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ABSTRACT

The problem of accurate detection of climate response to slow external forcing in 19-21 centuries is complicated by the presence of internal climate variability, which
can also exhibit slow (decadal and multidecadal) large-scale dynamics, and also by the fact that there is only one observed climate realization available. At the same
time, state-of-the-art Earth system models (ESMs) exhibit different spatiotemporal content on slow time scales, and their ability to estimate forced and internal
climate variability needs further verification, especially given a relatively poor (short) observational statistics with respect to slow time scales. Here we present a
method called ensemble linear dynamical mode (E-LDM) decomposition [1] which addresses the problem of forced signal and internal variability detection from
small ensembles of ESM simulations. The method is based on the general assumption that the forced response is the same in all ensemble members and the internal
variability is uncorrelated, while both of them can be essentially represented by a low-dimensional set of spatial patterns and corresponding forced and internal time
series with certain time scales; the patterns, the time series and their time scales are optimized via the Bayesian framework. We compare the E-LDM method with
other state-of-the-art methods of forced signal detection on synthetic and ESM-simulated data, and also discuss its applicability to the problem of intercomparison
of ESMs and their verification with respect to real data. This research was supported by the state assignment of the Institute of Applied Physics of the Russian
Academy of Sciences (Project No. FFUF-2022-0008).

1. THE GOALS OF THIS RESEARCH

e Develop a method able to disentangle forced response and internal variability in ensembles of
climate simulations (using previously developed linear dynamical mode (LDM) decomposition)

e Test the method performance with respect to other state-ot-the-art methods for forced
response estimation

e Address the problem of forced response estimation from single climate realization using
ensembles of model simulations

2. E-LDM DECOMPOSITION

ORIGINAL LDM DECOMPOSITION

yn € R?

e Data — single realization time series: Y = (y1,...,¥n),

e The LDM model to fit:

Yo=Ap,+c+o&,  p.€RLE ~ NI (1)

® The parameters are: patterns A € RP*? time series P = (py,...,py), c € RY. 0 € R.

e Bayesian methodology to train LDMs:
@ Define parameters u = (A, c, P, 0)
@® Define prior probability density function PDF P,.(u) = P,.(A,c,0) - P, (P)
© The key point of LDM is the PDF for the time series P:

p1 ~N(0,%,), P~ N(@p,, 3,1 — &%) (2)

o
with diagonal matrices & and X, defined by &;; = e @i, (X,).. = (0},)7

This PDF means that LDM components belong (by assumption) to the class of smooth linear stochastic processes with decay times

7, € R? and standard deviations o, € R%: p; 11 = &ipin + \/ (0p)7(1 — &%) nin
@ LDM parameters are found by maximization of the posterior PDF: P(u]Y) o< P(Y|u) - Py (14)
@ The hyperparameters d, 7, 0, . . . are found by maximizing the Bayesian evidence: P(Y) =/ P(Y|u) - P(u) dp  — max

@ See |2, 3] for further algorithm details A
ENSEMBLE LDM DECOMPOSITION
M
e Data — ensemble of M realizations: Y = {(ygm), e ,y%n))}m:l : ym ¢ RP
® The ensemble LDM model:
y/ = Apl" + Bf, +c+0&",  p" eRb, £, € RY &M ~ N(0,T) (3)

e We assume that ensemble members are generated by a climate model under the same forcing, so that:

® The term Bf), describes the forced response equal in all ensemble members (with spatial patterns B)
® The term qu(lm) describes the modes of internal variability (with spatial patterns A)
e Forced component time series F = (fy, ..., fy) are equal in all ensemble members

(m) (m)

® [nternal variability time series P = {(pl o PN )} are unique for each member
m=

e Bayesian methodology to train E-LDMs remains the same. See [1] for further details.

REFERENCES

[1] Gavrilov, A., Kravtsov, S., Buyanova, M., Mukhin, D., Loskutov, E., Feigin, A.. Forced response and internal variability in ensembles of climate simulations:
identification and analysis using linear dynamical mode decomposition. Climate Dynamics 2024;62:1783—-1810. doi:10.1007/S00382-023-06995-1.

2] Gavrilov, A., Seleznev, A., Mukhin, D., Loskutov, E., Feigin, A., Kurths, J.. Linear dynamical modes as new variables for data-driven enso forecast. Climate
Dynamics 2019;52:2199-2216. doi:10.1007/s00382-018-4255-7.

[3] Gavrilov, A., Kravtsov, S., Mukhin, D.. Analysis of 20th century surface air temperature using linear dynamical modes. Chaos: An Interdisciplinary Journal
of Nonlinear Science 2020;30:123110. doi:10.1063/5.0028246.

[4] Wills, R.C.J., Battisti, D.S., Armour, K.C., Schneider, T., Deser, C.. Pattern recognition methods to separate forced responses from internal variability in
climate model ensembles and observations. Journal of Climate 2020:;33:8693-8719. doi:10.1175/JCLI-D-19-0855.1.

[5] Wills, R.C., Schneider, T., Wallace, J.M., Battisti, D.S., Hartmann, D.L.. Disentangling global warming, multidecadal variability, and el nifio in pacific
temperatures. Geophysical Research Letters 2018;45:2487-2496. doi:10.1002/2017GL076327.

