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This talk will concentrate on some of the data-driven climate modeling 
methodologies.
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For example, if an observed time series has an estimated PDF and ACF 
like the ones shown in this slide (Gaussian-like PDF, exponentially 
decaying ACF), it can be modeled as a red-noise process driven by a 
Gaussian white noise. This equation, if trained on a fraction of data, can 
be used for out-of-sample prediction of the remaining (or future) data. Red 
noise turns out to be a good zero-order model for the variability 
associated with many climatic phenomena.
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The idea of parametric stochastic modeling of observed time series has 
been further developed and applied to multidimensional data.
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The LIMs above have been successfully applied to model fields with “continuous” time 
series, such as temperature or streamfunction. The possibility of a direct application of 
this technique to model positive definite, intermittent precipitation field is not obvious. The 
animation of this slide illustrates the observed evolution of daily precipitation around 
North America in the summer of 1979.
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Statistical modeling of precipitation is a challenging multi-scale  problem.
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The existing methodologies for statistical modeling of precipitation involve, 
in one way or another, a built-in gross reduction of the system’s 
dimension, inconsistent with a great diversity of precipitation systems and 
LSMPs. This essentially enforces the application of these models at a 
local-to-small-region level. We propose an alternative methodology, which 
permits a seamless multi-scale modeling of precipitation within the 
background of evolving LSMPs over the entire North America. 
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We utilize a previously developed LIM-like high-dimensional EMR model 
to model precipitation. The key idea is to replace the precipitation field 
with the so-called pseudo-precipitation.
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The 𝑃𝑃 field incorporates the information about both precipitation, which 
can exhibit small-scale intermittent structures, and multi-scale synoptic 
environment; it thus provides a promising, yet unexplored way to 
characterize and predict, statistically, wet and dry weather conditions. One 
of its attractive features is that the distribution of 𝑃𝑃, unlike that of 𝑃𝑟, is a 
single-mode, two-tailed distribution, which makes 𝑃𝑃 more similar to other 
dynamical and thermodynamic variables describing atmospheric state. 
This opens up a possibility for using standard methodologies developed 
previously for temperature and flow-field analysis and modeling (CCA, 
LIMs) to analyze and model pseudo-precipitation and, hence, its positive 
part associated with the actual precipitation. The figure in this slide is 
based on NARR reanalysis 
(http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html); Messinger et 
al. (2006).
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With x denoting the state vector to be modeled (in our case,  3000 PCs of 
T2/PP), the EMR model features a multi-level structure with hidden 
variables formed by a given level’s regression residuals, seasonally 
dependent propagator and a state-dependent random forcing.
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The simulated precipitation fields look fuzzier than the NARR output but 
are otherwise visually similar in terms of spatial scales and propagation 
sequences.
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The means of the observed (left column) and simulated P10 distributions 
are statistically indistinguishable (the difference is shown on the right).
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The 99th percentile of P10 tends to be slightly overestimated in the EMR 
simulations, perhaps indicating a more slowly propagating, somewhat 
overly persistent precipitation sequences.
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EMR model is able to forecast some significant P10 events in the 
ensemble-mean (of 100 forecasts):  see left and middle columns. Most 
importantly, the large number of forecasts (possible to achieve due to 
numerical efficiency of the EMR model) makes it possible to compute 
probabilities of forecast precipitation events and, as a particular example, 
identify the occurrences of potentially abnormal P10 episodes. One 
probabilistic measure of forecast utility is a relative entropy (Kleeman
2002), which shows how different the distribution of forecasts is from the 
climatological distribution (right column).
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In the figure,  blue histogram is based on the entire 2000–2020 data, red 
is from a small subsample based on selection using EMR P10 forecasts’ 
relative entropy, and yellow — from a small subsample based on an 
alternative methodology focusing directly on the large magnitude of P10 in 
ensemble-mean forecasts. The EMR-RE based sample captures well the 
P10 distribution associated with the full P10 sample (here and at other 
locations: not shown), which allows one to utilize this subsample to 
dramatically increase the numerical efficiency of hydrological reforecasts 
(future work).
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