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Vibration and Stability of
Frictional Sliding of Two Elastic
Bodies With a Wavy Contact
Interface
The stability of steady sliding, with Amontons-Coulomb friction, of two elastic bodies
a rough contact interface is analyzed. The bodies are modeled as elastic half-space
of which has a periodic wavy surface. The steady-state solution yields a periodic s
contact and separation zones, but the stability analysis requires consideration of dyn
effects. By considering a spatial Fourier decomposition of the vibration modes, the
namic problem is reduced to a singular integral equation for determining the eigenve
(modes) and eigenvalues (frequencies). A pure imaginary root for an eigenvalue c
sponds to a standing wave confined to the interface, while a positive/negative real p
the eigenvalue indicates instability/dissipation. A complex eigenvector indicates a
plex mode of vibration. Two types of modes are considered—periodic symmetric m
with period equal to the surface waviness period and periodic antisymmetric modes
the period equal to twice the surface waviness. The singular integral equation is solv
reducing it to a system of linear algebraic equations using a Jacobi polynomial series
a collocation method. For the limit of zero friction it can be demonstrated analytic
that the problem is self-adjoint and the eigenvalues, if they exist, are pure imaginar
energy dissipation). These roots are found for a wide range of material properties
ratios of separation to contact zones lengths. For the limiting case of complete con
the solution found corresponds to a superposition of two slip waves (generalized Ra
waves) traveling in opposite directions and forming a standing wave. With increa
separation zone length, the vibration frequency decreases from the slip wave freque
the smaller surface wave frequency of the two bodies. With a nonzero separation
solutions can exist for material combinations which do not allow slip waves. For non
friction and sliding velocities, unstable solutions are found. The degree of instabili
proportional to the product of the friction coefficient and the sliding velocity. Th
instabilities may contribute to the formation of friction-induced vibrations at high slid
speeds.@DOI: 10.1115/1.1653684#
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1 Introduction

The vibration and stability of dry frictional sliding of two elas
tic bodies with a wavy contact interface is the subject of t
investigation. It is well known that vibrations, which are usua
undesirable in technical applications, can occur during frictio
sliding. These friction-induced vibrations are a result of the ins
bility of steady-state sliding, which is usually attributed to eith
the difference between the static and kinetic friction coefficien
to a decrease of the kinetic friction coefficient with increasi
velocity, or to a spatial variation of the friction coefficient alon
the interface.

In the past years the influence of elastodynamic phenomen
friction has been intensely investigated. Adams@1# showed that
the sliding of two flat elastic half-spaces with a constant coe
cient of friction has dynamically unstable solutions for a wi
range of material parameter combinations, coefficients of fricti
and sliding velocity~including very small speeds!. These self-
excited vibrations are in the form of interface waves, which

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dece
ber 2, 2001; final revision, September 19, 2003. Associate Editor: N. Triantafyll
Discussion on the paper should be addressed to the Editor, Prof. Robert M. McM
ing, Journal of Applied Mechanics, Department of Mechanical and Environme
Engineering University of California–Santa Barbara, Santa Barbara, CA 93
5070, and will be accepted until four months after final publication of the paper it
in the ASME JOURNAL OF APPLIED MECHANICS.
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confined to the interface region and have amplitudes which
crease exponentially with distance from the interface, while
creasing exponentially with time. These waves can contribute
the formation of friction-induced vibrations. The rate of amplitu
increase is proportional to the wave number, which causes in
tesimal wavelengths to increase at an unlimited rate. Thus
propagation of an arbitrary pulse is ill-posed as was found
Renardy@2# for sliding of an elastic solid against a rigid substra
with a sufficiently high friction coefficient. Simo˜es and Martins
@3# investigated the effect of introducing an intrinsic length sc
into the problem and found a method of regularization of t
ill-posedness by using a nonlocal friction law.

Ranjith and Rice@4# analyzed frictional sliding of two elastic
half-spaces in the small velocity limit. If a generalized Raylei
wave exists at the interface of the two bodies for frictionless c
tact, steady sliding with arbitrary small friction becomes unstab
Generalized Rayleigh waves, also known as slip waves or sm
contact Stoneley waves, exist when the material mismatch is
very high and they become equivalent to Rayleigh surface wa
in the limiting case of identical materials~Achenbach and Epstein
@5#!. Ranjith and Rice@4# showed that if a memory-depende
rate-and-state friction law is considered instead of the insta
neous Coulomb’s law, the pulse-propagation problem beco
well-posed, although the solution is still unstable.

