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ABSTRACT

COMBINATORIAL PROBLEMS RELATED TO OPTIMAL TRANSPORT AND
PARKING FUNCTIONS

by

Jan Kretschmann

The University of Wisconsin–Milwaukee, 2023
Under the Supervision of Professors Jeb F. Willenbring and Pamela E. Harris

In the first part of this work, we provide contributions to optimal transport through work

on the discrete Earth Mover’s Distance (EMD). We provide a new formula for the mean

EMD by computing three different formulas for the sum of width–one matrices: the first

two formulas apply the theory of abstract simplicial complexes and result from a shelling of

the order complex, whereas the last formula uses Young tableaux. Subsequently, we employ

this result to compute the EMD under different cost matrices satisfying the Monge

property. Additionally, we use linear programming to compute the EMD under non-Monge

cost matrices, giving an interpretation of the EMD as a distance measure on pie charts.

Furthermore, we generalize our result to the n-dimensional EMD, by providing two

different formulas for the sum of width–one tensors: once approaching the problem from

the perspective of Young tableaux and once through the theory of abstract simplicial

complexes by shelling of the n-dimensional order complex.

In the second part, we provide contributions to the topic of parking functions. We provide

background on the topic and show a connection to the first part of this work through

certain statistics on parking functions used in the shuffle conjecture. Furthermore, we

provide enumerative formulas for different generalizations of parking functions, allowing

cars to have varying lengths. Additionally, we show a surprising connection between

certain restricted parking objects and the Quicksort algorithm. At last, we will use the

intersection of a subset of parking functions and Fubini rankings to characterize and

enumerate Boolean algebras in the weak Bruhat order of Sn.
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1 INTRODUCTION

This work is separated into two parts, which are unrelated at first glance. In the first

part, we will provide contributions to the combinatorics of optimal transport, particularly

the Earth Mover’s Distance (EMD). We recall the original transportation problem posed

by Gaspard Monge in the 18th century. The EMD, which is the solution to said problem,

provides a measure for a distance between ordered pairs of histograms. It has received

much research attention from various academic disciplines, for example computer vision [60],

particle physics [50] and viral outbreak investigations [55]. Particularly recently, it was used

to examine grade distributions [10, 52] — an application that also provided motivation for the

first part of this work. In Chapter 3, we provide several new, efficient formulas to compute

the average EMD over all pairs of histograms of a fixed size. The results of Chapter 3 were

published in [28]. Moreover, in Chapter 4, we apply the results from Chapter 3 to examine

the EMD under a more general underlying cost function. Furthermore, in Chapter 5, we

generalize the results from Chapter 3 to higher dimensions and provide new formulas to

compute the average EMD over all tuples of histograms of a fixed size. The results of

Chapter 5 were published in [27].

The second part of this work provides contributions to the topic of parking functions.

Parking functions, after being introduced by Konheim and Weiss [51] in 1966, have been

found to be in bijection with (or equinumerous to) several different combinatorial objects,

such as rooted forest inversions, labeled Dyck paths and noncrossing partitions (we refer

to [67, 75] for a comprehensive overview). In Chapter 6, we provide several interesting

background results on parking functions. Specifically, we present a connection between

certain statistics on parking functions and the EMD. We show that the area–statistic can

be expressed in terms of the EMD, which can in turn be applied to results found for said

statistic. The results of Chapter 7 were published in [30]. Next, in Chapter 7, we introduce

first generalizations of parking functions, allowing cars to have different lengths. We present

1



enumerative counts for the generalizations by counting the number of ways to achieve a

certain parking order. Furthermore, in Chapter 8, we reveal a surprising connection between

certain parking objects and the Quicksort algorithm. Some of the results shown in Chapter 8

are to appear in the American Mathematical Monthly and currently available as preprint [41].

Additionally, we present further counts for parking objects with different constraints similarly

to those in Chapter 7, by counting the preferences leading to each parking order. Finally,

in Chapter 9, we give a characterization and count for the set of Boolean intervals in the

weak order lattice of the symmetric group, by giving a bijection between Boolean intervals

and the intersection of a subset of parking functions with the set of possible rank ings in

competitions, where ties are allowed. Chapter 9 is currently under review and available as

preprint [21].
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Part I

Optimal Transport
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2 THE MONGE PROBLEM

In this chapter, we provide background on the discrete Earth Mover’s Distance (EMD)

(also known as Wasserstein distance) and transport theory through the Monge problem,

which was originally posed in 1781 by Gaspard Monge [56]. Additionally, we will briefly

survey related results and motivate the remainder of the first part of this work.

2.1 The Earth Mover’s Distance

Throughout, for any x ∈ N>0, we will denote by [x] = {1, . . . , x}. Suppose, we have n

units of earth stored in k different silos, with each silo labeled s1, . . . , sk. We can describe the

distribution of earth throughout the silos via λ : [k] → {0, 1, . . . , n}, with silo si containing

λ(i) units of earth and
∑n

i=1 λ(i) = n. For some reason, the current distribution λ is no longer

viable and we are tasked with moving earth from silo to silo, so that afterwards, each silo

si contains µ(i) units of earth, where µ : [k] → {0, 1, . . . , n} (and of course
∑n

i=1 µ(i) = n).

When we have moved earth until we have successfully achieved distribution µ, all moves we

made can be recorded in a transport plan, denoted T ∈ Σλ,µ, where Σλ,µ is the set of all

matrices with row sums λ = (λ(1), . . . , λ(n)) and column sums µ = (µ(1), . . . , µ(n)). There

are many different transport plans we can follow to achieve the desired outcome, however,

some transport plans are more advantageuous than others. Whenever we move earth from

si to sj, we incur a “cost”. Considering si and sj as being |i − j| distance units apart, we

assign a cost of |i− j|. Hence, the cost of executing all moves prescribed in a transport plan

T amounts to
∑n

i,j=1CijTij, with the standard cost matrix defined as

C =


0 1 2 . . . n− 1
1 0 1 . . . n− 2
...

...
... . . .

...
n− 1 n− 2 n− 3 . . . 0

 . (2.1)

The Monge problem asks for the cost associated with the optimal (cheapest) transport

4



plan, which we denote as T ∗. This can be stated as the linear programming problem:

Minimize
n∑

i,j=1

CijTij,

subject to Tij ≥ 0 for all 1 ≤ i, j ≤ n,

and
n∑

j=1

Tij = λ(i) for each 1 ≤ i ≤ n,

and
n∑

i=1

Tij = µ(j) for each 1 ≤ j ≤ n.

The EMD presents itself as the solution to the above linear programming problem, and hence

as the solution to the Monge problem.

In a more formal setting, the EMD can be viewed as a metric on histograms with a

grand total s and n bins. Consider µ = (µ1, µ2, . . . , µn) and ν = (ν1, ν2, . . . , νn) with∑
µ =

∑
ν = s. Then the EMD can be realized as the infimum of matrix products

EMD(µ,ν) = inf
F∈Σµ,ν

trace(CTF ),

where C the standard cost matrix from (2.1). As one of the major points of focus for this

work, the matrix C satisfies several important properties. For one, it intuitively satisfies the

triangle inequality:

cij ≤ cik + ckj, for all i, j, k. (2.2)

In addition, the matrix C has the Monge property :

cij + ci′j′ ≤ cij′ + ci′j, for all i < i′, j < j′. (2.3)

Matrices which satisfy (2.3) are also referred to as Monge matrices.

In Chapter 4, we examine the Monge property further and use different Monge matrices

as cost for the EMD. For us, the most important use of the Monge property is a simplification

in the computation of the EMD: for any cost matrix C satisfying the Monge property, we

have

EMD(µ,ν) = min
F∈T 1

µ,ν

trace(CTF ),

5



where T 1
µ,ν is the set of width-one matrices with row sums µ and column sums ν, respectively.

A focus of this work, as well as prior related work is the computation of the mean EMD over

all ordered pairs of histograms with d bins and grand total s. To facilitate notation, we use

the following definitions.

Definition 2.1. For s, n ∈ N>0, we refer to weak integer compsitions of s into n parts as

C(s, n) =

{
λ ∈ Nn

∣∣∣∣∣
n∑

i=1

λi = s

}
.

The number of weak compositions for fixed s and d is well–known to be

#C(s, n) =
(
s+ n− 1

s

)
=

(
s+ n− 1

n− 1

)
. (2.4)

Note, that a histogram with grand total s and d bins is an element λ ∈ C(s, d).

We additionally make use of the following referring to the mean EMD.

Definition 2.2. For s ∈ N>0 and n = (n1, n2) ∈ N2
>0, we refer to the mean EMD taken over

all (λ, µ) ∈ C(s, n1)× C(s, n2) as

EMDn,s =

∑
(λ,µ) EMD(λ, µ)

# (C(s, n1)× C(s, n2))
.

In the following section, we provide an overview of results relating to the mean EMD.

2.2 Related work

We begin by summarizing the work of Bourn and Willenbring, who were able to find the

mean EMD under the cost matrix Cij = |i − j| by constructing a generating function. For

s ∈ N>0, n = (n1, n2) ∈ N2
>0 and ordered pairs of histograms (λ,µ) ∈ C(s, n1) × C(s, n2),

they defined

Hn(z, t) =
∞∑
s=0

 ∑
(µ,ν)∈C(s,n1)×C(s,n2)

zEMD(µ,ν)

 ts, (2.5)

6



which encodes the number of ordered histogram pairs with EMD d in coefficients of tszd. To

compute Hn, they provide the following recursive formula [10, Th. 3]

Hn(z, t) =
Hn1−1,n2(z, t) +Hn1,n2−1(z, t)−Hn1−1,n2−1(z, t)

1− z|n1−n2|t
. (2.6)

For histograms with total s and n = (n1, n2) bins, the expected EMD is then

EMDn,s =

(
[td] ∂

∂z
Hn1,n2(z, t)

)
|z=1

([td]Hn1,n2(z, t))|z=1

. (2.7)

Bourn and Willenbring used the EMD to examine grade distributions – histograms with

total s and d bins correspond to grade distributions of classes with s students who can each

receive one of d grades.

In [52], we extended the generating function in (2.5) to include information about a

weighted total A – for a histogram λ with n bins, its weighted total amounts to A =∑n
i=1 iλ(i). To achieve this, two additional indeterminates were introduced to the generating

function, yielding

Hn(z, t, g1, g2) =
∞∑
s=0

 ∑
(µ,ν)∈C(s,n1)×C(s,n2)

g
A(µ)
1 g

A(ν)
2 zEMD(µ,ν)

 ts,

which additionally encodes the weighted total in exponents of g1 and g2, allowing for more

specific comparison of histograms that satisfy a constraint on the weighted total. To compute

Hn, we provided the recursive formula [52, Theorem 3.2] (writing Hn(z, t, g1, g2) as Hn to

simplify notation)

Hn(z, t, g1, g2) =
Hn1−1,n2 +Hn1,n2−1 −Hn1−1,n2−1

1− z|n1−n2|tgn1−1
1 gn2−1

2

. (2.8)

As shown in [52], the parameters g1 and g2 record the weighted total A of the compared

histograms. This extension can be used to apply the EMD to the context of grade distribu-

tions, comparing a more particular set of distributions narrowed down by their Grade Point

Average (GPA). When computing the expected EMD using equation (2.8), we can now find

7



the GPA encoded in the parameters g1 and g2 of the resulting generating function.

A further generalization of the result obtained by Bourn and Willenbring in [10] was given

by Erickson in 2021, who generalized (2.6) to the d-dimensional EMD [24]. In similar fashion

to [10], where width-one matrices were essential to the computation of the 2-dimensional

EMD, Erickson was able to tie the computation of the d-dimensional EMD to width-one

tensors. Let d ∈ N>0, n = (n1, . . . , nd) and define the generating function [24, Section 5]

Hn(z, t) =
∞∑
s=0

 ∑
µ∈C(s,n1)×···×C(s,nd)

zEMDd(µ)

 ts,

where EMDd is the generalized EMD to d dimensions: let µ = (µ1, . . . , µd) with each

µi ∈ C(s, n), define as Ĉ is the generalized cost function

Ĉ(m1, . . . ,md) = min
i∈[d]

{∑
i ̸=j

|mi −mj|

}
,

then the d-dimensional EMD is defined as

EMDd(µ) =
∑

m∈[n]d
Ĉ(m)Jµ(m),

with Jµ a unique d-dimensional tensor whose coordinate hyperplane—sums agree with µ,

obtained through an application of the Robinson–Schenstedt–Knuth correspondence (RSK).

Erickson also provided a similar recursive formula to compute values of Hn:

Hn =

∑
A(−1)|A|−1Hn−e(A)

1− zĈ(n)t
, (2.9)

where A ⊆ [d] and e(A) an “indicator vector”, whose ith component is 1 if i ∈ A and 0

otherwise. This d-dimensional generalization of the EMD was the motivation for Chapter 5,

where we generalize the result for 2 dimensions found in Chapter 3 to higher dimensions.

In yet another fairly recent result, Frohmader and Volkmer [31] approached the problem

from the perspective of calculus – they define the EMD as a random variable on the prob-

ability simplex Pn × Pn and consider the expected value over all probability distributions.

8



Using this method, they managed to close the recursion found by Bourn and Willenbring

in [10, Theorem 1]:

EMD(n,n),1 =
22n−3(n− 1)!2

(2n− 1)!
(n− 1)!2.

Additionally, they provided a closed form for higher moments.

In the remainder of the first part of this dissertation, we provide more contributions to

the combinatorics of the EMD. We begin by reducing the problem of finding the mean EMD

to the problem of finding the sum of all n1×n2 matrices with support on a chain. This allows

us to apply the theory of abstract simplicial complexes, where ultimately a shelling yields

the desired result, see Theorem 3.20 in Chapter 3. We then use this result in Chapter 4 to

examine the EMD under different cost matrices, showing implementations of our approaches

in Sage (Python) and comparing experimental data. Finally, in Chapter 5 we generalize our

results – much like Erickson in [24] – to higher dimensional tensors, with the result following

from an application of multiset Eulerian polynomials.
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3 THE SUM OF ALL WIDTH–ONE MATRICES

The results found in the following chapter have been published in collaborative work with

William Q. Erickson in the European Journal of Combinatorics, see [28]. We additionally

provide results that are contained in the preprint, see [26]. In this chapter, we give an

alternative approach to finding the expected EMD for ordered pairs of compositions of s

into n parts. The idea builds on the linearity of the matrix trace: the EMD is the sum

of traces of matrix products, which can be simplified by taking the trace of the product of

the cost matrix with a sum of width-one matrices. Therefore, the problem of finding the

expected EMD can be reduced to the problem of finding the sum of all width-one matrices.

We provide three different formulas for this result – the first formula, found in Corollary 3.19,

while compact, is the least computationally efficient. The second and third formulas, found in

Theorems 3.20 and 3.23 respectively, complement each other: Theorem 3.23 is more efficient

under growing matrix dimensions, whereas the runtime of Theorem 3.20 is less affected by

growing matrix grand total. We show a comparison in Section 3.7.

3.1 Background and motivation

Throughout this chapter, we let n = (n1, n2) ∈ N2
>0 and T 1

n,s be the set of all n1 × n2

matrices consisting of nonnegative integer entries summing to s ∈ N>0, such that all nonzero

entries lie on a single path consisting of south and east steps (or equivalently, of steps in the

directions of the standard basis vectors e1 and e2). The goal of this chapter is to find the

sum of all such matrices, which we denote by Σ1
n,s.

As mentioned in Chapter 1, one goal of this work is to examine the EMD under different

cost matrices. This problem can be solved by using the linearity of the matrix trace:

Proposition 3.1. Let C be any n1 × n2 matrix with the Monge property. Then, the mean

10



EMD on C(s, n1)× C(s, n2) is
trace

(
CT · Σ1

n,s

)(
s+n1−1

n1

)(
s+n2−1

n2

)
Proof. We know that, for (λ, µ) ∈ C(s, n1)× C(s, n2):

EMD(λ, µ) = trace
(
CTTλ,µ

)
,

where Tλ,µ ∈ T 1
n,s and has row sums λ and columns sums µ. Summing over all compositions

(λ, µ) ∈ C(s, n1)× C(s, n2), we get

∑
(λ,µ)

EMD(λ, µ) =
∑

T∈T 1
n,s

trace
(
CTT

)

= trace

CT ·
∑

T∈T 1
n,s

T


= trace

(
CT · Σ1

n,s

)
.

Dividing this result by the number of ordered pairs of compositions, #(C(s, n1)×C(s, n2)) =

#C(s, n1) ·#C(s, n2) =
(
s+n1−1

n1

)(
s+n2−1

n2

)
, yields the mean EMD.

This simple “change of perspective” allows us to compute the mean EMD through the

computation of a single matrix product and trace, provided we have a formula for Σ1
n,s.

Furthermore, this simplified computation allows us to easily exchange the cost matrix C

used in the computation of the EMD – as stated in Proposition 3.1, we are now able to

compute the mean EMD under any cost matrix satisfying the Monge property.

3.2 Computing Σ1
n,s

Several approaches were found to compute the desired value Σ1
n,s. We dedicate the

remainder of this chapter to discuss these different results.
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3.2.1 Number of chains and number of compositions

Let us restrict Σ1
n,s to its individual entries – we refer to the (i, j)th entry as Σ1

n,s(i, j),

for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2. In this section, we will construct a first formula for Σ1
n,s(i, j)

based on the number of chains containing (i, j). We begin by recalling necessary definitions.

Let ⪯ be the product order, i.e.

(i, j) ⪯ (i′, j′) ⇐⇒ i ≤ i′ and j ≤ j′, (3.1)

then the set [n1] × [n2] together with ⪯ forms a partially–ordered set (poset), denoted as

([n1]× [n2],⪯). Analogously, we use ≺ for strict inequality, i.e.

(i, j) ≺ (i′, j′) ⇐⇒ i ≤ i′ and j ≤ j′ but not (i, j) = (i′, j′), (3.2)

as well as ⪰ and ≻ for the respective opposites. We recall as a chain S ⊆ ([n1] × [n2],⪯)

any subset of pairwise comparable elements

S = s1 ⪯ s2 ⪯ · · · ⪯ s#S.

An antichain is conversely a subset of pairwise incomparable elements. For any chain S, we

refer to its cardinality #S as its length, and we will refer to chains of length ℓ as ℓ-chains.

We use (i, j) ⪯ S or (i, j) ≺ S to indicate that (i, j) ⪯ (s1, s2) or (i, j) ≺ (s1, s2) for all

(s1, s2) ∈ S.

Additionally, we recall that the support of a matrix is the index set of its nonzero entries,

i.e. if M ∈ Nn1×n2
>0 , then the support of M is

sup(M) = {(i, j) |Mij ̸= 0} .

Thus, a width–one matrix is a matrix whose support is a chain in the poset ([x] × [y],⪯).

Equivalently, the support of a width–one matrix contains no antichain with length greater

than 1.

The key to the first result lies in the following definition, which allows to reduce the

problem of finding Σ1
n,s to the problem of finding chains in the poset ([n1]× [n2],⪯).
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Definition 3.2. For n = (n1, n2), we define as C(i, j, ℓ) the number of ℓ-chains in the poset

([n1]× [n2],⪯) that contain (i, j).

Proposition 3.3. For n = (n1, n2), the (i, j)th entry of Σ1
n,s is

Σ1
n,s(i, j) =

n1+n2−1∑
ℓ=1

(
s

ℓ

)
C(i, j, ℓ). (3.3)

Proof. For any index (i, j), with 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2, there are C(i, j, ℓ)·
(
s−1
ℓ−1

)
different

matrices T ∈ T 1
n,s contributing to Σ1

n,s(i, j), with each ℓ–chain occuring exactly
(
s−1
ℓ−1

)
times.

On average, each such matrix contributes s
ℓ
to Σ1

n,s(i, j). The binomial identity
(
s−1
ℓ−1

)
s
l
=
(
s
ℓ

)
yields the desired result.

Proposition 3.3 allows for the computation of Σ1
n,s provided we have a formula for

C(i, j, ℓ).

3.2.2 Computing C(i, j, ℓ)

The second part of the problem is to find the value C(i, j, ℓ). In a collaboration with

Erickson, we were able to find an improved solution to this problem through the theory of

abstract simplicial complexes, see [28], which is described in more detail in Section 3.4. First,

we present an altogether different approach, which relies on a recursive formula. For this,

we need to define three additional combinatorial objects counting chains.

Definition 3.4. Let

1. C≺(i, j, ℓ) be the number of ℓ-chains strictly northwest of (i, j), i.e. the number of

ℓ-chains S such that S ≺ (i, j);

2. C≻(i, j, ℓ) be the number of ℓ-chains strictly southeast of (i, j), i.e. the number of

ℓ-chains S such that (i, j) ≺ S and

3. C∗(i, j, ℓ) be the number of ℓ-chains that can be partitioned into S ′ ∪ S ′′ such that

S ′ ≺ (i, j) ≺ S ′′ (with #S ′ +#S ′′ = ℓ).
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Partitioning the number of chains into these disjoint subsets, we can compute C(i, j, ℓ)

as follows.

Theorem 3.5. The number of ℓ-chains containing (i, j) is

C(i, j, ℓ) = C≻(i, j, ℓ− 1) + C∗(i, j, ℓ− 1) + C≺(i, j, ℓ− 1).

Proof. Any chain S containing index (i, j) can be partitioned into the disjoint subsets S ′ ∪

{(i, j)} ∪ S ′′. Then S ′ and S ′′ must satisfy #S ′ + #S ′′ = #S − 1. We can partition the

set of chains containing (i, j) into the three disjoint sets described in the above definitions:

chains S ′ that are strictly northeast of (i, j), chains S ′′ that are strictly southwest of (i, j)

and all chains S ′∪S ′′. The union of these disjoint subsets yields the total number of ℓ-chains

containing (i, j), therefore summing the cardinalities yields the result.

Next, we provide enumerative formulas for the disjoint parts that make up Theorem 3.5.

Lemma 3.6. We can compute C≺(i, j, ℓ) as

C≺(i, j, ℓ) =
i∑

r=1

j∑
c=1

1(r,c)̸=(i,j)C≺(r, c, ℓ− 1) (3.4)

with C≺(i, j, ℓ) = 0 if ℓ < 0, i < 1 or j < 1 and C≺(i, j, ℓ) = 1 if ℓ = 0.

Proof. Every chain C ending at (i′, j′) ≺ (i, j) can be expressed as C ′∪ (i′, j′), for C ′ a chain

ending northeast of (i′, j′). Recursing on all possible chains C ′ yields the desired result.

Lemma 3.7. We can compute C≻(i, j, ℓ) as

C≻(i, j, ℓ) =

n1∑
r=i

n2∑
c=j

1(r,c)̸=(i,j)C≻(r, c, ℓ− 1) (3.5)

with C≻(i, j, ℓ) = 0 if ℓ < 0, i < 1 or j < 1 and C≻(i, j, ℓ) = 1 if ℓ = 0.

Proof. The argument functions analogously to that of Lemma 3.6.

Lemma 3.8. The value of C∗(i, j, ℓ) satisfies

C∗(i, j, ℓ) =
ℓ−1∑
ℓ′=1

C≺(i, j, ℓ
′) · C≻(i, j, ℓ− ℓ′ − 1). (3.6)
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Proof. Following the argument given in the proof of Theorem 3.5, we are counting chains

that we can partition into S ′ ≺ (i, j) ≺ S ′′. Since the union of any such chains S ′ ∪ S ′′ is

again a chain, the result follows from summing over all possible different lengths for S ′ and

S ′′.

This recursive expression for C(i, j, ℓ) completes our formula for Σ1
n,s. However, this

approach can be simplified when approached from the perspective of abstract simplicial

complexes. As we see in the next section (and in [26]), the theory of simplicial complexes

allows us to avoid the above recursion.

3.3 Abstract simplicial complexes

We start by giving the definition of abstract simplicial complexes. This exposition is

standard and follows the works [12, 44].

Definition 3.9. Let ∆ be a collection of sets such that

• ∅ ∈ ∆, and

• for all τ ∈ ∆ and δ ⊆ τ , δ ∈ ∆.

Then we call ∆ an abstract simplicial complex.

In other words, an abstract simplicial complex is a collection of sets that is closed under

subsets. Elements of a complex are referred to as faces. The dimension of a face is one less

than its cardinality, and the dimension of a complex is the maximum of the dimension of

its faces. Zero-dimensional faces are referred to as vertices, one-dimensional faces are called

edges. A maximal face, i.e. a face that is not the subset of another face, is called a facet.

