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Establishing causes of
multidecadal variability Is tri

ZHANG ET AL.: NORTHERN HEMISPHERE MEAN TEMPERATURE
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...since the internally generated SST anomalies (e.g. due to variations in
AMOC) and non-uniform (in time) radiative forcing may both be
responsible for the observed non-uniformities in the NH warming! Other

pacemaker experiments (e.g., SSTs prescribed in the Pacific, Indian
Ocean) show analogous results.




...S0, multidecadal deviations of NH surface

temperature from linear trend may well be
rationalized as being either

S, or

Notes:
. , the climate response is

* the (due to internal variability)
are similar too, and : this suggests
that in the coupled setting, GFDL2.1’s internally
generated decadal-scale SST anomalies in the
North Atlantic have a smaller magnitude than the
observed SST anomalies

This (underestimating the magnitude of internal variability) turns out to be
a common problem for many CMIP5 models. Not only that, but also —
timescales and patterns of multidecadal climate variability turn out to be
different!



Kravtsov (2017) GRL

from
CMIP5 multi-model ensemble, for several
climate indices:

» Combine these forced-signal estimates with
individual model simulations as well as
observations to obtain estimates of internal
climate variability

characteristics of the
(semi-empirical)

AMO — SST averaged over North Atlantic, PMO — SST averaged over
North Pacific, NMO — surface air temperature averaged over the entire
Northern Hemisphere (ocean+land), NAO — leading EOF of SLP over
North Atlantic, ALPI — leading EOF of SLP over North Pacific.
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Inflation factors have been developed and applied to account for a small
number of realizations and insufficient averaging of internal variability in
the ensemble averaged “forced” signal. Even inflated internal variability in
CMIPS5 simulations is significantly smaller than observed estimates!



Same story for NAO and ALPI
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M-SSA of internal variability network
(AMO, PMO, NMO, NAO, ALPI)

M-SSA spectra of internal variability
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* Different spatiotemporal structure of the observed and
simulated variability

Blue — observed, red — simulated, green — variance of projections of the
simulated trajectory matrices onto the observed T-EOFs. Dominant
leading pair in observation, with the variance much larger than that of the
dominant pair in models. Model’s projections onto observed T-EOFs are
tiny: different spatiotemporal structure of the simulated variability
compared to the observed.



Subtract leading M-SSA paiir...
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... the difference in the variance between

the “observed” and simulated internal
variability is greatly reduced!

So comparing semi-empirical internal variability in models and observation
recovers the results based on comparing the deviations from the linear
trends in observations and model simulations: lack of multidecadal
variance and different spatiotemporal structure of variability in the models
relative to observations.



Summary (Kravtsov 2017)

* We from multi-model ensemble of
CMIP5 historical simulations

* These forced signals were subtracted from individual model
runs and, after rescaling, from observed time series to d

* Internal climate variability in models has
wrt the observed variability

* The differences between models and observations are
dominated by a low-dimensional multidecadal mode of the
observed climate variability, which has a hemispheric character
and is apparently absent from models




Observed “Stadium Wave” (cf.
Wyatt et al.)

20-th century "Stadium Wave" (M=40)
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Here is how this observed mode of variability — absent from the models
— looks like, in the five indices considered.




Now generalize this result in the gridded
surface atmospheric temperature data

Models:

« CESM large ensemble (LENS) project: 40
historical simulations, 1920-2012 [Kay et al.
2015]

« CMIPS5 historical simulations. 17 models with
4 or more 20" century realizations, 111
individual simulations [Taylor et al. 2012]

Observations:

« 20" century reanalysis (20CR) [Compo et al.
2011]

Since the emphasis is on the large-scale low-frequency variability, simply
applying the above analysis at the level of individual grid points (where the
noise is much larger than in the regional averages) won'’t work: we need
to filter the data to focus on the appropriate time and spatial scales.



Wiener filtering in M-SSA basis
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* Idea: Isolate secular variability using data-adaptive
M-SSA based space—time filters which discriminate
against stationary noise (as simulated by multi-scale
empirical LIM models).

(a) Input/noise spectra for one of the simulations of the CESM model; (b)
The same for 20CR SAT data. Statistically significant M-SSA modes are
multiplied by signal-to-input variance ratio and their sum is reconstructed
in physical space. Inflation factors (based on comparing filtered and raw
time series) are needed, since both signal and noise tend to get
attenuated in Wiener filtering.



Secular Signals in LENS

a Global warming signal b

NH SAT (normalized)
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> is dominated by low-frequency component of
the forced signal. Multidecadal internal variability is small (cf.
Bellomo et al. 2018).

* Interannual dips due to volcanic eruptions are not captured

* Essentially i J , @ bit more spread mainly
due to model uncertainty

Note narrow uncertainty range of the secular signal in NH SAT, meaning
that essentially the same (forced) signal is isolated in each individual
CESM run. In CMIP5, the spread is a bit more (model uncertainty) - see
backup slides.




