Vibration and Stability of
Frictional Sliding of Two Elastic
Bodies With a Wavy Contact
Interface

The stability of steady sliding, with Amontons-Coulomb friction, of two elastic bodies with

Mikhail Nosonovsky a rough contact interface is analyzed. The bodies are modeled as elastic half-spaces, one
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(modes) and eigenvalues (frequencies). A pure imaginary root for an eigenvalue corre-

George G. Adams sponds to a standing wave confined to the interface, while a positive/negative real part of
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energy dissipation). These roots are found for a wide range of material properties and
ratios of separation to contact zones lengths. For the limiting case of complete contact,
the solution found corresponds to a superposition of two slip waves (generalized Rayleigh
waves) traveling in opposite directions and forming a standing wave. With increasing
separation zone length, the vibration frequency decreases from the slip wave frequency to
the smaller surface wave frequency of the two bodies. With a nonzero separation zone,
solutions can exist for material combinations which do not allow slip waves. For nonzero
friction and sliding velocities, unstable solutions are found. The degree of instability is
proportional to the product of the friction coefficient and the sliding velocity. These
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1 Introduction confined to the interface region and have amplitudes which de-
crease exponentially with distance from the interface, while in-
creasing exponentially with time. These waves can contribute to

he formation of friction-induced vibrations. The rate of amplitude

investigation. It is well known that vibrations, which are usual|¥ crease is proportional to the wave number, which causes infini-
undesirable in technical applications, can occur during friction simal wavelengths to increase at an unIi'mited rate. Thus the

sliding. These friction-induced vibrations are a result of the inst fopagation of an arbitrary pulse is ill-posed as was found by
bility of steady-state sliding, which is usually attributed to eithe enardy[2] for sliding of an elastic solid against a rigid substrate
the difference between the static and kinetic friction coefficientg;i, 5 sufficiently high friction coefficient. Sifes and Martins

to a decrease of the kinetic friction coefficient with increasings) jnyestigated the effect of introducing an intrinsic length scale
velocity, or to a spatial variation of the friction coefficient alongniq the problem and found a method of regularization of the
the interface. , , ill-posedness by using a nonlocal friction law.

In the past years the influence of elastodynamic phenomena olRapjith and Ricg4] analyzed frictional sliding of two elastic
friction has been intensely investigated. Adaffi$ showed that najf-spaces in the small velocity limit. If a generalized Rayleigh
the sliding of two flat elastic half-spaces with a constant coeffigave exists at the interface of the two bodies for frictionless con-
cient of friction has dynamically unstable solutions for a wideact, steady sliding with arbitrary small friction becomes unstable.
range of material parameter combinations, coefficients of frictiogeneralized Rayleigh waves, also known as slip waves or smooth
and sliding velocity(including very small speefisThese self- contact Stoneley waves, exist when the material mismatch is not
excited vibrations are in the form of interface waves, which akgery high and they become equivalent to Rayleigh surface waves

in the limiting case of identical material&.chenbach and Epstein
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of moving elastic springs, which represented the asperities. T Fas T Fa)

solution was found to be dynamically unstable for any finite spet \J/p ~ ‘l/p ~ \l, ~
with the degree of instability increasing with increasing speed. s Up > I s I
It is well known that during dry frictional contact, the true -

contact area is significantly less than the apparent contact a > o
because a nominally flat surface is rough and has asperities. ] Wi, Vi, P1 ~ v
contact takes place only on the peaks of the asperities. Mg >
models have been developed starting in the early 1960s, wh
consider different laws of asperity distributions, either statistici
or fractal, and provide theoretical results which justify the lineg \/

N

g

R

Coulomb friction law(for a review see Adams and Nosonovsky
[7]). These statistical models are usually uncoupled in the serf W2, V2, P2
that the contribution of each individual asperity is calculated sep
rately, with no asperity interaction through the bulk of the body
On the other hand, coupled models deal with elastic deformati
of the body as a whole, but due to the complexity of the problenuA<T < e

N N up 1

p T p

r~
\

only simple contact profiles have been considered. One of t 1)
simplest models of this type is a two-dimensional problem with
sinusoidal periodic profile; the peaks of the sinusoid represe
asperities.

