Publishing pitaxial engineering of polar ε -Ga₂O₃ for tunable two-dimensional electron

gas at the heterointerface

Sung Beom Cho^{1,*} and Rohan Mishra^{1,2,*}

¹Department of Mechanical Engineering and Materials Science, Washington University in St.

Louis, St. Louis, Missouri 63130, United States

²Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis,

Missouri 63130, United States

*To whom all correspondence should be addressed: cho.s@wustl.edu, rmishra@wustl.edu

Abstract

We predict the formation of a polarization-induced two-dimensional electron gas (2DEG) at the interface of ε -Ga₂O₃ and CaCO₃, wherein the density of the 2DEG can be tuned by reversing the spontaneous polarization in ε -Ga₂O₃, for example, with an applied electric field. ε -Ga₂O₃ is a polar and metastable ultra-wide band-gap semiconductor. We use density-functional theory (DFT) calculations and coincidence-site lattice model to predict the region of epitaxial strain under which ε -Ga₂O₃ can be stabilized over its other competing polymorphs and suggest promising substrates. Using group-theoretical methods and DFT calculations, we show that ε -Ga₂O₃ is a ferroelectric material where the spontaneous polarization can be reversed through a non-polar phase by using an electric field. Based on the calculated band alignment of ε -Ga₂O₃ with various substrates, we show the formation of a 2DEG with a high sheet charge density of 10¹⁴ cm⁻² at the interface with CaCO₃ due to the spontaneous and piezoelectric polarization in ε -Ga₂O₃, which makes the system attractive for high-power and high-frequency applications.

Ga₂O₃ is emerging as an attractive semiconductor for high-power switching applications due to its high breakdown field and ultra-wide band gap ¹⁻⁴. Amongst the various polymorphs of Ga₂O₃, β -phase has received the most attention due to its stable form under ambient conditions and the ease of growing large single crystals ⁵⁻⁷. Recently, carrier confinement and formation of a two-dimensional electron gas (2DEG) has been experimentally demonstrated at the interface of Ga₂O₃ with a wider band gap alloy (Al_xGa_{1-x})₂O₃ by using modulation doping with silicon⁸, which enables Ga₂O₃-based devices to simultaneously operate at high-power and highfrequencies ⁹⁻¹¹. However, as modulation doping results in a modest 2DEG density of ~10¹² cm⁻² compared to 2DEG density of ~10¹³ cm⁻² at AlGaN/GaN interface ¹². Furthermore, mobility degradation of 2DEG is unavoidable due to impurity scattering. Those has led to a search for alternative ways to generate 2DEG in Ga₂O₃ ¹³

Recently, ferroelectric hysteresis has been reported in thin films of ε -Ga₂O₃, which is a metastable polymorph ¹⁴. Contrary to 2DEG formation in β -Ga₂O₃, the spontaneous polarization of ε -Ga₂O₃ can open a path to achieve 2DEG with high mobility and, possibly, higher sheet charge density without doping. While there have been numerous attempts to grow ε -Ga₂O₃ on various substrates ^{16,17}, they have been unsuccessful to grow single-phase thin films that are free of defects ¹⁸. This is primarily due to a lack of understanding of the stability of the competing phases of Ga₂O₃ under epitaxial strain. Very recently, ε -Ga₂O₃ thin films have been stabilized on (001) Al₂O₃ substrates by using tin dopants during growth ¹⁹; however the formation of a 2DEG was not reported. This is because the formation of a 2DEG at the interface of ε -Ga₂O₃, also requires a specific band alignment and the knowledge of its spontaneous and piezoelectric polarization constants, all of which are currently missing.