The effect of surface roughness on the sliding of two elas
bodies was considered by Adams@6#. He analyzed a simple mode
consisting of a beam on elastic foundation acted upon by a se

-
is.
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of moving elastic springs, which represented the asperities.
solution was found to be dynamically unstable for any finite sp
with the degree of instability increasing with increasing speed

It is well known that during dry frictional contact, the tru
contact area is significantly less than the apparent contact
because a nominally flat surface is rough and has asperities.
contact takes place only on the peaks of the asperities. M
models have been developed starting in the early 1960s, w
consider different laws of asperity distributions, either statisti
or fractal, and provide theoretical results which justify the line
Coulomb friction law~for a review see Adams and Nosonovs
@7#!. These statistical models are usually uncoupled in the se
that the contribution of each individual asperity is calculated se
rately, with no asperity interaction through the bulk of the bo
On the other hand, coupled models deal with elastic deforma
of the body as a whole, but due to the complexity of the proble
only simple contact profiles have been considered. One of
simplest models of this type is a two-dimensional problem wit
sinusoidal periodic profile; the peaks of the sinusoid repres
asperities.

The static frictionless two-dimensional contact problem with
harmonic contact profile is well known in the literature. It w
considered for the first time by Westergaard@8# who used the
complex stress function method. Independently the same prob
was solved by other researchers who used different mathema
techniques, including the Green’s function and a singular inte
equation formulation~Shtaerman@9#!, the stress function ap
proach and Fourier series analysis~Dundurs, Tsai, and Keer@10#!,
and the complex potential method of Muskhelishvili~Kuznetsov
@11#!. The frictional quasistatic sliding problem with one rig
body was studied by Kuznetsov@12#. Nosonovsky and Adams
@13# analyzed the frictional problem for the general case of t
elastic materials and any subsonic sliding velocity. They obtai
the dependencies of the contact area on the remotely applied
sure for different friction coefficients and sliding velocities. Th
authors also indicated that their work formed the foundation fo
future stability analysis.

The present paper analyzes the stability of the steady slid
solution obtained by Nosonovsky and Adams@13#. For the limit-
ing case of complete contact with friction the problem reduces
the one investigated by Adams@1#, for which the instability is in
the form of traveling interface waves, growing in amplitude w
time. For incomplete contact a solution in the form of compl
modes of vibration is sought. In the frictionless quasistatic lim
this solution, if it exists, describes normal modes of vibrati
which are localized near the interface. With increasing slid
velocity and friction coefficient, these vibration modes beco
complex and the solution can become unstable. The algebraic
culations are quite complicated and so a symbolic interpreter
guage~Mathematica,@14#! has been used extensively througho
this investigation.

These results have relevance in furthering our understandin
sliding friction as well as in the design and analysis of lip sea
such as the synthetic rubber seals used extensively in automo
and other devices. Some models of lip seals include sinuso
micro-undulations and micro-asperities~Salant and Flaherty@15#!.
A typical value of Young’s modulus is 10 MPa,@15#, which gives
a Rayleigh wave speed of about 100 m/s. Hence the sliding
locity need not be extremely high in order to be a significa
fraction of the Rayleigh wave speed.

2 Formulation of the Problem
Consider the plane-strain sliding frictional contact of two sem

infinite elastic bodies, one of which is flat and the other of wh
has a slightly wavy surface. The bodies are pressed together
uniform normal tractionp̂ and slide under a uniform tangentia
traction m p̂ applied at infinity~Fig. 1!. The contact regions are
determined from the solution of the steady-state problem,@13#,
whereas small vibrations near the steady-state solution will
Journal of Applied Mechanics
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considered here. The coefficient of kinetic friction between t
two bodies ism. The lower surface is assumed to have a pure
sinusoidal boundary atŷ50 with a period of 2l̂ and peak-to-
valley amplitudeĝ, i.e.,

ŷ~ x̂!5
ĝ

2
S 12cos

p~ x̂1Ê!

l̂
D , (1)

wherex̂ and ŷ are the coordinates attached to the lower body a
Ê will be defined later. The upper body is moving to the right wi
constant velocityV̂. Now the dimensionless coordinates an
parameters

x5
p x̂

l̂
, y5

p ŷ

l̂
, g5

pĝ

l̂
, E5

pÊ

l̂
,

V5V̂Ar1

m1
, t5

p t̂

l̂
Am1

r1
(2)

are defined, wherer1 andr2 are the densities of the two bodies
andm1 andm2 are their elastic shear moduli.

The Navier equations for the dimensionless displaceme
u(x,y,t), v(x,y,t) in the x and y-directions, respectively, are
given by

~b1
22V2!u,xx

~1!1u,yy
~1!1~b1

221!v ,xy
~1!5

]2u~1!

]t2 22V
]2u~1!

]x]t

b1
2v ,yy

~1!1~12V2!v ,xx
~1!1~b1

221!u,xy
~1!5

]2v ~1!

]t2 22V
]2v ~1!

]x]t

b2
2u,xx

~2!1u,yy
~2!1~b2

221!v ,xy
~2!5k2

]2u~2!

]t2

b2
2v ,yy

~2!1v ,xx
~2!1~b2

221!u,xy
~2!5k2

]2v ~2!

