& = & = 3, which is why it did not come up in 
Kiyotaki and Wright (1989). The region in the (&, 0,) plane in which the new 
equilibrium exists shrinks and eventually vanishes as the storage costs become 
bigger. 

An interesting finding is that whenever the new equilibrium s = (0, 0, 1) exists, 
so does s = (1, 1,O). These equilibria are mirror images, in the sense that agents 
use opposite strategies in the two cases, and the commodities monies are goods 
1 and 3 in the latter case and good 2 in the former case. This demonstrates that 
which objects arise endogenously as media of exchange depends not only on 
fundamentals, like storage costs and the numbers of agents that consume or 
produce the various goods, but also on which equilibrium the economy selects. 
This multiplicity of equilibrium outcomes does not arise in the special case 
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213 

2;3 

fj@j S=(t), 1 ,O) 

0 =(a, 1 ,O) 

m s=(l,l,O) 

m s=(l,l,O) and s=(O,O,l) 

Fig. lb. Existence of equilibria, c = (0, 0.01,0.02). 

where 8r = 19~ = e3 = f, where there is never more than one equilibrium, and 
the commodity monies can therefore depend only on storage costs.’ 

As remarked above, there is always a region of parameter space in which no 
pure strategy equilibrium exists, in between the ti3 = e(0,) and O3 =f(fI,) 
curves, shown as the white region in fig. 1. Although I am mainly concerned 
with symmetric pure strategies in this paper, for completeness I now demon- 
strate how to fill in this region by constructing a symmetric mixed strategy 
equilibrium where s = (a, l,O), for some 0 in the open interval (0, 1). 
That is, type 1 agents randomize in their decision to accept good 3.’ For this to 

‘The alternative version of the model called Model B does admit multiple equilibria with different 
commodity monies, for some storage costs, even if fI1 = t12 = 0s = l/3; see Kiyotaki and Wright 
(1989, Theorem 2). 

8The construction follows Kehoe, Kiyotaki, and Wright (1993). Notice that the symmetric mixed 
strategy equilibrium can always be reinterpreted as a nonsymmetric pure strategy equilibrium, 
where a fraction CT of the type l’s uses s, = 1 and a fraction 1 - CT uses si = 0. 
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m S=(O, 1 ,O) m s=(l,l,O) 

0 s=(c, I ,O) m s=(l,l,O) and s=(O,O,l) 

Fig. lc. Existence of equilibria, c = (0, 0.1,0.2). 

be consistent with individual maximization, Al must be zero. Also, given 
s = (a, 1, 0), the steady state distribution is p = [pI, p2, l] where 

$3 
P1 = 201(& + e,) 

{ 1 - 02 - 203 + ,/(l - 192 - 20,)2 + ‘&(a& + e,)} . 

p2 =&{B, - i + J(i - e,12 + 4aele2} . 

Given s and p, it is easy to check that A2 < 0 and A3 > 0, so that s2 = 1 and 
s3 = 0 are maximizing strategies for types 2 and 3, and that 

dl = c3 - c2 + e2(i - p2) - e3, 
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l/3 213 ’ *2 

m s=(O,l,O) m s=(l,l,O) 

I s=(u,l,O) m s=(l,l,O) and s=(O,O,l) 

Fig. Id. Existence of equilibria, c = (0,0.2,0.4). 

so that A, = 0 if and only if (after inserting pz from above and solving) 

0= 
8102 + (1 - &)(c3 - c2 + 8, - 0,) 

(CJ - cz + 02 - e3)2 . 

Notice that 0 < c -C 1 if and only if e(0,) c 03 <f(t),). Therefore, in the region 
between the ~9~ = e(0,) and f& =f(e,) curves, this mixed strategy equilibrium 
exists and ties together the two equilibria s = (0, 1,0) and s = (1, l,O). This 
establishes the existence of equilibrium for all 8. 
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4. Endogenous types 

Until now, the distribution of types has been taken to be exogenous. What if 
agents are allowed to choose their type? How will the distribution of types be 
determined by the intrinsic properties of the objects, and by the choice as to 
which objects get used as money? Instead of studying how the number of 
producers or consumers of each good affects the equilibrium commodity money, 
the idea in this section is to study how the population distribution itself is 
determined. 

