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Stability of Frictional Sliding
With the Coefficient of Friction
Depended on the Temperature
Friction-induced instabilities can be caused by different separate mechanisms such as
elastodynamic or thermoelastic. This paper suggests another type of instability due to the
temperature dependency of the coefficient of friction. The perturbations imposed on the
surface temperature field during the frictional sliding can grow or decay. A stability cri-
terion is formulated and a case study of a brake disk is performed with a simple model
without including effects of transforming layer and chemical/physical properties change
with temperature. The disk is rigid and the coefficient of friction depends on temperature.
We show that the mechanism of instability can contribute to poor reproducibility of air-
craft disk brake tests reported in the literature. We propose a method to increase the
reproducibility by dividing the disk into several sectors with decreased thermal conduc-
tivity between the sectors. [DOI: 10.1115/1.4006577]

1 Introduction

It is well known that frictional sliding can be dynamically
unstable. Several types of instabilities have been discussed in the
literature. If the coefficient of friction decreases with speed,
dynamic instabilities (DI) can occur. This is because decreasing
frictional resistance to sliding results in the acceleration, which
leads to a higher velocity and, in turn, to even lower friction; thus
creating a positive feedback loop. Various theories of velocity-
dependent friction have been proposed in the literature [1,2].
Adams [3] showed that even for a constant value of the coefficient
of friction, the steady sliding of two elastic half-planes can
become dynamically unstable, even in the quasi-static limit of
very small sliding velocities [3]. The destabilization is in the form
of a self-excited elastic wave at the interface between the contact-
ing bodies. The amplitude of these waves grows exponentially
with time. As the amplitude of an elastic wave grows, the
frictional dissipation increases, leading to the further growth of
the wave amplitude and thus creating a positive feedback loop. A
similar type of instability may be observed during the sliding of
rough surfaces, such as surfaces with periodic wavy profiles [4,5].
Frictional instability can further lead to the formation of self-
organized structures and patterns [6–9].

Another type of instability is a result of the interaction between
the frictional heating, the thermoelastic distortion, and the contact
pressure, and it is referred to as the “thermoelastic instability”
(TEI). As the interface temperature grows, the near-surface vol-
umes of the contacting bodies expand, so the contact pressure
grows as well. As a result, the friction force increases resulting in
excess heat generation and the further growth of the temperature;
thus creating another type of a positive feedback. The TEI leads
to the formation of “hot spots” or localized high temperature
regions at the interface [10]. The TEI occurs for sliding velocities
greater than a certain critical value. The coupling between the two
types of instabilities constitutes the thermoelastodynamic instabil-
ity (TEDI) [11].

Another mechanism that may provide instability is the coupling
between friction and wear. As friction increases, so does also the
wear, which may result in an increase of the real area of contact
between the bodies and in further increase of friction. The sliding

bodies adjust to each other and the process is known as the self-
organization during friction [12]. On the other hand, wear pro-
duces smoothening of the surface distorted by the TEI mecha-
nism, and thus the wear and thermal expansion are competing
factors, with the wear leading to stabilization of sliding and the
thermal expansion leading to destabilization (Fig. 1).

One area where frictional instabilities are particularly important
is the design of disk brakes. Frictional instabilities in car disk
brakes have been an object of investigation mostly because of the
disk brake squeal [13–15]. Aircraft disk brakes often have a simi-
lar construction to car disk brakes; however, the instability consti-
tutes even more crucial problem for the aircraft brakes. Aircraft
disk brakes are designed to dissipate very large amounts of energy
in order to stop the plane within a short time after an aircraft
touches the runway. Large amounts of heat are generated in air-
craft disk brakes within seconds, resulting in high temperatures as
well as very high temperature gradients. The disks should be
made of a material which is light, wear-resistant, and able to
absorb huge amounts of heat without melting or breaking. In brief,
the brake materials should have good heat sinking ability in order
to minimize the interface temperature at the braking surface
arising out of frictional heat [16]. The materials that provide a
compromise between weight, strength, and heat transfer are the
carbon-carbon (CC) composites [17,18]. A number of studies
have been conducted in the past decade to investigate the tribolog-
ical performance of the CC composite disk brake material at vari-
ous sliding velocities, temperatures, and levels of humidity
[19–22]. Venkataraman and Sundararajan [16] showed that CC
composites exhibit a transition from a low coefficient of friction
during the “normal” wear regime, to a high coefficient of friction
during the “dusting” wear regime, when the normal pressure times
the sliding velocity exceeds a critical value. The transition is asso-
ciated with the attainment of a critical temperature at the interface
between the two CC composite bodies sliding against each other.
Yen and Ishihara [23] showed that two types of surface morphol-
ogy can be distinguished on the sample surface and argued that
the TEI is responsible for this effect.

