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A key advantage of the empirical stochastic model 
developed here, aside from its excellent performance in 
reproducing diverse statistical characteristics of the 
observed surface temperature variability, is its extreme 
computational efficiency. We performed 100 
simulations of SAT over the entire 1979–2015 period, 
and created a library that documented the simulated 
daily minimum and maximum temperatures for both the 
raw output and the output quantile mapped to 
observations.  

These simulations provide various types of probabilistic 
information that cannot be obtained based on the direct 
statistical analysis of the observational record, which 
demonstrates the essential utility of our proposed 
empirical modeling methodology (see examples in Fig. 
4). Needless to say that completing similar tasks using 
the high-resolution dynamical models (that is, 
numerical models based on first physical principles and 
state-of-the-art parameterizations of unresolved 
processes) is still computationally prohibitive. 

The resulting data set provides unique opportunities for 
the analysis of weather-related risk, with applications in 
agriculture, energy development, and protection of 
human life.  
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Fig. 3: Examples of monthly SAT from observations (left) 
and empirical model simulations (right). The first two rows 
show a persistent JFM cold spell; the bottom row 
exemplifies summertime drought conditions.   !
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Fig. 2: Observed (top) and simulated (middle) three-hourly 
SAT statistics (1979–2015), with the  difference displayed in 
the bottom panel. Shown are the  37-yr mean of SAT’s DJF 
variance (left) and 2.5%-tile (right) for each year.!

State-of-the-art numerical weather prediction models are expensive 
to run and are subject to biases due to imperfect physical 
parameterizations of unresolved processes. An alternative strategy for 
weather and climate prediction builds on extremely numerically 
efficient empirical stochastic models, which have recently been 
shown to be able to capture detailed statistics of select climatic fields 
of interest (Kravtsov et al. 2016). In this work, we apply this 
technique to obtain ensemble simulations of surface atmospheric 
temperature (SAT) over North America; these simulations can be 
used, among other things, to estimate long-term changes in the 
spatial distribution and magnitude of extreme heat waves and cold 
spells in the region. 

Introduction!
!

Model performance!
 We first analyzed a single 1979–2015 simulation of the empirical model run 

from random initial conditions, which produces a synthetic time series of surface 
temperature on the NARR spatiotemporal grid. This simulation is by construction 
uncorrelated with the observed data, except for, perhaps, forced signals associated 
with external predictors. 

 The model reproduces well the seasonal cycle of temperature variance (not 
shown). The largest discrepancy between the model simulated and observed variance 
occurs during the cold DJF season (Figs. 2a–c), where the model, while capturing 
very well the spatial pattern of the variability, somewhat underestimates the magnitude 
of this variability over northwestern and central North America, primarily due to 
overly diffusive (in space) cold polar air intrusions from the Arctic plains (not shown; 
a hint of this behavior can be seen in a Supplemental Movie). These biases can be 
corrected via quantile mapping of the simulated local distributions onto the observed 
distributions, for each synthetic simulation. 
   One of the major advantages of the empirical model considered here is that it is 
able to capture complex spatiotemporal relationships between the features of the 
temperature variability associated with forced and internal atmospheric dynamics. 
Figure 3 shows examples of anomalous seasonal cold (top two rows) and warm 
conditions (bottom row). Note that the persistent cold-spell events we have chosen 
happen in different years in observations and model simulations, which means that 
they likely stem from the internal dynamics — and are tentatively due to enhanced 
frequency of synoptic events causing cold-air outbreaks in the months considered. On 
the other hand, the July 2012 anomalously warm conditions over US  Great Plains 
happen both in observations and in the model simulations, suggesting that this pattern 
is externally forced (cf. Hoerling et al. 2014; McKinnon et al. 2016). 
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Input data  sets and methodology!
!We used surface temperature data set based on NCEP North American Regional 
Reanalysis (http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html): NARR. The 
NARR data set is comprised of 3-hourly  “observations” on a 349×277 grid with 
nominal spatial res-olution of 32 km, over the 1979–2015 period; about a third of 
these data are from locations within North America; the resulting data thus has a 
dimension of ~100000×30000. We subtracted from raw temperature data its seasonal 
climatology, and built our model in the phase space of surface temperature EOFs 
(Monahan et al. 2009), to account for over 99% of the total variability. The model’s 
building block is a stochastic ARMA model for the principal components x, 
postulated to have the following multi-level form (Kravtsov et al. 2005) [dx=xn+1– xn]: 
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Fig. 4: Simulated SAT distributions evolve due to the 
model dependence on external predictors.  (a, b) show 
difference maps between JJA distributions for 1979–1997 
and 1998–2015 periods. (c, d) analyze the simulated time 
series near Chicago O’Hare airport location.  !
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where the model’s parameters are found via regularized multiple linear regression and 
depend on seasonal cycle at monthly resolution. The model (1) was estimated 
separately for temperature time series at monthly, daily (for deviations from 3-month 
means) and three-hourly (for deviations from daily means) resolutions (Fig. 1). Input 
monthly data for the model were obtained by regressing out linear dependence of 
temperature on external predictors: mean NH temperature, AMO, PDO and Nino3.4 
indices. At the stage of simulation, the model was driven by state-dependent noise, 
whose amplitude was also a function of external predictors. The simulated PCs were 
transformed back to physical space, with externally forced signal and seasonal 
climatology added, to provide an emulation of observed variability. 
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Fig. 1: Empirical model construction and air-temperature simulation 
flowchart. The three-tier empirical model is based on the North 
American Regional Reanalysis (NARR) 2-m air temperature data and is 
conditioned on external predictors (EPs) that describe climate 
variations associated with large-scale climate modes. !