]t2 (3)

where the shear wave speed ratio isk and the ratios of longitudi-
nal (CL) and shear (CS) wave speeds are related to the Poisso
ratios of the two materialsn1 andn2 according to

bk5S CL

CS
D

k

5A2~12nk!

122nk
, k25S CS

~1!

CS
~2!D 2

5
m1r2

m2r1
, (4)

Fig. 1 Sliding of a flat elastic half-space upon a wavy elastic
half-space
MARCH 2004, Vol. 71 Õ 155
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in which k51 for the upper body andk52 for the lower body.
Also note that indices(1) and (2) are related to the upper and th
lower bodies, respectively.

The deformed state of the bodies is considered as the supe
sition of uniform stresses~caused by the dimensionless appli
pressurep5 p̂/m1 and dimensionless tangential tractionmp) and
the dimensionless residual stresses (sxx ,sxy ,syy). The dimen-
sionless residual stresses are related to the dimensional res
stresses according to

s i j
~k!5

ŝ i j
~k!

mk
(5)

and vanish at infinity. The dimensionless stresses are related t
dimensionless deformations by

syy
~k!5~bk

222!u,x
~k!1bk

2v ,y
~k!

sxy
~k!5u,y

~k!1v ,x
~k! . (6)

The boundary conditions at infinity (uyu5`) state that stresse
should be equal to the applied tractions. On the contact sur
(y50) there are two kinds of boundary conditions—nonmix
and mixed boundary conditions. The nonmixed conditions
valid on the entire surface:

sxy
~1!5msyy

~1! , 2`,x,`, (7)

sxy
~2!5msyy

~2! , 2`,x,`, (8)

m1syy
~1!5m2syy

~2! , 2`,x,`. (9)

The shear moduli appear in~9! due to the manner in which th
stresses were nondimensionalized~5!. The mixed boundary con
ditions are satisfied only in the separation zone:

syy
~1!5p, c,uxu,p (10)

and in the contact zone:

]v ~1!

]x
2

]v ~2!

]x
5

g

2
sin~x1E!, 2c,x,c. (11)

Herex is equal to zero at the center of the contact zone. Thus
parameterE is the coordinate distance representing the peak of
surface waviness relative to the center of the contact zone.

Suppose that the steady state solution is given byu0
(1)(x,y),

v0
(1)(x,y), u0

(2)(x,y), v0
(2)(x,y) with the length of the contact zon

2c and the eccentricityE. In order to analyze the stability of th
steady-state solution, small vibrations near the steady-state
tion are considered. The complete solutionū(k), v̄ (k) of ~3! is a
superposition of the steady-state solution and the small vibrati
i.e.,

ū~k!~x,y,t !5u0
~k!~x,y!1u~k!~x,y,t !,

v̄ ~k!~x,y,t !5v0
~k!~x,y!1v ~k!~x,y,t !.

In order to satisfy the Coulomb friction inequalities, it is requir
that the sliding velocityV always be greater than the loc
x-component of the small vibration relative velocity at the inte
face, i.e.,

]u~2!~x,0,t !

]t
2

]u~1!~x,0,t !

]t
,V. (12)

For small vibrations the nonmixed boundary conditions~7!–~9!
remain in the same form, whereas the mixed boundary condit
~10!, ~11! are reduced to

syy
~1!50, c,uxu,p (13)

]v ~1!

]x
2

]v ~2!

]x
50, uxu,c. (14)
156 Õ Vol. 71, MARCH 2004
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3 Formulation in Integral Equation Form
Any initial small perturbation can be represented as a supe

sition of the modesuk(x,y), vk(x,y) which correspond to the
eigenvaluesLk , i.e.,

u~x,y,t !5Re(
k51

`

Ckuk~x,y!eLkt

v~x,y,t !5Re(
k51

`

Dkvk~x,y!eLkt. (15)

A stable solution must have the real parts of allLk negative or
zero.

The modes are sought in the form

u~1!~x,y!5 (
n52`

`

An~es1y1d3es2y!einx/m

v ~1!~x,y!5 (
n52`

`

An~d1es1y1d2d3es2y!einx/m (16)

for the upper body and

u~2!~x,y!5 (
n52`

`

Bn~es18y1d38e
s28y!einx/m

v ~2!~x,y!5 (
n52`

`

Bn~d18e
s18y1d28d38e

s28y!einx/m (17)

for the lower body, wherem51 for a mode with a period of 2p
and m52 for an antisymmetric modev(x12p,y)52v(x,y)
with a period of 4p. The terms which represent the translation
the system as a rigid body can be set to zero (A050 and B0
50) without loss of generality. Note that the subscriptk has been
omitted for conciseness.

