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…since the internally generated SST anomalies (e.g. due to variations in 
AMOC) and non-uniform (in time) radiative forcing may both be 
responsible for the observed non-uniformities in the NH warming! 
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The multidecadal deviations from the linear trend in GFDL2.1 simulated 
North Atlantic SSTs are indeed much smaller than observed, but this is 
even more so for NAO (which, incidentally, has essentially no forced 
component in the CMIP5 model simulations). Note that the linearly 
detrended NHT variance is similar to the observed, consistent with Zhang 
et al. (2007). 
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Aerosols? 
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Well, maybe not, but what would then be the explanation for the 
insufficient simulated amplitude of multidecadal variability?... 

• 6 



The spatiotemporal structures of dominant multidecadal climate variability 
over a multi-index climate network in observations and GFDL2.1 model 
are also very different. This multidecadal signal in GFDL is predominantly 
*forced*. The run-to-run uncertainties in the simulated phases of the 
stadium-wave components corresponding to different indices (not shown)  
are small compared to the phase shifts between the observed 
components of the stadium wave. So the observed and GFDL2.1 
simulated multidecadal variability in the 20th century (in deviations from 
the linear trend, which trend is, btw, similar in GFDL model and 
observations) differ in magnitude and spatiotemporal structure. 
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Steinman et al. used semi-empirical approach to isolate internal variability 
in regional surface temperature time series. It was used to attribute recent 
pause in the NH warming to the downswing in the SST over the Pacific. 
Narrow bootstrap error bars are misleading, as they make an impression 
of the consistency in the forced response “shape” among different CMIP5 
models, which is not at all the case (cf Booth et al. 2012). In reality, each 
bootstrap sample averages among ~2/3 of the 170 individual simulations 
considered, and thus contains signatures of the forced responses of most 
of the 40 individual models. So bootstrap based error bars for MMEM are 
narrow because each MMEM subsample averages over the same set of 
individual forced signals. 
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This result also holds if you exclude single simulation or blocks of 
simulations from the computation of MMEM estimate, creating 
out-of sample versions of MMEM. In this case, the variance of the 
ensemble-mean residual time series would scale as 1/M^2 and 
not as 1/M no matter of whether the residuals are actually independent or 
not. 
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This is an example of how all of this works. SMEM is clearly a much better 
estimate of a given model’s forced signal compared to the scaled MMEM 
signal. The SMEM-based estimated variance of the internal variability has 
to be inflated to compensate for the method’s variance bias. 
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We analyzed model 20th century CMIP5 runs for models with 4 or more 
realizations available, and several climate indices: AMO, PMO, NMO of 
Steinman et al. (2015a), as well as SLP based indices not shown here 
(NAO, ALPI). 
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This figure illustrates scaling of the estimated forced signals in Steinman 
et al. (2015) [left] and in our procedure (right). Steinman et al. scale 
MMEM and we scale individual models’ SMEMs. The ensemble mean 
over the latter is similar (but not identical) to the scaled MMEM. This is 
meant to correct for different climate sensitivity of different models; this 
procedure naturally removes some of the spread in the estimates of the 
forced response among individual models. On average, the models tend 
to warm too fast in the Pacific region, moderately too fast in the Atlantic 
(not shown), and do about right over the entire Northern Hemisphere 
(which means they have to warm slower than observed over land). This is 
consistent with sensitivity factors (regression slopes) in the previous 
slide’s table. 
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Left – no rescaling; right – rescaled signals. Linear growth of uncertainty 
at the end of the record is due to linear extrapolation of model time series 
from 2005 through 2012. 
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Important difference from Steinman et al.: the estimated internal cooling of 
the PMO and NMO during the climate hiatus is of about the same 
magnitude in the estimate based on all models (or larger for NMO in 
HadGEM2-ES). If this is so, the Pacific is not easily interpreted to have 
caused the hiatus, contrary to Steinman et al. claims. 
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Fig.: In the models, Pacific warms faster than NH; if we rescale to match 
observations, NMO drop doesn’t change much, but PMO forced warming 
gets scaled down a lot, leading to the I”nternal” NMO drop being larger 
than PMO drop. 
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Even inflated internal variability in CMIP5 simulations is significantly 
smaller than observed estimates! 
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Blue – observed, red – simulated, green – variance of projections of the 
simulated trajectory matrices onto observed T-EOFs. Dominant leading 
pair in observation, with the variance much larger than that of the 
dominant pair in models. Model’s projections onto observed T-EOFs are 
tiny: different spatiotemporal structure of the simulated variability 
compared to the observed. 
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So comparing semi-empirical internal variability in models and 
observation recovers the results based on comparing the deviations from 
the linear trends in observations and model simulations: lack of 
multidecadal variance and different spatiotemporal structure of variability 
in the models relative to observations. 
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