Secular Signals in 20CR/CMIP5
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Now take the difference (at each grid point) between secular signals in
observations and each (scaled) model simulation, and do M-SSA analysis
to isolate dominant data-model differences. Since secular signals in
models are dominated by forced variability, the data-model difference can
be thought of as an estimate of internal climate variability in observations.
We also analyze the differences between secular signals in individual
simulations and this model’s ensemble-mean secular signal. This would
be an estimate of the internal secular variability in models.



Data—model differences

+ The M-SSA results are completely
analogous to Kravtsov (2017) work,
which considered a few climate
indices:

S S , flatter spectrum and

et lack of observed ST-EOFs in the

models

3 M-SSAspectra of data-model diference

Locations of reglonal indices

(Wyatt et
al. 2012), which originates in the
North Atlantic (cf. Moron et al.
1998) and then “propagates” to
North and South Pacific, South
Atlantic and Southern

Ocean/Antarctica, and, finally, the
Arctic (see animation)

Reconstructions are consistent with Kravtsov (2017). In reconstructions,
the ocean indices are scaled by 0.1K and land indices — by 0.6K. This is
why the animation shows stretched signals to better visualize the
sequence of anomaly propagation. Movie here.



Summary

Reliability of future global warming projections depends on how well climate models
reproduce the observed climate change over the twentieth century. In this regard,

deviations of the model simulated climate change from observations, such as a recent

“pause” in global warming, have received considerable attention' %, Such decadal

mismatches between model simulated and observed climate trends present a systemic
problem throughout the twentieth century, and their causes are still poorly understood*"’.
Here we use a new objective filtering method to show that the discrepancies between the
observed and simulated climate variability on decadal and longer time scale have a
coherent structure suggestive of a pronounced global multidecadal oscillation. Surface
temperature anomalies associated with this variability originate in the North Atlantic and
spread out to the Pacific and Southern oceans and Antarctica, with Arctic following suit in
about 40 years. While climate models exhibit various levels of decadal climate variability
and some regional similarities to observations, neither of the simulations considered match
the observed signal in terms of its magnitude, spatial patterns and their sequential time
development. These results highlight a substantial degree of uncertainty in our

interpretation of the observed climate change using current generation of climate models.




Discussion

Multidecadal signals originating in the North Atlantic Ocean and exerting some influence on the

Northern Hemisphere climate have been observed and simulated before>*¢, They are thought to

be rooted in the variability of the Atlantic Meridional Overturning Circulation (AMOC) (ref. 37).

Recent observational' *¥4% and modelling studies*'-** highlighted global character of such DCV,

especially its connections to the Southern Ocean, which is also consistent with our findings.

These global DCV modes are likely to be due to a combination of multiple slow, regional-to-
basin-scale oceanic processes defining dynamical memory of the climate system in the presence
of fast, large-scale atmospheric processes. The latter fast processes can both supply energy for
DCYV and provide means for intra- and inter-basin communication and synchronization of

decadal climate modes* .

Although some of the climate models are able
to simulate certain qualitative features of the observed DCV***, our results summarize and
rigorously document pronounced quantitative discrepancies between models and observations,

which should help guide further DCV research'®.
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GOLAZ ET AL.: CLOUD TUNING AND 20TH CENTURY WARMING

Global surface air temperature anomaly
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Aerosols implicated as a prime driver of
twentieth-century North Atlantic climate variability

Ben B. B. Booth', Nick J. Dunstone'*, Paul R. Halloran'*, Timothy Andrews' & Nicolas Bellouin'
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* Lack of multidecadal SST variability in the North

Atlantic was suggested to be due to underestimation of
aerosol indirect effects in coupled climate models

* In this interpretation,
(cf. Zhang et al. 2007)

Aerosols?




Have Aerosols Caused the Observed Atlantic Multidecadal Variability?
RONG ZHANG,* THOMAS L. DELWORTH.* ROWAN SUTTON, " DANIEL L. R. HODSON, " KEITH W. DIXON,*

ISAAC M. HELD,* YOCHANAN KUSHNIR.” JOHN MARSHALL,” Y1 MING.* RYM MSADEK.* JON ROBSON,
ANTHONY J. ROSATL* MINGFANG TING,” AND GABRIEL A. VECCHI*

in terms of the 3-D
structure of multidecadal upper-ocean temperature and

salinity in the North Atlantic, as well as in various fields
outside of North Atlantic

» Sitill, if observed multidecadal deviations of North

Atlantic SSTs from linear trend are internally
generated, why is their magnitude so much larger than
that in CMIP5 coupled runs?

Well, maybe not, but what would then be the explanation for the
insufficient simulated amplitude of multidecadal variability?...



Model #

Model acronym

# of runs

Total:

CanESM2
CCSM4
CNRM-CMS
CSIRO-MK3-
6-0
GFDL-CM2.1
GFDL-CM3
GISS-E2-Hpl
GISS-E2-Hp2

GISS-E2-Hp3

GISS-E2-Rpl

GISS-E2-Rp2
GISS-E2-Rp3
HadCM3
HadGEM2-ES
IPSL-CM5A-
LR
MIROCS
MRI-CGCM3

7 models

simulations




Wiener Filtering in CMIP5

GW signal [NMO] (All runs)
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