In order to satisfy the Navier Eqs.~3!, s1 ands2 in ~16!, ~17!
must be roots of the characteristic equation

b1
2s41@Q1b1

21Q21~n/m!2~b1
221!2#s21Q1Q250. (18)

The solution of~18! is

s156A2Q2, s256A2Q1 /b1
2, (19)

where

Q152~n/m!iVL2L22~n/m!2~b1
22V2!,

Q252~n/m!iVL2L22~n/m!2~12V2!. (20)

Since the solution must be bounded at infinity, among the f
roots ~19! only the two roots with positive real parts are consi
ered for the upper body. The Navier equations further require

d15 i
s1

21Q1

~n/m!~b1
221!s1

52 i
n

ms1

, (21)

d25 i
s2

21Q1

~n/m!~b1
221!s2

52 i
ms2

n
, (22)

while An and d3 are unknown coefficients which will be dete
mined from the boundary conditions.

The displacement field~16! produces stresses on the conta
surface given by

syy
~1!5 (

n52`

`

An@~11d3!i ~n/m!~b1
222!

1b1
2~s2d11s2d3d2!#einx/m, 2`,x,`,
Transactions of the ASME
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~1!5 (

n52`

`

An@~s11d1i ~n/m!!

1~d3s21d3d2i ~n/m!!#einx/m, 2`,x,`. (23)

Coulomb’s friction law~7! on the surface requires

d352
m i ~n/m!~b1

222!1mb1
2s1d12~s11d1i ~n/m!!

m i ~n/m!~b1
222!1mb1

2s2d22~s21d2i ~n/m!!
.

(24)

Similar relations can also be written for the lower body; t
corresponding variables are marked with a prime (8), i.e.,

Q1852L2/k22~n/m!2b2
2, Q2852L2/k22~n/m!2. (25)

d185 i
s18

21Q18

~n/m!~b2
221!s18

(26)

d285 i
s28

21Q18

~n/m!~b2
221!s28

. (27)

d3852
m i ~n/m!~b2

222!1mb2
2s18d182~s181d18i ~n/m!!

m i ~n/m!~b2
222!1mb2

2s28d282~s281d28i ~n/m!!
.

(28)

The real part ofs18 ands28 must be negative for the solution to b
bounded at infinity.

The condition of continuity~9! of syy on the surface gives

Bn5d4An ,

d45S m1

m2
D ~11d3!~b1

222!i ~n/m!1b1
2~s1d11s2d3d2!

~11d38!~b2
222!i ~n/m!1b2

2~s18d181s28d38d28!
.

(29)

Summarizing, the nonmixed boundary conditions have been u
in order to determine all the unknown coefficients except forAn .

The two mixed boundary conditions~13! and ~14! now yield

(
n52`

`

@d11d2d32d4~d181d28d38!# i ~n/m!Aneinx/m50, uxu,c

(30)

(
n52`

`

@~11d3!~b1
222!i ~n/m!1b1

2~s1d11s2d2d3!#Aneinx/m

50, c,uxu,p. (31)

Note that forn51 the vanishing of the term in brackets of E
~30! constitutes the slip wave equation for a wavelength of 2mp,
while the vanishing of the term in brackets of Eq.~31! constitutes
the Rayleigh wave equation for the upper body. The parameted4
is undefined at the Rayleigh wave speed of the upper body. N
in order to satisfy~30! and ~31!, the unknown functionF~j! is
introduced such that

@~11d3!~b1
222!i ~n/m!1b1

2~s1d11s2d2d3!#An

5E
C
F~j!e2 injdj. (32)

The integration is performed in the contact zoneC (2c,j,c,
for m51), (2c,j,c, 2c,j12p,c for m52). Then with
the use of the identities for generalized functions~Gel’fand and
Shilov @16#!

(
n51

`

cos~nx!52
1

2
1pd~x!, uxu,p, (33)
Journal of Applied Mechanics
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(
n51

`

sin~nx!5
1

2
cot

x

2
(34)

Eq. ~31! becomes

E
C
F~j! (

n52`

`

ein~x2j!/mdj5E
C
F~j!2mpd~x2j!dj

50, x¹C, (35)

which is satisfied automatically in the separation zone. Furth
more~30! yields a homogeneous integral equation forF~j! given
by

E
C
F~j! (

n52`

`

Knein~x2j!/mdj50, xPC, (36)

where

Kn5
d11d2d32d4~d181d28d38!

~11d3!~b1
222!1b1

2~s1d11s2d2d3!
m

in

. (37)

Integral Eq.~36! is singular because the summation in its kern
diverges asx→j. In order to solve Eq.~36!, Kn is decomposed
into two terms:

Kn5K`1kn
rem , n.0,

Kn5K2`1kn
rem , n,0,

K05k0
rem50, (38)

where

K`5Kr
`1 iK i

`5 lim
n→`

Kn ,

K2`5Kr
`2 iK i

`5 lim
n→2`

Kn ,

in which Kr
` andKi

` are the real and imaginary parts ofK`, and
krem is the remaining part.