In this Letter, we have investigated the energy landscape of various Ga₂O₃ polymorphs under epitaxial strain by combining coincident-site lattice models (CSL) with first-principles density-functional theory (DFT) calculations. We have identified the lattice parameter of the substrates that minimize the epitaxial strain of ε -Ga₂O₃ with respect to other competing phases and recommend a list of commercially available substrates to grow phase-pure ε -Ga₂O₃ without doping. By using group-theoretical methods, we show ε -Ga₂O₃ is ferroelectric and the polarity of ε -Ga₂O₃ can be switched with an external electric field. Furthermore, by calculating the band alignment of the various lattice-matched substrates, we identify CaCO₃ to be particularly promising as it allows the formation of a 2DEG in ε -Ga₂O₃ due to polarization-induced charges. Finally, we show that an electric field can be used to switch the spontaneous polarization in ε -Ga₂O₃ to obtain a large charge density of 10^{14} cm⁻². Therefore, by stabilizing an ultrawide band gap semiconducting ferroelectric and an electric-field tunable 2DEG, our work paves a way to achieve a new generation of devices.

DFT calculations were performed using the VASP package ²⁰ and projector augmentedwave potentials²¹. The plane-wave basis set was expanded to a cutoff energy of 520 eV to remove Pulay stress during the structural optimization. The structural optimization was truncated after the Hellmann-Feynman forces were under 0.001 eV/Å. The *k*-point meshes were sampled using Morkhorst-Pack method with grids of $6 \times 6 \times 2$ for α -, $13 \times 4 \times 4$ for β -, and $6 \times 4 \times 4$ for the transformed cell of ε -phase under epitaxial strain, respectively.²³ The 3*d*, 4*s*, 4*p* states of Ga and 2*s*, 2*p* states of O are taken as valence state and the exchange-correlation energy of valence electrons was described using the Perdew, Burke, and Ernzerhof (PBE) functional.²² As the PBE is known to overestimate the lattice constants, to maintain consistency, we have used PBEoptimized lattice constants for all the substrate candidates, which are shown in Supplemental

blishing erial Table S3 ²⁴ Regarding the polarization calculation, we used the Berry-phase method with a *k*-points grid of 6×4 with 16-point strings²⁵. To evaluate the dielectric, piezoelectric and stiffness constants, we employed density functional perturbation theory with an increased cutoff energy of 700 eV and the same k-point grids of the PBE calculation²⁶. The band gaps and electron affinities were calculated using the Heyd-Scuseria-Ernzerhof (HSE) hybrid functionals with a mixing parameter of 0.35 and 0.15 to fit the experimental band gaps of β-Ga₂O₃ (Eg = 4.9 eV) and CaCO₃ (Eg = 6.0 eV), respectively ^{27.30}. Due to the lack of experimental measurements of the band gap of high-quality ε-Ga₂O₃, combined with the similar theoretical band gap of ε-Ga₂O₃ and β-Ga₂O₃ calculated using PBE (0.06 eV difference), we have used α = 0.35 to calculate the band gap of ε-Ga₂O₃. The *k*-points grid of substrate candidates were sampled with a density of 2000 *k*-points per reciprocal atom, which is consistent to that of the other Ga₂O₃ (104) and of ε-Ga₂O₃ (010) surface with the macroscopic electrostatic potential averaging technique for a slab thicker than 25 Å and with 20 Å vacuum ^{31, 32}.

An orthorhombic ε -Ga₂O₃ belongs to the *Pna*2₁ space group that is a subgroup of hexagonal *P63mc*. It implies that the orthorhombic lattice can be expressed with a basis transformation from the hexagonal lattice. The calculated a = 5.13 Å and b = 8.81 Å lattice parameters of ε -Ga₂O₃ have a ratio of $1.718 \approx \sqrt{3}$ that also corresponds to the ratio of the two diagonals of the rhombohedral lattice. According to CSL theory ³³, the epitaxial interface should be constrained such that a repeating unit is formed where the lattice sites of the film and the substrate coincide. Therefore, the (001) plane is promising as it can satisfy the CSL conditions for epitaxial growth on a hexagonal substrate (Supplemental Material Fig. S1). On the other hand, β -Ga₂O₃ does not have a coincidence lattice with hexagonal substrate for small epitaxial strains.