Most theoretical studies of the instabilities have concentrated
on investigating the onset of the instability and stability criteria.
However, the quantitative study of the unstable motion is also of
great practical importance. Due to various safety requirements,
the aircraft brake disks should demonstrate highly reproducible
performance. However, the instability of frictional sliding
between a disk brake and a pad may result in the high sensitivity
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of the tribological system to initial random perturbations. As a
result, the time and distance required to stop a plane may vary sig-
nificantly even under the same conditions (such as the mass and
initial velocity of the plane).

In this paper, first, we show that the temperature-dependent
coefficient of friction can lead to instability, which is similar to
the TEI. We suggest a simple one-dimensional (1D) model to
demonstrate that this dependency cannot be neglected. Note that
our model ignores the effects of the transforming layer, “third
body,” and the change of properties with temperature. Although
these effects may have a significant influence on the tribological
properties [24], they can be ignored for a simplified model. Then,
a stability model with the local coefficient of friction coupled with
temperature is developed, and a statistical analysis of the average
friction between the brake disk and a pad is performed. The fac-
tors that affect the reproducibility of brake tests are discussed.
Finally, some measures that can improve the reproducibility are
suggested.

2 Instability Due to the Temperature Dependency

of the Coefficient of Friction

Most of current models of friction-induced instabilities ignore
the temperature dependency of the coefficient of friction. These
models usually assume that either elastodynamic or thermoelastic
effects can give rise to friction-induced instabilities and vibra-
tions. The time scales of these effects differ considerably, so it is
usual to neglect the coupling between them, i.e., to neglect the
thermal effects in elastodynamic analyses and to use the quasi-
static approximation in thermoelastic analyses. In addition, these
models assume that the coefficient of friction is constant, i.e., not
varying with temperature.

On the other hand, there is experimental evidence that CC
composites undergo a transition from a low to a high value of the
coefficient of friction depending on the temperature change
[16,25,26]. Here we investigate the possibility that the tempera-
ture dependency of the coefficient of friction leads to instability.

First we consider the 1D heat conduction equation in rectangu-
lar coordinates with a heat generation source resulting from

friction in a slab of length L. We assume that the 1D region repre-
sents a 2D slab with a small thickness w, so that the heat propa-
gates instantly throughout the thickness and a 1D approximation
is valid:

@2Tðx; tÞ
@x2

þ 1

wk
gðx; tÞ ¼ 1

a
@Tðx; tÞ
@t

in 0 < x < L; t > 0 (1)

�k
@t

@x
þ hðT � T0Þ ¼ 0 at x ¼ 0; t > 0

k
@t

@x
þ hðT � T0Þ ¼ 0 at x ¼ L; t > 0

Tðx; 0Þ ¼ FðxÞ for 0 � x � L; t ¼ 0

where T(x,t) is the temperature, x and t are the spatial coordinate
and time, k and a are the thermal conductivity and diffusivity,
respectively, and h is the coefficient of convective heat transfer.
We assume that the slab is initially at a temperature FðxÞ and, for
times t > 0, it dissipates heat into the environment with constant
temperature T0.