Equation~36! now can be written form51 as

2pF~x!Kr
`1E

2c

c

F~j!H 2Kr
`2Ki

` cot
x2j

2
1k~x2j!J dj

50, uxu,c, (39)

where

k~x2j!5 (
n52`

`

kn
remein~x2j!, m51. (40)

For m52 Eq. ~36! yields

4pF~x!Kr
`1E

2c

c

F~j!H 2Ki
` cot

x2j

4
2Ki

` tan
x2j

4

1k~x2j!J dj50, uxu,c, (41)

where
MARCH 2004, Vol. 71 Õ 157
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k~x2j!5 (
n52`

`

kn
remein~x2j!/2~12~21!n!, m52 (42)

In the derivation of~39!–~42! the properties ofF(x), namely, the
antisymmetryF(x12p)52F(x) for m52, and the periodicity
F(x12p)5F(x) for m51 have been utilized, as well as doub
angle formulas for the trigonometric functions. Note that the na
ral frequencies of vibration for complete contact are given by
roots of

Kn50, m51,2, n51,2,3..., (43)

wherem51 corresponds to the symmetric modes andm52 cor-
responds to the antisymmetric modes.

Making the change of variables

x→cx, j→cj, F~cx!5f~x! (44)

yields for m51

2p

c
f~x!Kr

`1E
21

1

f~j!H 2Kr
`2Ki

` cot
c~x2j!

2

1k~c~x2j!!J dj50, uxu,1 (45)

while for m52

4p

c
f~x!Kr

`1E
21

1

f~j!H 2Ki
` cot

c~x2j!

4
2Ki

` tan
c~x2j!

4

1k~c~x2j!!J dj50, uxu,1. (46)

Note that Eqs.~45!, ~46! govern thestability of the steady-state
solution which, in turn, was obtained from the equation

2p

c
f~x!Kr

`1E
21

1

f~j!H 2Ki
` cot

c~x2j!

2 J dj5 f ~x!, uxu,1,

(47)

where f (x) describes the slope of the interface profile, which
sinusoidal for this problem,@13#. The stability analysis is indepen
dent of the particular form of the profilef (x) and uses only the
length of the contact zonec obtained from the steady-state sol
tion of ~47!.

The Eq. ~47!, which was solved by Kuznetsov@12# for the
particular case of one rigid and one elastic body and low slid
velocities, governs several important problems of contact elas
ity, such as propagating intersonic stick-slip regions~Adams@17#!
and ultrasonic motors~Zhari @18#!. The algorithm of stability
analysis which is considered in this work can be applied to
stability analysis of steady-state problems governed by Eq.~47!,
whereas the particular form of the functionk(c(x2j)) is different
for each problem.

4 Special Solutions for Limiting and Resonance Case

4.1 Frictionless Case. Simplifications can be made for
number of special cases. Let us first consider the frictionless s
case (m50, V50). It is possible to show that the roots are pu
imaginary~no energy is dissipated,L5 il wherel is real! for this
case and that the eigenvalue problem is self-adjoint.

For pure imaginary roots Eqs.~19!–~29! simplify to

Q15l22~n/m!2b1
2, Q25l22~n/m!2, (48)

s1852A~n/m!22l2/k2, s2852A~n/m!22l2/~k2b1
2!

s15A~n/m!22l2, s25A~n/m!22l2/b1
2, (49)

where

L56 il. (50)
158 Õ Vol. 71, MARCH 2004
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Equations~24! and ~28! yield

d35
s1

21~n/m!2

2s1s2
, (51)

d385
s18

21~n/m!2

2s18s28
, (52)

For the limit of n→`

K`5Ki
` , Kr50, (53)

and

k~x2j!52i(
n51

`

~Kn2Ki
`!sin@n~x2j!#. (54)

Note thatQ1 , Q2 , Q18 , Q28 , s1 , s2 , s18 , s28 , d3 , d38 , d5 are pure
real, whiled1 , d18 , d2 , d28 are pure imaginary. All the quantitie
remain the same when the sign ofl is reversed.

4.2 Small Separation Zone. For the case of a vanishingly
small separation zone (c→p) Eq. ~31! must be satisfied only at a
single separation pointuxu5p whereas Eq.~30! has a solution in
the form of

A61Þ0,

A6n50, n.1. (55)

This is the solution for slip waves~generalized Rayleigh waves!
with two waves of the same amplitude traveling in opposite dir
tions and forming a standing slip wave. To satisfy~31! at uxu
5p the phase of the standing slip wave must be chosen that g
zero normal stress at the separation points.

4.3 Small Contact Zone. For a small contact zone (c→0)
Eq. ~30! must be satisfied only for the contact pointsx52pn. A
resonance type of solution~55! in the form of standing Rayleigh
waves in each body, which are independent of each other, e
and satisfies~31! only if the Rayleigh wave speeds of the tw
bodiesCR

(1) andCR
(2) are related in the following manner:

pCR
~1!5qCR

~2! , p,q51,2,3, . . . . (56)

In this case standing Rayleigh waves with wavelengths of 2p/p
and 2p/q can exist in the two bodies and their nodes will coinci
with each other and with the contact points.