Example 3.10. A standard example is the set of vertices, edges and faces of an octahedron,

see Figure 1. The conditions that make the octahedron an abstract simplicial complex can

easily be observed – any face consists of three edges, each which in turn are made up of a

pair of vertices.

15



A

B

C

D

E

F

Figure 1: The octahedron.

The following definitions allow for characterizations of abstract simplicial complexes.

Definition 3.11 (f -vector). Let ∆ be an abstract simplicial complex of dimension n − 1.

Then, we denote by fi the number of faces of ∆ that have dimension i. The f-vector is:

f = (f−1, f0, f1, . . . , fn−1),

where f−1 = 1 because ∅ ∈ ∆.

Remark. Sometimes, it is convenient to speak in terms of the f -polynomial, defined as

f∆(t) =
n∑

i=0

fi−1t
i.

Definition 3.12 (h-polynomial). The h-polynomial of a simplicial complex ∆ is defined as

h∆(t) :=
n∑

i=0

hit
i =

n∑
i=0

fi−1t
i(1− t)n−i. (3.7)

The h-vector is obtained by simply reading the coefficients of the h-polynomial:

h = ([t0]h∆(t), [t
1]h∆(t), . . . , [t

n]h∆(t)).

Remark. The identity in equation (3.7) implies that we can also retrieve the f -vector from

the h-vector through

fj−1 =

j∑
i=0

(
n− i

j − i

)
hi, (3.8)

and the h-vector from the f -vector through

hj =

j∑
i=0

(−1)j−i

(
n− i

j − i

)
fi−1.

For more details on abstract simplicial complexes, see [12, Ch. 5].
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3.3.1 Shelling

An important property of an abstract simplicial complex is shellability. Shelling a simpli-

cial complex provides an “alternative” way of obtaining the h-vector, and thus the f -vector.

As we will see in Corollary 3.17, shelling ultimately allows us to efficiently find C(i, j, ℓ). We

begin by stating this required definition.

Definition 3.13. Let ∆ be a simplicial complex with facets F1, . . . , Fn. A complex ∆ is

called pure, if all its facets have the same dimension, i.e.

dimF1 = · · · = dimFn.

Next, we give the definition and an example of shelling, following the exposition of

[12, 26, 44].

Definition 3.14 (Shelling). Let ∆ be a pure simplicial complex with facets F1, . . . , Fn. A

shelling of ∆ is any ordering of its facets F1, . . . , Fn, such that each Fi contains a minimal

element R(Fi) that is not contained in the simplicial complex generated by F1, . . . , Fi−1. A

complex is called shellable if a shelling exists.

Fundamental to our work is the fact that we can recover the h-vector of a shellable

complex ∆ with faces F1, . . . , Fn through

hℓ = #{i | #R(Fi) = ℓ}. (3.9)

In other words, the ℓth element of the h-vector of a (shellable) simplicial complex counts the

number of facets whose restrictions have size ℓ.

We illustrate the concept of shelling at the example of the octahedron, which is also

stated in [26].

Example 3.15. Recall the abstract simplicial complex given by the boundary of an octa-

hedron (vertices, edges and faces) as shown in Figure 1.
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To show that this complex is shellable, it suffices to find an ordering F1, . . . , F8 of its eight

facets, such that each Fi contains a unique minimal element R(Fi) that is not contained in

the subcomplex generated by F1, . . . , Fi−1. Note that when i = 1, this subcomplex is the

empty set. Below, we exhibit a shelling of the boundary of the octahedron:

F1 = {A,D,E}. In general, the restriction of F1 is R(F1) = ∅.

F2 = {A,D, F}. We have R(F2) = {F}.

F3 = {C,D,E}. We have R(F3) = {C}.

F4 = {A,B,E}. We have R(F4) = {B}.

F5 = {A,B, F}. We have R(F5) = {A,F}.

F6 = {B,C,E}. We have R(F6) = {B,C}.

F7 = {C,D, F}. We have R(F7) = {F,C} .

F8 = {B,C, F}. We have R(F8) = {B,C, F}.

By (3.9), this gives the h-vector (1, 3, 3, 1). Applying (3.8), we retrieve the f -vector (6, 12, 8).

Indeed, the boundary of octahedron contains 6 vertices, 12 edges, and 8 faces (i.e. facets).

Next, we define the order complex and walk through the crucial process of shelling the

order complex, which leads to the desired result C(i, j, ℓ).
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3.3.2 The order complex Πn1,n2

A specific simplicial complex that is crucial to our work is the order complex, which we

define in this section. Let ⪯ be the product order defined in (3.1). Then, the order complex

Πn on n = (n1, n2) is defined as the set of all chains in the poset ([n1]× [n2],⪯). The facets

of Πn are then the maximal chains in [n1]× [n2], which all have dimension n1 + n2 − 1. As

we see in the next section, the f -vector of Πn will provide a formula for C(i, j, ℓ).

A shelling of the order complex

Let n = (n1, n2) and Πn the order complex on [n1] × [n2]. We recall, that facets of the

order complex are maximal chains of the partially ordered set ([n1] × [n2],⪯), with ⪯ the

product order defined in (3.1).

We can visualize a facet of Πn in the relevant context of x×y matrices as seen in Figure 2.

(1, 1)

(5, 7)

Figure 2: Example of a facet F of Π5,7, or equivalently, a maximal chain in ([5]× [7],⪯).

From the fact that each maximal chain in the poset has the same length, we know that

the complex Πn is pure. To show that the complex is shellable, we have to find a shelling

order satisfying (3.14). To accomplish this, we restrict each maximal chain to the set of its

⌞-corners, as shown in Figure 3. For a facet F , we have

R(F ) = {(x, y) ∈ F | (x− 1, y) ∈ F and (x, y + 1) ∈ F} . (3.10)

Following (3.9), we can obtain the h-vector of Πn by counting the number of chains that

contain k ⌞-corners. To count the number of facets whose restricted size is k, we can see that

in a maximal chain, we have exactly n1 − 1 rows from which we can choose the “top”-part

of the ⌞-corner, and n2 − 1 columns for the “right” end.
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(1, 1)

(5, 7)

Figure 3: Example of a facet F of Π5,7, or equivalently, a maximal chain in ([5] × [7],⪯). The
restriction of F , R(F), is given by coordinates highlighted with red circles.

Proposition 3.16. Let Πn be the order complex with n = (n1, n2). Then

hk =

(
n1 − 1

k

)(
n2 − 1

k

)
is the h-vector belonging to Πn.

Proof. Let F be a facet in Πn such that #R(F) = ℓ. That is, F is a maximal chain in Πn

with ℓ corners:

R(F ) = {(a1, b1), . . . , (aℓ, bℓ)} , 2 ≤ a1 < · · · < aℓ ≤ n1 and 1 ≤ bi < · · · < bℓ ≤ n2 − 1.

Therefore, we have
(
n1−1

ℓ

)
choices for the ai and

(
n2−1

ℓ

)
choices for the bi to determine a

unique set R(F). The lemma then follows from (3.9).

Corollary 3.17. The f -vector of Πn has entries

fℓ =
ℓ∑

k=0

(
n1 + n2 − k − 1

ℓ− k

)(
n1 − 1

k

)(
n2 − 1

k

)
,

and the f -polynomial is f(t) =
∑n1+n2−1

i=0 fit
i.

3.4 First explicit formula for Σ1
n,s

To improve notation, we proceed as in [26] and define the polynomials:

gij = gij(t) = fi,j−1(t) + fi−1,j(t)− fi−1,j−1(t) (3.11)

and for fixed dimensions n = (n1, n2) we let

gij = gn1+i−1,n2+j−1. (3.12)
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Now, we are able to give a formula for C(i, j, ℓ), which we then use to provide a first explicit

formula for Σ1
n,s.

Theorem 3.18. Let Πn be the order complex with n = (n1, n2). Then, the number of

ℓ-chains containing any index (i, j) are recorded as the coefficient

C(i, j, ℓ) = [tℓ−1]gijgij.

Proof. Any chain S containing index (i, j) can be split into the union of three distinct subsets:

S ′ ∪ (i, j) ∪ S ′′,

where S ′ is a chain strictly “north” and “west” of (i, j) and S ′′ is a chain strictly “south” and

“east” of (i, j). The polynomial fi−1,j counts all chains north of (i, j). The polymial fi,j−1

counts all chains west of (i, j). Adding those together, we are double counting all chains

strictly northwest of (i, j), which we can omit by using inclusion-exclusion via

gij = fi,j−1 + fi−1,j − fi−1,j−1.

Analogously, the polynomial gij counts all chains south and east of (i, j). Every chain

beginning in the northwest of (i, j) forms a valid chain through (i, j) with any chain in the

southeast of (i, j), yielding gijgij options. Then the number of ℓ-chains containing (i, j) is

the coefficient of tℓ−1, since (i, j) itself is not accounted for in the length of chains computed

by gijgij.

Now, having found a formula for C(i, j, ℓ), we are able to give a first explicit formula for

Σ1
n,s.

Corollary 3.19. For n = (x, y), the (i, j)th entry of the sum of all width-one, nonnegative

integer matrices with grand total s is given by

Σ1
n,s(i, j) =

n1+n2−1∑
ℓ=1

(
s

ℓ

)
[tℓ−1]gijgij.

Proof. Follows from Proposition 3.3 and Theorem 3.18.
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3.5 Alternative approach through Stanley–Reisner theory

A further result we obtained in [26] was a different, more computationally viable, formula

for the value Σ1
n,s. In this section, the exposition follows [70]. Let K be a field, and

K[X] := K[xij | (i, j) ∈ Πn] be the polynomial ring in variables xi,j. For any monomial

m ∈ K[X], the support of m is the set of ordered pairs (i, j) ∈ Πn, such that xij divides m.

Let I be the prime ideal containing all nonfaces of Πn, i.e. for the product order ⪯:

I := ⟨xi′jxj′i | i < i′, j < j′⟩.

Then, a basis for I is given by monomials who have width greater than 1. The Stanley–

Reisner ring is the quotient

K[Πn] := K[X]/I.

Clearly, K[Πn] has a basis that consists of width-one monomials, and thus monomials whose

support is a chain in Πn. Moreover, since I is generated by homogeneous monomials, the

quotientK[Πn] has a natural grading by degree. We denote byK[Πn]s the graded component

consisting of homogeneous polynomials of degree s. Reading each matrix as the exponent

matrix of a monomial in K[Πn]s leads us to a bijection

T 1
n,s ↔ K−basis of K[Πn]

T ↔
∏
i,j

x
Tij

ij .

This implies, that ∏
m∈K[Πn]s

m =
∏

(i,j)∈Πn

x
Σ1

n,s(i,j)

ij . (3.13)

Recall the shelling found by restricting each facet F (maximal chain) in Πn to the set of its

⌞-corners, i.e. R(F ) = {(i, j) | (i − 1, j) ∈ F and (i, j + 1) ∈ F}. This shelling induces a

Stanley decomposition on K[Πn]:

K[Πn] =
⊕
F

K[F ]xR(F), (3.14)
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with K[F ] = K[xij | (i, j) ∈ F ] and xR(F) =
∏

(i,j)∈R(F) xij. The crucial observation here is

that each monomial of K[Πn] lies in exactly one summand of (3.14). Since each component

consists of homogeneous polynomials, we can further decompose into

K[Πn]s =
⊕
k

⊕
F :#R(F )=k

xR(F )K[Πn]s−k. (3.15)

3.5.1 Second formula for Σ1
n,s

We present the second formula for Σ1
n,s through an application of Stanley–Reisner theory.

Theorem 3.20. For s, n1, n2 ∈ N>0 and n = (x, y), we have

Σ1
n,s(i, j) =

min {s,n1,n2}−1∑
k=0

(
n1 + n2 + s− k − 2

n1 + n2 − 1

) k∑
ℓ=0

(
i− 1

ℓ

)(
j − 1

ℓ

)(
n1 − i

k − ℓ

)(
n2 − j

k − ℓ

)
.

Analagous to [28], we facilitate the proof of Theorem 3.20 by listing several counting

lemmas.

Lemma 3.21. Let (i, j) ∈ Πn, and let F ∋ (i, j) be a facet of Πn. Then
(
n1+n2+s−k−2

n1+n2−1

)
equals

the exponent of xij in the product of all monomials in

xijxR(F )\{(i,j)} K[F ]s−k−1. (3.16)

Proof. It suffices to show that(
n1 + n2 + s− k − 2

n1 + n2 − 1

)
=(

# monomials in (3.16)
)(

avg. exponent of xij in each monomial
)
.

The number of monomials in (3.16) equals the number of monomials in K[F ]s−k−1, which is

the number of weak compositions of the degree s−k−1 into #F many parts. Thus, recalling

that #F = n1 + n2 − 1 for any facet F of Πn, and using the elementary formula (5.6), we

have

# monomials in (3.16) =

(
s− k − 1 + (n1 + n2 − 1)− 1

(n1 + n2 − 1)− 1

)
=

(
n1 + n2 + s− k − 3

n1 + n2 − 2

)
.

(3.17)
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The average exponent of xij, taken over all the monomials in K[F ]s−k−1, equals the degree

s − k − 1 divided by the number #F of variables. Adding 1 to this average to account for

the factor of xij present in (3.16), we obtain

average exponent of xij in each monomial = 1+
s− k − 1

n1 + n2 − 1
=

n1 + n2 + s− k − 2

n1 + n2 − 1
. (3.18)

Multiplying the expressions in (3.17) and (3.18), we obtain(
n1 + n2 + s− k − 3

n1 + n2 − 2

)
· n1 + n2 + s− k − 2

n1 + n2 − 1
=

(
n1 + n2 + s− k − 2

n1 + n2 − 1

)
,

as desired.

Lemma 3.22. Let (i, j) ∈ Πn. Then

k∑
ℓ=0

(
i− 1

ℓ

)(
j − 1

ℓ

)(
n1 − i

k − ℓ

)(
n2 − j

k − ℓ

)

equals the number of facets F ∋ (i, j) of Πn such that #
(
R(F ) \ {(i, j)}

)
= k.

Proof. Every facet F ∋ (i, j) of Πn is the union of two saturated chains

F ′ : (1, 1) ⪯ · · · ⪯ (i, j) and F ′′ : (i, j) ⪯ · · · ⪯ (x, y),

which intersect only at (i, j). Clearly F ′ can be any facet of Π(i,j), viewed as a subposet

of Πn. Likewise, F ′′ can be any facet of Πn1−i+1,n2−j+1, viewed as a subposet of Πn after

translating coordinates. Since (i, j) is either the maximal or minimal element of these two

subposets, it cannot occur as an element of R(F ′) or of R(F ′′). Therefore #(R(F )\{(i, j)}) =

R(F ′) + R(F ′′). By (3.9), we thus have

hij(t)hn1−i+1,n2−j+1(t) =

(∑
F ′

t#R(F ′)

)(∑
F ′′

t#R(F ′′)

)

=
∑
F ′,F ′′

t#R(F ′)+#R(F ′′)

=
∑

F∋(i,j)

t#(R(F )\{(i,j)}),

24



where the sums range over facets F , F ′, and F ′′ of Πn, Π(i,j), and Πn1−i+1,n2−j+1, respectively.

Therefore the number of facets described in the lemma equals the coefficient of tk in the

following product, which we expand via Lemma 3.16:

hij(t)hn1+1−i,n2+1−j(t) =min{i−1, j−1}∑
ℓ=0

(
i− 1

ℓ

)(
j − 1

ℓ

)
tℓ

min{n1−i, n2−j}∑
m=0

(
n1 − i

m

)(
n2 − j

m

)
tm

 .

The coefficient of tk in this expansion equals
∑

ℓ+m=k

(
i−1
ℓ

)(
j−1
ℓ

)(
n1−i
m

)(
n2−j
m

)
. Upon substi-

tuting k − ℓ for m, the proof is complete.

Proof of Theorem 3.20. By (3.15) and (3.13), we know that Σ1
n,s(i, j) equals the exponent

of xij in the product of all monomials in the graded component

K[Πn]s =

min{s, n1−1, n2−1}⊕
k=0

⊕
F :

#R(F )=k

xR(F )K[F ]s−k, (3.19)

where the inside sum ranges over the facets F of Πn. But the only monomials contributing

to this exponent are those divisible by xij. Hence we may ignore all summands in (3.19)

such that (i, j) ̸∈ F . If (i, j) ∈ F , then the subspace of K[F ]s−k spanned by the monomials

divisible by xij is

xij K[F ]s−k−1.

Then since (i, j) may or may not lie in R(F ), the subspace of xR(F )K[F ]s−k spanned by

monomials divisible by xij is

xijxR(F )\{(i,j)}K[F ]s−k−1.

Combining this with (3.19), we conclude that Σ1
n,s(i, j) equals the exponent of xij in the

product of all monomials in

min{s−1, n1−1, n2−1}⊕
k=0

⊕
F∋(i,j):

#(R(F )\{(i,j)})=k

xijxR(F )\{(i,j)}K[F ]s−k−1. (3.20)
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Applying Lemma 3.21 to (3.20), we see that the desired exponent of xij equals

Σ1
n,s(i, j) =

min{n1,n2,s}−1∑
k=0

∑
F∋(i,j):

#(R(F )\{(i,j)})=k

(
n1 + n2 + s− k − 2

n1 + n2 − 1

)

=

min{n1,n2,s}−1∑
k=0

(
n1 + n2 + s− k − 2

n1 + n2 − 1

)
·#
{
F ∋ (i, j) : #(R(F ) \ {(i, j)}) = k

}
,

and we have already computed the second factor in Lemma 3.22.

3.6 Third formula through tableaux and hypergeometric series

In this section, we present a third formula for Σ1
n,s which relies on Young tableaux and

reveals an identity for the hypergeometric series 4F3. As we see in Section 3.7, the different

formulas we present complement each other well, as they are better suited for different

contexts. We begin with an exposition on hypergeometric series, following [28] verbatim.

3.6.1 Hypergeometric series

We recall the (ordinary, or Gaussian) hypergeometric series

2F1

[
a, b

c
; z

]
:=

∞∑
k=0

(a)k(b)k
(c)k

zk

k!
,

where (a)k := a(a+ 1) · · · (a+ k − 1) is the Pochhammer symbol for the rising factorial. In

the special case c = 1, it is easy to see that

2F1

[
a, b

1
; z

]
=

∞∑
k=0

(a)k
k!

(b)k
k!

zk =
∞∑
k=0

(
a+ k − 1

k

)(
b+ k − 1

k

)
zk, (3.21)

where the second equality holds only if a, b ∈ N. The generalized hypergeometric series pFq

is defined analogously:

pFq

[
a1, . . . , ap
b1, . . . , bq

; z

]
:=

∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k!
.

Since our interest in this section is purely combinatorial, we disregard issues of convergence

and treat pFq as a formal power series. Note that if some bj is a nonpositive integer, then
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infinitely many of the coefficients are undefined. But if, for example, some ai is also a non-

positive integer with ai ≥ bj, then the series terminates before these undefined coefficients,

and so the series as a whole is still defined (and is a polynomial in z).

The discovery of identities involving hypergeometric series is a longstanding, and yet

still quite active, research area within combinatorics; see the books [23, Ch. II] and [58], for

example. We will appeal to the following identity 4.3(14) in [23, p. 187], which expresses the

convolution of two ordinary hypergeometric series:

2F1

[
a, b

c
;αz

]
2F1

[
a′, b′

c′
; βz

]
=

∞∑
k=0

(a)k(b)k
(c)k

(αz)k

k!
4F3

[
a′, b′, 1− k − c, −k

c′, 1− k − a, 1− k − b
; β/α

]
.

We will encounter the specialization where c = c′ = α = β = 1, which yields

2F1

[
a, b

1
; z

]
2F1

[
a′, b′

1
; z

]
=

∞∑
k=0

(a)k
k!

(b)k
k!︸ ︷︷ ︸

(a+k−1
k )(b+k−1

k )
if a, b ∈ N

4F3

[
a′, b′, −k, −k

1, 1− k − a, 1− k − b
; 1

]
zk. (3.22)

3.6.2 Main result, third version

The Robinson-Schenstedt-Knuth correspondence, short RSK, provides a bijection be-

tween ordered pairs of semistandard Young tableaux and arrays with 2 rows, often referred

to as biwords. For any nonnegative integer matrix T of dimensions n, we can create a biword

by listing in the first row the row-index of each positive entry in T and in the second row

the column-index of each positive entry in T ; listing the indices i and j in the biword Tij

consecutive times. Therefore, RSK provides a bijection between nonnegative integer matri-

ces and pairs of semistandard Young tableaux. Following the construction of Knuth in [49],

we see that the width of the matrix corresponds to the number of rows in both tableaux –

therefore, every T ∈ T 1
n,s corresponds to a pair of one–row semistandard Young tableaux.

Theorem 3.23. Let n = (n1, n2). Then, for all 1 ≤ i ≤ x, 1 ≤ j ≤ y, the (i, j) entry of

Σ1
n,s is

Σ1
n,s(i, j) =

(
i+ s− 2

s− 1

)(
j + s− 2

s− 1

)
4F3

[
n1 − i+ 1, n2 − j + 1, 1− s, 1− s

1, 2− s− i, 2− s− j
; 1

]
.
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Proof. For each T ∈ T 1
n,s with n = (n1, n2), consider its corresponding biword, in which each

column i
j contributes 1 to the (i, j) entry in T . Hence the entry Σ1

n,s(i, j) equals the total

number of occurrences of the column i
j within all possible biwords.

Suppose that the ℓth column of a biword is i
j . In the top row, this implies that the ℓ− 1

entries to the left of i lie in the set {1, . . . , i}, and the s− ℓ entries to the right of i lie in the

set {i, i+1, . . . , n}, which contains n+1− i elements. Hence by (5.6), the following product

of binomial coefficients equals the number of ways to fill the top row of the biword such that

the ℓth entry is i: (
(ℓ− 1) + i− 1

ℓ− 1

)(
(s− ℓ) + (n1 + 1− i)− 1

s− ℓ

)
.

Using the same argument for the bottom row of the biword (replacing i by j), and then

multiplying the top and bottom results, we conclude that the number of biwords with i
j as

the ℓth column equals(
i+ ℓ− 2

ℓ− 1

)(
j + ℓ− 2

ℓ− 1

)(
n1 − i+ s− ℓ

s− ℓ

)(
n2 − j + s− ℓ

s− ℓ

)
.

To obtain the number of times i
j occurs as any column in a biword, we sum over all columns

ℓ = 1, . . . , d. Following this with the substitution k = ℓ− 1, we have

Σ1
n,s(i, j) =

s−1∑
k=0

(
i+ k − 1

k

)(
j + k − 1

k

)
︸ ︷︷ ︸

coeff. of zk in

2F1[ i,j1 ;z]

(
n1 − i+ s− 1− k

s− 1− k

)(
n2 − j + s− 1− k

s− 1− k

)
︸ ︷︷ ︸

coeff. of z(s−1)−k in

2F1[x−i+1, y−j+1
1

;z]

,

where we have recognized the two coefficients from the hypergeometric series in (3.21). This

makes it clear that Σ1
n,s(i, j) is the coefficient of zs−1 in the product

2F1

[
i, j

1
; z

]
2F1

[
n1 − i+ 1, n2 − j + 1

1
; z

]

=
∞∑
k=0

(
i+ k − 1

k

)(
j + k − 1

k

)
4F3

[
n1 − i+ 1, n2 − j + 1, −k, −k

1, 1− k − i, 1− k − j
; 1

]
zk,

where the equality is just the identity (3.22). Reading off the coefficient for k = s − 1, we

obtain the expression in the theorem.
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3.7 Values of Σ1
n,s and plots

In this section, we show some values of Σ1
n,s for n = (5, 5) and varying s, as well as

compare the time efficiency of our different approaches. We begin by listing values of Σ(5,5),d:

Σ1
(5,5),1 =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1



Σ1
(5,5),2 =


26 22 18 14 10
22 20 18 16 14
18 18 18 18 18
14 16 18 20 22
10 14 18 22 26



Σ1
(5,5),3 =


251 193 141 95 55
193 173 150 124 95
141 150 153 150 141
95 124 150 173 193
55 95 141 193 251



Σ1
(5,5),4 =


1476 1064 720 440 220
1064 960 816 640 440
720 816 848 816 720
440 640 816 960 1064
220 440 720 1064 1476



Σ1
(5,5),5 =


6376 4385 2805 1595 715
4385 4006 3360 2530 1595
2805 3360 3546 3360 2805
1595 2530 3360 4006 4385
715 1595 2805 4385 6376



Σ1
(5,5),6 =


22252 14762 9042 4862 2002
14762 13672 11352 8272 4862
9042 11352 12132 11352 9042
4862 8272 11352 13672 14762
2002 4862 9042 14762 22252



Σ1
(5,5),7 =


66352 42779 25311 13013 5005
42779 40150 33066 23452 13013
25311 33066 35706 33066 25311
13013 23452 33066 40150 42779
5005 13013 25311 42779 66352


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Σ1
(5,5),8 =


175252 110396 63492 31460 11440
110396 104896 85800 59488 31460
63492 85800 93456 85800 63492
31460 59488 85800 104896 110396
11440 31460 63492 110396 175252



To better visualize Σ1
n,s, we show contour plots in Figure 4.

