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Abstract
The problem of accurate detection of climate response to slow external forcing in 19-21 centuries is complicated by the presence of internal climate variability, which

can also exhibit slow (decadal and multidecadal) large-scale dynamics, and also by the fact that there is only one observed climate realization available. At the same

time, state-of-the-art Earth system models (ESMs) exhibit different spatiotemporal content on slow time scales, and their ability to estimate forced and internal

climate variability needs further verification, especially given a relatively poor (short) observational statistics with respect to slow time scales. Here we present a

method called ensemble linear dynamical mode (E-LDM) decomposition [1] which addresses the problem of forced signal and internal variability detection from

small ensembles of ESM simulations. The method is based on the general assumption that the forced response is the same in all ensemble members and the internal

variability is uncorrelated, while both of them can be essentially represented by a low-dimensional set of spatial patterns and corresponding forced and internal time

series with certain time scales; the patterns, the time series and their time scales are optimized via the Bayesian framework. We compare the E-LDM method with

other state-of-the-art methods of forced signal detection on synthetic and ESM-simulated data, and also discuss its applicability to the problem of intercomparison

of ESMs and their verification with respect to real data. This research was supported by the state assignment of the Institute of Applied Physics of the Russian

Academy of Sciences (Project No. FFUF-2022-0008).

1. The goals of this research

• Develop a method able to disentangle forced response and internal variability in ensembles of
climate simulations (using previously developed linear dynamical mode (LDM) decomposition)

• Test the method performance with respect to other state-of-the-art methods for forced
response estimation

• Address the problem of forced response estimation from single climate realization using
ensembles of model simulations

2. E-LDM decomposition

Original LDM decomposition
• Data – single realization time series: Y = (y1, . . . , yN), yn ∈ RD

• The LDM model to fit:
yn = Apn + c + σξn, pn ∈ Rd, ξn ∼ N (0, I) (1)

• The parameters are: patterns A ∈ RD×d, time series P = (p1, . . . , pN), c ∈ RD, σ ∈ R.
• Bayesian methodology to train LDMs:

1 Define parameters µ = (A, c, P, σ)
2 Define prior probability density function PDF Ppr(µ) = Ppr(A, c, σ) · Ppr(P)
3 The key point of LDM is the PDF for the time series P:

p1 ∼ N (0, Σp), pn+1 ∼ N (α̂pn, Σp(I − α̂2)) (2)

with diagonal matrices α̂ and Σp defined by α̂ii = e
− 1

(τp) i, (Σp)ii = (σp)2
i

This PDF means that LDM components belong (by assumption) to the class of smooth linear stochastic processes with decay times
τp ∈ Rd and standard deviations σp ∈ Rd: pi,n+1 = α̂iipin +

√
(σp)2

i (1 − α̂2
ii)ηin

4 LDM parameters are found by maximization of the posterior PDF: P (µ|Y) ∝ P (Y|µ) · Ppr(µ)
5 The hyperparameters d, τp, σp, . . . are found by maximizing the Bayesian evidence: P (Y) = ∫

P (Y|µ) · P (µ) dµ −→
d,τp,σp,...

max
6 See [2, 3] for further algorithm details

Ensemble LDM decomposition

• Data – ensemble of M realizations: Y =
{
(y(m)

1 , . . . , y(m)
N )

}M

m=1
, y(m)

n ∈ RD

• The ensemble LDM model:

y(m)
n = Ap(m)

n + Bfn + c + σξ(m)
n , p(m)

n ∈ Rdp, fn ∈ Rdf , ξ(m)
n ∼ N (0, I) (3)

• We assume that ensemble members are generated by a climate model under the same forcing, so that:
• The term Bfn describes the forced response equal in all ensemble members (with spatial patterns B)
• The term Ap(m)

n describes the modes of internal variability (with spatial patterns A)
• Forced component time series F = (f1, . . . , fN) are equal in all ensemble members
• Internal variability time series P =

{
(p(m)

1 , . . . , p(m)
N )

}M

m=1
are unique for each member

• Bayesian methodology to train E-LDMs remains the same. See [1] for further details.
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3. E-LDM: results

E-LDM: synthetic example
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Data: 10 realizations of a prototype linear climate system with slow and fast modes damped by

external forcing. The forced response is composed of the modes’ responses and a direct response[1].
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E-LDM decomposition: time series and patterns. The true forced response is two-dimensional
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Forced response in different spatial nodes identified by different methods. The other methods are

smoothed ensemble mean[1], extended-space EOFs[1], S/NP [4], LFCA [5]

E-LDM: CESM-LE example
Annual surface air temperature (SAT) data: 40
members of CESM-LE ensemble [6] were splitted
into four sub-ensembles A, B, C, D, and E-LDMs
were computed for each (after pre-normalization
and ensemble EOF pre-compression).