In the general case when the Rayleigh wave speed ratio d
not permit such a resonance, a standing Rayleigh wave can
in only one body with node points at the points of contact. It m
be stressed that although mathematically it is possible to cons
any small value ofc, physically the displacements caused by t
small vibrations must by much smaller than those of the stea
state solution and should not cause any sufficient change of
contact zone lengthc. In the limiting case ofc→0 this condition
cannot be satisfied.

4.4 Equal Rayleigh Wave Speeds. In the case of equa
Rayleigh wave speeds for the two materials in contact, the bra
eted term on the left-hand side of~32! vanishes and thus the trivia
solution of Eqs.~39! and ~41! given by

F~x!50 (57)

does not correspond to eachAn vanishing. Note that in this cas
Eqs.~30! and~31! have a solution simultaneously as the slip wa
speed and Rayleigh wave speeds coincide. Therefore a solutio
Transactions of the ASME
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the form ~55! exists. This solution implies that the contact pre
sure is equal to zero, while the normal displacements are con
ous but not zero. It corresponds to the case of two Rayleigh wa
~traveling or standing! of the same amplitude, wavelength, an
phase, which exist simultaneously in the two bodies without
teraction. This solution exists for any value of the friction coef
cient. It exists also for the case of high sliding velocity if th
Rayleigh wave speeds are related to the sliding velocity by

CR
~1!2CR

~2!5V. (58)

5 Numerical Analysis of the Integral Equation

5.1 Reduction to a System of Linear Algebraic Equation.
The lowest frequency of vibration, which corresponds tom52,
n51 in Eq. ~43!, is the most important and so we concentrate
a numerical investigation of this case. Applying the method
veloped by Erdogan and Gupta@19#, we write Eq.~46! in the form

4pf~x!Kr
`24Ki

`E
21

1 f~j!dj

x2j
1E

21

1

f~j!H Ki
`

4f~j!

x2j

2cKi
` cot

c~x2j!

4
2cKi

` tan
c~x2j!

4
1ck~c~x2j!!J dj

50, uxu,1. (59)

The singular term is in the first integral whereas the second i
grand is bounded. Following Erdogan and Gupta@19# we define
the degree of singularity at the leading edge as

a5
1

2p i
logS Kr

`2 iK i
`

Kr
`1 iK i

`D 52
1

2p
arctan

Ki
`

Kr
` , 0,a,1

(60)

and the weighting function as

w~x!5~12x!a~11x!12a. (61)

Note that the stresses are bounded at the transitions between
ration and contact zones.

The unknown functionf(x) is sought in the form

f~x!5(
n50

`

cnw~x!Pn
~a,12a!~x!, (62)

wherePn
(a,12a)(x) is a Jacobi polynomial of ordern. The coeffi-

cientscn can be found from the system of linear equations

D~xi !5(
n50

`

cnDni

5(
n50

`

cnH 28Ki
`pPn11

2a,2a~xi !

1E
21

1

w~j!Pn
a,a~j!S 4Ki

`

x2j
2cKi

` cot
c~xi2j!

4

2cKi
` tan

c~xi2j!

4
1ck~c~xi2j!! D djJ

50, (63)

whereDni denotes the term in figure brackets.
In order to solve this system of equations, the summation

be truncated atn5N with a finite value ofN. A collocation
method can be applied to Eq.~63!. The collocation points in this
bounded integrand are taken as the evenly spaced in the int
~21,1!, i.e., xi ( i 50,1,2, . . .N), and the integration points ar
defined according to the Jacobi-Gauss method
Journal of Applied Mechanics
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j j5cos
p~2 j 11!

2~N11!
, j 50,1, . . .N. (64)

In order for nontrivial solutions of~63! to exist, the determinant o
the N11 by N11 matrix

D~L,m!5uDp21 ,q21u50 (65)

must vanish.

5.2 Small Friction and Sliding Velocity. Let us now con-
sider the case of small frictionm→0; the roots are expected to b
close to those of the frictionless case. It was found in the anal
of the complete contact case,@4#, that the real part of the roo
depends linearly onm for small m, so let us also assume such
linear dependence. For a small friction coefficient the rootL is
localized near the root for the frictionless case which lies on
imaginary axis, i.e.,

L56 il1mL1 (66)

where il is pure imaginary. The determinant~65!, which is a
function of bothm andL, can be represented as

D~L,m!5
]D

]m
m1

]D

]L
mL150, (67)

which yields

L15
]D/]m

]D/]L
. (68)

The determinantD( il,m) is a pure real function when its firs
argument is pure imaginary, which results in a pure imagin
derivative]D/]L. For the case of zero sliding velocity (V50) it
can be shown that the functionk(c(x2j)) given by Eqs.~40! and
~42! is pure real for nonzerom, which results in a pure imaginary
]D/]m and yields a pure imaginaryL1 . Thus for zero sliding
velocity and small friction, the roots ofD(L) remain pure imagi-
nary and no energy dissipation or instability occurs.