(a) Contour plot of Σ1
(5,5),30. Contour plot of Σ1

(30,30),10000.

Figure 4: Contour plots of Σ1
n,s. Blue corresponds to lower level curves, yellow to higher level

curves. In Σ1
(5,5),30, the entries lie in the interval [1.6 × 108, 6.7 × 109]; in Σ1

(30,30),10000 the entries

lie in the interval [8.6× 10155, 2.4× 10172].

Finally, we examine the runtime of the formulas found for Σ1
n,s in Theorem 3.20 and 3.23

under varying parameters. We restrict our examination to square matrices, i.e. we let

n = (n, n). In one experiment, we fix the value of s and let n grow. Conversely, afterwards

we will fix n and inspect the runtime for growing s.
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(a) (b)

Figure 5: Comparison of computing time with respect to the parameters s and n. In 5a, we fix
s = 30 and compare the runtime (in seconds) of both approaches for varying n. In 5b, we fix n = 5
and let d vary.

In Figure 5, we can see that Theorem 3.20 provides a formula that is almost immune to

changes in the grand total s of the matrices that are summed. On the other hand, increasing

the dimensions has a large effect on the runtime of the formula. The behavior is exactly

opposite for Theorem 3.23. Generally, our results provide an efficient formula depending on

the circumstance.
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4 GENERALIZING THE COST MATRIX

When working with the EMD, it is natural to question the choice of the cost matrix

C. While intuitive, and justified in some applications, one can imagine that there exist

applications with vastly different costs of “moving earth”.

A convenient solution for this problem presents itself through Proposition 3.1 in Chapter 3:

EMDn,s =
trace

(
CT · Σ1

n,s

)(
s+n1−1

x

)(
s+n2−1

y

) . (4.1)

Reducing the expected EMD to a single multiplication with C, we are able to use our results

for Σ1
n,s to examine the behavior of the EMD under different cost matrices. However, as we

recall from Chapter 3, in applying (4.1) we make the assumption that the cost matrix C

satisfies the Monge property. If we wish to compute the expected EMD under a cost matrix

that does not satisfy the Monge property, we have to resort to its original definition as a

linear programming problem. In necessary cases throughout this chapter, we add a subscript

C to EMDC to indicate the choice of cost matrix.

4.1 Cost matrices with Monge property

An elementary fact about Monge matrices is their convexity: given Monge matrices

M1,M2, any convex combination tM1 + (1 − t)M2 for all t ∈ [0, 1] is also a Monge matrix.

Therefore, to examine the EMD under different monge matrices of dimensions n = (n1, n2),

we define the Monge polytope Mn,s for some s ∈ N>0 through the inequalities:

Mij ≥ 0 (4.2)∑
i,j

Mij = s (4.3)

Mij +Mi′j′ ≤Mi′j +Mij′ for all 1 ≤ i < i′ ≤ n1 and 1 ≤ j < j′ ≤ n2. (4.4)

The Monge polytope is embedded in Rn1n2 . Each point p ∈ Rn1n2 in the polytope is also

a Monge matrix m ∈ Rn1×n2 . The Monge polytope itself, despite living in Rn1n2 , lives in
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(n1n2 − 1)-dimensional space due to constraints on 4-tuples of points. See [25] for more

details on the Monge polytope. A similar structure, the cone of Monge matrices, has been

examined by Rudolf in 1995, see [61]. As the name suggests, the cone of Monge matrices

can be obtained by removing condition (4.3). A structure such as the Monge polytope

allows us to “reverse” the problem of computing the EMD: instead of fixing a cost matrix

and computing the EMD for different ordered pairs of compositions, we can fix a pair of

compositions and compute the EMD for different cost matrices.

An example of the Monge polytope can be seen in Figure 6, where we restrict the grand

total to s = 2 (purely to avoid noninteger vertices) and the dimensions to n = (2, 2). The

resulting Monge polytope is 3-dimensional; its facets are 2 trapezoids, 2 triangles and 1

rectangle.

Figure 6: The Monge polytope with grand total 2 and dimensions n = (2, 2).

Listing 4.1 shows the Python code used to obtain the Monge polytope. In the code, we

make use of the Sage-provided linear programming class MixedIntegerLinearProgram. Al-

ternatively, for users who wish to use pure Python, libraries such as SciPy come with linear

programming functionality, see [62].
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1 def Monge_Polytope(dimensions , grand_total):

2 rows , cols = dimensions

3 problem = MixedIntegerLinearProgram(maximization=False)

4 points = problem.new_variable(real=True , nonnegative=True)

5

6 # add monge condition: c(i,j)+c(i’,j ’) <= c(i’,j)+c(i,j ’) for all

i<i’ and j<j’

7 for row1 in range(rows):

8 for row2 in range(row1+1,rows):

9 for col1 in range(cols):

10 for col2 in range(col1+1, cols):

11 problem.add_constraint(points[row1 ,col1] - points[row1 ,

col2] - points[row2 ,col1] + points[row2 ,col2] <= 0)

12

13

14 # restrict grand total to obtain a polytope instead of a cone

15 problem.add_constraint(sum(points[i,j] for i in range(rows) for j

in range(cols))== grand_total)

16

17 return problem.polyhedron ()

Listing 4.1: Python code to compute the Monge polytope using linear programming.

To compute the EMD under different cost matrices with Monge property, we focus on

the vertices of the Monge polytope. For the polytope shown in Figure 6, in which each point

has grand total s = 2 and is n2 = 4-dimensional, we have vertices

V = {(1, 0, 1, 0) , (1, 1, 0, 0) , (0, 2, 0, 0) , (0, 0, 2, 0) , (0, 1, 0, 1) , (0, 0, 1, 1)} .

The corresponding 2× 2 Monge matrices are{[
1 0
1 0

]
,

[
1 1
0 0

]
,

[
0 2
0 0

]
,

[
0 0
2 0

]
,

[
0 1
0 1

]
,

[
0 0
1 1

]}
. (4.5)

Using our results from Chapter 3, we can see that the sum of all width-one matrices with

dimensions 2×2 and grand total 2 is Σ1
(2,2),2 =

[
5 4
4 5

]
. We can now compute the mean EMD
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under any given (Monge) cost matrix C as

EMDC =

trace

(
CT ·

[
5 4
4 5

])
(
3
2

)2 .

The previously used cost matrix Cij = |i − j| yields the mean EMD1 of 8
9
. Examining

the vertices of the Monge polytope as alternative cost matrices, we find that the only cost

matrices which yield the same result are the two matrices in which the grand total is contained

at a single index,

[
0 2
0 0

]
and

[
0 0
2 0

]
. When used as cost matrices, all other matrices in 4.5

yield a mean EMD of 1.

A perspective assumed in [10, 24, 52], which shows an application of the EMD, was that

of grade distributions. Suppose we teach a class with 30 students, each of which will receive

one of the 5 grades A, B, C, D or F . Then, to compare the performance of our class on,

say, two different exams, we might use the EMD. For that reason, in [10, 52], the authors

computed the mean EMD of the set C(30, 5) × C(30, 5) – interpreting compositions of 30

into 5 parts (or histograms with 30 units and 5 bins) as grade distributions of classes with

30 students and 5 grades. We assume the same perspective, and compute a mean EMD of

0.7304 over all ordered pairs of compositions of 30 into 5 parts. To compare this result to

the mean EMD yielded under cost defined by vertices of a Monge polytope, we first recall

the standard 5 × 5 cost matrix C with Cij = |i − j|. C has grand total 40, so we focus on

the Monge polytope M(5,5),40 which contains C. Computing M(5,5),40 in Sage, we see that

there are 42 vertices. The resulting values, in no particular order, are displayed in Figure 7.

1To compare this value to [10, §5.1], we need to unit normalize the mean EMD through division by
s(max {n1, n2} − 1), in this example division by 2.
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Figure 7: Mean EMD values resulting from all 42 cost matrices that are vertices ofM(5,5),40 (in no
particular order).

The value of the mean EMD has a large range – the minimal mean EMD with a value

of 2.1758 is found when the cost matrix is
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
40 0 0 0 0

 ,

that is, the entire grand total lies in the bottom left corner of the matrix. On the other

hand, the maximal mean EMD with a value of 31.3557 is found using the cost matrix
0 0 0 0 0
0 8 8 0 0
0 0 0 8 0
0 0 0 8 0
0 0 0 8 0

 .

Taken over all examined cost matrices, the “mean mean” EMD is 18.2952 with a variance

of 43.4421. We show a histogram of the distribution in Figure 8.
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Figure 8: Distribution of the mean EMD values under varying cost matrices.

After computing the EMD under general Monge cost matrices, we use the next section

to compute the EMD under non-Monge cost matrices, by returning to its definition as the

solution to a linear programming problem.
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4.2 Non-Monge cost matrices and linear programming

We begin by recalling the definition of the EMD as the solution of the Monge problem:

Minimize
n∑

i,j=1

CijTij,

subject to Tij ≥ 0 for all 1 ≤ i, j ≤ n,

and
n∑

j=1

Tij = λ(i) for each 1 ≤ i ≤ n,

and
n∑

i=1

Tij = µ(j) for each 1 ≤ j ≤ n.

This definition, although less efficient to execute, allows for the use of a truly general

cost matrix. In this section, we compute the (expected) EMD under different cost matrices

and compare results. The implementation of the linear programming algorithm is shown in

Listing 4.2.

To examine the EMD under a non-Monge cost matrix, we first require to choose a non-

Monge matrix. Let therefore G be an unweighted, circular graph, an example with 5 nodes

is shown in Figure 9.

Figure 9: An unweighted, circular graph with 5 nodes.

Alternatively, we provide the graph in the form of an adjacency matrix:

A =


0 1 0 0 0 · · · 0 1
1 0 1 0 0 · · · 0 0
0 1 0 1 0 · · · 0 0
...

...
...

...
...

. . .
...

...
1 0 0 0 0 · · · 1 0

 .
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We define the cost matrix C ′ as the distance matrix of G. For the graph in Figure 9, the

cost matrix is

C ′ :=


0 1 2 2 1
1 0 1 2 2
2 1 0 1 2
2 2 1 0 1
1 2 2 1 0

 .

The matrix C ′, as well as the distance matrix of a graph with an arbitrary number of

vertices, is clearly non-Monge – for an example of a 2×2 block breaking the Monge condition,

we refer to the upper right corner: C ′
14 + C ′

25 = 4, which is greater than C ′
15 + C ′

24 = 3. In

general, for a circular graph constructed in this way, we have C ′
1,n−1 +C ′

2,n > C ′
1,n +C ′

2,n−1.

Remark. To note the difference between C ′ and the earlier used 5 × 5 matrix C with

Cij = |i− j|, it suffices to examine which pair of histograms yields the largest EMD. Under

C, movement from 0 to 5 or vice versa is associated with the highest cost of 4. Under C ′,

however, the highest cost that can be incurred is 2, and it is not found by moving from 0 to 5.

If we focus on histograms with s units and d = 5 bins, the pair with the largest EMD under

C is clearly (λ, µ) with λ = (s, 0, 0, 0, 0) and µ = (0, 0, 0, 0, s). On the other hand, the largest

EMD under C ′ can be found, for example, by comparing (λ′, µ′) with λ′ = (s, 0, 0, 0, 0) and

µ′ = (0, 0, s, 0, 0).

With the goal of showing the difference between the linear programming–based approach

and the result in Chapter 3, we pick C ′ as our non–Monge cost matrix and compute the mean

EMD incurred by all ordered pairs of histograms with s = 10 units and d = 5 bins. Due to

the absence of an efficient formula for the linear programming approach, we are forced to

evaluate

EMDC′ =

∑
(λ,µ)∈C(15,5)2 EMDC′(λ, µ)(

14
10

) ≈ 7.3141.

We use the code in Listing 4.2 to compute the EMD under the cost matrix C ′.

This computation takes 645.2771 seconds, or almost 11 minutes. For comparison, com-

puting the mean EMD with the formula found in Chapter 3, we find a result much faster,
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in only 0.0004 seconds. However, as expected, we find the wrong result:

EMDC′ =
trace(CTΣ1

(5,5),15)(
14
10

) ≈ 8.9739.

1 def EMD_LP(hist1 , hist2 , C):

2 # normalize histograms

3 colSums = hist1

4 rowSums = hist2

5 bins = len(hist1)

6

7 # use sage classes for linear programming

8 problem = MixedIntegerLinearProgram(maximization=False)

9 transportPlan = problem.new_variable(real=True , nonnegative=True)

10

11 # set LP objective: minimize EMD

12 problem.set_objective(sum(C[i,j]* transportPlan[i,j] for i in range

(bins) for j in range(bins)))

13

14 # constraints of transportplan: row and columnsums; nonnegative

already set above

15 for col in range(bins):

16 problem.add_constraint(sum(transportPlan[row , col] for row in

range(bins)) == colSums[col])

17

18 for row in range(bins):

19 problem.add_constraint(sum(transportPlan[row , col] for col in

range(bins)) == rowSums[row])

20

21 return problem.solve()

Listing 4.2: Python code to compute the EMD as linear programming problem.

Remark. When using the Monge cost matrix Cij = |i− j|, the two approaches agree on a

resulting mean EMD of 9.8473.
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4.2.1 Application to pie charts

In this section, we use a different approach to selecting non-Monge cost matrices. We

begin by recalling the circular graph from Figure 9:

Due to the circular shape, we can make slight modifications to achieve resemblance to a

pie chart. The result is displayed in Figure 10.

Figure 10: A circular graph with an additional point in the center, connected to each vertex to
resemble a pie chart.

We can now assign values to edges, thus turning the graph from unweighted to weighted,

by measuring the angle between the lines connecting 2 vertices to the center point. In the

example shown in Figure 10, where the vertices are evenly spaced, each edge is assigned the

value 360
5

= 72. We obtain a distance matrix by measuring the angles between the lines

connecting two vertices to the center and similar to the circular graph, the matrix is not

Monge:

C ′ =


0 72 144 144 72
72 0 72 144 144
144 72 0 72 144
144 144 72 0 72
72 144 144 72 0

 .
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To see that C ′ is not Monge, we refer to C14 + C25 = 288 and C15 + C24 = 216. In addition

to providing another example of a non-Monge cost matrix, approaching the problem from

the perspective of pie charts allows for a new interpretation: while we defined the EMD as

a distance measure on histograms, we can now view it as a distance measure on pie charts.

For any pie chart p we define as C ′(p) the cost matrix obtained by measuring its angles.

Furthermore, the measured angles yield a composition of 360 into d parts – in Figure 10,

we have d = 5. We call this composition λ(p). Thus, to measure the distance between an

ordered pair of pie charts (p, q), we can simply compute EMDC′(p)(λ(p), λ(q)) to obtain a

distance between the charts, or a cost of moving units along the edges within p such that

the resulting pie chart is q.

2

1

5

4

3

(a) Pie chart p.

3
2

1

5
4

(b) A second pie chart, q.

Figure 11: Pie charts p and q. We compute the cost of transforming p into q using the cost matrix
defined by p.

For the example given in Figure 11, we have already defined

C ′ =


0 72 144 144 72
72 0 72 144 144
144 72 0 72 144
144 144 72 0 72
72 144 144 72 0

 .

Moreover, we have λ(p) = (72, 72, 72, 72, 72) as well as λ(q) = (40, 30, 100, 30, 160). We can

use the Sage code in Listing 4.2 to obtain the resulting distance EMDC′(p)(λ(p), λ(q)) = 8224.

Following this procedure, one can compute the mean EMD among all pairs of pie charts,

a step we omit for lack of computing power.
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In the next chapter, we generalize our results from Chapter 3 from 2-dimensional n1×n2

matrices to d dimensional n1 × · · · × nd tensors. We present a shelling of the d-dimensional

order complex and provide 2 formulas to compute the sum of all width–one tensors.

43



5 THE SUM OF ALL WIDTH-ONE TENSORS

Throughout, we again focus on finding formulas for Σ1
n,s. However, instead of setting

n = (n1, n2), we let n = (n1, . . . , nd). We are, therefore, generalizing to d-dimensional tensors

(or hypermatrices). We show two different formulas to compute Σ1
n,s; the first obtained by

using a connection to one-row semistandard Young Tableaux. To obtain a second formula,

we show that the theory of simplicial complexes can again be used to obtain the h- and

f -vector of the n-dimensional order complex. We obtain the result through an application

of multiset Eulerian polynomials.

Remark. With slight changes to notation, the remainder of this chapter has been published

in a collaboration with William Q. Erickson in [27]. Similar to the generalization Erickson

in [24] provides to Bourn andWillenbring in [10], we extend our new approach from Chapter 3

to higher dimensions.

5.1 Introduction

In this chapter, we let T 1
n,s be the set of all n = (n1, . . . , nd)-dimensional tensors (equiva-

lently, hypermatrices) with nonnegative integer entries summing to s, such that the nonzero

entries lie on a single path consisting of steps in the positive directions of the standard basis

vectors e1, . . . , ed. For example, Figure 12 shows a typical element of T 1
(3,3,3),s, where the

nonzero entries lie on the lattice points along the marked path.
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(1, 1, 1)

n = (3, 3, 3)

Figure 12: Visualization of the support of an element of T 1
(3,3,3),s.

As shown in [28], computing the sum of such matrices in d = 2 dimensions has useful

applications in optimal transport, drastically simplifying the problem (first solved recursively

in [10]) of computing the expected value of the EMD between two compositions. The methods

of [10] were generalized in [24] to find a recursion for the expected value of the generalized

EMD between an arbitrary number d of compositions. (For computational treatments of the

d-dimensional transport problem, see [3] and [47], for example.) The relationship between

the present paper and [24] can be regarded as the d-dimensional analogue of the relationship

between [28] and [10]: in particular, we give two explicit formulas for the sum Σ1
n,s of all

tensors in T 1
n,s. These formulas, in turn, can be used to obtain non-recursive formulas for

the expected value of the d-fold EMD (easily seen by adapting the argument in [28, §6]).

This connection between width-one tensors and optimal transport theory arises as follows

(see [3] for details). In the d-dimensional analogue of the classical transportation problem,

the inputs are “supply–demand” vectors v1, . . . ,vd and a “cost” tensor C with dimensions

n. Each input vector vi has length ni, and its entries are nonnegative integers summing

to s; in combinatorial language, vi is a composition of s into ni parts. The objective is to

find a tensor T , with coordinate hyperplane sums prescribed by the vi, which minimizes the

Hadamard product of C and T . This minimum value is said to be the EMD between the

input vectors. It turns out that when C satisfies the d-dimensional Monge property (see [3,

Def. 2.1]), there is a greedy algorithm called the northwest corner rule, which outputs the

optimal solution T in the form of a width-one tensor. In fact, for fixed s, the northwest
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corner rule yields a bijection between the set of all possible d-tuples of input vectors and the

set T 1
n,s. Therefore, the sum Σ1

n,s can be used to obtain the expected value of the EMD.

In Section 5.3 we give our first formula for Σ1
n,s. We set up a bijection between T 1

n,s

and tuples of one-row semistandard tableaux (essentially the inverse of the northwest corner

rule mentioned above), which allows us to write down a formula for our desired sum Σ1
n,s

in terms of binomial coefficients (Theorem 5.1). In Sections 5.4 and 5.5, we consider the

problem through the lens of Stanley–Reisner theory. We describe the order complex on the

standard basis of the n-dimensional tensors, and we use a special case of an EL-shelling to

find the corresponding h-polynomial. This h-polynomial turns out to be a multiset Eulerian

polynomial, as we show in Section 5.5; these polynomials, studied by MacMahon and many

others since, enumerate the descents in multiset permutations. We conclude by presenting a

second explicit formula for Σ1
n,s using techniques from Stanley–Reisner theory (Theorem 5.4).

Similar to the two formulas for matrices in [28], the two formulas in this section behave in

opposite ways with regard to computing time. Although this issue falls outside the focus of

the section, nonetheless it is not hard to verify that Theorem 5.1 outperforms Theorem 5.4

as s increases for fixed n; the opposite is true, however, as the dimension d or the parameters

ni increase for fixed s. Therefore, as shown in Figure 13, the user who wishes to compute

Σ1
n,s should choose between the two theorems according to the sizes of n and s: roughly

speaking, Theorem 5.4 is preferable for low values of d and |n|, while Theorem 5.1 is more

efficient for low values of s.

5.2 Notation and statement of the problem

Throughout, we denote by n := (n1, . . . , nd) and x := (x1, . . . , xd). We write |x| :=∑
i xi, as well as min(x) := mini{xi} and max(x) := maxi{xi}. Let 1 := (1, . . . , 1). Define

the poset

Πx := [x1]× · · · × [xd] = {(a1, . . . , ad) : 1 ≤ ai ≤ xi for all i}, (5.1)
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(a) (b)

Figure 13: Comparison of computing time with respect to the parameters d and s. In 13a, we
fix s = 5 and compare the runtime (in seconds) of both approaches for varying d. For arbitrary
d, we measure the time it takes to compute the entry at x = (

⌊
d
2

⌋
, . . . ,

⌊
d
2

⌋
) in the d-dimensional

hypercube with n = (d, . . . , d). In 13b, we fix d = 4 and let s vary.

equipped with the product order, so that a ⪯ b ⇐⇒ ai ≤ bi for each i = 1, . . . , d. Because

our main problem addresses n1 × · · · × nd tensors, we will always be working inside Πn, but

it will be useful to consider the subposets Πx, which are the lower-order ideals generated by

each x ∈ Πn.

Analagous to the 2-dimensional case described in Chapter 3, a chain is a totally ordered

subset of Πx, and an antichain is a subset whose elements are pairwise incomparable. The

width of a subset S ⊆ Πx is the size of the largest antichain contained in S. In particular, S

has width 1 if and only if S is a chain.

In this section, we consider certain tensors of order d. Equivalently, the reader may prefer

to consider d-dimensional arrays (also called hypermatrices). Taking the real numbers R as

our ground field, we let

Tn := Rn1 ⊗ · · · ⊗ Rnd

denote the space of order-d tensors with dimensions n. Upon fixing the standard basis

{e1, . . . eni
} for each factor Rni , every tensor T ∈ Tn can be written uniquely in the form

T =
∑
x∈Πn

T [x] ex1 ⊗ · · · ⊗ exd
, (5.2)

where the scalars T [x] ∈ R are called the components of T . Hence T is described completely
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by its components T [x], which can be regarded as the entries in an n1× · · · × nd array. The

elementary tensor Ex is given by

Ex[y] = δxy, (5.3)

where δ is the Kronecker delta. Hence Ex can be regarded as an array with 1 in position x

and 0’s elsewhere.

The support of a tensor T is the set

supp(T ) := {x ∈ Πn : T [x] ̸= 0}.

We say that T is a width-one tensor if supp(T ) has width 1 as a subposet of Πn. In

this section, we restrict our attention to those width-one tensors whose components are

nonnegative integers summing to some positive integer s. We denote this set by

T 1
n,s :=

T ∈ Tn :

T is width-one,

T [x] ∈ Z≥0 for all x ∈ Πn,∑
x∈Πn

T [x] = s.

 . (5.4)

The main problem of this section is to write down an explicit formula for the sum of all

tensors in T 1
n,s, under the usual componentwise addition. We denote this sum by

Σ1
n,s :=

∑
T∈T 1

n,s

T. (5.5)

5.3 Main result, first version

We generalize the argument in [28, §3]. It follows from (5.2) and (5.3) that each tensor

T ∈ Tn can be written as a unique sum of elementary tensors

T =
∑
x∈Πn

T [x]Ex =
∑

x∈supp(T )

T [x]Ex.