shime reported preferred orientation of β -Ga₂O₃ on hexagonal substrates is the ($\overline{2}$ 01) plane, which has calculated in-plane lattice vectors of 3.09 Å for [010] direction and (14.98 Å) for [10 $\overline{1}$] direction, needs at least 7% strain to fit hexagonal constraints. Furthermore, the large difference of the two in-plane vectors in β -Ga₂O₃ requires a large CSL leading to a number of dangling bonds. ε -Ga₂O₃ can, instead, form a CSL with a smaller unit cell on a hexagonal substrate. This is beneficial to stabilize metastable ε -Ga₂O₃ over stable β -Ga₂O₃. We have also considered the CSL of α -Ga₂O₃, which is less stable compared to the ε and β phases in the bulk form ⁵, but has a hexagonal structure and could be expected to be stabilized on hexagonal substrates. The crystal structure of the α , β , and ε -phases of Ga₂O₃ are shown in Figure 1a.

Table 1. Calculated commercially-available substrates whose lattice mismatch with ε -Ga₂O₃ is under ±3%. The lattice constants and the resulting strain have been calculated using PBE calculation.

_			
_	Substrate	Lattice constant (Å)	Strain
_	α-Fe ₂ O ₃	5.066	-1.19%
	LiTaO3	5.19	1.23%
	CaCO ₃	5.06	-1.31%
\sim	LiNbO ₃	5.212	1.65%
\mathbf{Q}	<i>h</i> -BN	2.512	-2.01%
	α-SiO ₂	5.024	-2.04%

We have calculated the energy of the preferred orientation of α , β , and ε -phases of Ga₂O₃ on hexagonal substrates as a function of varying lattice constant of the substrate, as shown in Figure 1b. For epitaxial stabilization of ε -Ga₂O₃, on hexagonal substrates, it should have the lowest energy amongst the three competing phases. Furthermore, the lattice mismatch with the

blishing trate should be small, usually within ±3% in the case of oxides ³⁴, to avoid formation of defects caused by strain relaxation. With these constraints, we find hexagonal substrates matching the smallest CSL with ε -Ga₂O₃ and having lattice constant between (4.97 – 5.12) Å to be most promising. Based on the calculated phase diagram under epitaxial strain, we find previously used substrates to grow epitaxial ε -Ga₂O₃ either impose strains over 3 % or the α or β phases are expected to be most stable, which explains the poor quality of the deposited thin films (See Supplemental Material) ¹⁸. Based on identified region of stability of ε -Ga₂O₃, we searched the, Materials Project database ³⁵, and suggest promising substrates in Table 1. We find nonpolar substrates, such as α -Fe₂O₃, CaCO₃, *h*-BN, SiO₂ are also commercially available. As discussed below, we find CaCO₃ is particularly promising to induce 2DEG in ε -Ga₂O₃ due its large band gap of 6.0 eV and favorable band alignment ²⁷.

We now focus on identifying the polar properties of ε -Ga₂O₃ and examine whether it is indeed possible to obtain ferroelectric switching to explain the hysteretic behavior reported in recent experiments ³⁶. Bulk ε -Ga₂O₃ belongs to the non-centrosymmetric *Pna*2₁ space group Using Berry-phase calculations, we find ε -Ga₂O₃ has a spontaneous polarization (*P*_{SP}) of 23 μ C/cm² oriented along the *c*-axis, which is in good agreement with a recent theoretical report ¹³. The calculated *P*_{SP} of ε -Ga₂O₃ is ten times larger than that of pyroelectric wide band gap semiconductor GaN (2.9 μ C/cm²) ³⁷. To switch the dipole moment in ε -Ga₂O₃ to the opposite direction, a transition through an intermediate centrosymmetric (non-polar) supergroup of the *Pna*2₁ space group is required. Using group-theoretical techniques, as implemented in the Pseudo and Amplimodes programs in the Bilbao crystallographic server ³⁸⁻⁴⁰, we have identified *Pnna*, *Pecn*, *Pbcn*, and *Pnma* as the four centrosymmetric supergroups from which *Pna*2₁ can be obtained with minimal atomic distortion. Amongst them, we find the transition from *Pbcn* to