The static frictionless two-dimensional contact problem with
harmonic contact profile is well known in the literature. It wa
considered for the first time by Westergad®] who used the
complex stress function method. Independently the same problem
was solved by other researchers who used different mathematical
techniques, including the Green’s function and a singular integi@nsidered here. The coefficient of kinetic friction between the
equation formulation(Shtaerman[9]), the stress function ap- two bodies isu. The lower surface is assumed to have a purely
proach and Fourier series analy@undurs, Tsai, and Ke¢f0]), sinusoidal boundary ag=0 with a period of 2 and peak-to-
and the complex potential method of Muskhelish¥ifiuznetsov valley amplitudeg, i.e.,

[11]). The frictional quasistatic sliding problem with one rigid )
body was studied by Kuznetsdd2]. Nosonovsky and Adams o) ( 1 m(X+ E))
—cos——|,

[13] analyzed the frictional problem for the general case of two y(%)= E =
elastic materials and any subsonic sliding velocity. They obtained '
the dependencies of the contact area on the remotely applied piggerex andy are the coordinates attached to the lower body and
sure for diffe_ren_t friction coeffi_cients and sliding velocitie_s. The will be defined later. The upper body is moving to the right with
authors also indicated that their work formed the foundation for g,nsiant velocityV. Now the dimensionless coordinates and
future stability analysis. arameters

The present paper analyzes the stability of the steady slidiﬁg
solution obtained by Nosonovsky and Adafi8]. For the limit-
ing case of complete contact with friction the problem reduces to X=
the one investigated by Adam], for which the instability is in
the form of traveling interface waves, growing in amplitude with
time. For incomplete contact a solution in the form of complex -~ Ip1
modes of vibration is sought. In the frictionless quasistatic limit V=V Z t=
this solution, if it exists, describes normal modes of vibration
which are localized near the interface. With increasing slidingre defined, wherp, andp, are the densities of the two bodies,
velocity and friction coefficient, these vibration modes becomand ., and u, are their elastic shear moduli.
complex and the solution can become unstable. The algebraic calThe Navier equations for the dimensionless displacements
culations are quite complicated and so a symbolic interpreter lam,y,t), v(X,y,t) in the x and y-directions, respectively, are
guage(Mathematica[14]) has been used extensively throughougiven by
this investigation. 2, (1)

<> <€

Eig. 1 Sliding of a flat elastic half-space upon a wavy elastic
%alf—space

1)

X 7y 70 E
T_‘ y:T_, g:T_| EZ_;

— @

2,,(1
These results have relevance in furthering our understanding of (BZ—VZ)u(“Jru(”Jr(BZ— 1) = _ov *u
sliding friction as well as in the design and analysis of lip seals, 1 XX TLYY 1 XY g2 Oxot
such as the synthetic rubber seals used extensively in automobiles
and other devices. Some models of lip seals include sinusoidal ) 2 (1) 5 1 g™ 7o
micro-undulations and micro-asperiti€3alant and Flahertj15]). Biv gyt (L=V)v i+ (B~ DU = pea \Y ot
A typical value of Young’s modulus is 10 MPEL5], which gives
a Rayleigh wave speed of about 100 m/s. Hence the sliding ve- 9%u?
locity need not be extremely high in order to be a significant B +UG+ (B G=kP—
fraction of the Rayleigh wave speed. . ' at
2.(2)
2 Formulation of the Problem B o+ o+ (85— 1uG)=«? 2 (3)

Consider the plane-strain sliding frictional contact of two semi-
infinite elastic bodies, one of which is flat and the other of whicl
has a slightly wavy surface. The bodies are pressed together b
uniform normal tractionp and slide under a uniform tangential

here the shear wave speed ratiociand the ratios of longitudi-
(CL) and shearCs) wave speeds are related to the Poisson’s
atios of the two materialg; and v, according to

traction up applied at infinity(Fig. 1). The contact regions are o 21— ) c(gl) 2 ©1p2
determined from the solution of the steady-state problgt], ’Bk:(c_) N1, Kz_(w =, 4
whereas small vibrations near the steady-state solution will be S/k ~ 4Pk Cs H2P1
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in which k=1 for the upper body anl=2 for the lower body. 3 Formulation in Integral Equation Form
indi ) (2) A .
Also note that indice§ and(? are related to the upper and the - any initial small perturbation can be represented as a superpo-

lower bodies, respectively. i f th hich h
The deformed state of the bodies is considered as the supe?é%?wglute;F?_d;wk(x'y)' vulxy) whieh correspond to the

sition of uniform stressegcaused by the dimensionless applie

pressurep=p/ 4, and dimensionless tangential tractigip) and -
the dimensionless residual stresses(oy,oyy,). The dimen- u(x,y,t)=Re2 Ciug(x,y)er
sionless residual stresses are related to the dimensional residual k=1
stresses according to "
P v(xy,)=Re Y, Dywi(xy)e' . (15)
(k) — 1 5 k=1
T ®)