Now suppose that T ∈ T 1
n,s, as defined in (5.4). Then by definition, the x’s appearing in the

right-hand sum above form a chain in Πn. Writing out all of these x’s as column vectors in

ascending order, with multiplicities T [x], we obtain a d× s matrix. Note that the entries in
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each row of this matrix are weakly increasing, and the entries in the ith row are elements

in [ni]. We write each row as a row of boxes. (We do this primarily to evoke a one-row

semistandard Young tableau, which is the same thing as a weakly increasing sequence.) We

thus obtain d rows with s boxes each:

· · · x1 · · · ← weakly increasing in [n1]

· · · x2 · · · ← weakly increasing in [n2]
...

...
...

...

· · · xd · · · ← weakly increasing in [nd]

This procedure is invertible: given d rows of length s, with entries in the ith row weakly

increasing in [ni], we recover the associated width-one tensor in T 1
n,s by summing the s

elementary tensors Ex, for each column x. In our picture above, we have filled in the

entries x = (x1, . . . , xd) for one typical column; note that this column contributes 1 to the

component T [x]. It follows that we have a bijection between T 1
n,s and the set of d-tuples of

weakly increasing sequences in [n1], . . . , [nd].

It will be a useful fact that the number of weakly increasing sequences of length ℓ, taken

from the set [p], equals the number of (weak) integer compositions of ℓ into p parts, which

is well known to be (
ℓ+ p− 1

ℓ

)
=

(
ℓ+ p− 1

p− 1

)
. (5.6)

Theorem 5.1. Let Σ1
n,s be the sum of all tensors in T 1

n,s. For each x ∈ Πn, we have

Σ1
n,s[x] =

s∑
j=1

d∏
i=1

(
xi + j − 2

j − 1

)(
ni − xi + s− j

s− j

)
.

Proof. For each T ∈ T 1
n,s, consider its corresponding d-tuple of weakly increasing rows, as

described above. Recall that each column x contributes 1 to the component T [x]. Hence

the component Σ1
n,s[x] equals the number of occurrences of the column x, counted in all

possible d-tuples.

First, for fixed j such that 1 ≤ j ≤ s, we find the number of d-tuples whose jth column

is x. In other words, we seek the number of d-tuples such that the jth entry in row i is xi,

for each i = 1, . . . , d. For each i, this implies that the j − 1 entries to the left of xi lie in the
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set [xi], and that the s− j entries to the right of xi lie in the set {xi, xi + 1, . . . , ni}, which

contains ni − xi + 1 elements. Hence by (5.6), the number of ways to fill each row i such

that the jth entry is xi equals(
(j − 1) + xi − 1

j − 1

)(
(s− j) + (ni − xi + 1)− 1

s− j

)
,

which simplifies to the expression in the theorem. Taking the product over all rows i =

1, . . . , d, we obtain the number of d-tuples whose jth column equals x, as desired.

Finally, to obtain the number of times x occurs as any column in a d-tuple, we sum over

all columns j = 1, . . . , s.

Remark. As mentioned in the introduction, the formula in Theorem 5.1 generalizes the

two-dimensional formula in our previous work [28, Theorem. 3.2], described in Theorem 3.23

of Chapter 3. This may not be obvious at first glance, since the two-dimensional version was

expressed as a hypergeometric series. Upon setting d = 2 in Theorem 5.1 above, one recovers

the sum (where each summand is the product of four binomial coefficients) displayed in the

proof in [28], immediately before its simplification via hypergeometric identities. (Note,

however, that the parameter s in the present work was denoted by d in [28].)

5.4 Stanley–Reisner theory

This section, along with the following section, sets out the theory required to prove our

second formula for Σ1
n,s, which we do in Section 5.6. We omit restating the exposition on

abstract simplicial complexes provided in [27] and instead refer the reader to Section 3.3 in

Chapter 3. To facilitate reading, we restate the relation between the shelling of a complex

and its h-vector, which can also be found in Chapter 3 as (3.9):

hℓ = #{i | #R(Fi) = ℓ}. (5.7)

The generalization of our result to higher dimensions starts to differ vastly in the shelling of

the d-dimensional order complex, which we describe in the following section.
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5.4.1 Lexicographic shellings of posets

Let Π be a finite bounded poset, with ⋖ denoting the covering relation. Let E := {(a, b) :

a⋖b} be the set of edges of the Hasse diagram of Π. A labeling of Π is a function λ : E → Z>0

assigning a positive integer to each edge of the Hasse diagram. Each labeling λ induces a

lexicographic ordering on the set of saturated chains a1 ⋖ a2 ⋖ · · ·⋖ aℓ, via the lexicographic

order on the label sequences (λ(a1, a2), . . . , λ(aℓ−1, aℓ)). Following Björner and Wachs [8], we

define a special kind of labeling known as an edge-lexicographical (EL) labeling:

Definition 5.2 ([8]). We say that λ is an EL-labeling of Π if, for all a < c in Π, there exists

a unique saturated chain a⋖ b1 ⋖ · · ·⋖ bℓ ⋖ c such that

λ(a, b1) ≤ λ(b1, b2) ≤ · · · ≤ λ(bℓ, c), (5.8)

and this chain lexicographically precedes all other saturated chains a⋖ · · ·⋖ c. A chain with

the property (5.8) is called an ascending chain with respect to λ.

The order complex is the simplicial complex whose faces are the chains in Π; hence the

facets of ∆(Π) are the maximal chains in the poset Π. An EL-labeling of Π induces a shelling

order on the facets of ∆(Π), via the lexicographic order on the maximal chains [6, Thm. 2.3].

Note that an EL-labeling does not guarantee that the maximal chains are totally ordered;

nevertheless, arbitrarily breaking ties results in a shelling order.

Let λ be an EL-labeling of Π, and F a facet of ∆(Π). An element b ∈ F is said to

be a descent of F (with respect to λ) if F contains a ⋖ b ⋖ c such that λ(a, b) > λ(b, c).

With respect to any shelling induced by λ, the restriction of each facet is precisely its set of

descents:

R(F ) = {b : b is a descent of F}. (5.9)

(See [9, Thm. 5.8].) We also use the term descent in the context of label sequences, in the

obvious sense: namely, i is a descent of the label sequence (λ1, . . . , λℓ) if λi > λi+1. In this

way, the number of descents in a facet equals the number of descents in its label sequence.
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5.4.2 The Stanley–Reisner ring

The Stanley–Reisner ring has been described in more detail in Section 3.5 of Chapter 3.

We briefly recall important properties in this section. Let ∆ be a simplicial complex on the

vertex set V . Let K be a field, and K [∆] the Stanley–Reisner ring of ∆.

We know from Section 3.5 that K[∆] has a K-basis consisting of the monomials whose

support is a face of ∆, where we identify these monomials with their images in the quotient

ring.

Each shelling of ∆ induces a Stanley decomposition of the Stanley–Reisner ring:

K[∆] =
⊕
F

K[F ] zR(F ), (5.10)

where the direct sum ranges over the facets F , and their restrictions R(F ) are determined

by the shelling. Additionally, each monomial in K[∆] lies in exactly one summand of (5.10).

Similar to Section 3.5, K[∆] again inherits the natural grading by degree. Writing K[∆]s

to denote the graded component consisting of homogeneous polynomials of degree s, we can

restrict (5.10) to a decomposition of each component:

K[∆]s =
⊕
k

⊕
F :

#R(F )=k

K[F ]s−k zR(F ), (5.11)

where k ranges from 0 to the size of the largest restriction R(F ).

5.4.3 Application to the problem

In this final subsection, we apply the general theory above to the poset Πx defined

in (5.1). We write ∆x := ∆(Πx) for its order complex. The facets of ∆x are the maximal

chains 1⋖ · · ·⋖ x. Thus for any facet F of ∆x, we have

#F = |x| − d+ 1, (5.12)

so ∆x is indeed pure.
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1
2

1
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1 = (1, 1, 1)

x = (3, 3, 3)

Figure 14: Visualization of a facet F in the order complex ∆x, where x = (3, 3, 3). Starting in
the upper-left at 1, we imagine the coordinate vector e1 pointing downward, e2 pointing to the
right, and e3 pointing away from the viewer. With respect to the labeling λ in (5.13), the label
sequence (3, 2, 1, 2, 1, 3) of F is shown in the figure. The descents are indicated by the three large
dots; by (5.9), these are the elements of R(F ).

Let ei denote the vector whose ith coordinate is 1, with 0’s elsewhere. If a⋖ b, then we

have b = a+ ei for some 1 ≤ i ≤ d. We define the following labeling on Πx:

λ(a,b) = i ⇐⇒ b = a+ ei. (5.13)

For example, if a = (3, 6, 4, 1) and b = (3, 7, 4, 1), then λ(a,b) = 2. See Figure 14 for a

visualization in the case where x = (3, 3, 3).

It is easy to see that λ is an EL-labeling: for a < b, the unique ascending chain a⋖· · ·⋖b

with respect to λ is obtained from a by first adding e1 a total of b1 − a1 times, then adding

e2 a total of b2− a2 times, etc., and finally adding ed a total of bd− ad times. Moreover, this

chain precedes any other maximal chain between a and b. Being an EL-labeling, λ induces

a unique shelling of ∆x, since the lexicographical order (in this case) gives a total ordering

of the facets.

We now turn to our main problem: writing down a formula for each component of Σ1
n,s,

which we recall from (5.5) is the sum of all tensors in T 1
n,s. To this end, note that a K-basis

for K[∆n] is given by the monomials whose support is a chain in Πn. Restricting to the
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degree-s component, we observe the bijection

T 1
n,s ←→ K-basis of K[∆n]s,

T ←→
∏

x∈Πn

zT [x]
x .

Under this correspondence, adding tensors corresponds to multiplying monomials. Therefore,

letting m range over the monomials, we have

∏
m∈K[∆n]s

m =
∏

x∈Πn

z
Σ1

n,s[x]
x . (5.14)

Hence our main problem is equivalent to finding the exponent of each indeterminate zx in

the product of monomials on the left-hand side of (5.14). We do this in Section 5.6. Before

that, however, we must explain and exploit the fact that the h-polynomial of ∆x is actually

a well-known object called the multiset Eulerian polynomial.

5.5 Multiset Eulerian polynomials

Let p = (p1, . . . , pd). A multipermutation of the multiset {1p1 , 2p2 , . . . , dpd} is a word

π = π1 · · · π|p| in which i appears exactly pi times, for each 1 ≤ i ≤ d. Let Sp be the set

of all such multipermutations. A descent of a multipermutation π is an index i such that

πi > πi+1. Let des(π) denote the number of descents of π. Then the multiset Eulerian

polynomial Ap(t) is defined to be

Ap(t) :=
∑
π∈Sp

t des(π).

(The special case A1(t) is just the dth Eulerian polynomial Ad(t), i.e., the descent-generating

function over the symmetric group Sd. See, for example, [68, p. 22], although the convention

there is to multiply through by t.) The multiset Eulerian polynomial occurs as the numerator

of the following generating function, due to MacMahon [54, p. 211]:

Ap(t)

(1− t)|p|+1
=

∞∑
ℓ=0

d∏
i=1

(
pi + ℓ

ℓ

)
tℓ. (5.15)
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From (5.15) we can obtain an explicit expression for the coefficients in Ap(t); see also [1, 19]

for combinatorial proofs of the formula below. (These coefficients are known as “Simon

Newcomb numbers.”) Writing [tk] for the coefficient of tk, we have

[tk]Ap(t) = #
{
π ∈ Sp : des(π) = k

}
=

k∑
ℓ=0

(−1)ℓ
(
|p|+ 1

ℓ

) d∏
i=1

(
pi + k − ℓ

k − ℓ

)
. (5.16)

It is shown in [19, Lemma 2] that the maximum number of descents, i.e., the degree of Ap(t),

equals

|p| −max(p). (5.17)

For example, if p = (3, 2, 4), then Ap(t) = 24t5 + 260t4 + 580t3 + 345t2 + 50t + 1. This is

computed directly via (5.16), and we verify (5.17) by observing that the degree is indeed

|p| −max(p) = 9− 4 = 5.

Lemma 5.3. The h-polynomial hx(t) of ∆x is the multiset Eulerian polynomial Ax−1(t).

Proof. Recall the labeling λ in (5.13), which induces a shelling of ∆x. With respect to λ,

the label sequence of each facet 1 ⋖ · · · ⋖ x contains xi − 1 copies of the label i, for each

i = 1, . . . , d; conversely, each possible permutation of these labels (where the copies of each

i are indistinguishable from each other) is the label sequence of a unique facet. Hence we

have a bijection between the set of facets of ∆x and the set Sx−1. By (5.9), the size of R(F )

equals the number of descents in F , which in turn equals the number of descents in the label

sequence of F . Therefore, comparing (5.7) and (5.16), it is clear that hx(t) = Ax−1(t).

Remark. Combining (5.7) with the Stanley decomposition (5.10), it is easy to see that the

Hilbert series of a Stanley–Reisner ring K[∆] is given by

h∆(t)

(1− t)#F
,

where F is any facet of ∆ (since ∆ is assumed to be pure). Thus by Lemma 5.3 and (5.12),

and by MacMahon’s expansion (5.15), our particular ring K[∆n] has the Hilbert series

An−1(t)

(1− t)|n|−d+1
=

∞∑
ℓ=0

d∏
i=1

(
ni + ℓ− 1

ℓ

)
tℓ.
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This is also the Hilbert series of the coordinate ring of the set of simple (also called pure, or

decomposable) tensors in Tn, which is isomorphic to K[∆n]. See [57, Thm. 5], where this

ring is also viewed as the toric ring defined by the Segre embedding of Pn1 × · · · × Pnd .

Combining (5.17) with Lemma 5.3, we note that the degree of hx(t) = Ax−1(t) equals

|x− 1| −max(x− 1) = |x| −max(x)− d+ 1. (5.18)

Equivalently, (5.18) is the maximum size of R(F ), taken over all facets F of ∆x.

5.6 Main result, second version

Theorem 5.4. For each x ∈ Πn, we have

Σ1
n,s[x] =

min{ω(n,x), s−1}∑
k=0

(
|n| − d+ s− k

s− k − 1

)
· [tk]Ax−1(t)An−x(t),

where ω(n,x) := |n| −max(x)−max(n− x)− d+ 1.

We record two key lemmas before giving the proof of Theorem 5.4:

Lemma 5.5. Let x ∈ Πn, and let F ∋ x be a facet of ∆n. Then
(|n|−d+s−k

s−k−1

)
equals the

exponent of zx in the product of all monomials in

K[F ]s−k−1zR(F )∪{x} . (5.19)

Proof. It suffices to show that(
|n| − d+ s− k

s− k − 1

)
=
(
# monomials in (5.19)

)(
average exponent of zx in each monomial

)
.

The number of monomials in (5.19) equals the number of monomials in K[F ]s−k−1. This

number, in turn, equals the number of weak compositions of the degree s − k − 1 into #F

many parts. Thus, recalling from (5.12) that #F = |n| − d + 1 for any facet F of ∆n, and

using the elementary formula (5.6), we have

# monomials in (5.19) =

(
s− k − 1 + |n| − d

|n| − d

)
. (5.20)
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The average exponent of zx, taken over all the monomials in K[F ]s−k−1, equals the degree

s − k − 1 divided by the number of variables #F . Adding 1 to this average to account for

the factor of zx present in z
R(F )∪{x} in (5.19), we obtain

average exponent of zx in each monomial = 1 +
s− k − 1

|n| − d+ 1
=
|n| − d+ s− k

|n| − d+ 1
. (5.21)

Multiplying the expressions in (5.20) and (5.21), we obtain(
s− k − 1 + |n| − d

|n| − d

)
· |n| − d+ s− k

|n| − d+ 1
=

(
|n| − d+ s− k

|n| − d+ 1

)
=

(
|n| − d+ s− k

s− k − 1

)
.

Lemma 5.6. For x ∈ Πn, the coefficient

[tk]Ax−1(t)An−x(t)

equals the number of facets F ∋ x of ∆n, such that #
(
R(F ) \ {x}

)
= k.

Proof. Every facet F ∋ x of ∆n can be written uniquely as the union of two saturated chains

F ′ : 1⋖ · · ·⋖ x and F ′′ : x⋖ · · ·⋖ n,

which intersect only at x. Then F ′ can be any facet of ∆x, viewed as a subposet of ∆n.

Likewise, F ′′ can be any facet of ∆n+x−1, viewed as a subposet of ∆n after translating

coordinates by x− 1. Therefore #(R(F ) \ {x}) = R(F ′) + R(F ′′). Thus by (5.7), we have

hx(t)hn−x+1(t) =

(∑
F ′

t#R(F ′)

)(∑
F ′′

t#R(F ′′)

)

=
∑
F ′,F ′′

t#R(F ′)+#R(F ′′)

=
∑
F∋x

t#(R(F )\{x}),

where the sums range over facets F , F ′, and F ′′ of ∆n, ∆x, and ∆n−x+1, respectively. By

Lemma 5.3, we can rewrite hx(t)hn−x+1(t) as Ax−1(t)An−x(t).

Proof of Theorem 5.4. By (5.14), we know that Σ1
n,s[x] equals the exponent of zx in the

product of all monomials in the graded component K[∆n]s, which by (5.11) has the decom-

position

K[∆n]s =
⊕
k

⊕
F :

#R(F )=k

K[F ]s−k zR(F ), (5.22)
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where the F ’s in the inside sum are facets of ∆n. The outside sum in (5.22) ranges from

k = 0 to k = min{|n| −max(n)− d+ 1, s}; this follows from (5.18) and from the fact that

the degree s − k must be nonnegative. Obviously, the only monomials contributing to the

exponent of zx are those divisible by zx; hence we may ignore all summands in (5.22) such

that x ̸∈ F . If x ∈ F , then the subspace of K[F ]s−k spanned by the monomials divisible by

zx is

K[F ]s−k−1zx.

Then since x may or may not lie in R(F ), the subspace of K[F ]s−kzR(F ) spanned by mono-

mials divisible by zx is

K[F ]s−k−1zxzR(F )\{x} = K[F ]s−k−1zR(F )∪{x} .

Combining this with (5.22), we conclude that Σ1
n,s[x] equals the exponent of zx in the product

of all monomials in ⊕
k

⊕
F∋x:

#(R(F )\{x})=k

K[F ]s−k−1zR(F )∪{x} . (5.23)

Now applying Lemma 5.5 and Lemma 5.6 to (5.23), we see that the desired exponent of zx

equals

Σ1
n,s[x] =

∑
k

∑
F∋x:

#(R(F )\{x})=k

(
|n| − d+ s− k

s− k − 1

)

=
∑
k

(
|n| − d+ s− k

s− k − 1

)
· [tk]Ax−1(t)An−x(t),

where the nonzero summands are those for which k is less than or equal to both s − 1

(otherwise the binomial coefficient is zero) and the degree of Ax−1(t)An−x(t). This degree

is easily computed to be ω(n,x), using (5.18).

Remark. It is not obvious that Theorem 5.4 specializes to the two–dimensional formula in

our previous work [28, Thm. 5.1]. This is because in the case d = 2, it was straightforward to

write down explicitly the coefficient of tk in the product of two multiset Eulerian polynomials,

since these polynomials could be expressed without signs (see [28, Lemma 4.2]).
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Part II

Parking functions
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6 BACKGROUND ON PARKING FUNCTIONS

In this second part, we highlight results in connection with parking functions. We begin

by providing necessary definitions, prerequisites and well-known results connecting parking

functions to various mathematical objects. The study of parking functions, while interesting

in its own right, receives further motivation due to its application across a wide area of

mathematics, as we will see for example in Section 6.4, where we show a connection to

representation theory through the famous shuffle conjecture.

In Chapter 7, we will provide enumerative formulas for two different generalizations of

parking functions by approaching the problem “backwards” – examining the order of parked

cars and computing the number of preferences leading to the given parking order. The

generalizations examined add additional realistic context by allowing cars to have different

lengths.

In Chapter 8, we reveal a surprising connection between parking functions of length n

and the Quicksort algorithm. We impose constraints on the outcome and the lucky statistic

on parking functions and establish equinumerosity between the resulting parking objects

and comparisons performed by the Quicksort algorithm when sorting all permutations of n

letters.

Finally, in Chapter 9, we provide a complete characterisation and enumerative formulas

for the Boolean intervals in the right weak Bruhat order of Sn. We prove our results by

bijecting to the intersection of Fubini rankings and unit interval parking functions, which,

as the name indicates, are a subset of parking functions.

6.1 Prerequisites and definitions

Consider a one-way street with n parking spots, and n cars labeled c1, . . . , cn, which

enter the street one by one. Each car ci has a preferred spot pi ∈ [n]. When a car enters
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the street, it will first drive to its preferred spot to attempt to park. However, if the spot is

occupied, the car continues driving along the one-way street until it finds an empty spot. If

there is no empty spot before the end of the street, the car fails to park. The preference list

p = (p1, . . . , pn) ∈ [n]n containing the preferred spots for all cars is called a parking function

if all cars are able to park on the street. We denote the set of all parking functions with n

cars PFn.

Parking functions were first introduced by Konheim and Weiss in 1966 [51]. While study-

ing hashing using linear probing to handle collisions, they put the problem into the context

of parking on a one-way street. One of their results was that #PFn = (n+1)n−1. Ever since,

parking functions have received an immense amount of attention in combinatorial research

and have been examined in vastly different research contexts such as polyhedral combina-

torics [2, 4], hyperplane arrangements [66], the Quicksort algorithm [41] and the Tower of

Hanoi game [76]. For a comprehensive survey of parking functions, we recommend [75].

Example 6.1. Figure 15 shows an example of parking functions and the respectively result-

ing parking orders through the preference lists p = (2, 1, 1, 3) and q = (2, 1, 4, 4).

1 2 3 4

2 1 3 4

(a) p = (2, 1, 1, 3)

1 2 3 4

2 1 3

4

(b) q = (2, 1, 4, 4)

Figure 15: Comparison of the preference lists p = (2, 1, 1, 3) and q = (2, 1, 4, 4). We can see that
with preferences p, all cars (shown as gray squares) are able to park in the spots on the street
(shown as white squares). Therefore p ∈ PF4. However, with preferences q, car 4 is unable to park,
hence q /∈ PF4.

An interesting result that is important for our study is the fact that PFn is invariant

under permutation. Denote by Sn the symmetric group, then Sn acts on PFn by permuting

preferences: that is, for all p ∈ PFn and π ∈ Sn, π(p) = (pπ(1), . . . , pπ(n)) ∈ PFn. Permuting

the elements within a parking function allows us to state the following result, which is

sometimes used as an alternative definition of parking functions [74].
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Theorem 6.2. A vector p ∈ [n]n is a parking function or order n if and only if its weakly

increasing rearrangement, p′, satisfies p′i ≤ i for all i ∈ [n].

Proof. First, let p ∈ PFn and let p′ be its weakly increasing rearrangement. Note, that p′

will park all cars in order: that is, c1 will park in spot 1, c2 will park in spot 2, and so

on. Assume there exists i such that p′i > i. Then, there will be no car parking in spot i

and consequently one car that will not be able to park. Therefore, p′i ≤ i must be true.

To show the converse, we pick as p′ the weakly increasing vector that satisfies p′i = i for all

i ∈ [n]. Clearly, p′ is a parking function which allows each car to park in its preferred spot.

Additionally, we note that we can arbitrarily decrease the preference of each car (potentially

sorting p′ again to remain weakly increasing) without “pushing” a car off the street. The

result then follows from the permutation invariance of parking functions.

Before giving a brief survey of several well–established results associated with parking

functions, we state an additional definition that will be useful to us later.

Definition 6.3. Let p ∈ PFn. Then, we define O : PFn → Sn with O((p1, . . . , pn)) =

π1 · · · πn ∈ Sn (in one-line notation), to be the outcome map. That is, O(p) yields the

parking order of cars c1, . . . , cn with preferences p1, . . . , pn.

6.2 A connection to lattice paths

An important element in Chapter 3 is the concept of a lattice path, or in the context

of the problem: a chain in the poset n1 × n2, for n1, n2 ∈ N>0. Interestingly, lattice paths

additionally play an important role in the world of parking functions. Let n ∈ N>0, then a

Dyck path of order n is an n × n lattice path consisting of n north (“N”) and n east (“E”)

steps, while never crossing below the diagonal y = x.
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Figure 16: A 5 × 5 Dyck path. The path has to stay above the red diagonal (y = x). The Dyck
path can be expressed as the string “NENENNEENE”, listing the order of north and east steps.