shing 2₁ space group involves the smallest displacement of all atoms along the Γ_3^- polar phonon mode and has the smallest energy barrier (E_b) of 0.95 eV, as shown in Figure 2 (see Supplementary materials Figure S2 for other transition pathways). This is a relatively large activation barrier comparable to that of GaFeO₃ (1.05 eV), which shows a high ferroelectric to paraelectric transition temperature of 1368 K ⁴¹. Such a high activation barrier is expected to stabilize the polarization against thermally activated random dipole switching even at high temperatures during operation, which makes ε -Ga₂O₃ an attractive ferroelectric semiconductor with an ultrawide band gap.

In addition to P_{SP} , the use of an epitaxial strain to stabilize ε -Ga₂O₃ is expected to induce piezoelectric polarization (P_{PE}). For a non-polar substrate, the termination of polarization at the substrate/ ε -Ga₂O₃ interface will induce a charge density (σ) with contributions from both P_{SP} and P_{PE} that can be expressed by ⁴²:

$$\sigma = P_{\rm SP} + P_{\rm PE} = P_{\rm SP} + e_{31}\epsilon_1 + e_{32}\epsilon_2 + e_{33}\epsilon_3, \tag{1}$$

where e_{33} and e_{31} are the piezoelectric constants, ϵ_1 and ϵ_2 are the two in-plane strains and ϵ_3 is the out-of-plane strain on ϵ -Ga₂O₃ due to the substrate. The out-of-plane strain can be obtained using the elastic constants of ϵ -Ga₂O₃: $\epsilon_3 = -\epsilon_1 c_{13}/c_{33} - \epsilon_2 c_{23}/c_{33}$. The calculated piezoelectric and elastic constants are shown in Table 2. We find that the piezoelectric constants are comparable to III-V semiconductors. For instance, e_{33} and e_{31} in GaN are 0.73 and -0.49, respectively ³⁷. Due to the magnitude of e_{31} and e_{33} , even small epitaxial strains can produce a large P_{PE} .

Table 2 Calculated piezoelectric constants and elastic constants of bulk ε-Ga₂O₃.

	This manuscript was accepted by Appl. Phys. Lett. Click here to see the version of record.						
Publishing	(μC/cm ²)	$e_{32} (\mu C/cm^2)$	<i>e</i> ₃₃ (µC/cm ²)	<i>c</i> ₃₁ (GPa)	c ₃₂ (GPa)	c33 (GPa)	
	9.5	7.9	-16.3	125	125	207	

We use CaCO₃ as the substrate and calculate the charge density at the interface with ε -Ga₂O₃. CaCO₃ imposes a compressive strain of 1.4 %, which leads to $P_{PE} = -49 \ \mu\text{C/cm}^2$, which has an opposite sign to that of P_{SP} (23 μ C/cm²) and points towards the substrate. While P_{PE} is fixed by the choice of the substrate, P_{SP} is switchable by an external electric field. Thereby, depending on the orientation of P_{SP} in ε -Ga₂O₃, the total polarization can be varied from -26 μ C/cm² ($P_{PE} + P_{SP}$) to -72 μ C/cm² ($P_{PE} - P_{SP}$). The corresponding sheet charge density (σ) varies between 1.6×10¹⁴ cm⁻² and 4.4×10¹⁴ cm⁻², respectively, which is higher than the density of present at AlGaN/GaN ⁴² and modulation-doped β -Ga₂O₃/Si:(Al_xGa_{1-x})₂O₃ heterojunctions ⁹⁻¹¹. Furthermore, the ferroelectric nature of ε -Ga₂O₃ allows modulation of the charge density with an external electric field.