) o ) ) A stable solution must have the real parts of &|l negative or
and vanish at infinity. The dimensionless stresses are related to ey

dimensionless deformations by The modes are sought in the form
U;?:(,Bﬁ_ Z)USE)+'B§U$) (1) i S1y SoY\ @i NX/M
ut(x,y)= An(e’Y+ 5;e%) e
ol=u+oly. ©) )= 2 An(E™ 5%
The boundary conditions at infinityy(| =) state that stresses ®
should be equal to the applied tractions. On the contact surface v D(x,y)= E An( 5,63+ §,5,e%Y)enm (16)
(y=0) there are two kinds of boundary conditions—nonmixed n=—o

and mixed boundary conditions. The nonmixed conditions arg

valid on the entire surface: rthe upper body and

©

(1) — (1) _ ' , .
Oyy =HOyy 0 IX<oo, (7 u(z)(x,y)= E Bn(esly+ 5éeszy)e|nx/m
W,
D= o) —w<x<e, ®)
1) _ 2 ’ ' .
pa0ly) = pool),  —e<x<oe. 9) vA(xy)= D, B8+ syoes)e™m  (17)
W

The shear moduli appear i9) due to the manner in which the
stresses were nondimensionaliz&l. The mixed boundary con- for the lower body, wheren=1 for a mode with a period of 2

ditions are satisfied only in the separation zone: and m=2 for an antisymmetric mode (x+2m,y)=—v(X,y)
o with a period of 4r. The terms which represent the translation of
oy =P, c<|X<m (10) the system as a rigid body can be set to zeAg=£0 and B,

=0) without loss of generality. Note that the subsckiftas been

omitted for conciseness.

w® w?® g In order to satisfy the Navier Eq§3), s; ands, in (16), (17)
. ax Esm(x+ E), —c<x<c. (11)  must be roots of the characteristic equation

and in the contact zone:

Herex is equal to zero at the center of the contact zone. Thus the ~ 878*+[Q187+Qz+(n/m)*(B5—1)?]s’+Q,Q,=0. (18)
parameteE is the coordinate distance representing the peak of tlﬁe solution of(18) is
surface waviness relative to the center of the contact zone.

(iuppose(grat the szteady stgte solution is givemﬁi(x,y), S == ‘/—Qz, S,=* ‘/—Ql/ﬁi (19)
v(x,y), U@ (x,y), v (x,y) with the length of the contact zone
2c and the eccentricit. In order to analyze the stability of the Where

steady-state solution, small vibrations near the steady-state solu- —2(n/Mm)iVA — A2— (n/m)2( B2— V2

tion are considered. The complete solutia®, vt of (3) is a Qu=2(n/m) (V/m)=(AL=V,
superposition of the steady-state solution and the small vibrations, Q,=2(n/m)iVA—A%—(n/m)?(1—V?). (20)
ie.,

Since the solution must be bounded at infinity, among the four
Ty, b =ud(x,y)+u®(x,y,1), roots (19) only the two roots with positive real parts are consid-
ered for the upper body. The Navier equations further require
v (Y, D=0 (xy) +o (xy.1).

2
In order to satisfy the Coulomb friction inequalities, it is required 5y =i LQl: i L (21)
that the sliding velocityV always be greater than the local (n/m)(,Bf—l)sl ms;
x-component of the small vibration relative velocity at the inter- 5
face, i.e., _ S5+ Qs ms,
Sp=i——————=—i—, (22)
u@d(x,08)  duP(x,01) 1 (n/m)(B1—1)s, n
at at ' (12) while A, and §; are unknown coefficients which will be deter-

I . . mined from the boundary conditions.
For small vibrations the nonmixed boundary conditidifs—(9) The displacement field16) produces stresses on the contact

remain in the same form, whereas the mixed boundary conditiog&rface ven b
(10), (11) are reduced to 9 y

