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Introduction Multidecadal climate variability Discussion
Differencing the observed time series (purple lines 1n Fig. 1) and our surrogate forced-signal estimates (gray lines in Fig. 1) produces the

State-of-the-art global coupled climate models used to simulate corresponding surrogate estimates of the observed internal variability. The ensemble-mean estimates of the multidecadal (40-yr low-pass The most striking result of our study is the
20t century climate use similar dynamical cores, but differ in filtered) internal variability in AMO, PMO and NMO 1n Fig. 2 are broadly similar to those in Steinman et al. (2015), but their uncertainty 1s demonstration that the CMIP5 simulated internal
details of the forcing and in the parameterizations of unresolved much larger than these authors have implied. In particular, this uncertainty 1s sufficiently large to render the attribution of the recent cool variability in SST and SLP is much weaker than
subgrid-scale physical processes (Taylor et al. 2012). We down of the PMO (Fig. 2¢) and NMO (Fig. 2¢) to the internal variability barely statistically significant 1f at all. observed. This difference comes from the models’
considered 18 independent ensembles of the CMIP5 model (a) Fig. _2: Estimgteg of_ obse_rve_c_:J . Standard doviationofnfenal variablly (AMO) o5, dovalkon of iomal vaibity (PHO) Fig. 3 : Standard lacking a coherent multidecadal mode which dominates
simulations (with the total of 116 simulations) for attribution of o " | multidecadal intrinsic variability for AMO | — Observed nieml varabity | | — Onserved ol variaity deviations (STD) of the estimated internal component of the observed
the 20t century climate change. I i'lilii!iig‘fﬂlll vl (a), PMO (c) and NMO (e). These the observed (blue) internal variability. These discrepancies suggest that a

estimates were obtained using the
rescaled forced signals in Fig. 1 (right).
These rescaled forced signals were
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Data sets and methodology

" subtracted from the corresponding o LTI o I PMO, NMO and NAO the CMIPS simulations; hence, our ability to attribute
We extracted, from CMIP5 model simulations and observations, observed time series, 40-yr low-pass e seraana ingowszoon e s waonszoon M indices. STD were and predict climate change using the current generation
0.4 _Li’nearqe?r?nding | 1 flltered and W|ndowed US|ng the . tandérd deviation of |n‘ternal va}rlablllty ‘(NM ) | | an ?r eviation o |nl erna vzima ||y[ | Com . 1 . . .
= = =Flecawiseneardetiending — Simulated internal variabili — Simulated internal variability | Uted for raw and Of Cllmate mOCGIS 1S llmlted.
4 Set Of Scd Surfa,ce tempera,ture (SST) and, Scd leV?I pressure 0.2 I Tallagl d ff —(S)bselrvte((jj intternallvariatt))illit?ll | —?)bselrvtec(;i in:ernallvariatt))illittz p . .
(SLP) based climate indices representing regional and SIIRIRlTENE L EIPENS L0 il niEe Eol Sizte, e e - || low-pass filtered time . .
hemispheric climate variability over the course of the 20 : W Heavy solid colored lines (AMO: blue, series (abscissa On one Janc.l, th§ model.—data d.1ffe.rences may
conturv. These indices included the well-known AMO and NAO PMO: green, and NMO: red) show the W o Bea N\ - shows half the reflect the uncertainty in modeling the indirect aerosol
g H [ as the PMO index defined by Stei ¢ o o e w0 o ensemble mean of the resulting intrinsic NI T | 2 - averaging window effect on climate (Booth et al. 2012; Golaz et al. 2013),
indices, as well as the index define einman et al. i i — thei ost 4 LT Lt bt T | S~ - . . .. .
’ . Y SH R signal estimates, and error bars — their ST | i size for the latter). with models possibly underestimating the multidecadal
2015 (an analogue of the AMO index for the Pacific). We also I 95% spread. Each panel also contains for L s s s a 5 5 5 =» B The STDs of model .
. . . 4 Liear govenang — . S e i i i Sl 46 meragine GO siz6 (1 component of the true forced climate response.
considered the NMO index (the Northern Hemisphere mean | vl I reference the “internal” estimates based simulated internal

Alternatively, climate models may misrepresent some

on subtracting linear trend from the entire il T - : .
variability were multiplied by inflation factors (not shown) derived from our Monte of the dynamical feedbacks hypothesized by the authors

surface air temperature).
observed time series, as well asthe one  cgrig simulations. Heavy lines — ensemble-mean STD, error bars — the 67%

Climate model simulations match the non-uniform

warming of NMO very well, but are overly sensitive to forcing bailtietc:]org)thekplecle;/v?i gggar detrending  gpread (standard uncertainty) of the STD estimates based on individual model of this poster to be responsible for the hemispheric

in the North Atlantic and North Pacific regions, where the e rea. PO @ L simulations. L propagation  of the - AMO-type mult1de.cadal. signal

models’ historical simulations have to be sealad back fo match Figure 3 demonstrates that internal decadal+ time scale variability simulated by the CMIP5 models is significantly weaker than the (Wyatt et al. 2012;. Kravtsov et al. 2014), in which case

the observed trends (Fig. 1). We estimated the forced signals in observed internal variability inferred by subtracting the rescaled CMIP5 derived forced signals from the full observed climatic time series. This the model-data ditterences would retlect the lack of
L is despite the observed internal variability so defined has minimum possible amplitude (since the model based forced signals are rescaled to multidecadal internal dynamics 1n climate models.

the individual models via the 5-yr low-pass filtered ensemble

mean (SMEM) and computed the residual time series of internal minimize the residual variance) and despite that the simulated internal variability was scaled up to correct for aliasing some of the true internal

variance 1nto the estimated smoothed SMEM-based forced signal.

variability in each simulation. We further used a linear stochastic This difference 1n magnitude of the observed vs. simulated internal variability can be attributed to a low-dimensional spatiotemporal mode
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model to p ro;iluc§ syntheltlchontCel Car]iQ CMIPdS enseml.ale.s anciﬁ brought out by the Multi-channel Singular Spectrum Analysis (M-SSA: Ghil et al. 2002) of the (normalized) internal components of the Refe rences
e C(f)mpuge tde. tlme—slca c lipl cll ent. lEsies @il UNEEANTiies © observed and simulated AMO/PMO/NMO/NAO/ALPI multivariate time series (Fig. 4). This mode in observations 1s associated with the
. : g - : Booth, B. B. B., et al., 2012. Nature, 484, 228-232.
our forced and mnternal variability estimates. leading M-SSA pair, which stands out prominently above the rest of the M-SSA spectrum. On the other hand, the M-SSA spectra of CMIP5 o0 e e
i . i : : : . . - . Ghil, M., et al., 2002. Revi Geophysics, 40, 1003.
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