To study this issue, one needs to know the equilibrium payoffs. The payoff to 
type i, not conditioned on the particular good he is holding at a point in time, is 
given by 

wi = Pivi,i+l + t1 - Pi) vi,i+Z * 

Since this payoff is not conditioned on the current inventory, it measures type i’s 
steady state utility - or, equivalently, average utility at a point in time across 
type i agents. One could alternatively measure payoffs according to some other 
criteria, such as utility given an inventory of i’s production good as an initial 
condition, perhaps. I work with Wi as defined above because it is tractable, and 
also because it seems reasonable under the evolutionary interpretation de- 
scribed below. 

As it turns out, these equilibrium payoffs can also be represented in the 
following way: 

rWi= -ppiCi+l -tl -PiJci+Z + ei+I(l -Pi+l)CPi + (1 -Pi)Si+Il 

+ ei+2Pi+2CPisi+Z + C1 -Pi)]. 

On the left-hand side is the flow payoff, or expected utility per period, r Wi. On the 
right-hand side, the first two terms give the average storage costs incurred by type 
i. The final two terms give the rate of consumption per period for type i: the pro- 
bability of acquiring good i from type i + 1 plus the probability of acquiring good 
i from type i + 2. This expression is simple and intuitive, in principle, although it 
becomes unwieldy as soon as one inserts the steady state p distribution. 

In any case, if agents are allowed to choose their type, equilibrium requires 
WI = W, = W, (it may seem more reasonable to require equal payoffs only for 
types that exist in positive numbers, but it is easily seen that there exist no 
nondegenerate equilibria where Bi = 0 for some i). This leads to the following 
generalization of Definition 1: 

Definition 2. Given storage costs, c, a (symmetric, steady state, pure strategy) 
equilibrium with an endogenous distribution of types is a list (s, p, 0) satisfying: 
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(a) the steady state conditions (I), 

(b) for each agent of type i, given the strategies of others and p, si satisfies the 
maximization condition: si = 1 if di < 0 and Si = 0 if di > 0, 

(c) equalization of expected utility: W, = W, = WLI. 

It will be shown that endogenizing the distribution of types reduces the set of 

equilibria considerably: the only possible nondegenerate steady state equilib- 
rium involves s = (1, 1, 0), and an equilibrium with this s exists as long as the 

storage costs are not too high. (Clearly, if the storage costs are too high, then the 
only equilibrium is degenerate.) The idea behind the result is as follows: if 8 is 
such that one of the other possible equilibria exists, and if the economy is in one 

of these equilibria, then the Wi are not equated across agents, and as U changes 
to equate Wi, the existence conditions for these equilibria no longer hold. In 
particular, other things being equal, type 3 agents get a high payoff and type 2 
get a low payoff, given the storage costs of their production goods. Hence, 
equilibrium must entail a relatively large U, and low U,, and this allows only the 
s = (1, 1,0) equilibrium. 

To verify this result, consider the strategy profile s = (0, l,O). Explicit calcu- 
lation of the Wi, given this s, implies 

W,!$ W, if and only if Q3gH2 + c3 - cl. 

One can easily show that the curve along which W2 = W, does not pass 
through the region in the (Q,, 0,) plane within which s = (0, 1,O) is an equilib- 
rium. Hence, there is no point at which s = (0, 1,0) is an equilibrium strategy 
profile and the Wi are equated. Now consider s = (0, 0, 1). Given this s, 

W, $ W, if and only if 203 $1 - 0, + c2 - c, . 

One can easily show that the curve along which WI = W, does not pass 
through the region in which s = (0, 0, 1) is an equilibrium. Therefore, there is no 
point at which s = (0, 0, 1) is an equilibrium strategy profile and the Wi are 

equated. A similar argument applies to the mixed strategy equilibria discussed in 
the previous section. 