The following well–known result connects parking functions to Dyck paths.

Theorem 6.4. The set of weakly increasing parking functions with n cars PF↑
n is in one-to-

one correspondence with the set of n× n Dyck paths.

Theorem 6.4 implies that the cardinality of PF↑
n is given by the nth Catalan number 1:

#PF↑
n = Cn, where Cn =

1

n+ 1

(
2n

n

)
.

While Theorem 6.4 only related Dyck paths to the set of weakly increasing parking

functions PF↑
n, we can extend this correspondence to PFn by labeling the north steps of

Dyck paths with the numbers 1, . . . , n, assigning consecutive north steps increasing labels.

An example of two such labeled Dyck paths is illustrated in Figure 17.

1Over 200 different combinatorial objects are enumerated by the Catalan numbers. For an overview,
see [69].
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1

2

3

4

5

(a) Labeled Dyck path corresponding to parking
function (1, 2, 3, 3, 5)

2

1

4

5

3

(b) Labeled Dyck path corresponding to parking
function (2, 1, 5, 3, 3).

Figure 17: Two labeled Dyck paths. In Figure 17a, we see a Dyck path corresponding to a weakly
increasing parking function. In Figure 17b, we see how we can permute the labels to create a
correspondence to a not-weakly-increasing parking function.

The following theorem states the corresponding result.

Theorem 6.5. The set of labeled n×n Dyck paths is in one-to-one correspondence with the

set of parking functions with n cars.

There are many other combinatorial objects that allow a bijection to parking functions.

For a comprehensive overview, we recommend [67, 75].

6.3 Statistics on parking functions

When it comes to parking functions, it is not only interesting to study their count or

their relation to different combinatorial objects. It is also of interest to examine what kinds

of properties parking functions can satisfy. This is where the study of discrete statistics on

parking functions resides.

Statistics that are explored on permutations can be extended to parking functions, which

allows for the further study of ascents, descents, peaks and ties.

Definition 6.6. Let p ∈ [n]n. Then, we say p has

• an ascent at i if pi < pi+1 for 1 ≤ i < n,
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• a descent at i if pi > pi+1 for 1 ≤ i < n,

• a peak at i if pi−1 < pi > pi+1 for 1 < i < n, and

• a valley at i if pi−1 > pi < pi+1 for 1 < i < n.

We denote the set of all ascents of p as Asc(p) and the set of all descents of p as Des(p).

See [5] for a study of peaks in permutations and [18] for results on these statistics in

randomized parking functions.

In this work, the two statistics that are most important are the number of lucky cars and

the displacement of a parking function.

Definition 6.7 (Lucky cars). Let p ∈ PFn and O(p) = π1 · · · πn. Then, we define L : PFn →

{0, . . . , n} by L(p) =
∑n

i=1 δi,pπi where δx,y the Kronecker delta. In other words, L(p) is the

number of cars ci that park in their preferred spot pi.

Definition 6.8 (Displacement). Let p ∈ PFn and O(p) = π1 · · · πn. Then, we define d(p) :

PFn →
{
0, . . . , n(n−1)

2

}
by d((p1, . . . , pn)) =

∑n
i=1(πi − pπi

). Note, that the maximum

displacement is incurred by p = (1, 1, . . . , 1) with d(p) = n(n−1)
2

; the minimum displacement

of 0 is attained by any permutation in PFn.

We refer to Chapter 8 for a result involving the lucky statistic and to Section 6.5 for a

result involving the displacement of parking functions.

Moreover, we provide a further statistic making use of the Dyck paths associated with

parking functions. This allows us to make a connection between parking functions and

representation theory in Section 6.4.

Definition 6.9 (Diagonal inversions). Let p ∈ PFn, d be the Dyck path associated with

p and consider a pair of cars {ci, cj} in p. We call dist(ck) the distance of the square in d

associated with ck to the diagonal y = x. The pair {ci, cj} is a

• primary diagonal inversion if dist(ci) = dist(cj) and max {ci, cj} occurring farther

right.
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• secondary diagonal inversion if |dist(ci)− dist(cj)| = 1 and max {ci, cj} is on the left

of and in the higher diagonal than min {ci, cj}.

We define the set of primary diagonal inversions in p as dinv1(p), the set of secondary diagonal

inversions as dinv2(p) and lastly

dinv(p) = #dinv1(p) + #dinv2(p).

We provide an example to illustrate the statistics described in this section.

Example 6.10. Consider p = (4, 1, 2, 5, 4, 1, 7). Clearly, p ∈ PF7 and O(p) = 2361457. The

parking function p has

• ascent set Asc(p) = {2, 3, 6}

• descent set Des(p) = {2, 3, 6}

• a peak at {4}

• valleys at {2, 6}.

Furthermore, we count L(p) = 5 lucky cars and a displacement of d(p) = 4. The Dyck path

corresponding to p is pictured below.

2

6

3

1

5

4

7

Figure 18: Dyck path associated with the parking function p = (4, 1, 2, 5, 4, 1, 7).
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We identify as primary diagonal inversions

dinv1(p) = {{2, 7}, {1, 7}, {3, 5}, {3, 4}} .

The secondary diagonal inversions are

dinv2(p) = {{1, 6}, {1, 3}} ,

therefore dinv(p) = 4 + 2 = 6.

6.4 A connection to the representation theory of Sn

In this section, we will more closely examine another object related to parking functions:

the space of diagonal harmonics, DHn. Haiman [40] proved in 2002 that

dim (DHn) = (n+ 1)n−1,

which prompted a closer examination of other objects enumerated by (n + 1)n−1, such as

parking functions. The research effort eventually led to the formulation of the famous shuffle

conjecture by Haglund et al. [37], which describes the bigraded Frobenius characteristic of

DHn in terms of statistics on parking functions. The conjecture was later proved by Carlsson

and Mellit [14]. We include it here by way of preview, deferring to Section 6.4.3 for the details:

DHn [Z; q, t] =
∑

p∈PFn

tarea(p)qdinv(p)Fn,ides(p).

We provide elementary background on the result, following [74] and [38] in exposition. For

a more detailed historical recount, we refer to [74].

6.4.1 Diagonal harmonics

Haiman [38] introduced the space of diagonal harmonics in his work describing the quo-

tient ring

Rn = Q [Xn, Yn] /I, (6.1)
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where Xn = {x1, . . . , xn}, Yn = {y1, . . . , yn} and I is the ideal generated by all Sn-invariant

polynomials in Q [Xn, Yn]. Using the symmetric bilinear form ⟨·, ·⟩ on Q [Xn, Yn] with

⟨f, g⟩ = f(∂Xn, ∂Yn)g(Xn, Yn)|X=Y=0

and the shorthand f(∂Xn, ∂Yn) = f( ∂
∂x1

, . . . , ∂
∂xn

, ∂
∂y1

, . . . , ∂
∂yn

), diagonal harmonics are de-

fined as the orthogonal complement of the ideal I – that is,

DHn = {f ∈ Q [Xn, Yn] | ⟨f, g⟩ = 0 for all g ∈ I} .

A useful interpretation provided in [38, Proposition 1.3.1] is, that if the ideal I is regarded

as a system of partial differential equations, DHn is the space of its solutions.

Throughout, we use C instead of Q as the ground field. Garsia and Haiman mostly use

Q, which we freely change to C when citing their work. We provide the following equivalent

definition of DHn, which is for example found in [36] and [74].

Definition 6.11 (Diagonal harmonics [74]). Let Xn = {x1, . . . , xn} and Yn = {y1, . . . , yn}.

Then, we define the space of diagonal harmonics as the vector space of polynomials

DHn =

{
f(Xn, Yn) ∈ C [Xn, Yn] |

n∑
i=1

∂a
xi
∂b
yi
f(Xn, Yn) = 0 for all a, b ≥ 0 with a+ b > 0

}
.

The symmetric group Sn acts “diagonally” on DHn, i.e. by permuting both the variables

x1, . . . , xn and y1, . . . , yn at once. Namely, for π ∈ Sn and f ∈ DHn, we have

π(f(Xn, Yn)) = f(xπ(1), . . . , xπ(n), yπ(1), . . . , yπ(n)) ∈ DHn.

This allows us to decompose DHn into a bigraded Sn module:

DHn =
⊕
c,d≥0

DHc,d
n .

In fact, the same is true for the ring Rn described in Equation 6.1: the ideal I can similarly

be decomposed into bigraded homogeneous components, making Rn a doubly graded ring.

Through the same Sn-action, we receive the decomposition

Rn =
⊕
c,d≥0

Rc,d
n ,
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with each component Rc,d
n being isomorphic to the corresponding DHc,d

n (see [38] for more

details).

Following Haiman [38], we construct a Frobenius series or bigraded Frobenius character-

istic [74]:

DHn [Z; q, t] =
∑
c,d≥0

tcqdϕ(DHc,d
n ), (6.2)

with ϕ being the Frobenius map defined by

ϕ(DHc,d
n ) =

∑
λ⊢n

sλmult(χλ, char(DHc,d
n )). (6.3)

Here, sλ is a Schur polynomial in the variables Z = {z1, z2, . . .}. Equation (6.2) assigns

to each irreducible Sn-character χλ a corresponding Schur polynomial. The second factor

in (6.3), mult(χλ, char(DHc,d
n )), gives the multiplicity of χλ in the character of DHc,d

n under

the Sn-action.

Garsia and Haiman simplified the Frobenius characteristic by expressing it in terms of

the characteristic of Garsia–Haiman modules. We will give an overview of Garsia–Haiman

modules next.

6.4.2 Garsia–Haiman modules

In an effort to prove the Macdonald positivity conjecture, Garsia and Haiman [33] con-

structed what is now known as Garsia–Haiman modules. Garsia–Haiman modules, referred

to as Hλ with λ a partition, are a subspace of DHn for all λ. Thus, using findings about

Hλ, Garsia and Haiman were able to express the Frobenius characteristic of DHn in terms

of the nabla operator ∇, see Definition 6.15.

Definition 6.12 ([33]). Let λ be a partition of n ∈ N>0, and take P to be the Young diagram

obtained from λ. Label the coordinates of the n boxes in P with {(p1, q1), . . . , (pn, qn)}, with
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pi and qi the row and column coordinates (beginning with 0). Let

∆λ(x1, . . . , xn, y1, . . . , yn) = det


xp1
1 yq11 xp1

2 yq12 · · · xp1
n yq1n

xp2
1 yq21 xp2

2 yq22 · · · xp2
n yq2n

...
...

. . .
...

xpn
1 ypn1 xpn

2 yqn2 · · · xpn
n yqnn

 . (6.4)

Then, the Garsia–Haiman module is defined as

Hλ = C [Xn, Yn] /Iλ,

where Iλ is the ideal

Iλ = ⟨p(Xn, Yn) | p(∂Xn, ∂Yn)∆λ = 0⟩.

Garsia and Haiman [33] defineHλ as the quotient C [Xn, Yn] /Iλ, where Iλ is the ideal gen-

erated by all polynomials p(Xn, Yn) such that corresponding the polynomial of differential

operators p(∂Xn, ∂Yn) = p( ∂
∂x1

, . . . , ∂
∂xn

, ∂
∂y1

, . . . , ∂
∂yn

) satisfies p(∂X, ∂Y )∆λ = 0. Equiva-

lently, we view as Hλ the space of all derivatives of ∆λ.

Example 6.13. Let λ = (3, 2, 1). Then, we find the corresponding Young diagram, with

squares labeled by row and column index, as:

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1)

(2, 0)

.

From here, we find ∆λ as

∆(3,2,1)(x1, . . . , xn, y1, . . . , yn) = det


1 1 1 1 1 1
y1 y2 y3 y4 y5 y6
y21 y22 y23 y24 y25 y26
x1 x2 x3 x4 x5 x6

x1y1 x2y2 x3y3 x4y4 x5y5 x6y6
x2
1 x2

2 x2
3 x2

4 x2
5 x2

6

 .

Now, the corresponding Garsia–Haiman module H(3,2,1) is the space of all derivatives of the

determinant ∆(3,2,1).

70



Garsia and Haiman [33] conjectured, and Haiman later proved [39], that dimHλ = n! as

well as that the bigraded Frobenius characteristic ofHλ is H̃ [Z; q, t], the modified Macdonald

polynomial, which we define next.

Definition 6.14 ([40]). Let µ be a partition of n ∈ N>0. Then, define as the transformed

or modified Macdonald polynomial the function

H̃µ [Z; q, t] = tn(λ)Jλ

[
Z

1− 1
t

; q, t

]
.

Here, n(µ) =
∑ℓ(µ)

i=1 µi(i − 1) and the polynomial Jµ [Z; q, t] is the integral form Macdonald

polynomial defined by Macdonald in [53, Chapter VI, Section 8].

Haiman [40] provides the equivalent definition of H̃µ as

H̃µ [Z; q, t] =
∑
λ

K̃λµ(q, t)sλ(Z),

where sλ is the Schur polynomial and

K̃λµ(q, t) = tn(µ)Kλµ(q, t
−1),

where Kλµ(q, t) is the Kostka–Macdonald coefficient, see [53, Chapter VI, Section 8].

Modified Macdonald polynomials, just as Macdonald polynomials themselves, form a

basis for the space of symmetric functions. For a detailed background, we refer to [53].

Inspired by the fact that Hλ ⊂ DHn for all λ ⊢ n (see [74]), Haiman proved that

DHn [Z; q, t] =
∑
λ⊢n

tn(λ)qn(λ
′)CλH̃λ [Z; q, t] , (6.5)

where λ′ is the transpose of a partition λ, obtained by transposing its corresponding Young

diagram and Cλ comes from the expression of elementary symmetric functions in terms of

H̃λ [Z; q, t], namely

en =
∑
λ⊢n

CλH̃λ [Z; q, t] . (6.6)

Before stating a final result of Garsia and Haiman for DHn [Z; q, t], we need to define the

nabla operator.
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Definition 6.15 ([40]). Let ∇ be the nabla operator, defined as

∇H̃λ [Z; q, t] = tn(λ)qn(λ
′)H̃λ [Z; q, t] .

Combining Definition 6.15 with (6.5) and (6.6) yields

DHn [Z; q, t] = ∇en. (6.7)

In the next section, we will present the shuffle conjecture, which gives a formula for ∇en

summing over parking functions.

6.4.3 The shuffle conjecture

The famous shuffle conjecture expresses ∇en, and therefore DHn [Z; q, t] in terms of park-

ing functions and quasisymmetric functions. Despite the proof by Carlsson and Mellit [14],

the shuffle conjecture is still widely referred to as a conjecture. We begin by stating a few

necessary definitions.

The first important property of a parking function is its i-descent set.

Definition 6.16 (i-descent set). Let p ∈ PFn. Then, we define as the i-descent set of a

parking function the set

ides(p) = {i ∈ [n] | i+ 1 is left of i in O(p)} .

Next, we recall the following definition.

Definition 6.17 (Quasisymmetric functions). Let S = {s1, . . . , s#S} ⊆ [n − 1] for some

n ∈ N>0. Then the fundamental quasisymmetric function Fn,S is

Fn,S =
∑

zi1 · · · zin ,

summing over all tuples (i1, . . . , in) such that i1 ≤ · · · ≤ in and ij < ij+1 if j ∈ S.

Finally, we provide the necessary definition of the area of a parking function.
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Definition 6.18 (Area). Let p ∈ PFn and let d the Dyck path associated with p. Then, we

define as area(p) the number of complete squares below d that are above the diagonal y = x.

We can now state the shuffle conjecture:

Theorem 6.19 (The shuffle conjecture [37]).

DHn [Z; q, t] = ∇en =
∑

p∈PFn

tarea(p)qdinv(p)Fn,ides(p).

Proof. See [14].

Example 6.20 ([74]). To illustrate the result, we set n = 2 and compute∇e2 = DH2 [Z; q, t].

First, we list the 3 elements in PF2, together with their corresponding Dyck paths:

1

2

(a) p1 = (1, 1)

1

2

(b) p2 = (1, 2).

2

1

(c) p3 = (2, 1).

Figure 19: The elements in PFn with their corresponding Dyck paths.

We compute the described statistics as

area(p1) = 1, dinv(p1) = 0, ides(p1) = {1}, (6.8)

area(p2) = 0, dinv(p2) = 1, ides(p2) = {1}, (6.9)

area(p3) = 0, dinv(p3) = 0, ides(p3) = ∅. (6.10)

This yields

∇e2 = tF2,{1}︸ ︷︷ ︸
(6.8)

+ qF2,{1}︸ ︷︷ ︸
(6.9)

+ F2,∅︸︷︷︸
(6.10)

= (q + t)F2,{1} + F2,∅.

From (6.3) and (6.7), we know that we can express ∇en in terms of Schur functions. In turn,

Schur functions can be defined in terms of fundamental quasisymmetric functions. Namely,

for a partition λ ⊢ n

sλ =
∑

T∈SYT(λ)

Fn,Des(T ),
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where SYT(λ) is the set of all standard Young tableaux (see [32]) and Des(T ) is defined as

the set of numbers i in T which appear in the same column or to the right of i+ 1. For the

2 tableaux corresponding to partitions of n = 2,

1 2 and
1

2
,

we get s(2) = Fn,∅ and s(1,1) = Fn,{1}, which yields

∇e2 = (q + t)s(1,1) + s(2).

Remark. Let p ∈ PFn for some n ∈ N>0. While the shuffle conjecture, in its original form,

was stated in terms of the area of p, we observe, that

area(p) = d(p).

That is, the area of a parking function, counting the number of complete squares above y = x

in its corresponding Dyck path, is the equal to the displacement of the parking function,

which we recall from Definition 6.8: Let π = O(p), then the displacment of p is

d(p) =
n∑

i=1

(i− pπi
) .

This motivates a deeper exploration of the displacement in Section 6.5.

6.5 Displacement: EMD revisited

We use this section to show connections between the displacement or area statistics of

parking functions and the EMD, which was the focus of the first part of this dissertation.

The displacement of parking function requires some further examination. One important

fact is the permutation–invariance of displacement, as for example shown in [22].

Lemma 6.21 ([22]). Let p = (p1, . . . , pn) ∈ PFn and π ∈ Sn. Then

d(p) = d(π(p)),

where π(p) = (pπ(1), pπ(2), . . . , pπ(n)) ∈ PFn.
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Remark. As consequence of Lemma 6.21, the simplest formula to compute the displacement

or area of a parking function p ∈ PFn is

d(p) =
n(n+ 1)

2
−

n∑
i=1

pi.

Purely to establish a connection between the two parts of this dissertation, we proceed to

highlight a way to compute the displacement of a parking function using the EMD.

When studying the displacement statistic, this property allows us to leave the context of

parking functions to assume the perspective of histograms.

Definition 6.22. Let H(d, s) be the set of histograms with d units and s bins, for some

d, s ∈ N>0. Now, for n ∈ N>0, we define

φ : PFn → H(n, n)

as

φ(p) = (φ1(p), . . . , φn(p)),

where

φi(p) =
n∑

k=1

δi,pk .

I.e., φi(p) is equal to the number of cars in p that prefer spot i, making use of the indicator

function Kronecker delta δx,y.

Using Definition 6.22, we are able to create an injective map from the set of parking

functions with n cars to the set of histograms with n bins and n units. Note, that the map

φ, not unlike the the map d we defined as the displacement of parking functions, is invariant

under the action of Sn. We require a further definition before formally stating the EMD

between two parking functions.

Definition 6.23. Let λ = (λ1, . . . , λn) be any histogram with n bins. Then, we define the

word of λ as

w(λ) = 1 · · · 1︸ ︷︷ ︸
λ1 times

2 · · · 2︸ ︷︷ ︸
λ2 times

· · · n · · ·n︸ ︷︷ ︸
λn times

.
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Our main result will rely on this representation of a parking function as a histogram, as

we will provide a formula for displacement in terms of a distance of histograms.

The metric that will provide a distance is the EMD.

Proposition 6.24. Let n ∈ N>0. Then, for all p ∈ PFn:

d(p) = EMD(φ(p), 1(n)),

where 1(n) is the histogram with n bins and one unit in each bin.

Proof. We recall the permutation-invariance of parking functions p ∈ PFn as well as their

displacement d(p). Together, they imply that the displacement of a parking function p is

always equal to the displacement of the parking function p′, which we define as the weakly

increasing rearrangement of p. Additionally, note that the only weakly increasing parking

function p0 with d(p0) = 0 is the identity permutation, i.e. p0 = (1, 2, 3, 4, . . . , n), which also

satisfies φ(p0) = 1(n). Now, for any weakly increasing parking function p′ = (p′1, . . . , p
′
n), we

have d(p′) =
∑n

i=1 (i− p′i).

Next, consider the problem from the perspective of the EMD, and write the parking function

p′ as well as the parking function that is the identity permutation p0 as the two-row array

p′1 p′2 p′3 · · · p′n
1 2 3 · · · n

.

When constructing a transport plan from this two-row array, we notice that we will create

a matrix Tij that consists only of 0’s and 1’s. This simplifies the computation of the EMD

to taking the sum of differences within the columns, i.e.
∑n

i=1 |p′i − i|. Recall, that for any

weakly increasing parking function p′, we have p′i ≤ i. This allows us to simplify the last

sum to
∑n

i=1 (i− p′i) = d(p), which concludes the proof.

Remark. The reader might recognize the construction of the transport plan Tij as a special

case of the Robinson–Schenstedt–Knuth correspondence (RSK) that was also used in [10, 28]

and [27]. We refer to Fulton [32] for details on RSK.
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However, in the case of parking functions, the value of the EMD can be computed in a more

“direct” way, omitting the interpretation of parking functions as histograms: for a weakly

increasing parking function p′, note that

w(φ(p′)) = p′. (6.11)

Additionally, if p ∈ PFn and p′ its weakly increasing rearrangement, we note that (6.11)

becomes

w(φ(p)) = p′.

The upshot is that the consecutive application of the maps w and φ is essentially sorting the

parking function using the well–known algorithm counting sort [48, Section 5.2].

Alternatively, we can interpret the computation of the area statistic as an application of

the EMD. To see this, we take d = NENENNEENE to be the Dyck path shown in Figure 20.

Figure 20: Dyck path d = NENENNEENE with highlighted area.

Clearly, we have area(d) = 1. In the same way as before, we can construct a histogram

from a Dyck path by viewing east steps as bins containing the north steps that are left of

it in d. We take h to be the histogram corresponding to d so we have h = (1, 1, 2, 0, 1). We

can again obtain the area of d by computing

EMD(h, 1(n)) = 1.
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After presenting the rich background and different areas of mathematics that are related

to parking functions, we will provide further contributions to the topic in the remainder of

this part.
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7 COUNTING PARKING SEQUENCES AND PARKING

ASSORTMENTS THROUGH PERMUTATIONS

In this chapter, we focus on two generalizations of parking functions: parking sequences

and parking assortments. Both of these provide a more realistic aspect to the “parking”

context by allowing cars to have different lengths. The lengths of cars c1, . . . , cn are stored

in the length vector y = (y1, . . . , yn) ∈ Nn
>0, with car ci requiring yi consecutive empty spots

to park.

Allowing cars to have different lengths opens up a further possibility for a potential

collision: a car ci can find an empty spot j, but it can only park if all of the spots j, . . . , j +

yi− 1 are empty. That is, there must be a “gap large enough” to fit car ci. The difference in

parking sequences and parking assortments lies in the “parking rule” provided for the case

that any of the spots j + 1, . . . , j + yi − 1 are occupied. Under the parking sequence rule, a

car ci has to leave the street if it finds an empty spot which is part of a gap too small for its

length yi, immediately ruling out the preference vector p as a parking sequence. If all cars

are able to park, we call p a parking sequence, and denote the set of parking sequences for

fixed n ∈ N>0 and y ∈ Nn
>0 by PSn(y).

Under the parking assortment rule, a car in this situation is allowed to continue searching

along the street for a gap large enough in which to park. The pereference vector p is only

ruled out if there is a car that cannot find a gap to park in on or after its preference. We call

p a parking assortment if all cars are able to park; the set of parking assortments is denoted

by PAn(y).