1925 1950 1975 2000
Year

−1

0

1

f1(t)

A, τf = 172
B, τf = 172
C, τf = 172
D, τf = 172

A: B̃1, 5.9% (49.9%)

−0.3888 0.3888
B: B̃1, 8.0% (59.5%)

−0.499 0.499
C: B̃1, 7.1% (60.5%)

−0.4162 0.4162
D: B̃1, 6.4% (50.6%)

−0.426 0.426

1925 1950 1975 2000
Year

−2

0

2

f2(t)

A, τf = 17
B, τf = 5
C, τf = 5
D, τf = 10

A: B̃2, 4.1% (12.2%)

−0.337 0.337
B: B̃2, 2.3% (5.3%)

−0.2 0.2
C: B̃2, 1.5% (2.6%)

−0.1542 0.1542
D: B̃2, 4.0% (11.4%)

−0.3234 0.3234

1925 1950 1975 2000
Year

−2

0

2
f3(t)

A, τf = 5
B, τf = 32
C, τf = 38
D, τf = 25

A: B̃3, 0.2% (0.5%)

−0.0613 0.0613
B: B̃3, 0.9% (3.8%)

−0.2013 0.2013
C: B̃3, 1.7% (9.1%)

−0.282 0.282
D: B̃3, 0.2% (0.2%)

−0.0719 0.0719

E-LDM decomposition: forced response time series f1(t), f2(t),

f3(t) and corresponding spatial patterns B1, B2, B3 of the three

ELDM forced modes identified in the sub-ensembles A–D of SAT

simulations (see the legend, which also lists the optimal time scales

τf of the modes). All patterns are in ◦C. The percentages in panel

captions show the ratio of the corresponding component variance

to the total SAT variance (in brackets – the same after applying

30-yr boxcar running mean smoother).
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E-LDM decomposition: Time series p1(t), p2(t), p3(t) and patterns A1, A2, A3 of three internal E-LDM modes, by columns. The

rows, from top to bottom, show the results for sub-ensembles A, B, C, D. For the time series, the multiple curves within each

panel show the results for 10 different sub-ensemble members. The optimal time scales τp of the modes are shown in the legend.

Additionaly, the estimates of characteristic quarter-periods τACF extracted from autocorrelation functions of each mode time series

are shown in the legend. For the patterns, the notation is the same as for the E-LDM forced modes.

E-LDM: conclusions
• E-LDMs find both the forced response and the internal variability components
• E-LDMs provide optimal number of components
• E-LDMs perform at the level of the best methods in forced response estimation, while all

their hyperparameters are determined by the Bayesian procedure
• In all CESM-LE sub-ensembles E-LDMs find 3 forced and 3 internal components
• Two fast internal components have ENSO-PDO-IPO-like structure. The slow component

is weak and concentrated in high latitudes.
• Forced response is robust with respect to sub-ensembles (not shown)
• In both the synthetic example and the CESM-LE example the patterns of slow internal

and forced modes overlap. It may be related with the interaction between forcing and
multidecadal modes.

4. Forced response estimation from multi-model ensemble data

Multi-model ensemble LDM decomposition

• Data – multi-model ensemble (S models, with M realizations each):

Y =


{
(y(m,s)

1 , . . . , y(m,s)
N )

}M

m=1


S

s=1
, y(m,s)

n ∈ RD (4)

• The multi-model ensemble LDM model:

y(m,s)
n = Ap(m,s)

n + Bf (s)
n + c + σξ(m,s)

n , p(m,s)
n ∈ Rdp, f (s)

n ∈ Rdf , ξ(m,s)
n ∼ N (0, I) (5)

• The forced component time series is made model-wise!
• The same Bayesian methodology to train multi-model ensemble LDMs

Forced response estimator from single realization

• Under assumption that the forced mode patterns are the same, but their time series are model-wise, let us train simple
linear estimator of the forced components f (s)

n from single realization data y(m,s)
n

• To avoid overfitting, project the data onto K ensemble EOFs:
x(m,s)

n = Vy(m,s)
n

• Since LDM modes are smooth, perform low-pass filtering with the time scale T :
x̃(m,s)

n = LT (x(m,s)
n )

• Train “smoothed linear regression” (SLR) to find fingerprinting patterns U:
f (s)
n = Ux̃(m,s)

n + ϵ(m,s)
n

• Optimize hyperparameters K and T via cross-validation
• The forced response for the new realization ynew

n is estimated as follows:
yforced

n = BU · LT (Vynew
n ) + c

• The obtained estimator is robust with respect to internal variability and model differences because patterns U are
trained to deal with it!

Example: ForceSMIP datasets
Monthly SAT data from the ForceSMIP training ensemble including 5 models. The first 10 realizations of each model
were used to train LDM-SLR. The other 135 members were used for verification here. LDM preprocessing: seasonal cycle
exclusion, normalization, EOF-compression.

The figures show the forced signal estimation by LDM-SLR, EOF-SLR and simple multi-model ensemble mean (MME mean) from testing realizations. Black: “true”

forced signal estimation (from all members for each model). Blue: LDM forced signal estimation from 10 realizations of each model, which is then approximated by

SLR mapping. The chosen indices are projections to the 1 and 2 EOF patterns (bottom right of each panel).

Multi-model analysis: conclusions
• Multi-model LDM algorithm is developed to detect forced response and internal variability in a multi-model

ensemble.
• Smoothed linear regression is used to find a mapping from single realization to its forced response. It is robust

with respect to internal variability and the model uncertainty.
• Based on the preliminary simple tests with ForceSMIP SAT data, LDM-SLR estimator only slightly outperforms

EOF-SLR estimator. It may reflect that the main uncertainty comes with the SLR part of the method.
• More evaluation is coming within the ForceSMIP project!
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