(1) _ ”
oy =0 c<l=m (13) o= S AL(1+8)i(nm)(B2—2)
n=—=
w® g
% ax 0 M=e (14) + BA(5,8,+5,858,) ]e™M, —co<x<oe,
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ofy= 3 Ad(si+eri(nim)) S, sininx = 3oty (34

+(855,+ 8385 (nfm)) €™M —w<x<o, (23) Eq. (31) becomes

Coulomb’s friction law(7) on the surface requires

pi(n/m)(B5—2) + uBis1 81— (s1+ 81i(n/m)) f (&) Z et oimgg= J’C<1>(§)2mw5(xff)d§

5 = " - . n=—o
T pi(nm)(B]-2)+ pBis,0,— (st i (n/m))
(24) =0, xe«C, (35)
Similar relations can also be written for the lower body; theuhich is satisfied automatically in the separation zone. Further-
corresponding variables are marked with a prirflg (.e., more (30) yields a homogeneous integral equation deg) given
b
Q= — AP (nim)2B2,  Qb=—AZi?—(n/m)2. (25)
12 ’
,ﬂziLle (26) fcb(g) E K, 9mgs=0, xeC, (36)
(nfm)(B3—1)s; n=-e
12 !
S, + where
Sy=i—— % @7)

2
(nfm)(B5—1)s;’ S+ 8,83~ 84(5}+ 555%)
gym PTIMBE=2) + pBESL01— (S S V) NN ML
* O ui(nim)(B3-2)+ pp3s) ) (sé+5§i(n/m))'(28) R T

Integral Eq.(36) is singular because the summation in its kernel
The real part of; ands, must be negative for the solution to bediverges asc— ¢. In order to solve Eq(36), K, is decomposed
bounded at infinity. into two terms:
The condition of continuity9) of o, on the surface gives

—K*® rem
By= 84An, Kn=K"+la™,  n=0,

(1+ 85)(B=2)i(n/m) + B3(518;+5,855) Kn=K™"+ky™, n<o,

1+ 85 (B5—2)i(n/m)+ B5(s. 8 +5,848)
( 3)(B2—2)i(n/m)+ B5(S; 81+ 8,6363) 29 Ko KT 0, (38)

M1
=
¢ M2

Summarizing, the nonmixed boundary conditions have been usghere
in order to determine all the unknown coefficients exceptAgpr
The two mixed boundary conditiori¢3) and(14) now yield K*=K/+iK"=limK,
r i ’
o n—oc
81+ 8,83— 84(51+ 855%) Ji(nfm)Ae™M=0, |x|<c
2 [81+0,85= 551+ 8,50 li (V) A, x| K="= K*—iK*= lm K.
(30) n——o

) i ) inx/m in which K" andK;” are the real and imaginary parts K, and
E [(1+ 53)(,81—2)|(n/m)+Bl(5161+525263)]Ane kM is the remaining part.
e : .
Equation(36) now can be written fom=1 as
=0, c<|x|<m. (31)
Cc —

Note that forn=1 the vanishing of the term in brackets of Eq. 27Tcl>(x)|<i°+f fI)(g)[ Ky —K{ cot §+k(x &) r1dé
(30) constitutes the slip wave equation for a wavelength rof2 —c
while the vanishing of the term in brackets of E§1) constitutes

the Rayleigh wave equation for the upper body. The parandater =0, [x|<c, (39)
is undefined at the Rayleigh wave speed of the upper body Non1
in order to satisfy(30) and (31), the unknown functiond(¢) is ere
introduced such that
[(1+ 85)(B5—2)i(n/m)+ B3(8,61+5,6,85) A, k(xf§)=n:2_x Kremein(x=8  m=1, (40)
= ch(f)efingdf- (32)  Form=2 Eq.(36) yields

The integration is performed in the contact zdD& —c<é¢<c, I X=§ X—§
for m=1), (—c<é<c, —c<é+2m<c for m=2). Then with 4mQ (XK + 7CCD(§) —K{ cot———K{" tan—
the use of the identities for generalized functid@el'fand and
Shilov [16])

. +k(x—§)1dé=0, [x|<c, (41)

1
> cognx)=— = +7wa(x), |x|<m, (33)
n-1 2 where
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kx=&)= 2 kyme" o1 (~1)"), m=2 (42)

n=—ow

In the derivation 0f39)—(42) the properties ofP(x), namely, the
antisymmetry® (x+2m) = —®(x) for m=2, and the periodicity

& (x+27)=d(x) for m=1 have been utilized, as well as double
angle formulas for the trigonometric functions. Note that the natu-
ral frequencies of vibration for complete contact are given by the

roots of
K,=0, m=12, n=123.., (43)

wherem=1 corresponds to the symmetric modes amd 2 cor-
responds to the antisymmetric modes.