These results establish that the only possible equilibrium involves the strategy 
profile s = (1, l,O). Unfortunately, for general storage costs, an explicit ex- 
pression for the locus of points in 8 space in which WI = W,, W, = W3, or 
W, = WI is too complicated to convey much information when s = (1, l,O). 
However, in the limiting case in which cj + 0 for all j, each locus turns out to be 
linear. In this case, there is a unique point such that W, = W2 = W, in the 
interior of the region in which s = (1, 1,0) is an equilibrium - that is, the region 
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Fig. 2a. Equilibrium with endogenous types, c = (0, 0,O). 
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l/3 2/3 I 

Fig. 2b. Equilibrium with endogenous types, c = (0, 0.01,0.02). 
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where BJ >f(e,). By continuity, there exists a unique equilibrium in this region 
whenever the cj are not too big. Figs. 2a and 2b depict the equilibrium in the 
(e,, 0,) plane for two values of the storage costs. Notice that, when cj + 0 for all 
j, the equilibrium is the uniform distribution: 8i = o2 = e3 = f. Whenever 
(‘3 >c2 >Cl, on the other hand, 13~ > 3 and d2 < f . 

Several aspects of these results are worth emphasizing. First, the equilibrium 
s = (0, 1, 0), which was called the fundamental equilibrium in Kiyotaki and 
Wright (1989) and often discussed as though it is the most natural outcome [see, 
e.g., Marimon, McGrattan, and Sargent (1990)], does not even exist when 0 is 
endogenized. Rather, the unique outcome is what was called a speculative 
equilibrium (since type 1 ‘speculates’ by trading the relatively low storage cost 
good 2 for the high storage cost good 3, because he rationally believes the latter 
conveys greater liquidity). Also, the uniform distribution for 8, which is the 
specification exogenously imposed in previous analyses of this model, is never 
an equilibrium once 8 is endogenized, excluding the degenerate case in which the 
storage costs are all identical. In general, there will be a more (fewer) agents who 
produce the good with the lowest (highest) storage cost. 

There are two features of endogenizing 0 that raise difficulties. First, tech- 
nically, it is difficult to compute the equilibrium; although we can deduce its 
qualitative properties for small storage costs, in general it is not easy to find the 
solution to the equations IV1 = W2 = W,. Second, conceptually, it may be hard 
to understand how one’s type can be a choice variable, to the extent that type in 
this model determines one’s taste in consumption goods, and tastes are typically 
not open to choice in economic analysis. 9 I address both of these issues by 
introducing evolutionary dynamics into the model. 

Although there are a variety of interpretations to the evolutionary approach, 
one is that over time new agents are born, and they inherit the characteristics of 
their parents [see Mailath (1992) for a discussion of some other interpretations, 
including learning and bounded rationality]. Conceptually, one does not choose 
one’s type at all ~ it is given at birth; but as long as types reproduce at a faster 
rate when they enjoy a higher payoff (a greater ‘fitness’ in the language of 
evolutionary biology), the system can evolve in such a way that the economy 

‘The assumption that one’s type determines both one’s consumption good and production good 
was made partly for simplicity and partly to facilitate comparison with the previous literature, but it 
is not really necessary. An alternative is to assume that every agent at each point in time desires to 
consume one particular good, which varies stochastically (say, after consuming one thing he realizes 
a taste for something else drawn at random from the set of goods). This makes the agents generalists 
in consumption even though they are specialists in production; this may be more natural, but it is 
also somewhat more complicated and therefore will not be pursued here. Another interpretation of 
the assumption that one’s type determines both one’s demand and supply is that agents are in fact 
choosing production processes that take some goods as inputs and turn them into other goods as 
outputs. Then one’s choice of which output to produce will simultaneously determine which goods 
one needs as inputs in the production chain. 
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behaves as if agents were choosing their types. Technically, studying the dynamic 
process may not only be interesting in its own right, but if it converges then its 
limiting distribution can be regarded as an equilibrium of the game in which types 
are chosen endogenously. As discussed by Sargent (1993), one can thereby regard 
the evolutionary approach as providing a method for computing equilibria. 

The idea is to first fix e(t) at a point in ‘evolutionary time’. Then choose an 
equilibrium in trading strategies for this /3(t), which can be nontrivial when 
multiple equilibria exist, as they do in this model for some 9. Then compute the 
equilibrium payoffs, W’i(t). Then allow the population to evolve (with evolution- 
ary time) in such a way that types with greater payoffs increase their relative 
numbers. If e(t) + 8*, then 8* constitutes an equilibrium distribution of types 
according to Definition 2. One has to be careful, however, because whether or 
not a particular equilibrium exists depends on 8; therefore, as 8 evolves, the 
economy may have to jump from one type of equilibrium to another.” 

