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Establishing causes of
multidecadal variability is trick

ZHANG ET AL.: NORTHERN HEMISPHERE MEAN TEMPERATURE
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...since the internally generated SST anomalies (e.g. due to variations in
AMOC) and non-uniform (in time) radiative forcing may both be
responsible for the observed non-uniformities in the NH warming!



...S0, multidecadal deviations of NH surface
temperature from linear trend may well be
rationalized as being either

non-linear tre

Notes:

e , the climate response is

* the ensemble spreads (due to internal variability)
are similar too, and are fairly narrow: this suggests
that in the coupled setting, GFDL2.1’s internally
generated decadal-scale SST anomalies in the

North Atlantic have a smaller magnitude than the
observed SST anomalies




Two contrasting views of multidecadal climate
variability in the twentieth century

Sergey Kravtsov', Marcia G. Wyatt?, Judith A. Curry?, and Anastasios A. Tsonis’
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of linearly detrended 40-yr low-pass
filtered signal in GFDL is ~
; for

The multidecadal deviations from the linear trend in GFDL2.1 simulated
North Atlantic SSTs are indeed much smaller than observed, but this is
even more so for NAO (which, incidentally, has essentially no forced
component in the CMIP5 model simulations). Note that the linearly
detrended NHT variance is similar to the observed, consistent with Zhang
et al. (2007).



Aerosols implicated as a prime driver of
twentieth-century North Atlantic climate variability

Ben B. B. Booth', Nick J. Dunstone'*, Paul R. Halloran'*, Timothy Andrews' & Nicolas Bellouin'
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* Lack of multidecadal SST variability in the North
Atlantic was suggested to be due to underestimation of
aerosol indirect effects in coupled climate models

* In this interpretation, multidecadal variations of the
North Atlantic SSTs are forced (cf. Zhang et al. 2007)

Aerosols?




Have Aerosols Caused the Observed Atlantic Multidecadal Variability?
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in terms of the 3-D
structure of multidecadal upper-ocean temperature and

salinity in the North Atlantic, as well as in various fields
outside of North Atlantic

* Still, if observed multidecadal deviations of North
Atlantic SSTs from linear trend are internally
generated, why is their magnitude so much larger than
that in CMIP5 coupled runs?

Well, maybe not, but what would then be the explanation for the
insufficient simulated amplitude of multidecadal variability?...



“Stadium Wave”
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* Leading M-SSA pair of observed multi-index climate
network (for deviations from linear trend) exhibits
pronounced time delays, suggesting a sequence of
multidecadal teleconnections — the so-called stadium

wave (Wyatt et al. 2012)
* In-phase signals dominated by the forced response

for GFDL2.1 (Kravtsov et al. 2014)

The spatiotemporal structures of dominant multidecadal climate variability
over a multi-index climate network in observations and GFDL2.1 model
are also very different. This multidecadal signal in GFDL is predominantly
*forced*. The run-to-run uncertainties in the simulated phases of the
stadium-wave components corresponding to different indices (not shown)
are small compared to the phase shifts between the observed
components of the stadium wave. So the observed and GFDL2.1
simulated multidecadal variability in the 20t century (in deviations from
the linear trend, which trend is, btw, similar in GFDL model and
observations) differ in magnitude and spatiotemporal structure.



Forced climate model runs can be used
to estimate the response of the climate

system to forcing
* Linear detrending is not meant to isolate forced and

internal components of variability (as opposed to
claims in, e.g., Mann et al. 2014)

* One can use ensemble simulations using single

(SM) or multiple (MM) climate models to estimate the
climate’s forced response over the 20t century
(Kravtsov and Spannagle 2008; Knight 2009; Terray 2012,
Steinman et al. 2015a)

g time series of a given
climatic quantity would approximate an individual
model’s forced response. MIMEM would characterize
the average forced response of the MM ensemble




We aim to:

 Estimate forced signal and its uncertainty from
CMIP5 multi-model ensemble, for several
climate indices:

» Combine these forced-signal estimates with
individual model simulations as well as
observations to obtain estimates of internal
climate variability

characteristics of the
(semi-empirical)

AMO — SST averaged over North Atlantic, PMO — SST averaged over
North Pacific, NMO — surface air temperature averaged over the entire
Northern Hemisphere (ocean+land), NAO — leading EOF of SLP over
North Atlantic, ALPI — leading EOF of SLP over North Pacific.




Methodology: Models

* Analyze for models with four or more
realizations (18 models, 116 simulations, table slide)

* Use as an initial estimate of each
model’s , compute ‘internal’ residuals

* Fit low-order ARMA models to these residuals and produce
multiple synthetic versions of internal variability for each model

* Add synthetic residuals to estimated forced signals to

produce synthetic CMIP5 “ensembles”
* Use the synthetic ensembles to correct for the biases in the
initial estimates of the forced signals and internal variability;
these biases can be computed since the true forced signals in
the synthetic samples are known by construction

This gives us 116 bias corrected time series of

the internal variability as simulated by CMIP5
models




runs used (20t century)