Making the change of variables
X—cCX, §&—c&  D(ex)=d(X) (44)
yields form=1
2 Y 1 Y . C(x=¢&
LY +J71¢><§> — K7 =K cot
+k(c(x—§))]d§—o, [x|<1 (45)
while for m=2
4m - [t L C(x=§ . c(x—§)
T¢>(X)Kr+fl¢(§){—Ki cot 7 K, tan 7
+k(c(x—§)))d§—0, [x|<1. (46)

Note that Eqs(45), (46) govern thestability of the steady-state
solution which, in turn, was obtained from the equation

C(XT_@]d&f(x), Xl<1,

(47)

where f(x) describes the slope of the interface profile, which i
sinusoidal for this problenj13]. The stability analysis is indepen-
dent of the particular form of the profilg(x) and uses only the
length of the contact zone obtained from the steady-state solu
tion of (47).

The Eq.(47), which was solved by KuznetsoM 2] for the

2@ 3 1
2 oo+ [ o] K oo

Equations(24) and (28) yield

2 2
si+(n/m)
3™ 23132 (51)
12 2
s;“+(n/m)
T s (52)
For the limit ofn— o
K.=K*, K,=0, (53)
and
k(x—§)=2i X, (Ko—K{)sinn(x—¢)]. (54)

n=1

Note thatQ;, Q,, Q1, Q3, S1, Sz, S1, S5, 83, J5, S5 are pure
real, while 8;, 81, 8,, &, are pure imaginary. All the quantities
remain the same when the signofs reversed.

4.2 Small Separation Zone. For the case of a vanishingly
small separation zone{ 7) Eq.(31) must be satisfied only at a
single separation poink| =7 whereas Eq(30) has a solution in
the form of

A.,#0,

A.,=0, n>1. (55)
This is the solution for slip wave§eneralized Rayleigh waves
with two waves of the same amplitude traveling in opposite direc-
tions and forming a standing slip wave. To satigB1) at |x|
=7 the phase of the standing slip wave must be chosen that gives
zero normal stress at the separation points.

4.3 Small Contact Zone. For a small contact zonec{~0)
Eq. (30) must be satisfied only for the contact points 277n. A
resonance type of solutiofd5) in the form of standing Rayleigh
waves in each body, which are independent of each other, exists

and satisfieg31) only if the Rayleigh wave speeds of the two
bodiesCY{’) andC? are related in the following manner:

particular case of one rigid and one elastic body and low sliding

velocities, governs several important problems of contact elastic-

ity, such as propagating intersonic stick-slip regi¢Adams[17])
and ultrasonic motorgZhari [18]). The algorithm of stability

pCcl=qc?, pg=123.... (56)

In this case standing Rayleigh waves with wavelengths of2

analysis which is considered in this work can be applied to tland 27/q can exist in the two bodies and their nodes will coincide

stability analysis of steady-state problems governed by(&qd,
whereas the particular form of the functi@fc(x— &)) is different
for each problem.

4 Special Solutions for Limiting and Resonance Cases

4.1 Frictionless Case. Simplifications can be made for a

with each other and with the contact points.

In the general case when the Rayleigh wave speed ratio does
not permit such a resonance, a standing Rayleigh wave can exist
in only one body with node points at the points of contact. It must
be stressed that although mathematically it is possible to consider
any small value ot, physically the displacements caused by the
small vibrations must by much smaller than those of the steady-

number of special cases. Let us first consider the frictionless statfgte solution and should not cause any sufficient change of the
case =0, V=0). It is possible to show that the roots are pur&ontact zone length. In the limiting case o£— 0 this condition

imaginary(no energy is dissipated, =i\ where\ is rea) for this
case and that the eigenvalue problem is self-adjoint.
For pure imaginary roots Eq§19)—(29) simplify to

Q:=\2—(n/m)?B2, Q,=\?—(n/m)2, (48)
si=—V(nfm)Z=\7?, - sj=—(n/m)? =\ (x?BY)
312\/(n/—m)r)\2: Szz\/mf (49)
where
A==*i\. (50)

158 / Vol. 71, MARCH 2004

cannot be satisfied.