The heat generation term due to friction is given by

gðx; tÞ ¼ PVl (2)

where P is pressure, V is sliding velocity, and l is the coefficient
of friction which we assume to be linearly temperature dependent:

l ¼ l0½1þ kðT � T0Þ� (3)

where k is the constant of proportionality.
It is convenient to consider Eq. (1) in the nondimensional form

by defining dimensionless parameters

hðX; sÞ ¼ T � T0

T0

; s ¼ ta
L2
; X ¼ x

L
;

G ¼ PVL2

wk

� �
l0

T0

� �
; H ¼ Lh

k
; e ¼ kT0 (4)

Equation (1) becomes

@2h
@X2
þ Gð1þ �hÞ ¼ @h

@s
in 0 < X < 1; s > 0 (5)

� @h
@X
þ Hh ¼ 0 at X ¼ 0; s > 0

@h
@X
þ Hh ¼ 0 at X ¼ 1; s > 0

hðX; 0Þ ¼ f ðXÞ for 0 � X � 1; s ¼ 0

The nonhomogeneous term G � h in Eq. (5) is due to the nondi-
mensional parameter �, which defines the temperature dependency
of the coefficient of friction. Equation (5) has a steady solution
hsðxÞ. We investigate the stability of this steady state by consider-
ing the possibility that a small perturbation in the temperature can
grow with time. Thus we write

hðX; sÞ ¼ hsðXÞ þ ~hðX; sÞ (6)

where ~hðX; sÞ is the perturbation. Now substituting Eq. (6) into
Eq. (5):

@2 ~h
@X2
þ G � ~h ¼ @

~h
@s

in 0 < X < 1; s > 0 (7)

Fig. 1 Various mechanisms can create positive or negative
feedbacks that lead to instabilities during friction
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�@
~h

@X
þ H ~h ¼ 0 at X ¼ 0; s > 0

@ ~h
@X
þ H ~h ¼ 0 at X ¼ 1; s > 0

~hðX; sÞ ¼ ~f ðXÞ for 0 � X � 1; s ¼ 0

We express the solution of Eq. (7) as a sum of normal modes,
each of which has the general form

~hðX; sÞ ¼ wðXÞeSs (8)

where S is a constant. Substituting Eq. (8) into Eq. (7) we get

d2w
dX2
þ ðG�� SÞw ¼ 0 in 0 < X < 1 (9)

�dw
dX
þ Hw ¼ 0 at X ¼ 0

dw
dX
þ Hw ¼ 0 at X ¼ 1

Solution of Eq. (9) is in the form of

wðXÞ ¼ C1 sinðmpXÞ þ C2 cosðmpXÞ (10)

where C1 and C1 are two constants which can be obtained from
the boundary conditions and m is a natural number. Substituting
Eq. (10) into Eq. (9) we get

S ¼ G�� ðmpÞ2 (11)

We conclude from Eq. (8) that the stability of a small perturbation
depends on whether the exponential term grows or decays with
time s, which, in turn, depends upon the sign of S for any m. Thus,
from Eq. (11), decaying in any mth mode is observed for
G� < ðmpÞ2. Since m is increasing, the stability condition should
be satisfied for the first term G� < p2. In the case of � ¼ 0, i.e.,
when there is no temperature dependency of the coefficient of
friction, and, with increasing time, hðX; sÞ will approach the
steady temperature distribution hsðXÞ. However, in the case of
� 6¼ 0, the stability condition requires

� < p2 wk

pVL2

� �
T0

l0

� �
(12)

Let us call �critical ¼ p2
�

wk
pVL2

��
T0

l0

�
and we conclude that if

� > �critical, the solution is unstable. Note that ecritical depends on
the geometry (L), pressure (P), and sliding velocity (V) in our
system. This is in agreement with the experimental report by Ven-
kataraman and Sundararajan [16], who found that there were
different regimes of the temperature dependency of the coefficient
of friction and that these three parameters had considerable influ-
ence on the regimes.

