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Introduction Model performance

Ongoing work

State-of-the-art numerical weather prediction models are expensive
to run and are subject to biases due to imperfect physical
parameterizations of unresolved processes. An alternative strategy for

We analyze here a single 1979-2015 simulation of the empirical model run from random initial '
conditions, which produces a synthetic time series of surface temperature on the NARR| .

150

spatiotemporal grid. This simulation 1s by construction uncorrelated with the observed data, except 00
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A key advantage of the empirical stochastic model
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the region.

Data sets and methodology
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The model also captures quite well the spatial
distribution of extreme cold (Fig. 3, left) and warm
(Fig. 3, right) events. There seems to be, once again, a
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* Pinpoint the origin of model biases in simulating the
magnitude and distribution of extreme temperature

We used surface temperature data set based on National Center for
Environmental Prediction North American Regional Reanalysis

(http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html): NARR.
The NARR data set 1s

comprised of 3-hourly
“observations” on a
349 %277 grid with
nominal spatial res-
olution of 32 km, over

events and develop post-processing bias-correction

warm bias in reproducing wintertime extreme cold . .
procedure to alleviate these biases

conditions over the central US (Fig. 3c), possibly Fig. 3: Exireme events, observed (top) and

v W related to the variance bias detected in Figs. 2a,b. The Simulated (middie). The diiference between .

bias in hot extremes (Fig. 3f) is less spatially coherent S'MV/ations and observations Is displayed in

, . S ... the bottom panel. Shown are 37-yr mean of
and looks more like sampling variability. We will 5 -5 5 (left) and JJA 97.5 percentile of

examine these biases further in ensemble simulations ¢ f5ce temperature for each year.

" N of the empirical model and devise a post-processing
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procedure to correct for these biases when estimating

Estimate contributions of internal atmospheric
dynamics and external forcings 1n the observed
surface-temperature variability

SON

 (Obtain (bias corrected) 1979—2015 time series of the
cold and warm extreme-event magnitude:; examine
the trends 1n the spatial pattern of these events.
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Fig. 2 : Variance of surface-temperature
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Fig. 4: Examples of monthly surface-

the observed and simulated propagating temperature

temperature anomalies with respect to the : . e . .
anomalies associated with internal synoptic variability.

seasonal climatology from observations
(left) and empirical model simulations (right). In summary, our empirical model 1s able to

The first three rows show a persistent JEM  capture complex spatiotemporal structure and

cold spell; the bottom row exemplifies magnitude of the observed temperature variability.
summertime drought conditions.

PDO and Nino3.4 indices. At the stage of simulation, the model was
driven by state-dependent noise, whose amplitude was also a
function of external predictors. The simulated PCs were transformed
back to physical space, with externally forced signal and seasonal
climatology added, to provide an emulation of observed variability.

Fig. 5. Examples of surface temperature
evolution associated with synoptic events, in
observations (left) and simulations (right). The
sequence of events in each column spans the
period of three days.

For further information

Please contact kravtsovi@uwm.edu. A PDF-version of this poster, as well

as supplemental figures and animations can be found at http://
atmo.math.uwm.edu:8181 - S. Kravtsov Data - KRB2016




