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Discussion!
We have demonstrated the presence of characteristic precursors 
and preferred trajectory paths that lead to the onset of 
anomalously persistent flow states (regimes) in an idealized but 
realistic atmospheric model. While in existence, the regimes 
can be well forecasted by these empirical models that lack 
explicit nonlinear dynamics; because of that, the latter models, 
however, fail to simulate regime precursors and preferred 
transition paths.  

In future work, we aim to improve the performance of linear 
models by conditioning their coefficients on the occurrence of 
the regime precursors and regimes, which will hopefully 
improve the model capabilities to forecast regime onsets and 
breaks, as well as the transitions between the regimes. Pending 
the success of such a procedure to forecast the QG3 based 
trajectories, we will attempt to construct an improved empirical 
scheme to predict real, nature generated data sets.  

Predictability associated with nonlinear regimes in an atmospheric model !
John M. Peters, Nicholas Schwartz, and Sergey Kravtsov!
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Fig. 2. 200-mb 
streamfunction 
anomalies 
associated with four 
statistically distinct 
regimes in the QG3 
model. The top two 
regimes are 
associated with 
opposite phases of 
the Arctic Oscillation 
(AO); the bottom 
regimes are 
positive-phase North 
Atlantic Oscillation 
(NAO) and hybrid 
NAO/AO regime. 

For further information!
Please contact kravtsov@uwm.edu. A PDF-version of this poster can be 
downloaded from www.uwm.edu/~kravtsov/downloads/Rpredictability.pdf.  

Fig. 1. Regime 
identification in the 
phase subspace of 
200-mb stream- 
function EOFs. The 
model trajectories 
slowed down relative 
to those produced by 
simulations of 
benchmark linear 
stochastic models in 
three distinct phase 
space regions, later 
referred to as 
Regimes 1, 2 and 3. !

We have analyzed output from a long simulation of a three-layer quasi-
geostrophic (QG3) model by Marshall and Molteni (1993). Probability density 
functions (PDFs) of raw and low-pass filtered data computed in the phase 
subspace of the leading Empirical Orthogonal Functions (EOFs) of either the 
streamfunction or zonally averaged zonal wind provided information about the 
regions  in which the nonlinear QG3 model possessed enhanced probability of 
persistence relative to that of a linear empirical model constructed using the QG3 
output (Kravtsov et al. 2005, 2009). For example, plotted in Fig. 1 is the 
difference between QG3-based full-data–to–low-pass-filtered-data PDF ratio in 
the streamfunction EOF subspace and the 95th percentile of this quantity for the 
linear model simulations. This diagnostic identifies three distinct regime regions. 
Analogous considerations in the zonal-mean zonal wind EOF space identify 
three regimes as well; two of these regimes, however, turn out to be statistically 
identical to the corresponding streamfunction regimes. The composites 
associated with four statistically distinct regimes are plotted in Fig. 2. 

Fig. 4. Spatial distribution of linear model 5-day 
forecast skill based on streamfunction-metric rms 
error. Color shading identifies statistically 
significant regions of enhanced skill. Left: QG3 
initializations. Right: linear model self-forecast. !

Numerous previous studies addressed mid-latitude atmospheric flow patterns, 
or regimes, that persist for periods of time exceeding typical lifetimes of 
weather systems, that is, a few days (e.g., Koo et al. 2003; Kondrashov et al. 
2004; Kravtsov et al. 2006, 2009).  The enhanced persistence of regimes is 
due to their nonlinear dynamics.  In this study, we analyze output of a 
realistic atmospheric model to examine potential medium-range 
predictability associated with regime behavior. 

Introduction!

The multi-level linear stochastic model we used to assess statistical significance of regimes in preceding 
sections is in fact a fairly skillful overall predictor of the QG3 model’s low-frequency variability, which 
beats benchmark damped persistence forecasts at lead times exceeding 2 days (not shown). Along similar 
lines, Winkler et al. (2001) have shown that a linear empirical model trained on the observed data possesses 
the week-2 skill in predicting the mid-latitude flow comparable to that of a state-of-the-art weather 
prediction model.  Is there room for improving the linear model forecasts? 