The results of this chapter are part of a collaboration with Spencer J. Franks, Pamela

E. Harris, Kimberly Harry and Megan Vance, published in Enumerative Combinatorics and

Applications [30]. We provide enumerative counts for both parking sequences and parking

assortments under fixed n ∈ N>0 and length vector y ∈ Nn
>0. In our technical approach, we

partition the sets of parking sequences and parking assortments into fibers of the outcome
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map O−1(π) for all possible parking orders π ∈ Sn. Thus, we will be able to count all

preferences that yield a specific outcome, then sum over all possible outcomes to receive a

enumerative formulas for #PSn(y) and #PAn(y).

7.1 Parking sequences

Parking sequences were first introduced by Ehrenborg and Happ [20] in 2016. The parking

sequence rule describes the parking procedure as follows: n cars c1, . . . , cn with respective

lengths y = (y1, . . . , yn) try to park on a one-way street with m =
∑n

i=1 yi spots. Each car

ci has a preferred spot pi, which it attempts to park in first. If pi is occupied, ci continues

driving down the street until it finds the first unoccupied spot s. If all spots s + yi − 1 are

unoccupied, ci is able to park. However, if any of the spots s+1, . . . , s+ yi−1 are occupied,

ci does not fit in the gap at s and has to leave the street. If all cars are able to park, we call

the preference vector p = (p1, . . . , pn) a parking sequence for the length vector y. Figure 21

illustrates examples of preference lists which are parking sequences and preference lists which

are not parking sequences for the length vector y = (1, 2, 1).

p = (3, 1, 4)

12 3

1 2 3 4

p = (2, 1, 1)

1

2

1 2 3 4

Figure 21: Note p = (3, 1, 4) is a parking sequence for y = (1, 2, 1) in which car 1 of length 1 parks
in spot 3, car 2 of length 2 parks in spots 1 and 2, and car 3 of length 1 parks in spot 4. On the
other hand, p = (2, 1, 1) is not a parking sequence for y, since car 2 collides with car 1 when
attempting to park.

Remark. If we choose as length vector y = (1, 1, . . . , 1), then

#PSn(y) = (n+ 1)n−1,

as PSn((1, 1, . . . , 1)) = PFn.
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For a given length y, Ehrenborg and Happ established a first formula for #PSn(y):

#PSn(y) = (y1 + n)(y1 + y2 + n− 1) · · · (y1 + · · ·+ yn−1 + 2). (7.1)

The proof for (7.1) constructs a “circular street” on which cars park, an argument also used

by Pollak (reported for example by Riordan [59]).

Given a parking sequence p for y, the result of the parking experiment yields a permuta-

tion π = π1π2 · · · πn of [n], written in one-line notation, which denotes the order in which the

cars park on the street. For example, the parking order in Figure 21 yields the permutation

π = 213. Note that π corresponds to the order in which the cars park, not the order in

which they arrive. Namely, for each j ∈ [n], πj = i denotes that car i is the jth car parked

on the street. In this work, we are interested in determining an alternative way of counting

the number of parking sequences for y, by keeping track of those that park the cars in the

order π. To this effect, we let Sn denote the set of permutations on [n] and for a fixed y we

define the outcome map OPSn(y) : PSn(y) → Sn by OPSn(y)(p) = π = π1π2 · · · πn; and given

π ∈ Sn, we study the fibers of the outcome map:

O−1
PSn(y)

(π) =
{
p ∈ PSn(y) : OPSn(y)(p) = π

}
.

Using the outcome map, we will now show our first result, an enumerative formula for

#PSn(y).

Theorem 7.1. Fix y = (y1, y2, . . . , yn) ∈ Nn
>0 and π = ππ · · · π ∈ Sn. Then

#O−1
PSn(y)

(π) =
n∏

i=1

1 +
∑

k∈L(y,πi)

yk

 ,

where L(y, πi) = ∅ if i = 1 or if πi−1 > πi, otherwise L(y, πi) = {πt, πt+1, . . . , πi−1} with

πtπt+1 . . . πi being the longest subsequence of π such that πk < πi for all t ≤ k < i.

Proof. Let n ∈ N>0, y ∈ Nn
>0 and p ∈ PSn(y), with π = π1 · · · πn = OPSn(y)(p). Define

as PrefPSn(y)(πi) the set of all values that pi ∈ p could have assumed without changing
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OPSn(y)(p). Then, from the independence of preferences, we get

#O−1
PSn(y)

(π) =
n∏

i=1

#PrefPSn(y)(πi).

Now, consider PrefPSn(y)(πi). The only spots car πi can prefer are:

• the spot πi occupies in π and

• any consecutive number of spots to the immediate left of πi that is completely occupied

by cars that arrived on the street before πi.

The second point consists of exactly the elements of L(y, πi); adding 1 to account for the

potential of car πi being lucky completes the result.

We will illustrate this rather technical result with an example.

Example 7.2. Let y = (1, 6, 5, 5, 3, 2, 2) and consider the parking order described by the

permutation π = 2457361. We consider cars as they parked on the street from left to right

in order to determine the preferences for each car so that the parking process results in the

cars parking in the order π:

• Car 2 is parked first in the sequence of cars. Since there are no cars parked to the left

of car 2, there is only 1 spot car 2 could have preferred, precisely where it is parked.

Hence, PrefPS7(y)(π1) = {1}.

• Car 4 is parked second in the sequence of cars. Since car 2 parked to the left of and

earlier than car 4, car 4 could have preferred the spot it parked in or any of the spots

occupied by car 2. Thus, PrefPS7(y)(π2) = {1, 2, 3, 4, 5, 6, 7}.

• Car 5 is parked third in the sequence of cars. Since car 2 and car 4 parked to the left

of and earlier than car 5, car 5 could have preferred the spot it parked in or any of the

spots occupied by cars 2 or 4. Thus, PrefPS7(y)(π3) = {1, 2, . . . , 11, 12}.
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• Car 7 is parked fourth in the sequence of cars. Since cars 2, 4, and 5 parked to the left

of and earlier than car 7, car 7 could have preferred the spot it parked in or any of the

spots occupied by cars 2, 4, or 5. Thus, PrefPS7(y)(π4) = {1, 2, . . . , 14, 15}.

• Car 3 is parked fifth in the sequence of cars. Since car 7 parked to the left of car 3 but

entered the street after car 3, car 3 could not have preferred any spots to the left of

where car 3 parked. Thus, PrefPS7(y)(π5) = {17}.

• Car 6 is parked sixth in the sequence of cars. Since car 3 parked to the left of and

earlier than car 6, car 6 could have preferred the spot it parked in or any of the spots

occupied by car 3. Moreover, as the next car to the left of car 3 is car 7, which arrived

after car 6, then car 6 could not have preferred any of the spots car 7 parks in or those

before car 7. Thus, PrefPS7(y)(π6) = {17, 18, . . . , 22}.

• Car 1 is parked seventh in the sequence of cars. Since car 6 parked to the left of car 1

but entered the street after car 1, car 1 could not have preferred any spots to the left

of where car 1 parked. Thus, PrefPS7(y)(π7) = {24}.

These computations show that

O−1
PS7(y)

(π) =
n∏

i=1

PrefPS6(y)(πi)

and hence

#O−1
PS7(y)

(σ) =
7∏

i=1

#PrefPS7(y)(σi) = 1 · 7 · 12 · 15 · 1 · 6 · 1 = 7560.

By using the result from Theorem 7.1 on the entire group Sn, we obtain a count for all

parking sequences of a given y and n.

Corollary 7.3. For a fixed n ∈ N>0 and y ∈ Nn
>0, the number of parking sequences is

#PSn(y) =
∑
π∈Sn

n∏
i=1

1 +
∑

k∈L(y,πi)

yk

 .
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7.2 Parking assortments

In this section, we provide a similar formula for parking assortments. We begin by

recalling the parking assortment rule: n cars c1, . . . , cn of varying lengths y1, . . . , yn enter a

one–way street from the left. Each car ci has a preferred spot pi, which attempts to park in

first. If spot pi is occupied or any of the spots pi+ yi− 1 are occupied, i.e. the “gap” at pi is

not large enough for ci to park, the car continues driving down the street until it either finds

a sufficiently sized gap to park in or arrives at the end of the street, at which point it fails

to park. If all cars are able to park, we call the preference vector p a parking assortment of

n cars with lengths y. The set of all parking assortments for fixed n and y is called PAn(y).

We illustrate the parking assortment rule, and especially the difference to parking se-

quences in Figure 22.

p = (2, 1, 1) /∈ PS3(y)

1

2

1 2 3 4

p = (2, 1, 1) ∈ PA3(y)

1 23

1 2 3 4

Figure 22: Let y = (1, 2, 1). In Figure 21 we showed (2, 1, 1) /∈ PS3(y). However, under the
parking assortment rule: car 1 parks in spot 2. Car 2 attempts to park in spot 1, unable to fit
there, it continues down the street, parking in spot 3 (occupying spots 3 and 4). Car 3 finds spot
1 available; able to fit, it parks there. Thus, p ∈ PA3(y).

Remark. For any n ∈ N>0 and y ∈ Nn
>0 we observe that

PSn(y) ⊆ PAn(y).

When y = (1, 1, . . . , 1), we have PAn(y) = PFn = PSn(y).

The following definitions set some necessary notation for our enumerative results.

Definition 7.4. For each i ∈ [n] and π = π1π2 · · · πn ∈ Sn, we let PrefPAn(y)(πi) be the set

of possible preferences for car πi so that it is the ith car to park on the street when using the

parking assortment parking rule. We let #PrefPAn(y)(πi) denote the cardinality of the set.
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In the next technical definition, we fix a subword which ends at πi, and further partition

it into smaller subwords, so that in each smaller subword either all elements are smaller than

or all are greater than πi. The upshot is that for a car πi, we need to find the rightmost

contiguous block of cars that is parked to the left of πi and arrived after πi. This is, at the

time car πi enters the street, is a gap large enough for πi to park in.

Definition 7.5. Let π = π1π2 · · · πn ∈ Sn. For i ∈ [n] we define a partition T (πi) of the

subword π1π2 · · · πi−2πi−1 into subwords as follows:

1. T (π1) = ∅.

2. If πi−1 > πi, then

T (πi) =


βℓαℓ · · · β2α2β1α1 if π1 < πi

αℓ+1βℓαℓ · · · β2α2β1α1 if π1 > πi

(7.2)

where

• α1 is the longest contiguous subword πsπs+1 · · · πi−1 where πj > πi for all s ≤ j ≤

i− 1;

• β1 is the longest contiguous subword πtπt+1 · · · πs−1 where πj < πi for all t ≤ j ≤

s− 1.

We construct α2 and β2 in a similar fashion (from right to left) with the elements of

π1π2 · · · πt−1. Continue constructing subwords βkαk, for 3 ≤ k ≤ ℓ, in this way until

π1 is included in one of them. If π1 > πi, then the leftmost subword is αℓ+1, otherwise

the leftmost subword is βℓ.

3. If πi−1 < πi, then

T (πi) =


αℓβℓ · · ·α2β2α1β1 if π1 > πi

βℓ+1αℓβℓ · · ·α2β2α1β1 if π1 < πi

(7.3)

where
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• β1 is the longest contiguous subword πsπs+1 · · · πi−1 where πj < πi for all s ≤ j ≤

i− 1;

• α1 is the longest contiguous subword πtπt+1 · · · πs−1 where πj > πi for all t ≤ j ≤

s− 1.

We construct α2 and β2 in a similar fashion (from right to left) with the elements of

π1π2 · · · πt−1. Continue constructing subwords αkβk, for 3 ≤ k ≤ ℓ, in this way until

π1 is included in one of them. If π1 > πi, then the leftmost subword is βℓ+1, otherwise

the leftmost subword is αℓ.

We give some examples to illustrate the previous definition.

Example 7.6. If π = 4123, then

T (π1) = ∅, T (π2) = 4︸︷︷︸
α1

,

T (π3) = 4︸︷︷︸
α1

1︸︷︷︸
β1

and T (π4) = 4︸︷︷︸
α1

12︸︷︷︸
β1

.

Example 7.7. If π = 2457361, then

T (π1) = ∅, T (π2) = 2︸︷︷︸
β1

, T (π3) = 24︸︷︷︸
β1

,

T (π4) = 245︸︷︷︸
β1

, T (π5) = 2︸︷︷︸
β1

457︸︷︷︸
α1

, T (π6) = 245︸︷︷︸
β2

7︸︷︷︸
α1

and

T (π7) = 245736︸ ︷︷ ︸
α1

.

Theorem 7.8. Let π = π1π2 · · · πn ∈ Sn and y = (y1, y2, . . . , yn) ∈ Nn
>0. Fix i ∈ [n] and

partition T (πi) as in Definition 7.5. Then PrefPAn(y)(πi) has the following cardinalities:

1. if i = 1 or πi−1 > πi, then #PrefPAn(y)(πi) = 1;

2. if T (πi) = β1, then #PrefPAn(y)(πi) = 1 +
∑
πk∈β1

yπk
;
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3. otherwise

#PrefPAn(y)(πi) =


1 +

i−1∑
k=1

yπk
if m(i) does not exist

∑
πk∈βm(i)αm(i)−1βm(i)−1···α1β1πi

yπk
if m(i) exists

where

m(i) = min

1 ≤ j ≤ ℓ :
∑
πk∈αj

yπk
≥ yπi

 .

which denotes the closest gap to the left of πi in which πi could have parked.

Proof. We proceed by proving each case independently.

Case 1: If i = 1, then πi = π1 is the first car parked on the street, which implies that

it must have preferred the first parking spot on the street. Hence #PrefPAn(y)(π1) = 1,

as claimed. If πi−1 > πi, this means that the car parked immediately to the left of πi

arrived after πi. Hence car πi can only prefer the spot it parked in, as otherwise it

would have parked elsewhere. This implies #PrefPAn(y)(πi) = 1, as claimed.

Case 2: If T (πi) = β1, then πj < πi for all j ∈ [i − 1]. Thus all of the cars parked

left of πi arrived and parked before πi. Hence πi could prefer all of the spots cars

π1, π2, . . . , πi−1 occupy, as well as the spot in which πi ultimately parks. This implies

#PrefPAn(y)(πi) = 1 +
∑

πj∈β1
yπj

.

Case 3: Note that πi−1 < πi (as otherwise this would be Case 1). Furthermore, we

can assume that α1 exists (as otherwise this would be Case 2). Hence, by Definition

7.5, we have

T (πi) = π1π2 · · · πi−2πi−1 =


αℓβℓ · · ·α2β2α1β1 if π1 > πi

βℓ+1αℓβℓ · · ·α2β2α1β1 if π1 < πi

where β1 is the longest contiguous subword consisting of πj < πi and α1 is the longest

contiguous subword consisting of πj > πi. In either case, we note that by definition,
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each αj denotes a set of cars parking contiguously on the street, arriving in the queue

after car πi and parking to the left of car πi. The cars in the subwords αj (for 1 ≤ j ≤ ℓ)

create gaps in the street which πi could potentially park in if they happen to be large

enough.

That is, for any j ∈ [ℓ], if
∑

πk∈αj
yπk
≥ yπi

, then πi

– cannot prefer all of the spots occupied by the cars in αj and

– cannot prefer any spots to the left of the spots occupied by the cars in αj,

since then πi would park either before or within the spots occupied by the cars in αj.

Both cases contradict the fact that πi is the ith car parked on the street.

In fact, the only parking spots car πi could prefer are

– the spots occupied by the cars in βm(i)αm(i)−1βm(i)−1 · · ·α1β1,

– the right-most yπi
− 1 spots occupied by the cars in αm(i), or

– the spot πi parks in.

Note that this exhausts all of the possible preferences for πi, as αm(i) (by definition)

is the closest gap in which πi could park. Thus, the number of spots that car πi can

prefer is

#PrefPAn(y)(πi) = 1 + (yπi
− 1) +

∑
πk∈βm(i)αm(i)−1βm(i)−1···α1β1

yπk

=
∑

πk∈βm(i)αm(i)−1βm(i)−1···α1β1πi

yπk

as claimed.

We can now formally state and prove the analogous result to Theorem 7.1 for parking

assortments.
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Theorem 7.9. Fix y = (y1, y2, . . . , yn) ∈ Nn
>0 and let π = π1π2 · · · πn ∈ Sn. Then

#O−1
PAn(y)

(π) =
n∏

i=1

#PrefPAn(y)(πi),

where

#PrefPAn(y)(πi) =



1 if i = 1 or πi−1 > πi

1 +
∑
πk∈β1

yπk
if T (πi) = β1

1 +
i−1∑
k=1

yπk
if m(i) does not exist

∑
πk∈βm(i)αm(i)−1βm(i)−1···α1β1πi

yπk
if m(i) exists

(7.4)

with

m(i) = min

1 ≤ j ≤ ℓ :
∑
πk∈αj

yπk
≥ yπi

 .

again denoting the closest spot to the left of πi in which πi could have parked.

Proof. The theorem follows directly from independence of preferences and Theorem 7.8.

Theorem 7.9 immediately implies the following result.

Corollary 7.10. Fix y = (y1, y2, . . . , yn) ∈ Nn
>0 and for any π ∈ Sn, let |O−1

PAn(y)
(π)| be as

given by Theorem 7.9. Then

#PAn(y) =
∑
π∈Sn

#O−1
PAn(y)

(π).

We set n = 4 and y = (1, 2, 1, 2) to provide example values for #O−1
PSn(y)

(Table 1) and

#O−1
PAn(y)

(Table 2) for all π ∈ S4.

π #O−1
PS4(y)

(π) π #O−1
PS4(y)

(π) π #O−1
PS4(y)

(π) π #O−1
PS4(y)

(π)

1234 40 2134 20 3124 10 4123 8
1243 8 2143 4 3142 3 4132 2
1324 10 2314 15 3214 5 4213 4
1342 6 2341 12 3241 4 4231 3
1423 6 2413 6 3412 4 4312 2
1432 2 2431 3 3421 2 4321 1

Table 1: Cardinalities of the sets O−1
PS4((1,2,1,2))

(π) for each π ∈ S4.
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π #O−1
PA4(y)

(π) π #O−1
PA4(y)

(π) π #O−1
PA4(y)

(π) π #O−1
PA4(y)

(π)

1234 40 2134 20 3124 15 4123 12
1243 8 2143 4 3142 3 4132 2
1324 10 2314 15 3214 5 4213 4
1342 6 2341 12 3241 4 4231 3
1423 6 2413 6 3412 6 4312 3
1432 2 2431 3 3421 2 4321 1

Table 2: Cardinalities of the sets O−1
PA4((1,2,1,2))

(π) for each π ∈ S4.
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8 LUCKY CARS AND THE QUICKSORT ALGORITHM

In this chapter, we reveal a connection between certain parking objects and the Quicksort

algorithm. We show that the number of parking preferences with n cars of which n− 1 are

lucky is equal to the number of comparisons the Quicksort algorithm performs when sorting

all n! elements of Sn.

This chapter is based on a collaboration with Pamela E. Harris and J. Carlos Mart́ınez

Mori [41].

8.1 The Quicksort algorithm

A common student experience is to form a line where people are sorted by their height,

say with the shortest student on the left and the tallest student on the right. One approach

to sort the students is to have students join the line one at a time, each finding their place in

line by comparing their height to that of those already in it. Thereby one at a time, students

self-sort and the end result yields the desired student ordering.

As inconspicuous as this activity may seem, sorting algorithms and their use of computa-

tional resources (e.g., comparisons) are subject to vast amounts of scientific attention. One

such algorithm, aptly called Quicksort, was developed by Tony Hoare—who would later

become Sir Tony Hoare—in 1961 while he was a British Council exchange student visiting

Moscow State University [29, 42, 45]. Quicksort is a classical sorting algorithm and a prime

example of the divide-and-conquer paradigm. By now, its design and analysis is covered in

most undergraduate textbooks on algorithm design (e.g., [17, 46, 48, 64], to list a few).

The algorithm first bipartitions the array elements by selecting a pivot element: elements

less than or equal to the pivot element are assigned to a “left” array, whereas elements greater

than the pivot element are assigned to a “right” array. In this way, given an array with

n ∈ N := {1, 2, 3, . . .} elements, the algorithm first makes n − 1 pivot comparisons. Then,
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2 5 3 1 8 7 6 4

2 3 1 4 5 8 7 6

1 2 3 4 5 6 8 7

1 2 3 4 5 6 7 8

Figure 23: Using Quicksort to sort the permutation 25318764. The rightmost subarray element is
chosen as the pivot, highlighted in black with white numerals four and six. The algorithm partitions
the array into elements larger and smaller than the pivot. If the subarray is length 3 or smaller,
it sorts by brute force. Otherwise, it recurses on the resulting subarrays, marked with thick black
lines. Correctly ordered elements are highlighted in gray.

the algorithm recurses separately on the left and right arrays to obtain their respective sorted

versions1.

In Figure 23, we illustrate an execution of the algorithm as described in [46, Chapter

13.5]. (A more detailed description, with precise array-indexing and swap operations, can

be found in [17, Chapter 7]).

Given an array of size n, the overall number of pivot comparisons made by Quicksort

(including all recursive calls) crucially depends on the choice of pivot elements. For example,

if the algorithm happens to repeatedly select the smallest element as the pivot element, then

the input array of any particular recursive call is only one unit smaller than that of the

preceding call. It follows that, in the worst case, the algorithm makes
∑n

i=1(n − i) =

n(n−1)
2

= O(n2) pivot comparisons2. However, if we assume the original array is ordered

uniformly at random (i.e., it is in any given ordering with probability 1/n!), the expected

number of pivot comparisons is O(n log n). This bound can be obtained as follows: Let Qn

be the expected number of pivot comparisons performed by Quicksort given an array of

1In practice, Quicksort is implemented in conjunction with non-recursive sorting algorithms that work
well on small arrays. This and other practical optimizations of the algorithm are described by Sedgewick
in [63].

2Given f, g : N→ N, we say f = O(g) if there exist k ∈ N and C ∈ R>0 such that f(n) ≤ C · g(n) for all
n ≥ k.
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size n ordered uniformly at random. Then, regardless of the pivot selection strategy (e.g.,

selecting the right-most element), any choice of pivot element is equally likely to be the kth

smallest and we have

Qn = (n− 1) +
1

n

(
n∑

k=1

Qk−1 +Qn−k

)
. (8.1)

This recursive relation unravels (see [13, Chapter 4.7] for details) to obtain

Qn = 2(n+ 1)Hn − 4n = O(n log n), (8.2)

where Hn is the nth harmonic number, i.e. Hn :=
∑n

i=1
1
i
.

Note that while Qn is not an integer sequence, An = n!Qn is an integer sequence and

denotes the total number of comparisons performed by Quicksort given all possible orderings

of an array of size n, (see [43, A288964]).

In fact, by the definition of expectation, An is given by

An = n!Qn = n! [2(n+ 1)Hn − 4n] . (8.3)

8.2 Relation to parking objects

To state our main result, we first recall the lucky statistic on parking functions: as stated

in Definition 6.7, for p ∈ PFn we have

L(p) = # {πi ∈ O(p) | i = pπi
} , (8.4)

i.e., L(p) is the number of cars that park on their preferred spot. For this section, we will

slightly extend this definition to include arbitrary n-tuples of [n]. We still call a car “lucky”

if it parks on its preferred spot – cars that are unable to park are therefore not considered

lucky.

Definition 8.1. Let n ∈ N>0. Then, for α ∈ [n]n, we define

L′(α) = # {i ∈ α | i is lucky} .
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The lucky statistic was studied by Gessel and Seo [34], who gave the following generating

function

∑
p∈PFn

qL(p) = q

n∏
i=1

(i+ (n− i+ 1)q). (8.5)

In what follows, we let

Ln = {α ∈ [n]n : L′(α) = n− 1}

and give a formula for Ln = #Ln; the number of preference lists in [n]n with n − 1 lucky

cars. Note that unlike (8.5), where the sum is over parking functions of length n, Ln is not

restricted to elements of PFn.

Our main result shows that Ln = An, where An is given by (8.3) and counts the total

number of comparisons performed by Quicksort given all possible orderings of an array of

size n.

Theorem 8.2. If n ≥ 2, then Ln = An = n!Qn.