The numerical investigation shows that for a small nonzeroV
the imaginary part of]D/]m is proportional toV, i.e.,

ImS ]D

]m D5gV. (69)

The degree of stabilityh can be defined as

h5L1 /V. (70)

5.3 Numerical Results and Discussion. Numerical results
were obtained using the collocation method previously describ
All results and discussion are for the shear wave speed of
upper body less than that of the lower body (k,1). Consider first
the frictionless case with zero sliding velocity. The dependence
the frequency of vibration on the contact zone half-length
material combinations which allow generalized Rayleigh wave
presented in Fig. 2. The frequency corresponds to the first a
symmetric mode (n51,m52) and is normalized in such a man
ner thatl51 corresponds to the frequency of a shear wave wit
wavelength of 4p propagating in the upper body. In the limitin
case of complete contact (c5p) the frequency multiplied by the
wavelength is equal to the generalized Rayleigh wave veloc
Physically this corresponds to the superposition of two gene
ized Rayleigh waves which travel in opposite directions and fo
a standing wave. With decreasing contact zone length the
quency decreases and in the limiting case of zero separation
approaches the Rayleigh wave frequency of the upper b
Physically this corresponds to a standing Rayleigh wave in
upper body which contacts the lower body at its nodes and he
produces no motion of the lower body. The data presented on
and other figures are for equal Poisson’s ratios of the two bo
(n15n250.25) and for different values ofm1 /m2 andk2.
MARCH 2004, Vol. 71 Õ 159
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The dependence of the frequency of vibration on the con
zone length for material combinations for which generalized R
leigh waves do not exist is presented on Fig. 3. It can be seen
for a sufficiently large contact zone, no solution exists. With t
contact zone length below some critical value, a solution ex
with the frequency in the range between the upper body Rayle
wave and shear wave speed frequencies. There are no solu
for the frequency higher than unity~shear wave speed in the uppe
body! since this would contradict the assumption ofs being pure
real in Eq. ~19! and therefore the radiation condition would b
violated. It was found from the numerical analysis that the critic
value of c does not decrease below the value ofc51.5 for the
given values of the Poisson’s ration15n250.25.

Figure 4 presents the contact pressure distribution for the f
tionless case withk250.667 andm1 /m251. For the complete
contact limit (c→p) the pressure amplitude distribution is pro
portional to cosx, which corresponds to a standing slip wave. F
a small contact zone the distribution is elliptical as in a He
contact, since the first~constant! term of the series~62! multiplied
by the weighting function~61! dominates.

Figure 5 presents the dependence of the degree of instab
divided by the product of the frictional coefficient and slidin
velocity, i.e., Re(L)/(mV) vs. the contact zone half-length. Th
data presented is for three cases for which the generalized R

Fig. 2 Frequency of vibration divided by 4 p versus the con-
tact zone half-length „generalized Rayleigh waves possible …

Fig. 3 Frequency of vibration divided by 4 p vs. the contact
zone half-length „generalized Rayleigh waves do not exist …
160 Õ Vol. 71, MARCH 2004
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leigh waves exist (m1 /m251, k250.667; m1 /m251.727, k2

50.694; andm1 /m250.5, k250.667) and one case for which
vibration solution exists only for the contact zonec
,2.25 (m1 /m250.5,k250.5). The degree of instability was
found to be proportional tomV for reasonably smallm50.1 and
V50.01 for incomplete contact. Thus the solution is unstable
any finite nonzero sliding velocity and friction coefficient, whic
is consistent with the results of Adams@6# for a simple model of a
beam on elastic foundation. For small separation zones (c→p)
the proportionality of Re(L) to mV becomes unbounded. This i
because for complete contact the degree of instability is finite
vanishing smallV, @1,4#. For small contact zone (c→0) the de-
gree of instability approaches zero, because the derivative]D/]L
becomes unbounded, although there were numerical difficultie
obtaining results for this limiting case.

Note that for the case of zero sliding velocity (V50) there are
always two pure imaginary roots of opposite sign

L56 il (71)

due to the fact that there are only terms withL2 in Eqs.~20!–~25!.
Let us investigate the behavior of the degree of instability acco
ing to Eq. ~68! when the sign of the root is reversed for a sma

Fig. 4 Contact pressure for the frictionless case, m1 Õm2Ä1,
n1Än2Ä0.25, k2Ä0.667

Fig. 5 Degree of instability divided by the friction coefficient
and sliding velocity versus the contact zone length for small
friction and sliding velocity
Transactions of the ASME
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finite value ofV. The derivative]D/]L changes its sign since
D( il) is an even function ofl. In the case of small non-zeroV a
change of sign inL is equivalent to a change of sign inV because
only terms inV2, L2, and LV appear in Eqs.~20! and ~25!. A
change of sign inV, in turn, is equivalent to a change of sign ofm
~sliding in an opposite direction!. Therefore, the derivative]D/]m
changes its sign when the opposite sign rootL52 il is consid-
ered, for the same small sliding velocity and smallm. As a result
of this, the degree of instability Re(L) keeps its sign according to
~68! when the opposite sign root is considered. Thus, both ro
can only be simultaneously either stable or unstable for smam
andV.

