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North Atlantic Ocean—Atmosphere
Co-Variability: A Nonlinear Problem

* Persistent atmospheric patterns, which are

most likely to be affected by O-A coupling, arise
from complex eddy—mean flow

* The region of strongest potential coupling is also
characterized by vigorous oceanic
intrinsic variability.

* Linear atmospheric response to weak SST anomalies
(SSTAs) is small. Hence, active coupling requires
atmospheric sensitivity to SSTA.




Observational Analyses

* NCEP/NCAR Reanalysis (Kalnay et al., 1996)
zonally averaged zonal wind data set:

58 Northern Hemisphere winters
[10°N-70°N] and (Dec.—March)

observations (annual means, same period)

* Upper ocean heat content (OHC) data (detrended,
1965-20006) (Levitus et al., 2005; Lyman et al., 20006)




Two Coupled Models

(1)
atmospheric and ocean
components, both P
characterized by vigorous | Ry
intrinsic variability.

X X
Y0480 km ~ ©

5120 km

(2) The same atmospheric
QG model coupled to a .
coarse-resolution,
(PE)
(called ).

5600 km

. A




Methodology

* Study nonlinear aspects of intrinsic atmospheric
variability by identifying anomalously persistent
patterns (time scales longer than about a week).

* |dentify long-term (decadal and longer) changes
in the of such states.

* Connect the latter changes with the changes
In boundary forcing (e.g., SST anomalies), as well
as with the upper-ocean’s (inter-)decadal variability.




Atmospheric circulation in the QG model
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Atmospheric bimodality in
models and observations

(a) Position of the zonal-mean jet
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20-25-yr Coupled Mode

OBSERVATIONS
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10—-15-yr Mode
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Observations of OHC variability

The observational record "Regire A Occurence Anomaly (daysAvinten
IS relatively short,

* Both Regime A
occurrences and

the OHC time series
exhibit
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changes in regime
occurrences by a
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OHC variability in a
coupled QG model-|

Heat Content SSA spectrum (700-yr data set)
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OHC variability in a
coupled QG model-ll

Regime Occurrence Anomaly

The observational result
applies to the coupled QG
model’'s variability as well:

In the model’s bidecadal,

coupled oscillation, o e [T ek

Ocean Heat content Ano%aly
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Spatial pattern of OHC change

* In the North Atlantic region, there is a substantial
spatial correlation between

and the

2-year Heat Content Change [W m 2]
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Summary

« Evidence is mounting for decadal and bidecadal

coupled climate signals, whose centers of action
lie in the North Atlantic Ocean.

* Signatures of these signals are found in the NH
, as well as in global

upper- data.
Intermediate coupled models exhibit oscillations
that correctly reproduce the observed time scales
and phase relations between key climate variables.
* The IS the
amplifier of atmospheric sensitivity to SSTAs.
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