To address this issue, we examine the distribution of linear model forecast skill in terms of the phase-space 
structure of the 5-day forecast error root-mean-square (rms) averaged over the ten-dimensional EOF 
subspace in which the linear model operates. We defined persistently good forecasts as the episodes of the 
anomalously low forecast error (lower than 25th percentile of all forecast errors) that persist for the period of 
time longer than 75th percentile of duration for all such episodes. The regions in which PDFs of persistently 
good forecasts exceeds 95th percentile of bootstrap-generated surrogate “good forecasts” for the 
streamfunction-metric-based and zonal-mean-zonal-wind-based linear models are shown in Figs. 4 and 5, 
respectively. Left panels show the results based on the QG3-generated data, while the right panels address 
the linear-model self-forecasts.  

It is immediately obvious that there is a marked correspondence between the phase-space regions of good 
forecasts (left panels of Figs. 4 and 5) and the QG3 model regimes defined in Figs. 1 and 2. In particular, 
within the streamfunction metric, a statistically distinct region of good forecasts overlaps with Regime 1, 
with initialization days originating outward from the origin, and forecasted trajectories ending up closer to 
the origin, while there are no good forecast anomalies associated with Regimes 2 and 3.  Within the zonal-
wind metric, both Regimes 1 and 2 (and not the Regime-3) are better forecasted, with the same inward 
tendency of forecasted trajectories.  However, the linear model self-forecasts do not exhibit preferred 
regions. Furthermore, the phase-space distribution of persistence forecasts (not shown) is very similar to 
that of the linear model forecasts for QG3 trajectories in Figs. 4 and 5.  

The combination of these facts demonstrates that it is not the linear model’s (or persistence model) being 
particularly skillful within the good-forecast regions, but rather the enhanced persistence of the QG3 
trajectories there that defines the phase-space non-uniformity of the linear model (and persistence) forecast 
skill. The truly useful medium-range prediction model that puts the potential predictability associated 
with persistence of the QG3 model’s nonlinear regimes to best use needs to be able to skillfully 
forecast regime occurrences conditioned on the appearance of the precursors identified in Fig. 3. 

Behavior of QG3 trajectories prior to regime onset!

Assessment of linear stochastic model forecast skill !

The behavior of model trajectories prior to regime onset may yield information about regime precursors, 
which can in turn be used to improve the accuracy of medium-range weather forecasts.  Kondrashov et al. 
(2004) verified the existence and outlined the topology of preferred transition paths between the QG3 
regimes by computing regime-centered angular conditional PDFs. Schwartz (2009) analyzed lagged co-
occurrences between the QG3 regimes and identified enhanced probability of transitions between at least 
two of the  QG3 regimes (1 and 3) within a  timescale of 10–20 days (not shown). The linear empirical 
models do not capture this feature (not shown), which further implicates the role of nonlinear processes in 
regime maintenance and transitions.  

Our present analysis builds upon the above results, but explicitly recognizes the difference between regimes 
and their precursors. Hence, rather than studying transitions between regimes, we concentrate on the phase-
space distribution of regime trajectories before regime occurrences. Figure 3 shows such conditional PDFs 
of QG3 states that occur 12–18 days prior to each regime onset, along with the ratio of this PDFs to the full-
data PDF.   Similar figures were produced for trajectories generated by the linear statistical model (not 
shown). 

The central feature of the PDFs shown in Fig. 3 is the presence of preferred residence zones for 
trajectories ending up in regime regions.  Trajectories generated by the linear statistical model do not 
exhibit analogous preferred residence regions prior to occurrences of the states within regime regions — due 
to the lack of regime-generating nonlinear dynamics within this model (cf. Schwartz 2009).  PDF ratios (Fig. 
3, right) also exhibit distinctive regions for which the probability of  a given regime occurrence within 12–
18 days is elevated; the ratios are clearly very far from unity indicating high information content of the 
precursor-based data set.  Analogous figures generated for the zonal wind metric exhibited similar phase-
space patterns for lagged PDFs and PDF ratios. Model and analysis methods!

Fig. 3. PDFs of states that happen 12-18 days prior 
to occurrence of streamfunction regimes (left). 
Ratios of these PDFs to full-data PDF (right).!

Fig. 5. Same as Fig. 4, but for the zonal-mean 
zonal wind metric.!
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