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Climate Science methodologies

Dynamical cores based on first principles
Parameterizations of subgrid-scale processes
Produce behaviors visually as complex as the
observed variability

« Simplified process models to gain theoretical
understanding, hierarchical modeling

« Data-driven (inverse) models
Built to reproduce the observed statistics of select
climate variables
Stochastic parameterizations of unresolved processes
Produce competitive weather/climate forecasts

This talk will concentrate on some of the data-driven climate modeling
methodologies.



Example: Modeling an observed
time series as a red noise

Red-noise time series Hiatogram of x

x(t+At) =ax(t)++/1—a?N(0,1); 0<a<1

For example, if an observed time series has an estimated PDF and ACF
like the ones shown in this slide (Gaussian-like PDF, exponentially
decaying ACF), it can be modeled as a red-noise process driven by a
Gaussian white noise. This equation, if trained on a fraction of data, can
be used for out-of-sample prediction of the remaining (or future) data. Red
noise turns out to be a good zero-order model for the variability
associated with many climatic phenomena.



Multidimensional time series (e.g., fields on
a spatial grid)
(Penland 1986;

Penland and Sardeshmukh 1995)

essentially, a multidimensional red-noise model
able to simulate a wide range of interesting behaviors
associated with oscillatory and non-normal growth

dynamics

possess forecast skills comparable with that of state-of-
the-art dynamical models (Winkler et al. 2001; Newman et
al. 2003; Kondrashov et al. 2005) and able to “forecast a
forecast skill” (Albers and Newman 2019)

High-dimensional and nonlinear generalizations

of LIMs have been developed (Kravtsov et al. 2005,
2016, 2017; Seleznev et al. 2019)

The idea of parametric stochastic modeling of observed time series has
been further developed and applied to multidimensional data.




Can we model precipitation in this way?

0.04

The LIMs above have been successfully applied to model fields with “continuous” time
series, such as temperature or streamfunction. The possibility of a direct application of
this technique to model positive definite, intermittent precipitation field is not obvious. The

animation of this slide illustrates the observed evolution of daily precipitation around
North America in the summer of 1979.



Statistical modeling of precipitation
A
with a lot of empty space and embedded multi-
scale features
* Atime series of precipitation at a point is
intermittent; the associated PDF is strongly non-
Guassian

« Statistical prediction of precipitation is based on
the association between extreme precipitation
and recurrent large-scale meteorological patterns
(LSMP) (Grotjahn et al. 2016). A great diversity of
LSMPs exists over North America (Barlow et al. 2019)

Statistical modeling of precipitation is a challenging multi-scale problem.



Existing methodologies:

« Compositing and clustering of large-scale circulation

types and to tie them to regional flooding events
(Robertson et al. 2016)

Generalized linear models (GLM) (McCullagh and
Nelder 1989) to tie precip. to LSMP predictors, typically
at a grid-point level (e.g., Furrer and Katz 2007)

Hidden Markov models (Holsclaw et al. 2016) assume a
few spatial patterns of rainfall probabilities, with
Markovian transitions between them tied to a few
external predictors

The existing methodologies for statistical modeling of precipitation involve,
in one way or another, a built-in gross reduction of the system’s
dimension, inconsistent with a great diversity of precipitation systems and
LSMPs. This essentially enforces the application of these models at a
local-to-small-region level. We propose an alternative methodology, which
permits a seamless multi-scale modeling of precipitation within the
background of evolving LSMPs over the entire North America.



This study

 We develop a methodology that permits a
seamless multi-scale modeling of precipitation
within the background of evolving LSMPs over
the entire North America

The methodology utilizes a LIM-like high-

dimensional Empirical Model Reduction (EMR)
model (Kravtsov et al. 2017) of surface temperature

and pseudo-precipitation (Yuan et al. 2019)

* We quantify this model’s prediction skill and
use this model to

We utilize a previously developed LIM-like high-dimensional EMR model
to model precipitation. The key idea is to replace the precipitation field
with the so-called pseudo-precipitation.



Pseudo-precipitation (PP): Yuan et al. 2019

m/d ); June 1, 1979

AN I°'°5 PP is the sum of
precipitation and a
column integrated

freshwater vapor

saturation deficit

- -

S

pseudo-precipitation patterns provide information
on both the synoptic-scale and anisotropic
mesoscale environment (including LSMPs) in which
local precipitation occurs

The PP field incorporates the information about both precipitation, which
can exhibit small-scale intermittent structures, and multi-scale synoptic
environment; it thus provides a promising, yet unexplored way to
characterize and predict, statistically, wet and dry weather conditions. One
of its attractive features is that the distribution of PP, unlike that of Pr, is a
single-mode, two-tailed distribution, which makes PP more similar to other
dynamical and thermodynamic variables describing atmospheric state.
This opens up a possibility for using standard methodologies developed
previously for temperature and flow-field analysis and modeling (CCA,
LIMs) to analyze and model pseudo-precipitation and, hence, its positive
part associated with the actual precipitation. The figure in this slide is
based on NARR reanalysis
(http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html); Messinger et
al. (2006).



