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Questions

* |s climate science still data driven?

* Is it worth doing climatic data mining?

* What's new in climatic research strategies
in the “CMIP era”?

Is climate science still data driven? Is it worth doing climatic data mining?
What’s new in climatic research in the “CMIP era”? I'll use an example of
some of my own research and recent discussion with the reviewers on
that issue to spin things up - but hope to hear a lot of feedback from

attendees.



Scientific Method

* a method or procedure consisting in systematic
observation, measurement, and experiment, as
well as the formulation, testing, and

modification of hypotheses (Oxford English
Dictionary)

All hypotheses and theories must be tested

against observations of the natural world (from
the wiki article on empiricism)

» Popper: scientific theories are abstract in
nature, and can only be tested (and falsified)
indirectly, by reference to observations of their
implications (wiki article on Popper)

Scientific theories only make sense as long as they refer to the *observed*
natural world phenomena!



Climate research example: ENSO
« Zebiak and Cane (1987): “With no anomalous

external forcing, the coupled model reproduces
certain key features of the observed
phenomenon, including the recurrence of warm
events at irregular intervals with a preference
for three to four years”

“A theory for this variability and the associated
transitions between El Nifio and La Nina states
is presented”

« Along history of observations and idealized
uncoupled modeling prior to this study!..

The role of observations in climatic research is especially important, as the
climate science is *data driven*: We see something in observations and try to
explain it, rather predicting something and then looking for signs of our prediction
in observations. So, observations go first, theories (often based on
parameterized models incorporating some of the basic first principles) follow.



What's new in climate science
methods since then?

« ALOT of data! (satellites etc.)

« (Many!) global climate models run on huge
computers

 Enormous model generated climate database
coordinated through Coupled Model
Intercomparison Project (CMIP)

With the advent of satellites and powerful computers, we have to deal with
huge observational and model generated data sets. Climatic phenomena
have now to be identified with advanced signal detection methods, while
the models produce behaviors as complex as in the real world and *do not
target a specific isolated phenomenon of interest®.



UNDERSTANDING GLOBAL CHANGE:
OPPORTUNITIES AND CHALLENGES FOR
DATA DRIVEN RESEARCH
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NAVERETASClM Vipin Kumar, William Norris Professor and Head, Department o
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The climate and earth sciences have recently undergone a
rapid transformation from a data-poor to a data-rich
environment. In particular, climate and ecosystem related
observations from remote sensors on satellites, as well as
outputs of climate or earth system models from large-scale
computational platforms, provide terabytes of temporal, spatial
and spatio-temporal data. These information-rich datasets offer
huge potential for monitoring, understanding, and predicting the
behavior of the Earth's ecosystem and for advancing the
science of climate change. This talk will discuss some of

the challenges in analyzing such data sets and our early
research results.

Link to Video:
https://lumconnect.umn.edu/p23404324/
<< View full list of SAFL Seminars

This set up creates a vibrant research environment full of challenges on
both “observational” and “theoretical” side.




THE WCRP CMIP3
MULTIMODEL
DATASET

A New Era in Climate Change Research

BY GERALD A. MeeHL, CURT Covey, THOMAS DELWORTH,
Moy LATIF, BRYanT McAvVANEY, JoHN F. B. MITCHELL,

RONALD |. Stourrer, AND KARL E. TAvLOR

Open access to
an unprecedented,
comprehensive coordinated
set of global coupled climate
model experiments for twentieth
and twenty-first century climate
and other experiments is changing
the way researchers and

students analyze and learn
about climate.

The “new era” of Coupled Model Intercomparison Project is in that the
model generated climates are now publicly available, although it’'s not
clear what the immediate impact of that could be, given an enormously
data intensive character of actual and virtual “observations.” Let’s see how
Meehl et al. (2007) comment on utility of CMIP database.



Utility of CMIP database

* The availability of such a large number of
models provides considerable opportunity to
explore model simulation capability of various
aspects of twentieth-century climate (model
verification)

This type of quantification of model simulation
capability of what we have already observed
provides a baseline for the degree of
confidence we can place in the models and
how they may simulate future changes.

In the Meehl et al. paper this paragraph describes an illustration of how
models simulate the observed leading pattern of 20" century sea-ice
variability. They see the overall agreement between the observed and
simulated patterns and conclude that this “overall agreement in the basic
pattern of variability between the models and the observations builds
confidence that sea ice variability in a future warmer climate can be
usefully studied.” Note the connection that is explicitly spelled out here
between models and observations, consistent with an implied continued
primary importance of observations in climate science.




Utility of CMIP database

* The CMIP3 multimodel dataset has also been
used to help understand climate changes that
have already been observed (!) during the
twentieth century (analysis tool). For example,
model results for the twentieth century have been

analyzed, in concert with additional single forcing
datasets from some of the models, to show that
the signature from large volcanic eruptions, such
as Krakatoa in the late nineteenth century, persist
and are manifested by reduced ocean heat
content for decades after the event (e.g.,
Delworth et al. 2005; Gleckler et al. 2006).