Model acronym Number of Scaling wrt observations

realizations AMO PMO NMO
(0.8) (0.57) (1.02)
CCSM4 6 0.68 0.47 0.78

CNRM-CMS 1.15 0.76 1.22
CSIRO-MKk3-6-0* 1.10 0.57 1.21
CanESM?2 5 0.81 0.53 0.95
GFDL-CM2pl 0.61 0.48 0.78
GFDL-CM3* 0.80 0.21 0.91
0.82 0.70 1.04
1.03 0.72 1.21
0.72 0.61 0.92
0.8 0.70 1.11
1.1 0.71 1.30
0.48 0.64 0.93
0.56 0.50 0.71
0.83 0.57 1.11
HadGEM2-ES* 0.84 0.33 1.21
IPSL-CM5A-LR 0.48 0.42 0.72
MIROCS5* 0.93 0.64 1.13
MRI-CGCM3* 0.77 0.70 1.20
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We analyzed model 20" century CMIP5 runs for models with 4 or more
realizations available, and several climate indices: AMO, PMO, NMO of
Steinman et al. (2015a), as well as SLP based indices not shown here
(NAO, ALPI).



Methodology: Observations

* In synthetic CMIP5 ensembles, re e the
signal in individual models (5-

estimates of the for S

yr LPF SMEM) to best fit the observed time series
considered. This is meant to correct for different
climate sensitivities of different models.

* Estimate the forced signal uncertainty by computing

100 versions of SMEMSs in the 100 synthetic CMIP5
ensembles (the total of 18x100=1800 estimates of the
forced signal). These are now our estimates of the
forced signal in observations (due to prior rescaling!)




Estimates of the forced signal
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Left — no rescaling; right — rescaled signals. Linear growth of uncertainty
at the end of the record is due to linear extrapolation of model time series
from 2005 through 2012. NMO requires essentially no rescaling (not

shown). Forced signal is near zero for NAO and ALPI (not shown).



Comparing the “observed” and
simulated internal variability

STD of MSSA-filtered AMO internal variability (M=20),
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Even inflated internal variability in CMIP5 simulations is significantly

smaller than observed estimates!

STD of MSSA-filtered PMO internal variability (M=20)
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Same story for NAO and ALPI

Standard deviation of internal variability (NAO)
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M-SSA of internal variability network
(AMO, PMO, NMO, NAO, ALPI)

M-SSA spectra of internal variability
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* Leading pair
dominates the
difference btw models
and observations

Mode rank

* Different spatiotemporal structure of the observed and
simulated variability

Blue — observed, red — simulated, green — variance of projections of the
simulated trajectory matrices onto observed T-EOFs. Dominant leading
pair in observation, with the variance much larger than that of the
dominant pair in models. Model’s projections onto observed T-EOFs are
tiny: different spatiotemporal structure of the simulated variability
compared to the observed.



Subtract leading M-SSA pair...

Standard deviation of internal variability (AMO) Standard deviation of internal variability (NAO)
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... the difference in the variance between
the “observed” and simulated internal
variability is greatly reduced!

So comparing semi-empirical internal variability in models and
observation recovers the results based on comparing the deviations from
the linear trends in observations and model simulations: lack of
multidecadal variance and different spatiotemporal structure of variability
in the models relative to observations.



Summary

* We estimated forced signals from multi-model ensemble of
CMIPS5 historical simulations

* These forced signals were subtracted from individual model
runs and, after rescaling, from observed time series to

* Internal climate variability in models has
wrt the observed variability

* The differences between models and observations are
dominated by a low-dimensional multidecadal mode of the
observed climate variability, which has a hemispheric character
and is apparently absent from models




Observed “Stadium Wave”

20-th century "Stadium Wave" (M=40)
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Here is how this observed mode of variability — absent from the models
— looks like.



For further info:

» Kravtsov, S., 2017: Pronounced differences
between observed and CMIP5 simulated
multidecadal climate variability in the twentieth
century. Geophys. Res. Lett., DOI:
10.1002/2017GL074016.

Kravtsov, S., and D. Callicutt, 2017: On semi-
empirical decomposition of multidecadal climate
variability into forced and internally generated
components. International J. Climatol., DOI:
10.1002/joc.5096.
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GOLAZ ET AL.: CLOUD TUNING AND 20TH CENTURY WARMING
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Causes of GW hiatus

* Steinman et al.: “internal” AMO flat, PMO drops strongly,
NMO in between, hence PMO drives the NMO’s internal
downswing, which counteracts forced warming

e : the NMO’s “internal” drop is steeper than PMO’s,
hence NMO decrease cannot be solely due to PMO decrease,
and hemispheric-scale dynamics must be in play to cause the
hiatus

it all depends on rescaling!

Fig.: In the models, Pacific warms faster than NH; if we rescale to match
observations, NMO drop doesn’t change much, but PMO forced warming
gets scaled down a lot, leading to the I"’nternal” NMO drop being larger

than PMO drop.



Any connection btw model climate sensitivity
and magnitude of internal variability?

AMO filtered
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... Doesn’t look like it: forced response processes and feedbacks
seem to be different from those for internal variability




Any evidence of suppression of internal
variability in the second half of the century?

AMO raw
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Nope! There is no evidence of forced suppression of
internal variability in models.

* Both of these properties justify our treatment of forced signal
and internal variability as being independent of each other