In the general case the functionf(x) obtained from Eq.~62! is
complex. The normal stress can be found from (23)1 and ~32! as

syy
~1!52pm Re@f~x/c!exp~Lt !#

52pm@Re$f~x/c!%cos~ Im~L!t !

2Im$f~x/c!%sin~ Im~L!t !#exp~Re~L!t !. (72)

The shear stress (23)2 and displacements~16!–~17! can be found
in a similar manner. Such modes of vibration represented b
complexf(x) are calledcomplex modes, as opposed to real nor
mal modes~pure realf(x) for the case of zero friction or veloc
ity!. In a complex mode the displacements at all points do
become zero simultaneously, but the motion can be represent
a superposition of real and imaginary parts. In a sense a com
mode can be thought of as two modes of the same freque
which are constrained to have a fixed ratio of amplitudes and to
90° out of phase with each other. From~72! it is noted that a real
mode would exist if either the real part or the imaginary part
f(x/c) were to vanish. Similarly if the real part off(x/c) is
A cos(x/c) and the imaginary part off(x/c) is A sin(x/c), in which
A is an arbitrary constant, then~72! would become a traveling
wave. Thus a normal mode of vibration and a traveling wave
be considered to be special cases of a complex mode of vibra
A qualitatively similar result was obtained by Adams@6#.

It can be seen from Fig. 5 that for a sliding velocity equal
only one-thousandth of the shear wave speed (V50.001) and for
a friction coefficient ofm50.1, the value of the positive real pa
of L is of the order of 0.001. This indicates that for sliding v
locities and friction which are in the range of engineering app
cations, the mechanism of destabilization identified here m
yield a degree of instability sufficient to overcome structu
damping and lead to friction-induced vibrations.

6 Conclusions
The steady sliding of two elastic half-spaces with Coulom

friction has been investigated. Roughness of the surfaces
modeled by a periodic wavy surface on one of the bodies.
contact occurs at periodically spaced contact regions on the p
of the wavy asperities. The length of the contact regions is kno
from the solution of the steady-state problem and the stability
sliding was then analyzed. The overall solution was sought in
form of a superposition of the steady-state solution and sm
vibrations. Using a Fourier series representation for the vibra
modes, the dynamic problem was reduced to a singular inte
equation for determining the eigenvectors~modes! and eigenval-
ues~frequencies!. The singular integral equation was analyzed
decomposing the unknown function as a Jacobi polynomial se
multiplied by a weighting function and applying a collocatio
method. This procedure allowed us to replace the singular inte
equation with a system of linear algebraic equations which w
solved numerically.

For the frictionless case it was found that normal vibrati
modes exist for a wide range of material combinations. Th
modes correspond, in the case of complete contact, to genera
Rayleigh waves and can be interpreted as standing genera
Journal of Applied Mechanics
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Rayleigh waves. In the case of incomplete contact, and for
wavelength equal to twice the waviness period, the lowest
quency of vibration lies in the range between the lowest Rayle
wave frequency of the two bodies and the generalized Rayle
wave frequency. For the case of a vanishing small contact z
the vibration mode can be interpreted as a standing Rayleigh w
in one of the bodies. For the general case of incomplete con
vibration has been found for a wider range of material parame
than that for which generalized Rayleigh waves exist.

For the case of nonzero friction, complex vibration modes a
eigenvalues were found. There are eigenvalues with a positive
part, which means that the vibrations have an amplitude wh
grows exponentially with time and thus steady sliding is unstab
In the case of incomplete contact the degree of instability,
small friction and velocity, is proportional to both the frictio
coefficient and the sliding velocity. The degree of instability m
be high enough to contribute to the formation of friction-induc
vibrations for low damping and moderate or high sliding velo
ties ~of the order of 0.001 of the shear wave speed or higher!. In
the limiting case of complete contact the results reduce to
destabilizing generalized Rayleigh wave analyzed by Adams@1#
and subsequently by Ranjith and Rice@4#. This result demon-
strates that the effect of the dynamic sliding instability of Co
lomb friction exists not only in the case of complete contact, b
also in the more realistic case when the true contact area is m
less than the nominal contact area. Finally, note that this ana
considers the cases for which the wavelength of vibration is eq
to one or two times the waviness period. For wavelengths m
greater than the waviness period, it might be anticipated that
effect of surface roughness would be less significant than
found here and thus the results of@1# and @4# would be more
directly applicable.
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