To identify the conditions under which the above calculated interface charges are expected to be mobile as opposed to being fixed, we have analyzed the band alignment and potential shift for different P_{SP} and thickness of ε -Ga₂O₃ films on the CaCO₃ substrate. The polarization in ε -Ga₂O₃ is associated with an internal electric field and potential-shift along the [001] direction. Based on the calculated dipole moment in an unit cell of ε -Ga₂O₃, the potential-shift can be estimated as ⁴³⁻⁴⁵:

$$\Delta V = -4\pi e \, \frac{(P_{SP} + P_{PE})c}{\varepsilon}.$$
(2)

Publishingre, c is the lattice vector along [001] direction (9.424 Å) of ε -Ga₂O₃ and ε is its calculated static dielectric constant (13.2). The potential shift ΔV of pristine ε -Ga₂O₃ without any strain (PPE=0) is -1.98 V/nm. The potential shift ΔV of strained ε -Ga₂O₃ on CaCO₃ substrate is 2.23 V/nm for $P_{PE} + P_{SP}$ and 6.17 V/nm $P_{PE} - P_{SP}$. Therefore, it depends on the direction of P_{SP} . which can be controlled with an external electric field. With an optimal band alignment between the two materials, the large potential shift can be exploited such that the electrons from the valence band of CaCO₃ spontaneously ionize and spillover to the conduction band of ε -Ga₂O₃ to form a mobile 2DEG at the interface, as shown in Figure 3. We have calculated band alignment between ε -Ga₂O₃ and the CaCO₃ substrate based on their bulk band gap, electron affinity, and potential shift. We find that the two materials form a staggered gap of 2.86 eV at the heterointerface (Supplemental Material), where the band alignment is determined by the Anderson rule without considering the polarity ⁴⁶. Figure 3 shows the schematic band alignment at the *ε*-Ga₂O₃(001)/CaCO₃(0001) interface and the different spontaneous polarization and thickness of ε -Ga₂O₃ under which a mobile 2DEG is expected to form. The direction of the total polarization is always towards the substrate as it is determined by P_{PE} , regardless of the direction of P_{SP} . For a thin layer of ε -Ga₂O₃ (< 2.7 nm), if P_{SP} is parallel to P_{PE} (i.e., $P_{PE} + P_{SP}$), the strong field of 6.17 V/nm drives the conduction band of ε -Ga₂O₃ above the valence band of CaCO₃. This results in ionization of the valence electrons of CaCO₃ and a mobile 2DEG on the ε -Ga₂O₃ side. On the other hand, when the P_{SP} is switched such that it is antiparallel to P_{PE} (i.e., P_{PE} – P_{SP} , the interface charges are confined to the valence band of ε -Ga₂O₃ and are expected to be immobile. For *ɛ*-Ga₂O₃ films with thickness above 2.7 nm, mobile 2DEG are expected for both the directions of P_{SP} ; however, the sheet charge density can be tuned between 1.6×10^{14} cm⁻² and 4.4×10^{14} cm⁻² with an external electric field. We would like to point that the exact sheet charge

blishides sity and the critical thickness for the formation of 2DEG will also depend on the quality of the heterointerface, including the presence of defects and intermixing as is observed in the 2DEG formed at the LaAlO₃/SrTiO₃ heterointerface ⁴⁷⁻⁴⁹.

In conclusion, we have investigated a pathway to stabilize metastable, polar ε -Ga₂O₃ using epitaxial strain and have identified promising substrate candidates. We have also calculated possible switching pathways for ε -Ga₂O₃ and predict it to be a ferroelectric wide band gap semiconductor. Furthermore, we predict the formation of 2DEG at the interface of ε -Ga₂O₃ with CaCO₃ substrates with a sheet charge density that is two orders of magnitude higher than that obtained using modulation doping in β -Ga₂O₃/(Al_xGa_{1-x})₂O₃. Due to the ferroelectric nature of ε -Ga₂O₃, we show that the interface 2DEG density can be modulated using an external electric field, which opens a pathway to design new device architectures. The polarization-induced 2DEG in ε -Ga₂O₃ is also expected to result in devices that can simultaneously operate at high-power and high frequencies.