Note also that for the negative � < 0, the stability condition is
always satisfied. That means that if the coefficient of friction
decreases with temperature, there is no unstable behavior. This is
because the instability is caused by the positive feedback between
the coefficient of friction and temperature, i.e., a small positive
local fluctuation of temperature would cause a local increase of the
coefficient of friction, which, in turn, would cause further growth
of temperature. When the feedback is negative (� < 0 and; there-
fore k< 0) this type of unstable behavior does not occur.

To find the exact solution of Eq. (5), one can use the
transformation

hðX; sÞ ¼ wðX; sÞeG�s (13)

which yields, on substituting

@2w
@X2
þ GeG�s ¼ @w

@s
in 0 < X < 1; s > 0 (14)

�@w
@X
þ Hw ¼ 0 at X ¼ 0; s > 0

@w
@X
þ Hw ¼ 0 at X ¼ 1; s > 0

wðX; 0Þ ¼ f ðXÞ for 0 � X � 1; s ¼ 0

Equation (14) can be solved analytically, using first the method of
the separation of variables and then the Green’s function [27].
First we find the solution of the homogeneous equation without
the term G expðG � sÞ:

w0ðX; sÞ ¼ 2
X1
m¼1

e�ðmpÞ2ssinðmpXÞ
ð1

x0¼0

sin ðmpX0Þf ðX0ÞdX0
� �

(15)

Here we assumed that the both sides of the slab are kept at the
constant temperature T0, i.e., wð0; sÞ ¼ wð1; sÞ ¼ 0 and H !1.
This assumption simplifies the solution without affecting the sta-
bility analysis since the stability is governed by the exponential
term of the solution which is not affected by the boundary
conditions

The solution of the homogeneous equation can be written in
terms of Green’s function [27]

w0ðX; sÞ ¼
ð1

X0¼0

cðX; s; X0; s0 ¼ 0Þf ðX0ÞdX0 (16)

Comparing Eq. (16) with Eq. (15) we construct the Green’s func-
tion by replacing s by s� s0:

cðX; s; X0; s0Þ ¼ 2
X1
m¼1

e�ðmpÞ2ðs�s0Þ sin ðmpXÞ sin ðmpX0Þ (17)

where X0 and s0 are integration parameters. Then the solution of
the nonhomogeneous problem is given in terms of the Green’s
function

wðX; sÞ ¼ w0ðX; sÞ þ
ðs

s0¼0

ds0
ð1

X0¼0

G expG�scðX; s� s0;X0; ÞdX0

(18)

Substituting Eq. (17) into Eq. (18) yields the solution of Eq. (14):

wðX; sÞ ¼ 2
X1
m¼1

e�ðmpÞ2ssin ðmpXÞ
ð1

X0¼0

sinðmpX0Þf ðX0ÞdX0
� �

þ 2
X1
m¼1

G

ðmpÞ2 � G�
e�G�ssinðmpXÞXð1� cosðmpÞÞ

for 0 < X < 1 (19)

Finally, substituting Eq. (18) into Eq. (13), we find the solution of
Eq. (5):

hðX; sÞ ¼ 2
X1
m¼1

eðG��ðmpÞ2Þssin ðmpXÞ
ð1

X0¼0

sinðmpX0Þf ðX0ÞdX0
� �

þ 2
X1
m¼1

G

ðmpÞ2 � G�
sinðmpXÞð1� cosðmpÞÞ

for 0 < X < 1 (20)

The stability of a small perturbation of the solution given by
Eq. (19) is governed by Eq. (12). This can be observed directly
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from Eq. (19) noting that the stability depends on whether the
exponential term grows or decays with time s, which, in turn,
depends upon whether G�� ðmpÞ2 < 0 for any m and should be
satisfied for the first term G� < p2 as it was explained above.