4.4 Equal Rayleigh Wave Speeds.In the case of equal
Rayleigh wave speeds for the two materials in contact, the brack-
eted term on the left-hand side @2) vanishes and thus the trivial
solution of Eqs(39) and(41) given by

d(x)=0 (57)
does not correspond to eaély vanishing. Note that in this case

Egs.(30) and(31) have a solution simultaneously as the slip wave
speed and Rayleigh wave speeds coincide. Therefore a solution of

Transactions of the ASME



the form (55) exists. This solution implies that the contact pres- m(2j+1)
sure is equal to zero, while the normal displacements are continu- 3 :COSM'
ous but not zero. It corresponds to the case of two Rayleigh waves
(traveling or standingof the same amplitude, wavelength, andn order for nontrivial solutions of63) to exist, the determinant of
phase, which exist simultaneously in the two bodies without inhe N+ 1 by N+ 1 matrix

teraction. This solution exists for any value of the friction coeffi-

cient. It exists also for the case of high sliding velocity if the D(A,u)=|Dp-1,4—1[=0 (65)
Rayleigh wave speeds are related to the sliding velocity by

i=0,1,...N. (64)

must vanish.
CR'-Ccy=V. (58) 5.2 Small Friction and Sliding Velocity. Let us now con-
_ ' ] sider the case of small friction— 0; the roots are expected to be
5 Numerical Analysis of the Integral Equation close to those of the frictionless case. It was found in the analysis

) . ) . of the complete contact casgt], that the real part of the root
5.1 Reduction to a System of Linear Algebraic Equation. gepends linearly ope for small u, so let us also assume such a
The lowest frequency of vibration, which correspondsme 2,  |inear dependence. For a small friction coefficient the raos

n=1in Eq.(43), is the most important and so we concentrate ofcajized near the root for the frictionless case which lies on the
a numerical investigation of this case. Applying the method d?maginary axis. i.e.

veloped by Erdogan and Gugti9], we write Eq.(46) in the form

A=FiN+uAq (66)
" o [P P(Hde [ L 49(8) o o ) .
Amp(X)K; —4K; X—E + 1 #(K X—¢ where i\ is pure imaginary. The determinaf®5), which is a
-1 -1 function of bothu and A, can be represented as
. Cx=§  c(X—§) oD dD
—cK{ cot 7 —cK{ tan 7 +ck(c(x§))]d§ D(A,M)=ﬁﬂ+a—AMA1=01 (67)
-0, |x/<1. (59)

which yields
The singular term is in the first integral whereas the second inte-

. : . aD/d
grand is bounded. Following Erdogan and Guitf] we define 1= ’“, (68)
the degree of singularity at the leading edge as dD/oA
1 K* iK™ 1 K= The determinanD(i\,u) is a pure real function when its first
a==—logl ——=|=— —arctan—=, 0<a<l1 argument is pure imaginary, which results in a pure imaginary
2i Ky +iK; 2 Ky derivativedD/dA. For the case of zero sliding velocity & 0) it

(60) can be shown that the functidgc(x— £)) given by Eqs(40) and
(42) is pure real for nonzerg, which results in a pure imaginary
dD/dp and yields a pure imaginank,. Thus for zero sliding

W(X)=(1—x)*(1+x)t°. (61) Velocity and small friction, the roots @(A) remain pure imagi-
nary and no energy dissipation or instability occurs.