The next question is, how should the population evolve? A common specifica- 
tion in the literature is the so-called replicator dynamic [see Mailath (1992) and 
the references contained therein]: 

ei(t + 1) = ei(t)(l - /I) + 8i (t)PWi(t)/E W(t), (7) 

where E W(t) = zi6i(t) W’i(t) is the average payoff and BE(O, 1). This assumes 
some fraction of the population 1 - /3 does not change at all, while a fraction of 
the population /I (the newborn) evolves in such a way that types with a high 
payoff relative to the average payoff increase their relative numbers. The 
parameter /I merely affects the speed of adjustment. At alternative that has been 
studied by Gilboa and Matsui (1991) and Matsui (1992), for example, is the 
so-called best response dynamic: 

1 

(1 - fl)ei(t) + B if wi(r) = max y(t), 
Oi(t + 1) = i 

(8) 
(1 - P)&(t), otherwise. 

This specification assumes that all newborn agents next period emulate the type 
of agents who are currently enjoying the maximum payoff.” 

Figs. 3a and 3b depict the evolution of the population in the (e,, 0,) plane 
according to the replicator dynamic for two values of c. The arrows indicate the 

loBy evoking the notion of evolutionary time in this discussion, I mean that the population evolves 
much more slowly than the rate at which the agents interact in the trading process. This is what 
makes steady state utility W, a reasonable indicator of reproductive fitness. 

“If one interprets the model as saying that newborn agents choose their type, then both specifica- 
tions imply agents are to some extent myopic or unsophisticated [Mailath (1992)]. In particular, the 
population evolves according to current payoffs and not rationally anticipated future payoffs, which 
is why evolutionary theory is often interpreted in terms of bounded rationality. By contrast, the 
agents in this paper are fully rational and sophisticated in choosing their trading strategies. 
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Fig. 3b. Replicator dynamic, c = (O,O.Ol, 0.02). 
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direction of motion, derived by calculating the Wi and then the change in 
Bi as implied by (7) in each region of the plane, given the type of equilibria 
that exist in the various regions. In the region where the unique equilibrium 
involves s = (0, IO), type 3 are doing well and type 2 poorly. Hence, the 
system moves to the northwest, first entering the region where the mixed 
strategy s = (a, 1,0) is used, and then leaving this region and entering the 
region where s = (1, 1,0) is used. In the region where both s = (1, 1,0) 
and s = (0, 0, 1) are equilibria, in either equilibrium type 2 are doing well 
and type 3 poorly. In this region, the motion of the system is qualitatively 
the same in either equilibrium, and it heads southeast out of that region, into 
the region where s = (1, 1,0) is the unique equilibrium trading strategy 
profile. Once in the region where s = (1, 1,0) is the unique equilibrium, the 
system never escapes. 

It is apparent from the above discussion that, starting from any initial 19, 
the population tends to move into the region where s = (1, 1,0) is the unique 
equilibrium trading strategy profile. In a large number of numerical experi- 
ments with the replicator dynamic, from any initial conditions, the system 
always converged to a unique steady state [as is the case in many applications 
in economics and biology; see Mailath (1992)]. Of course, this steady state of 
the dynamical system is the unique equilibrium population distribution of the 
economy where agents are allowed to choose their type. One reason that this 
is useful is that it provides a simple way of calculating an equilibrium. 
For general storage costs it is not possible to say very much analytically 
about the equilibrium value of 8; when the evolutionary process converges 
to a steady state, it provides a very simple way of calculating the equilibrium 
0 numerically. 