If models and observations agree, further analysis of the models can be
used to disentangle causes of complex climatic phenomena.



» What if models and observations disagree?
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Santer et al. Figure 4

This figure from Meehl et al. (originally from Santer et al.) shows
comparison between models and observations of the ratio of tropospheric
to surface temperature variability in tropics. The results for different CMIP
models are shown with colored symbols, while observational results — as
black symbols. The magnitude of surface temperature variability is a
variable on the horizontal axis, while the magnitude of tropospheric
variability is on the y-axis. The model results exhibit a wide range of
tropospheric and surface amplitudes, but are aligned along a straight line,
thus showing that the ratio of tropospheric-to-surface variability is
consistent between the models (black line is the ratio of 1). Upper panels
show the variance of monthly data, while lower panels — the variance for
the smoothed, decadal-scale data.

For the monthly data the models and observations show consistent ratio
of tropical to surface variability, with tropospheric variability being stronger.
However, for the decadal-scale variability the models and observations
suggest the opposite results...



Meehl et al. conclusion:

» “Therefore, either there are different physics
operating at monthly and trend time scales in the
observations (whereby there can somehow be
good agreement on the monthly time scale and
less agreement on the trend time scale)”

“or this result points to the difficulties of
constructing accurate small trends with
disparate observed data with associated
discontinuities in observing systems over time.”

Notice how carefully crafted the Meehl et al.’s conclusions regarding these
results are. Neither of these conclusions suggests that something in the
models may be wrong and needs to be improved. This implies that the
authors tend to think that the data is bad, rather than to consider a
possibility of a fairly sound assumption that “the different physics” operate
on monthly and decadal time scales, as suggested by observations. To be
fair, the rationale for their skepticism regarding the quality of decadal data
is also clear — limited length of observational record and only a few
realizations of decadal variability available make the data suspect.

However, as | will try to further illustrate below, there may be a developing
tendency for the scientists in the modeling community to be biased toward
an opinion that model simulations, especially when consistent between
different models, can somehow be used as tools to falsify observations
rather than vice versa. To do so, consider a recent example from my own
research.



Stadium wave (Wyatt et al. 2012)

* Observed: Collective low-frequency behavior of
normalized SST and SLP climate indices suggests a
signal with a shared time scale, but different phase for

different indices. Mechanistic explanations were
developed (Wyatt and Curry 2014).

* For the GFDL model, the in-phase behavior is found

Ensemble-mean GFDL "Stadium Wave"
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Wyatt et al. (2012) following Tsonis et al. (2007) in considering a network
of distinct climate indices to study the collective climate behavior in the
Northern Hemisphere. They used an objective filtering technique to isolate
the leading low-frequency signal in a linearly detrended data, and
presented evidence for statistically significant propagation (phase shifts)
of this “stadium wave” across the space of climate indices. Wyatt and
Curry (2014) proposed a mechanistic explanation for this observed
behavior. In contrast, applying the same technique to the data sets
simulated by CMIP models (Wyatt and Peters 2012; Kravtsov et al. 2014)
identifies in-phase, stationary signals devoid of such propagation.



Further model-data comparison 1
* Blue line — observed spectrum

. — range of the simulated spectra
for individual GFDL realizations

 For PDO and NHT indices the model is
consistent with datal!
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The observed and simulated “spectra” of PDO (Pacific Decadal
Oscillation) and NHT (Northern Hemisphere temperature) indices shown
in this slide were computed as the variances of the running-mean filtered
data, for different sizes of the averaging window. “0” on the horizontal axis
corresponds to raw annual data, while the non-zero numbers correspond
to half of the window size (e.g., “10” corresponds to the window size of 21
yr). The observed and simulated spectra are consistent.



Further model-data comparison 2
* Blue line — observed spectrum

. — range of the simulated spectra for
individual GFDL realizations

* The low-frequency variance of Atlantic indices
(AMO and DP) is much below the observed.
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However, a tremendous, order-of-magnitude difference in variance is seen
between the observed and simulated Atlantic Ocean SST indices (AMO —

Atlantic Multidecadal Oscillation, and DP — “Atlantic dipole” index used as

a proxy for the variability of the Atlantic Meridional Overturning Circulation
[AMOC]).



Further model-data comparison 3
* Blue line — observed spectrum

. — range of the simulated spectra for
individual GFDL realizations

* The low-frequency variance of SLP indices (NAO
and ALPI) is also much below the observed.
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The same is true for both atmospheric indices used, NAO (North Atlantic
Oscillation) and ALPI (Aleutian Low Pressure Index).