Note that the stresses are bounded at the transitions between sep@he numerical investigation shows that for a small non2éro

ration and contact zones. the imaginary part obD/dw is proportional toV, i.e.,

The unknown functionp(x) is sought in the form

and the weighting function as

S Im

B(X)= >, ()P (x), (62)
n=0

D\
ﬁ) = V. (69)

The degree of stabilityy can be defined as

whereP{®~9(x) is a Jacobi polynomial of ordet. The coeffi- n=A,IV. (70)

cientsc, can be found from the system of linear equations _ ) . _
5.3 Numerical Results and Discussion. Numerical results

°C were obtained using the collocation method previously described.
D(Xi)zz €D All results and discussion are for the shear wave speed of the
n=0 upper body less than that of the lower body<(1). Consider first
% the frictionless case with zero sliding velocity. The dependence of
=> Cn( —8K 7P, (%) the frequency of vibration on the contact zone half-length for
n=0 material combinations which allow generalized Rayleigh waves is
presented in Fig. 2. The frequency corresponds to the first anti-
. aa i w CXi—&) symmetric mode if=1,m=2) and is normalized in such a man-
+ 71W(§)Pn (&) ng—cKi cot—4 ner that\ = 1 corresponds to the frequency of a shear wave with a
wavelength of 4 propagating in the upper body. In the limiting
c(x— &) case of complete contact€ ) the frequency multiplied by the
—cK{ tan 2 +Ck(C(Xi—§)))d§ wavelength is equal to the generalized Rayleigh wave velocity.
Physically this corresponds to the superposition of two general-
=0 (63) ized Rayleigh waves which travel in opposite directions and form
' a standing wave. With decreasing contact zone length the fre-
whereD,; denotes the term in figure brackets. quency decreases and in the limiting case of zero separation zone
In order to solve this system of equations, the summation capproaches the Rayleigh wave frequency of the upper body.
be truncated ah=N with a finite value ofN. A collocation Physically this corresponds to a standing Rayleigh wave in the
method can be applied to E(63). The collocation points in this upper body which contacts the lower body at its nodes and hence
bounded integrand are taken as the evenly spaced in the intefyglduces no motion of the lower body. The data presented on this
(—1,9, i.e.,, x; (i=0,1,2...N), and the integration points areand other figures are for equal Poisson’s ratios of the two bodies
defined according to the Jacobi-Gauss method (v1=v,=0.25) and for different values qi,/u, and «2.
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Fig. 2 Frequency of vibration divided by 4 & versus the con-  Fig. 4 Contact pressure for the frictionless case, polpo=1,
tact zone half-length  (generalized Rayleigh waves possible ) v,=v,=0.25, k¥*=0.667

The dependence of the frequency of vibration on the contaeigh waves exist f1/u,=1, k>=0.667; wui/u,=1.727, «?
zone length for material combinations for which generalized Ray-(0.694: andu,/u,=0.5, k’=0.667) and one case for which a
leigh waves do not exist is presented on Fig. 3. It can be seen thabration solution exists only for the contact zone
for a sufficiently large contact zone, no solution exists. With the- 5 o5 (w1/p>,=0.5,2=0.5). The degree of instability was
contact zone length below some critical value, a solution exisiund to be proportional ta.V for reasonably smalk=0.1 and
with the frequency in the range between the upper body Rayleigh- o 01 for incomplete contact. Thus the solution is unstable for
wave and shear wave speed frequencies. There are no SOIUtigRS finite nonzero sliding velocity and friction coefficient, which
for the frequency higher than unitghear wave speed in the uppefis consistent with the results of Adarf] for a simple model of a
body) since this would contradict the assumptionsdieing pure peam on elastic foundation. For small separation zowes %)
real in Eq.(19) and therefore the radiation condition would bene proportionality of Ref) to xV becomes unbounded. This is
violated. It was found from the numerical analysis that the criticglecause for complete contact the degree of instability is finite for
value of ¢ does not decrease below the valuecef1.5 for the yanishing small, [1,4]. For small contact zonec(-0) the de-
given values of the Poisson’s ratig=»,=0.25. gree of instability approaches zero, because the derivabvgA
_ Figure 4 presents the contact pressure distribution for the frigacomes unbounded, although there were numerical difficulties in
tionless case with«®*=0.667 andu,/u,=1. For the complete optaining results for this limiting case.
contact limit ¢— ) the pressure amplitude distribution is pro- Note that for the case of zero sliding velocity € 0) there are

portional to cox, which corresponds to a standing slip wave. Fogiways two pure imaginary roots of opposite sign
a small contact zone the distribution is elliptical as in a Hertz

contact, since the firgtonstant term of the serie$62) multiplied A==Fi\ (71)

by t_he weighting functior(61) dominates. . due to the fact that there are only terms within Egs.(20)—(25).
Figure 5 presents the dependence of the degree of instability; ;s investigate the behavior of the degree of instability accord-