To examine stability condition [Eq. (12)], numerical results for
solution of Eq. (7) are presented in Fig. 2. The simulation was per-
formed using the Matlab software package. In order to investigate
the evolution of a localized hot/cold spot, we introduced a small
random perturbation imposed over a constant temperature field
and confined between 0:49 < X < 0:51, i.e., at the center of the
domain. The perturbation was a random function built by assign-
ing random numbers with the amplitude between 0 and 2 to the
values in 0:49 < X < 0:51 and zero otherwise. Spatial and tempo-
ral step size for the numerical simulation was 0.01 and 0.005,
respectively. Figure 2 shows the response of the system to small
perturbation for different values of � (0.0001, 0.00005, and
0.00001). Transient temperature is presented for four different
values of the dimensionless time (0, 0.00125, 0.0025, 0.05). The
parameters of Eq. (12) were chosen according to the experimental
values reported in the literature on CC composites in disk brakes
(for example, Zhao et al. [28]): P ¼ 1 MPa, k ¼ 50 W/mK,
L ¼ 0:5 m, V ¼ 1000 m/s. These values correspond to �critical

¼ 3:88� 10�5. It is observed from Fig. 2 that the solution grew
unboundedly in the first two cases corresponding to � > �critical

and decayed in the third case < �critical in agreement with the sta-
bility criterion of Eq. (12).

We found in this section that when the temperature dependency
of the coefficient of friction is introduced, the solution for the
temperature field is unstable for � > �critical. The comparison with
experimental data shows that in practical cases the value of � is
comparable with �critical [28]. Therefore, the effect of the tempera-
ture dependency of the coefficient of friction should be taken into
account when the stability of the frictional sliding with heat gener-
ation is analyzed. Although a rectangular slab was studied in this
section, a similar effect is expected with a circular disk, as it will
be discussed below.

3 Reproducibility of Disk Brake Test Results

In this section we present a model for an aircraft or car disk
brake in contact with a pad with a temperature-dependent coeffi-
cient of friction between them and show that frictional instabilities
affect the reproducibility of brake test results, e.g., the time
needed to stop the car or aircraft.

3.1 Numerical Model. Let us consider a rigid brake disk
with the outer and inner radii of Rout and Rin in contact with a rigid
pad pressed together by the pressure P (Fig. 3). The torque created
by the disk is

M ¼
ðRout

r¼Rin

2pr2lmPdr ¼ 2

3
plmPðR3

out � R3
inÞ (21)

where lm is the mean coefficient of friction throughout the entire
disk surface. The aircraft or car brake is usually equipped with n
disks, so the force that decelerates the aircraft or car is given by

F ¼ nC
M

Rout

¼ 2

3Rout

nCplmPðR3
out � R3

inÞ (22)

where C is a nondimensional coefficient dependent on the radii of
the disks and pads. In Eq. (22) it is assumed that the pad radius
and brake radius are identical. For an aircraft or vehicle of mass m
and initial velocity V, the time required to stop is given by

t ¼ Vm

F
¼ 3VmRout

2nCplmPðR3
out � R3

inÞ
(23)

Fig. 2 Response of the system to different values of values of
e: (a) 0.0001, (b) 0.00005, and (c) 0.00001. s is the dimensionless
time. Fig. 3 Schematic of a brake disk
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Let us assume now that the coefficient of friction depends on tem-
perature as described by Eq. (3), and Tm is mean temperature at a
certain time during transient stage so that lm ¼ lðTmÞ. We assume
a simple linear dependency given by Eq. (3) within a certain do-
main between the minimum and the maximum temperatures, so
that the range of the coefficient of friction is lmin < lðTÞ < lmax

(Fig. 4).
The time required to stop the aircraft is now in the range

tmin< t< tmax, with corresponding values calculated from
Eq. (23):

tmin ¼
3VmRout

2nCplmaxPðR3
out � R3

inÞ

tmax ¼
3VmRout

2nCplminPðR3
out � R3

inÞ
(24)

Most of the mechanical energy is converted into heat. The temper-
ature field at the interface should satisfy the heat conduction equa-
tion, which is written here in polar coordinates:

1

r

@

@r
r
@T

@r

� �
þ 1

r2

@2T

@/2
þ 1

wk
gðTÞ ¼ 1

a
@T

@t

gðTÞ ¼ l Pr x (25)

Stability of the solution of Eq. (17) should be analyzed now.