6] Kay, J.E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., et al. The community earth system model (cesm) large ensemble project: A
community resource for studying climate change in the presence of internal climate variability. Bulletin of the American Meteorological Society 2015;96:1333—
1349. doi:10.1175/BAMS-D-13-00255.1.

This research was supported by the state assignment of the Institute of Applied Physics of the
Russian Academy of Sciences (Project No. FFUF-2022-0008).

3. E-LDM: RESULTS

E-LDM: SYNTHETIC EXAMPLE

(c) Time series of the fast oscillator

(b) Time series of the slow oscillator

(a) Direct forced signal

Annual surface air temperature (SAT) data: 40
members of CESM-LE ensemble [6] were splitted

into four sub-ensembles A, B, C, D, and E-LDMs
were computed for each (after pre-normalization tear vear reor Y=

E-LDM: CESM-LE EXAMPLE
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external forcing. The forced response is composed of the modes’ responses and a direct responsel[1].
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E-LDM decomposition: time series and patterns. The true forced response is two-dimensional
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E-LDM decomposition: Time series p;(t), p2(t), ps(t) and patterns Ay, As, Ajs of three internal E-LDM modes, by columns. The
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rows, from top to bottom, show the results for sub-ensembles A, B, C, D. For the time series, the multiple curves within each

PSR panel show the results for 10 different sub-ensemble members. The optimal time scales 7, of the modes are shown in the legend.

Additionaly, the estimates of characteristic quarter-periods 740 extracted from autocorrelation functions of each mode time series

are shown in the legend. For the patterns, the notation is the same as for the E-LDM forced modes.

E-LDM: CONCLUSIONS

e [-LLDMs find both the forced response and the internal variability components

D: B3, 0.2% (0.2%)
' e [-L.LDMs provide optimal number of components

e [-LDMs perform at the level of the best methods in forced response estimation, while all
their hyperparameters are determined by the Bayesian procedure
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7¢ of the modes). All patterns are in °C. The percentages in panel
captions show the ratio of the corresponding component variance

to the total SAT variance (in brackets — the same after applying

e In both the synthetic example and the CESM-LE example the patterns of slow internal
and forced modes overlap. It may be related with the interaction between forcing and
multidecadal modes.

4. FORCED RESPONSE ESTIMATION FROM MULTI-MODEL ENSEMBLE DATA

MULTI-MODEL ENSEMBLE LDM DECOMPOSITION

e Data — multi-model ensemble (S models, with M realizations each):

m.,Ss m.,S M S m.s
Y=ot v e R (4)

m=1) =1

e The multi-model ensemble LDM model:
y(m,s) _ Ap?(lm,s) 4 Bfés) +ce+ 0_57(2771,8)7 p(m,s) c de, fés) c Rdf;fr,(lm’s)

n 0 ~ N(0,1) (5)

e The forced component time series is made model-wise!

® The same Bayesian methodology to train multi-model ensemble LDMs

FORCED RESPONSE ESTIMATOR FROM SINGLE REALIZATION

e Under assumption that the forced mode patterns are the same, but their time series are model-wise, let us train simple
linear estimator of the forced components fT(LS) from single realization data yflmﬂs)

e To avoid overfitting, project the data onto K ensemble EOFs:
X(m,s) _ qu(lm,s)

n

e Since LDM modes are smooth, perform low-pass filtering with the time scale T":

x(m.s) — LT(XWS))

n n

e Train “smoothed linear regression” (SLR) to find fingerprinting patterns U:
fr(LS) _ U)~(7(,Lm’8) + Eglm,s)

e Optimize hyperparameters K and I’ via cross-validation

® The forced response for the new realization y'“" is estimated as follows:
gorced — BU . LT<Vyzew> Tt

® The obtained estimator is robust with respect to internal variability and model differences because patterns U are
trained to deal with it!

EXAMPLE: FORCESMIP DATASETS

Monthly SAT data from the ForceSMIP training ensemble including 5 models. The first 10 realizations of each model
were used to train LDM-SLR. The other 135 members were used for verification here. LDM preprocessing: seasonal cycle
exclusion, normalization, EOF-compression.
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The figures show the forced signal estimation by LDM-SLR, EOF-SLR and simple multi-model ensemble mean (MME mean) from testing realizations. Black: “true”
forced signal estimation (from all members for each model). Blue: LDM forced signal estimation from 10 realizations of each model, which is then approximated by

SLR mapping. The chosen indices are projections to the 1 and 2 EOF patterns (bottom right of each panel).

MULTI-MODEL ANALYSIS: CONCLUSIONS

e Multi-model LDM algorithm is developed to detect forced response and internal variability in a multi-model
ensemble.

e Smoothed linear regression is used to find a mapping from single realization to its forced response. It is robust
with respect to internal variability and the model uncertainty.

e Based on the preliminary simple tests with ForceSMIP SAT data, LDM-SLR estimator only slightly outperforms
EOF-SLR estimator. It may reflect that the main uncertainty comes with the SLR part of the method.

e More evaluation is coming within the ForceSMIP project!
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