Supplementary Material

See supplementary material for the choice of CSL, the effect of PBE functional, and the further substrate candidates for the epitaxial growth.

Acknowledgements

Publishing are thankful to Prof. Sriram Krishnamoorthy of University of Utah for helpful discussions.

This work used computational resources of the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575.

References

1. M. A. Mastro, A. Kuramata, J. Calkins, J. Kim, F. Ren and S. J. Pearton, (2017).

2. M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui and S. Yamakoshi, Semiconductor Science and Technology **31** (3), 034001 (2016).

3. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui and S. Yamakoshi, Applied Physics Letters **100** (1), 013504 (2012).

4. A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy and G. H. Jessen, IEEE Electron Device Letters **37** (7), 902-905 (2016).

5. S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga and L. Tanaka, Journal of Physics: Condensed Matter **19** (34), 346211 (2007).

6. A. Hideo, N. Kengo, T. Hidetoshi, A. Natsuko, S. Kazuhiko and Y. Yoichi, Japanese Journal of Applied Physics **47** (11R), 8506 (2008).

7. R. Roy, V. G. Hill and E. F. Osborn, Journal of the American Chemical Society **74** (3), 719-722 (1952).

8. S. Krishnamoorthy, Z. Xia, S. Bajaj, M. Brenner and S. Rajan, Applied Physics Express **10** (5), 051102 (2017).

9. T. Oshima, Y. Kato, N. Kawano, A. Kuramata, S. Yamakoshi, S. Fujita, T. Oishi and M. Kasu, Applied Physics Express **10** (3), 035701 (2017).

10. S. Krishnamoorthy, Z. Xia, C. Joishi, Y. Zhang, J. McGlone, J. Johnson, M. Brenner, A. R. Arehart, J. Hwang, S. Lodha and S. Rajan, Applied Physics Letters **111** (2), 023502 (2017).

11. E. Ahmadi, O. S. Koksaldi, X. Zheng, T. Mates, Y. Oshima, U. K. Mishra and J. S. Speck, Applied Physics Express **10** (7), 071101 (2017).

12. K. S. Im, J. B. Ha, K. W. Kim, J. S. Lee, D. S. Kim, S. H. Hahm and J. H. Lee, IEEE Electron Device Letters **31** (3), 192-194 (2010).

13. M. B. Maccioni and V. Fiorentini, Applied Physics Express 9 (4), 041102 (2016).

14. F. Mezzadri, G. Calestani, F. Boschi, D. Delmonte, M. Bosi and R. Fornari, Inorg. Chem. **55** (22), 12079-12084 (2016).

15. H. Nishinaka, D. Tahara and M. Yoshimoto, Japanese Journal of Applied Physics **55** (12), 1202BC (2016).

16. Y. Oshima, E. G. Víllora, Y. Matsushita, S. Yamamoto and K. Shimamura, J. Appl. Phys. **118** (8), 085301 (2015).

17. X. Xia, Y. Chen, Q. Feng, H. Liang, P. Tao, M. Xu and G. Du, Appl. Phys. Lett. **108** (20), 202103 (2016).

18. I. Cora, F. Mezzadri, F. Boschi, M. Bosi, M. Čaplovičová, G. Calestani, I. Dódony, B. Pécz and R. Fornari, CrystEngComm **19** (11), 1509-1516 (2017).

19. M. Kracht, A. Karg, J. Schörmann, M. Weinhold, D. Zink, F. Michel, M. Rohnke, M. Schowalter, B. Gerken, A. Rosenauer, P. J. Klar, J. Janek and M. Eickhoff, Physical Review Applied **8** (5) (2017).