Proof. It suffices to show that both An and Ln satisfy the second order recurrence relation

fn = 2nfn−1 − n(n− 1)fn−2 + 2(n− 1)! with f0 = f1 = 0. (8.6)

Algebraic manipulations involving telescoping sums show that (8.1) implies nQn = (n +

1)Qn−1+2(n−1) with Q0 = 0. As An = n!Qn we have that An = (n+1)An−1+2(n−1)(n−1)!

with A0 = 0. Then,

An = 2nAn−1 − (n− 1)An−1 + 2(n− 1)(n− 1)!

= 2nAn−1 − (n− 1)(nAn−2 + 2(n− 2)(n− 2)!) + 2(n− 1)(n− 1)!

= 2nAn−1 − n(n− 1)An−2 + 2(n− 1)!

with A0 = A1 = 0, as desired.

We now show that Ln, which is the number of preference lists in [n]n with exactly n− 1

lucky cars, also satisfies (8.6). Note that each α ∈ Ln contains exactly one duplicate entry;
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all other entries are pairwise distinct. Hence, there is exactly one pair of cars that share a

preference; call this pair of cars the competing cars. This also implies that there is exactly

one parking spot that is not preferred by any car; call this parking spot the undesired spot.

Note that

Ln = #Nn +#Mn, (8.7)

where

Nn = {α ∈ Ln : car 1 is not a competing car}, and

Mn = {α ∈ Ln : car 1 is a competing car}.

We begin by enumerating the elements of Nn. To do so we use the following fact. If car

1 is not a competing car and prefers spot a1, then the remaining n− 1 cars behave as if car

1 preferred spot n. Namely, by shifting the preferences so that ai = ai − 1{ai>a1} for each

i ∈ [n] \ {1}, where 1 denotes the indicator function, we note there are Ln−1 preference lists

that satisfy the required condition. As there are n options for the preference a1 of car 1 we

have that

#Nn = nLn−1. (8.8)

Now, if α = (a1, a2, . . . , an) ∈Mn, then car 1 is a competing car. This implies that there

exists an index 2 ≤ j ≤ n such that a1 = aj, while all other entries are pairwise distinct as

well as distinct from this value. We now consider the cases j = 2 and 3 ≤ j ≤ n separately:

• If j = 2, then a1 = a2. If a1 = a2 = n, then cars 3, 4, . . . , n have pairwise distinct

preferences among the first n−1 parking spots. Hence, if a1 = a2 = n, there are (n−1)!

possibilities for the remaining entries a3, a4, . . . , an in α. If a1 = a2 = k < n, then spot

k+1 is the undesired spot and cars 3, 4, . . . , n have pairwise distinct preferences among

the n− 1 parking spots {1, 2, . . . , k− 1, k+2, . . . , n}. Hence, if a1 = a2 = k < n, there

are (n − 1)! possibilities for the remaining entries a3, a4, . . . , an in α. Together, these

mutually exclusive cases contribute 2(n− 1)! toward the total count.
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• If 3 ≤ j ≤ n, then car 2 is not a competing car. Note that there are n possible

preferred spots for car 2. Moreover, the preference list (a1, a3, a4, . . . , an) contains the

two competing cars (with the first car being in the competing pair), and all of the

remaining n− 1 cars have preferences in the set [n] \ {a2}. By shifting the preferences

so that ai = ai − 1{ai>a2} for each i ∈ [n] \ {2}, we note that the total number of such

preferences for cars 1, 3, 4, . . . , n is given by #Mn−1. This case contributes n ·#Mn−1

toward the total count.

Therefore,

#Mn = n ·#Mn−1 + 2(n− 1)!. (8.9)

Substituting (8.8) and (8.9) into (8.7) yields

Ln = nLn−1 + n ·#Mn−1 + 2(n− 1)!. (8.10)

Subtracting 2nLn−1 from both sides of (8.10) yields

Ln − 2nLn−1 = −nLn−1 + n ·#Mn−1 + 2(n− 1)!

= −n((n− 1)Ln−2 +#Mn−1) + n ·#Mn−1 + 2(n− 1)!

= −n(n− 1)Ln−2 + 2(n− 1)!

which upon rearranging is the desired recurrence relation

Ln = 2nLn−1 − n(n− 1)Ln−2 + 2(n− 1)!

with L0 = L1 = 0.

8.3 Summing over parking orders

Similarly to the results shown in Chapter 7, we can employ the technique of summing

over all potentially resulting parking orders, which we also refer to as “counting through

permutations”, to our newly restricted parking objects, as well as to parking functions with

an arbitrary set of lucky cars. We use this section to provide formulas for these techniques.
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8.3.1 All cars but one are lucky

We begin with an alternative counting formula for the parking objects examined previ-

ously in Section 8.2. For preference lists α ∈ [n]n such that n − 1 cars are lucky and only

one car is unlucky (and might not park at all), counting through permutations reduces to:

Theorem 8.3. For all n ∈ N>0,

#Ln =
∑
π∈Sn

n∑
i=1

(Si(π, i− 1) + Si(π, n)) ,

where Si(π, j) is the longest contiguous sequence πj−#Si(π,j) · · · πj−1πj such that πk < πi for

all πk ∈ Si(π, j).

Proof. Every lucky car can only have 1 preference. Therefore, each car only contributes to

#Ln in the case that it is the unlucky car. The unlucky car has 2 options:

1. It parks. Then it must have preferred a spot from a number of contiguously occupied

spots to the left of its parking spot. The maximum possible for any permutation π is

captured in Si(π, i− 1).

2. It does not park. Then, it must have preferred a spot from a number of contiguously

occupied spots to the very end of the street. The number of spots the unlucky car can

choose from is Si(π, n).

Adding the two options yields the number of preferences each car can have. Since all other

cars are lucky, we cannot multiply the numbers of preferences here. Instead summing over

each car and each permutation provides the result.

8.3.2 Arbitrary cars are lucky

To conclude this chapter, we will provide an enumerative formula for the number of

parking functions with a fixed set L of lucky cars. For a given set L ⊆ [n], we define as

PFn(L) the set of parking functions with lucky cars L.
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We begin by stating a necessary definition.

Definition 8.4. Let π = π1 · · · πn ∈ Sn be a parking order and L ⊆ [n]. Then, for each car

πi, the number of spots πi could have preferred such that the lucky cars are exactly L is:

PrefL(π, πi) =


0 if πi = π1 or πi = 1

#Si(π, i− 1) else,

where Si(π, j) is the longest contiguous sequence πj−#Si(π,j) · · · πj−1πj such that πk < πi for

all πk ∈ Si(π, j).

Theorem 8.5. Let n ∈ N>0 and L ⊆ [n]. Then, the number of parking functions with lucky

cars L is found by

#PFn(L) = δL,[n] · n! +
∑
π∈Sn

∏
πi∈[n]−L

PrefL(π, πi),

with δx,y the Kronecker delta.

Proof. We follow the standard approach to find the number of preference lists that result

in each possible outcome π ∈ Sn. Since lucky cars can only have a single preference, they

do not contribute to the number of preference lists for each outcome. Now, we are only

counting the preferences of the unlucky cars [n]−L, which can prefer as many spots as there

are cars parked contiguously to the left of their parking spot. Since we are summing over all

permutations, we have to handle the special case that π1 /∈ L – Definition 8.4 rectifies and

results in 0 potential preferences. Additionally, we need to consider the case that L = [n]

– the resulting parking functions are exactly the permutations, which we are conditionally

adding through the Kronecker delta.

Example 8.6. Consider n = 4 and L = {1, 3} – that is, we have 4 cars c1, . . . , c4 and cars

c3 and c3 are the only lucky cars, i.e. the only cars parking in their preferred spots. Since

L ̸= [n], the Kronecker delta is 0 and we are left to sum over parking outcomes π ∈ Sn. For

each parking order, we need only consider the unlucky cars {2, 4} = [n] − L, since a lucky
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car can only have 1 preferred spot. We list some parking orders π ∈ S4, showing how many

possible preferences lead to the outcome π.

• π = 1234:

– For car 2, we have PrefL((1234), 2) = #S2((1234), 1) = 1.

– For car 4, we have PrefL((1234), 4) = #S4((1234), 4) = 3.

• π = 3214

– For car 2, we have PrefL((4132), 2) = #S((4132), 2) = 0, making the entire

product over potential preferences for each car 0. We notice that car 2 is parked

to the right of a car that arrived after car 2 – therefore, it can only prefer the spot

it parks on, which implies that car 2 is lucky. However, since 2 /∈ L, this parking

order is impossible to achieve, and therefore there are 0 preference lists yielding

this outcome under L = {1, 3}.

• π = 2134

– For car 2, we have PrefL((4132), 2) = 0, because we see that 2 = π1. The car

parking first on the street must always be lucky, therefore π = 2134 is also an

impossible outcome under L = {1, 3}.

Next, consider L = {2, 4} and any outcome π ∈ S4. Since 1 /∈ L, for each πi = 1, car c1

will contribute to the result. However, since car c1 always parks on an entirely empty street,

it is always a lucky car. Therefore, we receive PrefL(π, 1) = 0, as stated in Definition 8.4.

In the next chapter, we use the intersection of a subset of parking functions and Fubini

rankings to examine Boolean algebras in the weak order of Sn.
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9 BOOLEAN INTERVALS IN THE WEAK ORDER OF Sn

In the final chapter of this work, we provide an enumeration and characterization of

Boolean intervals in the weak order of Sn through a connection to unit fubini rankings –

which are a subset of parking functions. This chapter is based on joint work with Jennifer

Elder, Pamela E. Harris and J. Carlos Mart́ınez Mori. With slight changes to notation, the

remainder of the chapter is available as a preprint [21].

9.1 Background

A poset is called Boolean if it is isomorphic to the poset of subsets of a set I ordered by

inclusion. The term Boolean poset is inherited from Boolean algebras, given that one of the

most familiar examples of a Boolean algebra is the power set 2I . If #I = k < ∞, then a

Boolean poset is a distributive lattice, making it a ranked poset. Hence, we let Bk denote a

Boolean poset of rank k.

Boolean posets appear frequently in combinatorics, especially as intervals (subposets)

within larger structures. In these cases, they are referred to as Boolean intervals. One

notable example is that of Boolean intervals in the right weak (Bruhat) order lattice on the

symmetric group Sn [7, 71, 72, 73], where n ∈ N>0. The weak order lattice on Sn, denoted

W (Sn), is constructed by the simple transpositions si = (i, i + 1) for i ∈ [n − 1], where

cover relations arise from the (right hand side) application of a single simple transposition.

Therefore, simple transpositions are also referred to as generators. Figure 24 highlights a B3

interval in W (S6).

100



 
123456

 
451623 (3,5,6,1,2,4)

546132 (3,5,5,1,1,3)
 

654321
 

Figure 24: Illustration of W (S6). A Boolean interval B3 with minimal element 451623 and maximal
element 546132, written in one-line notation, is highlighted. The decorators (3, 5, 6, 1, 2, 4) and
(3, 5, 5, 1, 1, 3) indicate the unit Fubini rankings associated with the minimal and maximal Boolean
subintervals of B3 rooted at 451623, respectively.

Tenner established that Boolean posets appear as intervals [v, w] in the weak order if

and only if v−1w is a permutation composed of only commuting generators [73, Corollary

4.4]. We recall that generators si and sj commute whenever |i − j| > 1. We provide more
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background on the weak order lattice and Boolean intervals in Section 9.1.1. Tenner also

established that Boolean intervals with a generator as minimal element are enumerated by

products of at most two Fibonacci numbers [73, Proposition 5.9].

9.1.1 Boolean intervals in the weak order lattice

Boolean posets are constructed by subsets of a set I ordered by inclusion. Figure 25

illustrates some small examples.

∅ ∅

{1}

∅

{2}{1}

{1, 2}

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure 25: Boolean posets B0, B1, B2, and B3 of rank 0, 1, 2, and 3, respectively.

We recall the definition of the descent and ascent set, which plays a key role in the proof

of Theorem 9.25.

Definition 9.1. For a permutation σ = σ1σ2 · · ·σn ∈ Sn, the ascent set of σ is given by

Asc(σ) = {i ∈ [n− 1] | σ has an ascent at i} .

Similarly, the descent set of σ is given by

Des(σ) = {i ∈ [n− 1] | σ has a descent at i}

The right weak (Bruhat) order, denotedW (Sn), is a partial order on Sn. Its cover relations

are defined by the application of a single simple (adjacent) transposition on the right hand

side. That is, τ ⋖ σ if and only if τsi = σ for some i ∈ Des(σ). In general, if τ ≤ σ, then

there exists a collection si1 , . . . , sik of simple transpositions such that τsi1 . . . sik = σ.
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Note that W (Sn) is a bounded lattice for all n ≥ 2 [68]. In one-line notation, its minimal

element is 12 · · ·n while its maximal element is n(n− 1) · · · 21. Figure 26 illustrates W (S4)

with its elements written in one-line notation.

1234
 

1243
 

1324
 

1342
 

1423
 

1432
 

2134
 

2143
 

2314
 

2341
 

2413
 

2431
 

3124
 

3142
 

3214
 

3241
 

3412
 

3421
 

4123
 

4132
 

4213
 

4231
 

4312
 

4321
 

Figure 26: Illustration of W (S4) with a highlighted Boolean interval B2.

Remark. In a similar way, we can define the left weak (Bruhat) order, where τ ≤ σ if and

only if there exists a collection sk1 . . . , skm of simple transpositions such that σ = sk1 . . . skmτ .

The two weak orders are distinct, but isomorphic under the map σ 7→ σ−1.

A subset [σ, τ ] ⊆ W (Sn) is an interval if σ ≤ τ and π ∈ [σ, τ ] whenever σ ≤ π ≤ τ . As

noted earlier in this chapter, Tenner established that Boolean intervals in W (Sn) have the

structure [v, w] if and only if v−1w is a permutation composed of only commuting generators

[73, Corollary 4.4].

Example 9.2. In Figure 26, if π ∈ S4, then the interval [π, π] is a Boolean interval of rank

zero. In addition, all intervals [π, πsi] where i ∈ Asc(π) are Boolean intervals of rank one.
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Finally, if Asc(π) = {1, 3}, then the interval [π, πs1s3] is a Boolean interval of rank two. For

example, the interval [2314, 3241], which is highlighted in Figure 26, is one of the six Boolean

intervals of rank two in W (S4).

9.1.2 Unit interval parking functions and Fubini rankings

Hadaway and Harris introduced unit interval parking functions, which are a subset of

parking functions in which cars park exactly at their preferred spot or one spot away [35].

For example, (1, 2, 3, 4, 5), (1, 1, 3, 4, 5), (1, 1, 2, 4, 5) are unit interval parking functions (of

length 5), whereas (1, 1, 1, 1, 1) is a parking function but not a unit interval parking function.

Let UPFn denote the set of unit interval parking functions of length n. Hadaway and Harris

established that the number of unit interval parking functions of length n is given by the

Fubini numbers, also known as the ordered Bell numbers (OEIS A000670). That is,

#UPFn = Fubn =
n∑

k=1

k!S(n, k), (9.1)

where S(n, k) are Stirling numbers of the second kind (OEIS A008277), which count the

number of set partitions of [n] with k non-empty parts.

To establish their result, Hadaway and Harris proved that the set of unit interval parking

functions is in bijection with the set of Fubini rankings. A Fubini ranking of length n is

a tuple r = (r1, r2, . . . , rn) ∈ [n]n that records a valid ranking over n competitors with

ties allowed (i.e., multiple competitors can be tied and have the same rank). However, if

k competitors are tied and rank ith, the k − 1 subsequent ranks i + 1, i + 2, . . . , i + k − 1

are disallowed. For example, if two competitors are tied and rank first, the second rank is

disallowed and the next available rank is the third1. Similarly, (1, 1, 3, 3, 5), (1, 2, 3, 4, 5),

(1, 1, 1, 1, 1), (3, 1, 5, 1, 3) are all Fubini rankings (of length 5) while (3, 1, 5, 1, 2) is not, as

1One noteworthy instance of this took place at the men’s high jump event at the Summer 2020
Olympics [16]. In this competition, Mutaz Essa Barshim of Qatar and Gianmarco Tamberi of Italy led
the final round. Both athletes cleared 2.37 meters but neither of them cleared 2.39 meters. Upon being
presented the option of a “jump-off” to determine the sole winner, they agreed to instead share the gold
medal. The next best rank was held by Maksim Nedasekau of Belarus, who obtained the bronze medal.
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competitors 2 and 4 are tied and rank first, implying no competitor can rank second. Let

FRn denote the set of Fubini rankings of length n. Cayley [15] showed that #FRn = Fubn,

as in (9.1).

Note that by the definition of Fubini ranking, any rearrangement of a Fubini ranking

is itself a Fubini ranking; as long as the distribution of ranks does not change, which com-

petitor holds which rank is immaterial. In other words, Fubini rankings are invariant under

permutations. As we reference this fact in a later section, we state it formally below.

Proposition 9.3. Fubini rankings are invariant under permutations.

9.2 Unit Fubini rankings

Despite the fact that the sets FRn and UPFn are in bijection, their intersection FRn ∩

UPFn is non-trivial for all n > 1. For example, (1, 1, 2) is a unit interval parking function but

not a Fubini ranking, (1, 1, 1) is a Fubini ranking but not a unit interval parking function,

while (1, 1, 3) is both a Fubini ranking and a unit interval parking function.

Henceforth, we refer to the elements in FRn ∩ UPFn as unit Fubini rankings, and we

denote this set by UFRn. Note that elements in UFRn are Fubini rankings with the additional

constraint that ranks are shared by at most two competitors. Table 3 gives the cardinality

of UFRn for small values of n, agreeing with OEIS A080599, which Stanley identifies as the

number of Boolean intervals in W (Sn). His remark motivates this work.

n 1 2 3 4 5 6 7
#UFRn 1 3 12 66 450 3690 35280

Table 3: The number of unit Fubini rankings with 1 ≤ n ≤ 7 competitors.

The following definition and result are due to Bradt, Elder, Harris, Rojas Kirby, Reuter-

crona, Wang, and Whidden [11], who gave a complete characterization of unit interval park-

ing functions.
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Definition 9.4 ([11]). Let α = (a1, a2, . . . , an) ∈ UPFn and α′ = (α′
1, α

′
2, . . . , α

′
n) be its

weakly increasing rearrangement. Let i1, i2, . . . , im ∈ [n] be the increasing sequence of

indices satisfying α′
ij

= ij. The partition of α′ as the concatenation b1|b2| . . . |bm where

bj = (α′
ij
, α′

ij+1, . . . , α
′
ij+1−1) is called the block structure of α. Each part bj for j ∈ [m] is

called a block of α.

Next, we state the characterization of unit parking functions by Bradt et al. [11, Theorem

2.9].

Theorem 9.5. Given α = (a1, . . . , an) ∈ UPFn, let α
′ be its weakly increasing rearrangement

and α′ = π1 | π2 | . . . |πm be the block structure of α (as in Definition 9.4).

1. There are (
n

#π1, . . . ,#πm

)
(9.2)

possible rearrangements σ of α such that σ is still a unit interval parking function.

2. A rearrangement σ of α is in UPFn if and only if the entries in σ respect the relative

order of the entries in each of the blocks π1, π2, . . . , πm.

For our purposes, we only need the following result, which follows from Theorem 9.5.

Corollary 9.6. Let α ∈ UPFn and b1 | b2 | · · · | bm be its block structure. For each j ∈ [m],

let ij be the minimal element of bj. Consider any j ∈ [m − 1]. If #bj = 1, then bj = (ij)

and ij+1 = ij + 1. Otherwise, if #bj = 2, then bj = (ij, ij) and ij+1 = ij + 2. Otherwise,

#bj ≥ 3, bj = (ij, ij, ij + 1, ij + 2, . . . , ij +#bj − 2︸ ︷︷ ︸
#bj−2 terms

) and ij+1 = ij +#bj.

We now give a characterization of unit Fubini rankings based on their block structure.

We employ this technical result in our proof of Theorem 9.20.

Theorem 9.7. Let α ∈ UPFn and b1 | b2 | · · · | bm be its block structure. Then, α ∈ UFRn if

and only if #bj ≤ 2 for each j ∈ [m].
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Proof. First, suppose #bj ≤ 2 for each j ∈ [m]. We need to show that α ∈ UFRn. To do

this, it suffices to show that for each pair bj, bj+1 of consecutive blocks with j ∈ [m−1], there

being competitors whose ranks correspond to the block bj does not disallow there being a

competitor whose rank is the minimal element of block bj+1. Consider any such pair bj, bj+1

of consecutive blocks and let ij and ij+1 be the minimal elements of blocks bj and bj+1,

respectively. If #bj = 1, then by Corollary 9.6 we know that bj = (ij) and ij+1 = ij + 1, so

there being a competitor whose rank is ij does not disallow there being a competitor whose

rank is ij+1 = ij + 1. If #bj = 2, then by Corollary 9.6 we know that bj = (ij, ij) and

ij+1 = ij +2, so there being two competitors whose ranks are both ij does not disallow there

being a competitor whose rank is ij+1 = ij + 2.

Now, suppose #bj = k > 2 for some j ∈ [m]. We need to show that α /∈ UFRn. Let ij

be the minimal element of block bj so that, by Corollary 9.6, bj = (ij, ij, ij + 1, . . . , ij + k).

Note that, in bj, ij appears twice while ij + 1 appears once. Therefore, similarly in α, ij

appears twice while ij + 1 appears once. This implies that α /∈ UFRn, since there being

two competitors whose ranks are both ijth disallows the subsequent rank ij +1, which some

competitor supposedly holds.

As a corollary, we give an inequality description of unit Fubini rankings.

Corollary 9.8. Let α = (a1, a2, . . . , an) ∈ [n]n and α′ = (a′1, a
′
2, . . . , a

′
n) be its weakly in-

creasing rearrangement. Then, α ∈ UFRn if and only if ci ≤ a′i ≤ i for each i ∈ [n],

where

ci =


1, if i = 1

i, if a′i−1 = i− 2 and 2 ≤ i ≤ n

i− 1, else.

Proof. First, let α ∈ UFRn. Then, by Theorem 9.7, the block structure b1 | b2 | · · · | bm of α

satisfies #bj ≤ 2 for each j ∈ [m]. This implies that ci ≤ a′i ≤ i for each i ∈ [n].

Now, let α ∈ [n]n such that ci ≤ a′i ≤ i for all i ∈ [n]. This implies that each number
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i ∈ [n] occurs at most twice in α. Moreover, if i ∈ [n] occurs twice, then the next smallest

number, if any, is i + 2. This implies that the block structure b1 | b2 | · · · | bm of α satisfies

#bj ≤ 2 for each j ∈ [m]. By Theorem 9.7, this implies α ∈ UFRn.

We now take a quick aside to provide a connection between unit Fubini rankings and the

Fibonacci numbers (OEIS A000045), defined by Fn+1 = Fn+Fn−1 for n ≥ 2 and F1 = F2 = 1.

Theorem 9.9. Let UFR↑
n be the set of weakly increasing unit Fubini rankings of length n.

Then, for n ≥ 1 we have

#UFR↑
n = Fn+1,

where Fn+1 is the (n+ 1)th Fibonacci number.

Proof. We show that #UFR↑
n satisfies the same recurrence relation as the Fibonacci numbers.

That is, we show #UFR↑
n = #UFR↑

n−1 + #UFR↑
n−2, #UFR↑

2 = 2, and #UFR↑
1 = 1. By

Theorem 9.7, the block structure of any unit Fubini ranking has blocks of size at most two.

Moreover, for any n ∈ N>0, each α ∈ UFRn satisfies #{i ∈ [n] : ai = n} ≤ 1. That is, no

two competitors can tie and rank nth over n competitors. Therefore, to compute #UFR↑
n,

we need only consider forming a block of size two in which 2 participants tie and rank n− 1

to any β ∈ UFR↑
n−2, or appending a block of size one with rank n to any γ ∈ UFR↑

n−1.

These cases are disjoint and exhaustive, and therefore give the required recursion relation.

To conclude, we note that #UFR↑
1 = #{(1)} = 1 and #UFR↑

2 = #{(1, 1), (1, 2)} = 2.

Lastly, we describe a set of functions on unit Fubini rankings used in future sections to

establish Theorem 9.20.