3.2 Stability Analysis. As discussed in the preceding sec-
tions, a small perturbation in the temperature field distribution (an
elevated or reduced temperature) can grow unboundedly if the
solution is unstable. The stability can depend on the sign of k in
Eq. (3). For k > 0, the coefficient of friction will grow with tem-
perature, and additional heat will be generated leading to a further
increase of l. The heat will also be conducted to neighboring
points, so the coefficient of friction at those points will grow as
well, and the unstable behavior with a growing size of the “hot
spot” will be observed. For k < 0, quite oppositely, friction will
decrease and the temperature will eventually drop to the steady-
state level.

In practical conditions, the coefficient of friction can either
grow or decrease with temperature. Thus, Roubicek et al. [26]
observed that the coefficient of friction decreased with increasing
temperature during the SAE J2430 friction test which is frequently
used in the USA for evaluating the brake performance. This is
attributed to physical and chemical changes in the friction layer
which forms on the friction surface [25]. As it was mentioned ear-
lier, Venkataraman and Sundararajan [16] found that the depend-
ency of the coefficient of friction varied within different working

ranges of the sliding velocity and load. We will concentrate on the
potentially unstable case of k > 0.

In the case of unstable behavior, any small perturbation grows
and the maximum value of the coefficient of friction lmax (in the
case of a positive perturbation) or its minimum value lmin (in the
case of a negative perturbation) will be reached within a short
time. Furthermore, the hot spot will spread to neighboring regions
of the surface. The area of the hot spot can be estimated as the
thermal diffusivity times time ta. Since the perturbation cam be
either positive or negative, the disk area will be divided into N
domains of either the maximum or minimum coefficient of fric-
tion. The number of domains can be estimated by dividing the
total area by the size of the region of perturbation:

N ¼ npðR2
out � R2

inÞ
ta

(26)

The probability distribution function for a large number of trials
of equal probability (e.g., coin flips) is given by the normal
distribution

pðxÞ ¼ 1ffiffiffiffiffiffi
2p
p

r
exp

x� lmeanð Þ2

2r2

 !
(27)

where r is the standard deviation and lmean ¼ ðlmax þ lminÞ=2 is
the mean value. The value of r is given by

r ¼ tmax � tminð Þ
N

ffiffiffiffi
N

4

r
¼ tmax � tminð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ta

4npðR2
out � R2

inÞ

s
(28)

in which t is defined by Eq. (23):

r ¼ tmax � tminð Þ
2np

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3VmaRout

2ClmPðR2
out � R2

inÞðR3
out � R3

inÞ

s
(29)

For the reproducibility of the results, it is desirable that the stand-
ard deviation is as small as possible (Fig. 5). One possible way to
decrease r is to decrease the thermal diffusivity a or to increase
the total working disk area npðR2

out � R2
inÞ and the frictional trac-

tion lmP. Another approach to increase the reproducibility may be
texturing the disk surface so that it is artificially divided into a sig-
nificant number N of domains.

2.3 Results and Discussion. The heat conduction equation in
polar coordinates [Eq. (16)] is written in the dimensionless form

1

r�
@

@r�
r�
@h
@r�

� �
þ 1

r2

@2h

@/�2
þ Gð1þ �hÞ ¼ @h

@s
(30)

where r� and /� are the dimensionless radius and angle, respec-
tively. Moreover, we assume that the coefficient of friction

Fig. 4 Temperature dependence of the coefficient of friction

Fig. 5 Effect of the number of domains N on the reproducibility
of the brake test
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depends linearly on temperature, and that the values of tempera-
ture are limited by Tmin<T< Tmax. A small perturbation of the
steady solution hsðr�;/�Þ of Eq. (30) is given by

hðr�;/�; sÞ ¼ hsðr�;/�Þ þ ~hðr�;/�; sÞ (31)

where ~hðr�;/�; sÞ is the small perturbation of the dimensionless
temperature. Substituting Eq. (23) in Eq. (22) yields