Figs. 4a and 4b depict the evolution of the population according to the best 
response dynamic (8) for two values of c. The system with this specification for 
the evolutionary process can actually display some fairly complicated dynamical 
behavior, depending on storage costs and on the speed of adjustment parameter 
/I; but a common occurrence is a three-cycle [reminiscent of the results of Gilboa 
and Matsui (1991)]. In fact, with the best response dynamic, the direction of 
adjustment depends on the payoffs but the size of the adjustment depends only 
on the parameter /I. This implies that if a three-cycle exists, it must be one of the 
following two candidates: 

A. (&, 0,) cycles between (Ofi’, D), (D, D/I), and (D/I, D/?‘) , 

B. (&, 03 ) cycles between (Dp2, D/3), (D, D/P), and (DB, D) , 

where D = l/(1 + fi -t /I’). 
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Fig. 4b. Best-response dynamic, c = (0,0.01,0.02). 
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In case A, when (e,, 19,) = (Do’, D), if W, is the maximum payoff, then next 
period the p newborn agents are all of type 2. This makes (0,) f3,) = (D, D/Q, and 
if WI is the maximum payoff, then next period the /? newborn agents are all of 
type 1. This makes (e,, 0,) = (Ofi, Dp’), and if W, is the maximum payoff, then 
next period the /3 newborn agents are all of type 3. This takes the system back to 
where it started, (0,, 0,) = (Dp2, D), and it continues to cycle clockwise in the 
(e,, tl,) plane. Whether this outcome is actually generated by the best response 
dynamic depends on whether parameter values are such that the correct Wi is 
the maximum payoff at each point on the cycle so as to move the system in the 
right direction. Case B is similar, except that the system cycles counterclockwise. 
The cycles trace triangles in the (e,, 0,) plane around the steady state, as shown 
in fig. 4, where the size of the triangles depends only on p.i2 

In the limit when cj = 0 for all j (and therefore, by continuity, when the cj are 
close to 0), one can show that both three-cycles are implied by the best response 
dynamic, as shown in fig. 4. When the cj are large, this depends on /3. In 
numerical experiments, the following results were observed. When only one of 
the candidate three-cycles is implied by the best response dynamic, it is stable. 
When both candidate three-cycles are implied by the best response dynamic, 
both are locally stable: depending on where the system starts, it converges to one 
or the other. When neither of the candidate three-cycles is consistent with the 
best response dynamic, the system converges to a cycle of higher periodicity. It 
never settles down to the steady state. Of course, these features of the best 
response dynamic are due to its discontinuous nature, where all of the newborn 
agents copy the type that earned the maximum payoff last period, even if the 
maximum payoff was very close to the payoffs of the other types. 

5. Summary and conclusion 

In this paper, I have described a version of a framework that uses search 
theory to model the exchange process in such a way that it is possible to 
determine endogenously which objects circulate as commodity money. Previous 
analyses of related models were generalized to allow arbitrary distributions of 
types. This allows one to discuss how the outcome is influenced by not only the 
intrinsic properties of goods, like their storability, but also by the relative 
numbers of agents who supply and demand the different commodities. I then 
endogenized the distribution of types, which was shown to lead to a unique 
equilibrium. I also considered an evolutionary dynamic approach to the 

12Notice that the cycles can actually take the system across regions, as shown in the figure: hence, 
the regime can switch - between s = (1, 1,0) and s = (0, 1,O). in this case. For /3 closer to 0, the cycles 
shrink, and the system remains in the region where s = (1, l,O). 
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determination of the population distribution. The outcome of the evolutionary 

process sometimes depended on the specification, and some fairly complicated 

outcomes were possible. When convergent, the evolutionary approach can be 
thought of as a way to compute the equilibrium population distribution. 

Both the class of models encompassing the specific example studied and the 

techniques employed are more genera1 than it might appear. Many varieties of 
search-based monetary theory can be constructed and applied (see the references 
in the introduction). The evolutionary approach can be used in these models as 
a method of computing equilibria (as I have done here), of selecting equilibria 
when multiplicities exist [as emphasized in Matsuyama, Kiyotaki, and Matsui 
(1993)], and of studying learning, bounded rationality, and related phenomena 
[as Marimon, McGrattan, and Sargent (1990) do using an artificial intelligence 

approach]. I adopted a particular formulation to illustrate the basic ideas, but 
there are many places where alternative modeling choices could have been 
made. For instance, it may be more natural or interesting to apply the evolution- 
ary approach to trading strategies rather than (or in addition to) the choice of 
types. The goals of this paper were simply to demonstrate some possibilities and 
to suggest potential future research topics. 
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