Definition 9.10. For each i ∈ [n− 1] define δi : UFRn → UFRn given by

δi(α) =


α, if #{j : aj = i− 1} = 2 or #{j : aj = i} = 2 or #{j : aj = i+ 1} = 2

α̂(i), otherwise;

(9.3)

where α̂(i) is obtained from α by decreasing the singular occurrence of i+ 1 to i.
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For example, if α = (1, 3, 5, 3, 6, 1, 7), then δi(α) = α, for 1 ≤ i ≤ 4, while

• δ5(α) = α̂(5) = (1, 3, 5, 3, 5, 1, 7), because 4, 5, and 6 each occur only once in α and

• δ6(α) = α̂(6) = (1, 3, 5, 3, 6, 1, 6), because 5, 6, and 7 each occur only once in α.

One can readily confirm that all of the tuples above are in UFR7. This motivates the next

result.

Lemma 9.11. The functions δi for i ∈ [n− 1] are well-defined.

Proof. Let α ∈ UFRn and let b1 | b2 | · · · | bm be its block structure. Consider any fixed but

arbitrary i ∈ [n− 1]. We need to show that δi(α) ∈ UFRn. There are two possibilities.

Case 1: Suppose δi(α) = α. The claim holds since α ∈ UFRn, by assumption.

Case 2: Suppose δi(α) = α̂(i). By definition of δi this means that each of i− 1, i, and i+1,

whenever they appear in α, in fact appear exactly once. In addition, by Corollary 9.8, if

i+2 ≤ n, then i+2 appears at least once in α. Note the only change that δi makes to obtain

α̂(i) from α occurs at the value i + 1, which is decreased to i; all other entries of α remain

unchanged. Therefore, the only change that δi makes to the block structure b1 | b2 | · · · | bm is

that the singleton block containing (i) and the (adjacent) singleton block containing (i+ 1)

are turned into a single block of size 2 containing (i, i). Then, Corollary 9.6 guarantees that

α̂(i) ∈ UPFn while, in turn, Theorem 9.7 guarantees that α̂(i) ∈ UFRn, as claimed.

Next we show that the functions of Definition 9.10 commute whenever their domain is

restricted to the set of permutations and are applied on nonconsecutive indices.

Theorem 9.12. Let i, j ∈ [n− 1] be nonconsecutive. If π ∈ Sn, then δi(δj(π)) = δj(δi(π)).

Proof. Fix any pair of nonconsecutive integers i, j ∈ [n− 1]. Without loss of generality, let

i < j. By Lemma 9.3, it suffices to consider only the identity permutation π = 12 · · ·n. Note

that the block structure of π is b1 | b2 | . . . | bn with singleton blocks bi = (i) for each i ∈ [n].
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Note that f δi(π) has the block structure 1 | 2 | · · · | i− 1 | i i | i+ 2 | · · · |n− 1 |n. Then,

since i < j, δj(δi(π)) has the block structure

1 | 2 | · · · | i− 1 | i i | i+ 2 | · · · | j − 1 | j j | j + 2 | · · · |n− 1 |n.

Note if i+ 2 = j, then the block structure would be

1 | 2 | · · · | i− 1 | i i | j j | j + 2 | · · · |n− 1 |n.

On the other hand, δj(π) has the block structure

1 | 2 | · · · | j − 1 | j j | j + 2 | · · · |n− 1 |n.

Then, since i < j, δi(δj(π)) has the block structure

1 | 2 | · · · | i− 1 | i i | i+ 2 | · · · | j − 1 | j j | j + 2 | · · · |n− 1 |n.

Again, if i+ 2 = j, then the block structure would be

1 | 2 | · · · | i− 1 | i i | j j | j + 2 | · · · |n− 1 |n.

Therefore, for π = 12 · · ·n, then δi(δj(π)) = δj(δi(π)). Finally, note that for any π ̸= 12 · · ·n,

the blocks (i, i) and (j, j) will be in the positions where the consecutive blocks · · · | i | i+1 | · · ·

and · · · | j | j + 1 | · · · originally appeared, respectively.

Remark. In Theorem 9.12, it is important that i and j are nonconsecutive. To see this, let

π ∈ Sn and j = i + 1. Then, the block structure of π changes in the following way upon

application of δi+1 followed by δi:

δi(δi+1(π)) = δi(· · · | i− 1 | j j | i+ 2 | · · · ) = · · · | i− 1 | j j | i+ 2 | · · · . (9.4)

On the other hand, the block structure of π changes in the following way upon application

of δi followed by δi+1:

δi+1(δi(π)) = δi+1(· · · | i− 1 | i i | i+ 2 | · · · ) = · · · | i− 1 | i i | i+ 2 | · · · . (9.5)

Equations (9.4) and (9.5) show that δi+1(δi(π)) ̸= δi(δi+1(π)).
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We now generalize the composition of the functions of Definition 9.10 to subsets consisting

of nonconsecutive integers.

Definition 9.13. Let I = {i1, i2, . . . , ik} ⊂ [n − 1] be a set of pairwise nonconsecutive

integers satisfying i1 < i2 < · · · < ik. If π ∈ Sn, then we define the composition

δI(π) := δi1 ◦ δi2 ◦ · · · ◦ δik(α). (9.6)

If I = ∅, then δI = Id is the identity map on Sn.

Next we show that the composition defined in Equation (9.6) can be done in any order.

Corollary 9.14. Let I = {i1, i2, . . . , ik} ⊆ [n − 1] be a set of nonconsecutive integers. If

π ∈ Sn, then the composition δI(π) ∈ UFRn.

Proof. Upon repeated application, Theorem 9.12 implies that if I = {i1, i2, . . . , ik} ⊂ [n− 1]

consists of pairwise nonconsecutive integers and π ∈ Sn, then the composition

δi1 ◦ δi2 ◦ · · · ◦ δik(π) (9.7)

is commutative.

9.3 Bijection

By Theorem 9.7, UFRn ⊆ UPFn, hence, we can treat unit Fubini rankings as parking

functions. We define the outcome map O : UFRn → Sn by O(α) = π = π1π2 · · · πn where

π ∈ Sn is written in one-line notation and denotes the order in which the cars park on the

street. That is, if j ∈ [n], then πj = i denotes that car i is the jth car parked on the street.

Given π ∈ Sn, we define the fiber of the outcome map:

O−1(π) = {α ∈ UFRn : O(α) = π}.

Proposition 9.15. Since no car can park in more than one spot, O is a well-defined map.
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In what follows, we write both Fubini rankings and permutations in one-line notation.

We now provide some initial technical results.

Lemma 9.16. Let π ∈ Sn. Then α = π−1 is the unique permutation with outcome π.

Proof. Let π = π1 · · · πn ∈ Sn. Suppose that πi = j. That is, car j parked in spot i. Because

we wish to find the permutation with parking outcome π, this means we will restrict to car j

having preference i. That is, we need the jth entry of α to be equal to i in order to produce

the outcome π. Note, that π−1
j = i. Since this was an arbitrary entry in π, we have that

α = π−1, as desired. We note that since permutation inverses are unique, there is only one

permutation α ∈ O−1(π).

Next, we provide the connection between the elements in O−1(π) and the set Asc(π).

Lemma 9.17. Let π = π1π2 · · · πn ∈ Sn. If j ∈ Asc(π), πj+1 = i, and α = (a1, a2, . . . , an) ∈

O−1(π), then ai ∈ {j, j + 1}.

Proof. Assume j ∈ Asc(π), which implies that πj < πj+1. This means that car πj+1 = i

arrived after car πj and is parked immediately to the right of πj. Under unit interval parking

rule, there are only two ways in which car i can park in spot j + 1, either spot j + 1 was

its preference and that spot was available, or its preference was the spot j, which it found

occupied by car πj. Thus ai ∈ {j, j + 1} as desired. These are the only preferences which

ensure α is a unit Fubini ranking and which would result in car i parking in spot j+1, which

is required so that α has outcome π.

Proposition 9.18. Let π = π1π2 · · · πn ∈ Sn and α = π−1 ∈ O−1(π). Then

O−1(π) = {δI(α) : I ⊆ Asc(π) with nonconsecutive entries}.

Before we prove Proposition 9.18, we illustrate the effect of δI on a permutation π, when

I is a subset of nonconsecutive elements from Asc(π).
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Example 9.19. Fix π = 412356 and note Asc(π) = {2, 3, 4, 5}. Then α = π−1 = 234156

is the unique permutation in O−1(π). Observe that the only possible subsets of Asc(π) =

{2, 3, 4, 5} consisting of nonconsecutive integers are: ∅, {2}, {3}, {4}, {5}, {2, 4}, {2, 5}, and

{3, 5}. Note, that

δ∅(α) = 234156 δ{2}(α) = 224156 δ{3}(α) = 233156 δ{4}(α) = 234146

δ{5}(α) = 234155 δ{2,4}(α) = 224146 δ{2,5}(α) = 224155 δ{3,5}(α) = 233155.

Straightforward computations establish that the results are unit Fubini rankings with out-

come π. Moreover, Theorem 9.12 and the subsequent remark establish that if we take any

subset of Asc(π) that contains consecutive integers, the result would not yield any unit Fu-

bini rankings not found in the above list. Together this confirms that for any subset of

Asc(π) consisting of nonconsecutive integers, δI(α) ∈ O−1(π).

Now note that δ1(α) = 134156 and O(134156) = 142356 ̸= π. Hence δ1(α) /∈ O−1(π).

Establishing that δj(α) /∈ O−1(π) when j ∈ Des(π).

Proof of Proposition 9.18. It suffices to show

1. O−1(π) ⊆ {δI(π−1) : I ⊆ Asc(π) with nonconsecutive entries} and

2. {δI(π−1) : I ⊆ Asc(π) with nonconsecutive entries} ⊆ O−1(π).

For (1): Let β ∈ O−1(π) such that the block structure of β contains exactly 1 block of size

two. Let the entries of that block be ii. We note that if i appears twice in β, then there

must be an ascent at position i in π. We must also have that δi(π
−1) = β. Therefore,

β ∈ {δI(π−1) : I ⊆ Asc(π) with nonconsecutive entries for I = {i}}.

Inductively, for any β ∈ O−1(π) with k blocks of size 2, we can reconstruct the set I by

looking at the entries in those k blocks. The indices in I must all be more than one unit

away, are determined by the minimum element in each block of size two, and must have all

come from the ascent set of π. Thus δI(π
−1) = β, which means that β ∈ {δI(π−1) : I ⊆

Asc(π) with nonconsecutive entries for I = {i}}.
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For (2): Let I = {i1, i2, . . . , ik} ⊆ Asc(π) consist of nonconsecutive integers. Without loss of

generality assume i1 < i2 < · · · < ik. By Corollary 9.14 we know δI(π
−1) ∈ UFRn, and the

block structure of δI(π
−1) is as follows:

• For each i ∈ I, there is a block of size two containing both instances of i in δI(π
−1),

and

• for each i /∈ I, there is a block of size one containing the only instance i in δI(π
−1).

Since the entries in I are nonconsecutive, the block structure of δI(π
−1) ensures that if i /∈ I,

car πi with preference i parks in spot i, as needed to have outcome π. Moreover, if i ∈ I,

then under δI(π
−1), car πi has preference i and parks in spot i, and car πi+1 has preference i

and as πi < πi+1 it finds spot i occupied and parks in spot i+1, as needed to have outcome

π. Thus establishing that O(δI(π−1)) = π, as desired.

Tenner established that Boolean intervals in the weak order all have the form [v, w] where

w = v
∏

i∈I si for some I ⊆ Asc(v) whose elements are nonconsecutive [73, Corollary 4.4].

We use this result in the proof of the following.

Theorem 9.20. The set of unit Fubini rankings with n−k distinct ranks is in bijection with

the set of Boolean intervals in W (Sn) of rank k.

Proof. Fix π ∈ Sn. Let Bn be the set of all Boolean intervals in W (Sn), and Bn(π) denote

the set of all Boolean intervals in W (Sn) with minimal element π. Define the map φπ :

O−1(π)→ Bn(π) defined by

φπ(β) = [π, π
∏
i∈I

si]

where I ⊆ Asc(π) of nonconsecutive integers is determined by β = δI(π
−1). Namely, the set

I consists of the repeated values in β, which is unique by Proposition 9.18. We begin by

establishing that φπ is a bijection.

The output φπ(β) is computed using the unique set I associated with each β, and hence

is unique. Furthermore, the output [π, π
∏

i∈I si] ∈ Bn is a Boolean interval [73, Corollary

4.4]. Therefore φπ is well-defined.
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For injectivity: If φπ(β) = φπ(γ) = [π, π
∏

i∈I si] for some (nonconsecutive) I ⊆ Asc(π),

then δI(π
−1) = β and δI(π

−1) = γ. Therefore, β = γ.

For surjectivity: Every Boolean interval in Bn(π) has the form [π, π
∏

i∈I si] where I ⊆

Asc(π) consists of nonconsecutive integers [73, Corollary 4.4]. Then, by Proposition 9.18, we

know that δI(π
−1) ∈ O−1(π). Then φπ(δI(π

−1)) = [π, π
∏

i∈I si].

Together, this establishes that the map φπ is a bijection.

Now define ϕ : UFRn → Bn by ϕ(α) := φπ(α) where O(α) = π. Note that since φπ is a

bijection for all π and since O is well-defined (Proposition 9.15), then ϕ is a bijection.

To conclude, we establish that φπ preserves the statistic of n−k distinct ranks in O−1(π)

and rank k in the Boolean interval. Let β ∈ UFRn such that O(β) = π where ties occur at

ranks denoted by r1, r2, . . . , rk. Note, that β then has n− k distinct ranks. Then, by Propo-

sition 9.18, the set I = {r1, r2, . . . , rk}, is a subset of Asc(π) consisting of k nonconsecutive

integers, and δI(π
−1) = β. Then φπ(β) corresponds uniquely to the rank k Boolean interval

given by [π, π
∏

i∈I si].

9.4 Enumerations

In this section, we provide enumerative formulas for:

1. f(n), the total number of Boolean intervals in W (Sn),

2. f(n, k), the total number of rank k Boolean intervals in W (Sn), and

3. the number of Boolean intervals in W (Sn) with minimal element π .

To establish (1), we begin with an immediate consequence of Theorem 9.20.

Corollary 9.21. The total number of Boolean intervals in W (Sn) is equal to the number of

unit Fubini rankings of length n.

By setting q = 1 into the exponential generating function [68, Exercise 3.185(h)]

F (x, q) =
∑
n≥0

∑
k≥0

f(n, k)qk
xn

n!
=

1

1− x− q
2
x2

, (9.8)
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Stanley [65] points out that the total number of Boolean intervals in W (Sn) (OEIS A080599)

satisfies the recurrence relation

f(n+ 1) = (n+ 1)f(n) +

(
n+ 1

2

)
f(n− 1), (9.9)

where f(0) = 1 and f(1) = 1. In light of Corollary 9.21, we give a combinatorial proof of

this result from the perspective of unit Fubini rankings.

Theorem 9.22. Let g(n + 1) denote the number of unit Fubini rankings of length n + 1.

Then g(n+ 1) satisfies the recursion

g(n+ 1) = (n+ 1)g(n) +

(
n+ 1

2

)
g(n− 1),

where g(1) = 1 and g(2) = 3.

Proof. Let α be unit Fubini ranking of length n. The block structure of an element in UFRn

means we have two options for the final block: it either ends in an (n − 1)(n − 1) or an n.

We have total freedom in the remaining positions. Thus there are two mutually exclusive

cases to consider.

• The last block has the form (n − 1)(n − 1): Then we may select one of the g(n − 1)

unit Fubini rankings in UFRn−1. Place the elements in the unit Fubini rankings in any

of the n + 1 possible spots for the unit Fubini ranking of length n + 1. For each unit

Fubini ranking in UFRn−1 there are(
n+ 1

n− 1

)
=

(
n+ 1

2

)
ways to do this.

• The last block has the form n: Then we may select one of the g(n) unit Fubini rankings

in UFRn. Place the elements in the unit Fubini ranking in any of the n + 1 possible

spots for the unit Fubini ranking of length n+1. For each unit Fubini ranking in UFRn

there are (
n+ 1

n

)
= n+ 1

ways to do this.
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The recursion follows from taking the sum of the counts in each case. The initial values arise

from the fact that #UFR1 = {(1)}, hence g(1) = 1, and #UFR2 = {(1, 1), (1, 2), (2, 1)},

hence g(2) = 3.

For (2), we begin with the following combinatorial proof.

Theorem 9.23. Let f(n, k) denote the number of Boolean intervals in W (Sn) of rank k.

Then,

f(n, k) =
n!

2k

(
n− k

k

)
. (9.10)

Proof. Let g(n, k) denote the number of unit Fubini rankings of length n which have n− k

distinct ranks. Note that Theorem 9.20 implies that g(n, k) = f(n, k), hence it suffices to

show that g(n, k) = n!
2k

(
n−k
k

)
.

If α ∈ UFRn has n− k distinct ranks, then its block structure has the form

b1 | b2 | · · · | bn−k,

where exactly k of the blocks have size two and all remaining blocks have size one. To

enumerate all such α, first select the indices of the blocks with size two. We can do this in(
n−k
k

)
ways. To enumerate, we begin by selecting the indices at which we place the repeated

values within the blocks of size two. We do so iteratively by first selecting two indices among

n where we will place the smallest repeated values of α. This can be done in
(
n
2

)
ways. Then

we repeat this process by selecting two indices among the remaining n− 2 indices in which

we place the next smallest repeated values of α. This can be done in
(
n−2
2

)
ways. Through

this process, the total ways in which we can place all repeated values in α is given by the

product (
n

2

)(
n− 2

2

)
· · ·
(
n− 2(k − 1)

2

)
=

k−1∏
i=0

(
n− 2i

2

)
.

Finally, we note that the values in the blocks of size one can appear in any order within the

remaining available indices. We can do this in (n− 2k)! ways. Thus

g(n, k) =

(
n− k

k

)
(n− 2k)!

k−1∏
i=0

(
n− 2i

2

)
,
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which simplifies to our desired result.

Remark. In the introduction we referenced OEIS A001286, a sequence known as the Lah

numbers, which gives the values f(n, 1) = (n−1)n!
2

for the number of B1 in W (Sn). The-

orem 9.23 implies that the Lah numbers also enumerate unit Fubini rankings with n − 1

distinct ranks. Aguillon et al. [76] showed that the number of unit interval parking functions

in which exactly n− 1 cars park in their preference is also enumerated by the Lah numbers.

This result was established via a bijection between those parking functions and ideal states

in the game the Tower of Hanoi, which were enumerated by the Lah numbers.

We now prove that g(n, k) has the same generating function as (9.8).

Theorem 9.24. The exponential generating function for g(n, k) has the closed form

G(x, q) =
∑
n≥0

∑
k≥0

g(n, k)qk
xn

n!
=

1

1− x− q
2
x2

.

Proof. From Theorem 9.23, we know that g(n, k) = n!
2k

(
n−k
k

)
. Then

G(x, q) =
∑
n≥0

∑
k≥0

g(n, k)qk
xn

n!
=
∑
n≥0

∑
k≥0

1

2k

(
n− k

k

)
qkxn. (9.11)

Note that, for the purpose of counting objects,
(
n
k

)
= 0 whenever k > n or n is negative.

Setting n = 0 in Equation (9.11) yields

∑
k≥0

1

2k

(
−k
k

)
qkx0 = 1 +

∑
k≥1

1

2k

(
−k
k

)
qk = 1 + 0. (9.12)

Substituting (9.12) into (9.11) gives

G(x, q) = 1 +
∑
n≥1

∑
k≥1

1

2k

(
n− k

k

)
qkxn. (9.13)

Using the binomial identity
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
, (9.13) becomes

G(x, q) = 1 +
∑
n≥1

∑
k≥1

1

2k

((
n− k − 1

k

)
+

(
n− k − 1

k − 1

))
qkxn, (9.14)
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which can be rewritten as

G(x, q) = 1 +
∑
n≥1

∑
k≥1

1

2k

(
n− k − 1

k

)
qkxn +

∑
n≥1

∑
k≥1

1

2k

(
n− k − 1

k − 1

)
qkxn. (9.15)

We note that the first set of summands in (9.15) simplifies in the following way:

∑
n≥1

∑
k≥1

1

2k

(
n− k − 1

k

)
qkxn = x

∑
n≥1

∑
k≥1

1

2k

(
(n− 1)− k

k

)
qkxn−1 (9.16)

= x
∑
n≥0

∑
k≥0

1

2k

(
n− k

k

)
qkxn, (9.17)

where the last equality in (9.16) follows from re-indexing with respect to n, and the fact that(
n
k

)
= 0 whenever k > n.

We note that the second set of summands in (9.15) simplifies in the following way:

∑
n≥1

∑
k≥1

1

2k

(
n− k − 1

k − 1

)
qkxn =

q

2
x2
∑
n≥1

∑
k≥1

1

2k−1

(
(n− 2)− (k − 1)

k − 1

)
qk−1xn−2

=
q

2
x2
∑
n≥0

∑
k≥0

1

2k

(
n− k

k

)
qkxn, (9.18)

where the last equality in (9.18) follows from re-indexing with respect to n and k.

Substituting (9.16) and (9.18) into (9.15) allows us to reassemble everything to arrive at

G(x, q) = 1 + xG(x, q) +
q

2
x2G(x, q),

from which we arrive at

G(x, q) =
1

1− x− q
2
x2

.

We now present our final enumerative result settling (3), which further connects this

work to Fibonacci numbers.

Theorem 9.25. Let π = π1π2 · · · πn ∈ Sn be in one-line notation and partition its ascent set

Asc(π) = {i ∈ [n − 1] : πi < πi+1} into maximal blocks b1, b2, . . . , bk of consecutive entries.
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Then, the number of Boolean intervals [π,w] in W (Sn) with fixed minimal element π and

arbitrary maximal element w (including the case π = w) is given by

k∏
i=1

F#bi+2,

where Fℓ is the ℓth Fibonacci number, and F1 = F2 = 1.

Proof. It is straightforward to prove that the number of ways to select nonconsecutive entries

from the set [n] is given by Fn+2. Thus, for each i ∈ [k], the number of ways to select

nonconsecutive elements from bi is given by F#bi+2. As the blocks b1, b2, . . . , bk are pairwise

disjoint, the total number of ways to select subsets from ∪ki=1bi consisting of nonconsecutive

integers is given by
∏k

i=1 F#bi+2, as desired.

Among the many results established by Tenner concerning Boolean intervals in both the

Bruhat order and in the weak order [73], we highlight the following.

Proposition 9.26. [73, Proposition 5.9] Let i ∈ [n − 1] be fixed. The number of Boolean

intervals in W (Sn) of the form [si, w] is Fi+1Fn−i+1, where Fi is the ith Fibonacci number.

Note that for any i ∈ [n − 1], we have that Asc(si) = [n] \ {i}. Then b1 = [i − 1] and

b2 = {i+1, i+2, . . . , n−1}, and Theorem 9.25 implies that the number of Boolean intervals

in W (Sn) with minimal element si is given by F#b1+2 = F#b2+2 = Fi+1Fn−i+1, recovering [73,

Proposition 5.9].

We remark that in the statement of Theorem 9.25, we allow [π, π] to be a Boolean

interval. If we impose the condition that the maximal element w cannot be equal to the

minimal element π, then we have the following.

Corollary 9.27. Let π = π1π2 · · · πn ∈ Sn be in one-line notation and partition its ascent set

Asc(π) = {i ∈ [n − 1] : πi < πi+1} into maximal blocks b1, b2, . . . , bk of consecutive entries.

Then, the number of Boolean intervals [π,w] in W (Sn) with w ̸= π is given by(
k∏

i=1

F#bi+2

)
− 1,

where Fℓ is the ℓth Fibonacci number and F1 = F2 = 1.
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Proof. The result follows from Theorem 9.25, and noting that in creating a subset of Asc(π)

consisting of nonconsecutive elements we cannot utilize the empty set.

9.5 Future work

We gave a combinatorial proof of this result via the enumeration of unit Fubini rankings

with n − k distinct ranks. We wonder whether this new proof and combinatorial objects

might shed light on how a symmetric group proof may be constructed.

As noted at the end of Section 9.4, Tenner has provided many results for intervals in

the weak (Bruhat) order [73]. The paper also provides results on the Bruhat order, which

leads us to wonder if there are other connections from Fubini rankings that can be used to

count intervals in the Bruhat order. We also wonder if it may be possible to utilize unit

Fubini rankings, or a slight generalization thereof, to enumerate Boolean intervals in Bruhat

and weak orders of other Coxeter systems. To this end we state the following: How many

Boolean intervals are there in the weak order of the hyperoctahedral group (type B Coxeter

group)?
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