1

r�
@

@r�
r�
@ ~h
@r�

 !
þ 1

r2

@2 ~h

@/�2
þ Ge~h ¼ @

~h
@s

(32)

The feedback loop is created due to the coupling of the tempera-
ture and the coefficient of friction, and response of system to
onset of perturbation in whole domain is shown in Fig. 6. The
results are presented for following parameters: P ¼ 1 MPa,
k ¼ 50 W/mK, Rin ¼ 1 m, Rout ¼ 2 m, n ¼ 2000 rpm. Figure 6
clearly shows how value of � affects growing or decaying instabil-
ities caused by perturbation in whole domain.

Then we focus our attention to reproducibility of test results.
Figures 7 and 8 compare the results of response of system in two
different cases, respectively: first for a rigid brake, and then for a
brake divided into different sectors. For simplicity we present data
in these two figures assuming h ¼ hð/�; sÞ. A random initial per-
turbation at every point of the disk results in initially positive per-
turbations, which tend to propagate and grow into the positive
area, while initially negative perturbation tend to propagate and
grow into the negative area (Fig. 7(a)). As a result, the disk sur-
face after 1000 time steps of simulation was divided into several
domains with the maximum and minimum values of temperature.
The average value of the friction force was calculated by averag-
ing the coefficient of friction of the entire disk and then by all
time steps. The simulation was run 100 times and a histogram
showing a probability distribution of the average l was produced
(Fig. 7(b)).

After that, it was assumed that the disk was divided into 10 sec-
tors in the / direction with zero thermal conductivity between the
sectors. The same simulations were run and the results are shown
in Fig. 8. It is observed that a random initial perturbation at any
point results in the formation of a number of domains (identical
with the sectors) with maximum or minimum temperature
(Fig. 8(a)), Again the histogram showing the average value of the
average l was produced on the basis of 100 simulation (Fig. 8(b)).

Fig. 6 Response of system to perturbation in whole domain
for different values of e: (a) 0.0001 and (b) 0.00001. s is the
dimensionless time.

Fig. 7 Simulation results for T at 1, 10, 100, and 1000 time
steps: (a) random fluctuation and (b) distribution of the average
value of the coefficient of friction after 100 runs

Fig. 8 Simulation results for T at 1, 10, 100, and 1000 time
steps: (a) random fluctuation and (b) distribution of the average
value of the coefficient of friction after 100 runs
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The results show that the deviation of the average l is much lower
in this case (namely, the variance r2 = 0.0027) than in the first
case (r2¼ 0.0086), which is understandable, since due to the insu-
lation of the sectors the instability cannot propagate throughout
the entire area of the disk. It is therefore suggested that texturing
the disk or dividing it into sectors can increase the reproducibility
of the results.

4 Conclusions

We studied the stability of frictional sliding with the
temperature-dependent coefficient of friction. We presented a
mathematical model without including effects of transforming
layer and chemical/physical properties change with temperature,
and formulated the stability condition governing whether the per-
turbations imposed on the surface temperature in the frictional
sliding can grow or decay depending upon the working conditions
such as pressure, sliding velocity, and geometry. Although it is
usually ignored in most disk-pad contact models, this temperature
dependency can have a significant effect on the stability. The tem-
perature dependency of the coefficient of friction leads to the for-
mation of hot and cold spots on the brake disks. The number of
these spots or domains depends upon the thermal diffusivity of the
disk material and affects the reproducibility of the brake test
results. A larger number of spots is desirable for better reproduci-
bility. It can be achieved either by decreasing the thermal diffusiv-
ity (however this approach comes in conflict with the need of high
dissipation rates), by increasing the disk area, or, alternatively, by
texturing the surface and dividing it artificially into domains.
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