divided by the product of the frictional coefficient and sliding 1o Eq.(68) when the sian of the root is reversed for a small
velocity, i.e., Ref)/(uV) vs. the contact zone half-length. The g a.(69 g

data presented is for three cases for which the generalized Ray-
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Fig. 5 Degree of instability divided by the friction coefficient
Fig. 3 Frequency of vibration divided by 4 a vs. the contact and sliding velocity versus the contact zone length for small
zone half-length (generalized Rayleigh waves do not exist ) friction and sliding velocity
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finite value ofV. The derivativedD/dA changes its sign since Rayleigh waves. In the case of incomplete contact, and for the
D(i\) is an even function ok. In the case of small non-zekba wavelength equal to twice the waviness period, the lowest fre-
change of sign in\ is equivalent to a change of signVhbecause quency of vibration lies in the range between the lowest Rayleigh
only terms inV2, A2, and AV appear in Eqs(20) and (25). A wave frequency of the two bodies and the generalized Rayleigh
change of sign itv, in turn, is equivalent to a change of signf wave frequency. For the case of a vanishing small contact zone,
(sliding in an opposite directionTherefore, the derivativeD/du  the vibration mode can be interpreted as a standing Rayleigh wave
changes its sign when the opposite sign rdet —i\ is consid- in one of the bodies. For the general case of incomplete contact,
ered, for the same small sliding velocity and smallAs a result Vibration has been found for a wider range of material parameters
of this, the degree of instability R&] keeps its sign according to than that for which generalized Rayleigh waves exist.
(68) when the opposite sign root is considered. Thus, both rootsFor the case of nonzero friction, complex vibration modes and
can only be simultaneously either stable or unstable for small eigenvalues were found. There are eigenvalues with a positive real
andV. part, which means that the vibrations have an amplitude which
In the general case the functi@f(x) obtained from Eq(62) is grows exponentially with time and thus steady sliding is unstable.
complex. The normal stress can be found from (28)d(32) as In the case of incomplete contact the degree of instability, for
) small friction and velocity, is proportional to both the friction
oyy =2mmRe $(x/c)exp(Al)] coefficient and the sliding velocity. The degree of instability may
_ be high enough to contribute to the formation of friction-induced
=2mmRe{$(x/c)jcosIm(A)D) vibrations for low damping and moderate or high sliding veloci-
—Im{p(x/c)}sin(Im(A)t)]exp Re(A)t). (72) ties(of the order of 0.001 of the shear wave speed or higher

) the limiting case of complete contact the results reduce to the
The shear stress (23and displacementd 6)—(17) can be found g : ;
in a similar manner. Such modes of vibration represented b destabilizing generalized Rayleigh wave analyzed by Adptiis

| lede | d d | Yafid subsequently by Ranjith and Rip#]. This result demon-
complex¢(x) are calledcomplex modesas opposed to real nor- strates that the effect of the dynamic sliding instability of Cou-

mal modes(pure real¢(x) for the case of zero friction or veloc- |,y friction exists not only in the case of complete contact, but
ity). In a complex mode the displacements at all points do n(g;

b imult . but th i b i 0 in the more realistic case when the true contact area is much
ecome Zef;? S'mlfj anleous y, but the mo '?” Ican € TePreésenteqaas than the nominal contact area. Finally, note that this analysis
a sgperpo&blontr? reﬁt arfl |m?g|naryop|>ar s.f ?ha sense ? COMPHhsiders the cases for which the wavelength of vibration is equal
vr\r/]r?ic(; gzncoﬁstr a?iﬁgd : (;)h :\fe ;Vﬁxgjoreﬁﬁ) gf amepl?&rg:s ;en%‘ii"gééone or two times the waviness period. For wavelengths much
. - ater than the waviness period, it might be anticipated that the

90° out of phase with each other. Frdi@®) it is noted that a real P g P

s " . ffect of surface roughness would be less significant than was
mode would exist if either the real part or the imaginary part Gbund here and thus the results [df] and [4] would be more
¢(x/c) were to vanish. Similarly if the real part ap(x/c) is directly applicable
A cosfdc) and the imaginary part ap(x/c) is A sin(x/c), in which '

A is an arbitrary constant, thef72) would become a traveling
wave. Thus a normal mode of vibration and a traveling wave cé&eferences
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