Data and procedure

* North American regional reanalysis (NARR)
(Messinger et al. 2006) daily T2 and PP data
1979-2020

Data compression: 3000 leading common
EOFs of T2/PP accounting for >95% of total

variance of the 1979-1999 anomalies with
respect to seasonal cycle

, produce surrogate precip.
sequences for 1979-1999, compare statistics

* Produce |
, estimate skKill.
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EMR modeling (Kravtsov et al. 2016/17)

= x:A@ 4 @ :
dx=x-A"+r17, e Multi-level structure

* Model coefficients found
by PLS regression and
depend on seasonal
cycle at the monthly
resolution

« At the simulation stage, state-dependent
third-level forcing from a randomized library
of regression residuals

dr(l) — [r(l) x] . A(Z) + r(z)'

With x denoting the state vector to be modeled (in our case, 3000 PCs of
T2/PP), the EMR model features a multi-level structure with hidden
variables formed by a given level’s regression residuals, seasonally
dependent propagator and a state-dependent random forcing.



An example of simulation (JJA ‘79)

The simulated precipitation fields look fuzzier than the NARR output but
are otherwise visually similar in terms of spatial scales and propagation
sequences.



Properties of simulated 0—10-
day total precipitation (P10)

« We'll further concentrate on the P10 quantity,
which is a proxy for a high-risk flooding event

 The PDFs of 1979-1999 simulated P10 are
a good match to observed distributions (next
two slides)

 We will also discuss, after that, EMR’s P10
hindcasts over 2000-2020 period
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P10 mean

P10 mean (DJF)

The means of the observed (left column) and simulated P10 distributions
are statistically indistinguishable (the difference is shown on the right).



P10 99t percentile

P10 99% (DJF) AP10 99% (DJF)
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The 99t percentile of P10 tends to be slightly overestimated in the EMR
simulations, perhaps indicating a more slowly propagating, somewhat
overly persistent precipitation sequences.




EMR forecast NARR reanalysis EMR forecast RE

Examples of
EMR-based
P10 hindcasts

2001112800

Some events
are captured,
but

Ensemble-mean 0-10-day total precipitation (mm) Relative entropy

EMR model is able to forecast some significant P10 events in the
ensemble-mean (of 100 forecasts): see left and middle columns. Most
importantly, the large number of forecasts (possible to achieve due to
numerical efficiency of the EMR model) makes it possible to compute
probabilities of forecast precipitation events and, as a particular example,
identify the occurrences of potentially abnormal P10 episodes. One
probabilistic measure of forecast utility is a relative entropy (Kleeman
2002), which shows how different the distribution of forecasts is from the

climatological distribution (right column).



An application: Thinning the frequency of
reforecasts
 |dentify a subsample of
== initial dates associated
ol With high Relative Entropy
of EMR ensemble
forecasts of P10
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» An important application for hydrological reforecasts

In the figure, blue histogram is based on the entire 2000-2020 data, red
is from a small subsample based on selection using EMR P10 forecasts’
relative entropy, and yellow — from a small subsample based on an
alternative methodology focusing directly on the large magnitude of P10 in
ensemble-mean forecasts. The EMR-RE based sample captures well the
P10 distribution associated with the full P10 sample (here and at other
locations: not shown), which allows one to utilize this subsample to
dramatically increase the numerical efficiency of hydrological reforecasts

(future work).



Summary

We developed a novel methodology for multi-scale
statistical modeling of precipitation

Central to this methodology is

as the input to previously developed
LIM-like EMR model

The model produces statistically accurate surrogate
realizations of the 1979-1999 precip. and skillful
forecasts over the 2000-2020 period

Large ensemble size (due to numerical efficiency)
permits accurate estimation of forecasts’ PDFs
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Discussion

Our new EMR methodology for statistical modeling of precipitation
is fundamentally different from more traditional techniques (which
typically work with individual precipitation records at a local level
and/or postulate ad hoc connections with a limited number of large-
scale predictors) in that it automatically accounts for spatiotemporal
multi-scale structure of precipitation dynamics, thereby providing a
unified framework to model diverse precipitation environments.

associated with the present methodology is the
need for continuous data set for the temperature and humidity
throughout the atmospheric column to compute pseudo-precipitation,
which makes it necessary (rather than raw
observations of these quantities)
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