Implications (Kravtsov et al. 2014)

C (e.g., Mann et al.)
— doesn’t seem to be the case:

v' Propagation is stat. significant at 5% level

v Leading-order differences in the level of
North Atlantic and atmospheric decadal
variance, well above the level of uncertainty

« Alternative: Are models wrong? — seems
to be a reasonable assumption warranted by
the results of statistical analysis

*16



Reviews

Reviewer #3 Evaluations:
Science Category: Science Category 3
Presentation Category: Presentation Category B

Recommendation: accept subject to minor revision

General comment

| still find it disturbing that the authors are willing to put their names on a paper in
a peer-reviewed journal article in which they have no idea of the physical
processes producing the central tenet of their analysis, the presumptive "stadium
wave". And maybe even more disturbing is that they don't really seem to care
one way or another, intent instead on performing a purely statistical analysis, the
results of which they can't explain, and then compare to a model that produces
somewhat different results for which they only have a tentative idea as to why the
observations and model differ. Since there is virtually no understanding or
physical insight here, this is, as | noted in my first review, an academic exercise
that is difficult to take away any kind of meaningful message.

Despite an obvious conclusion of the previous slide, the Kravtsov et al.
(2014) paper has been in review for over three months (a long time for
fast-track GRL journal!). Here is the closing statement by the most critical

reviewer of the paper.



What does the reviewer mean?

...but this has to be
the process, per “scientific method” steps!

v Identification of a statistically significant
phenomenon (e.g., propagation): Wyatt et
al. (2012); Kravtsov et al. (2014)

v Hypothesis re: dynamics of propagation
(Wyatt and Curry 2014). How to test if

models do not corroborate observations?
Change models? How?

v Hypothesis re: differences btw models and
observations (Kravtsov et al. 2014)

The reviewer’s main critique of the paper is that the hypothesized
sequence of dynamical feedbacks leading to the stadium wave (Wyatt
and Curry 2014) is, well, hypothetical as of yet. We are at an impasse
here, since the climate models — the major tool that one could use to test
this hypothesis (Meehl et al. 2007) — do not seem to reproduce the
observations. Other results by Kravtsov et al. (2014) are suggestive of
potential areas for the model development that can be looked at with
regards to this problem (most notably, the apparent lack of multidecadal
atmospheric sensitivity to what the surface climate does, more on that
later). However, who will do this analysis and how? Given the way the
climate models are developed and run (see the next slide), there has to
be a two-way collaboration between climatologists and climate modelers
that would target *specific* observed phenomena.



Climate models
* Run by climate centers;

in developing and
maintaining the models and their outputs

* The to develop and run

* The models consist of
and

* The models produce virtual climates as
complex as reality. They don'’t target a specific
phenomenon, but rather model “everything”

» But, are “virtual climates” = “real climate™? —

Models are a tool to analyze observations, not vice versa! So
disagreement of models with observations does not (and cannot be used
to) disprove observations. On the contrary, the models may need to be
modified to bring their results in consistency with observations, then
physical processes behind the observed features of climate can be
meaningfully studied using these improved models. Once again, it seems
that a useful research strategy would be to look at models as ever-
developing climate analysis tools to understand specific climate
observations, rather than virtual (implicitly=real) climate laboratories.



Why are we (overly) inclined to trust
climate models?

* Respect for extremely well qualified scientific
teams developing and running these models

» Sociopolitical pressure: taking sides in the
global warming debate

* Yet, such an a priori reasoning shouldn’t
obviously be a part of the scientific process

Climate models incorporate some of the essential first-principle dynamics,
and turned out to be an extremely useful tool for climate analysis. They
are developed and run by dedicated scientists who deserve all the
respect. It is psychologically more difficult to challenge the results of the
model simulations managed by a large team of skilled professionals. Yet,
it's no secret that the models are prone and will undoubtedly stay prone to
errors, due to, for example, lack of resolution and the necessity to
parameterize subgrid-scale processes.

Furthermore, in recent years the global warming debate splashed out of
its scientific niche and became public. A person criticizing the ability of
climate models to faithfully describe the observed decadal variability is
somewhat automatically regarded to be, in some sense, “non-
consensus” (and the “non-consensus” people gladly talk back about
“climate alarmists” or “warmists”).

However, a priori trust into the collective effort of climate modeling
centers (vs. individual researchers) or personal beliefs in whether
there is a human induced global warming or not have no place in the
scientific method approach to analyzing natural phenomena.



Areas for model improvement

» Atmospheric sensitivity to SST anomalies
(Kushnir et al. 2002), especially on decadal
time scale. Can be as simple as turning up the
resolution to the scale of ocean thermal fronts
(Feliks et al. 2004) — mesoscale-resolving
atmospheric components?

» Eddy-resolving ocean model components
(Kravtsov et al. 2011) — or stochastic
parameterizations for efficiency?

* Better resolving sea-ice dynamics (Kwok
2011; Wyatt and Curry 2014)?

21



Summar
* |n a data-rich environment of modern climate

science, advanced statistical detection methods
can and should be used to search for climate
signals

» The absence of an observed signal in a climate
model cannot be used to falsify observations

* This discussion calls for a two-way collaboration
between climatologists and climate modelers in
which climate models are further developed to
address specific targeted phenomena, rather than
implicitly being treated as truth — virtual, but still
somehow equal to the real climate

022
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