20. G. Kresse and J. Furthmüller, Phys. Rev. B **54** (16), 11169 (1996).

21. P. E. Blöchl, Phys. Rev. B **50** (24), 17953 (1994).

- 22. J. P. Perdew, K. Burke and M. Ernzerhof, Physical Review Letters 77 (18), 3865-3868 (1996).
- 23. H. J. Monkhorst and J. D. Pack, Physical review B **13** (12), 5188 (1976).
- 24. P. Haas, F. Tran and P. Blaha, Phys. Rev. B **79** (8), 085104 (2009).
- 25. R. King-Smith and D. Vanderbilt, Phys. Rev. B 47 (3), 1651 (1993).

This manuscript was accepted by Appl. Phys. Lett. Click here to see the version of record.

M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller and F. Bechstedt, Phys. Rev. B **73** (4), 045112 (2006).

27. D. R. Baer and D. L. Blanchard, Appl. Surf. Sci. **72** (4), 295-300 (1993).

28. Y. Kang, K. Krishnaswamy, H. Peelaers and C. G. Van de Walle, J Phys Condens Matter **29** (23), 234001 (2017).

29. A. V. Krukau, O. A. Vydrov, A. F. Izmaylov and G. E. Scuseria, The Journal of chemical physics **125** (22), 224106 (2006).

30. J. Heyd, G. E. Scuseria and M. Ernzerhof, The Journal of Chemical Physics **118** (18), 8207-8215 (2003).

31. V. Stevanovic, S. Lany, D. S. Ginley, W. Tumas and A. Zunger, Phys. Chem. Chem. Phys. **16** (8), 3706-3714 (2014).

32. Y. Hinuma, Y. Kumagai, F. Oba and I. Tanaka, Comp Mater Sci 113, 221-230 (2016).

33. W. Bollmann, *Crystal Defects and Crystalline Interfaces*. (Springer, 1970).

34. D. G. Schlom, L.-Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X. Pan, R. Ramesh and R. Uecker, MRS Bulletin **39** (2), 118-130 (2014).

35. A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and K. A. Persson, APL Materials **1** (1), 011002 (2013).

36. F. Mezzadri, G. Calestani, F. Boschi, D. Delmonte, M. Bosi and R. Fornari, Inorg Chem **55** (22), 12079-12084 (2016).

37. F. Bernardini, V. Fiorentini and D. Vanderbilt, Physical Review B **56** (16), R10024-R10027 (1997).

38. D. Orobengoa, C. Capillas, M. I. Aroyo and J. M. Perez-Mato, J. Appl. Crystallogr. **42**, 820-833 (2009).

39. J. M. Perez-Mato, D. Orobengoa and M. I. Aroyo, Acta Crystallogr A **66**, 558-590 (2010).

40. C. Capillas, E. S. Tasci, G. de la Flor, D. Orobengoa, J. M. Perez-Mato and M. I. Aroyo, Z Krist-Cryst Mater **226** (2), 186-196 (2011).

41. S. Song, H. M. Jang, N.-S. Lee, J. Y. Son, R. Gupta, A. Garg, J. Ratanapreechachai and J. F. Scott, NPG Asia Mater **8**, e242 (2016).

42. R. Mishra, O. D. Restrepo, S. Rajan and W. Windl, Appl. Phys. Lett. **98** (23), 232114 (2011).

43. R. Pentcheva and W. E. Pickett, Phys. Rev. Lett. **102** (10), 107602 (2009).

44. J. Lee and A. A. Demkov, Phys. Rev. B **78** (19), 193104 (2008).

45. W.-j. Son, E. Cho, B. Lee, J. Lee and S. Han, Phys. Rev. B **79** (24), 245411 (2009).

46. R. Anderson, IBM Journal of Research and Development **4** (3), 283-287 (1960).

47. H. Chen, A. M. Kolpak and S. Ismail-Beigi, Adv Mater 22 (26-27), 2881-2899 (2010).

48. C. Cantoni, J. Gazquez, F. Miletto Granozio, M. P. Oxley, M. Varela, A. R. Lupini, S. J. Pennycook,

C. Aruta, U. S. di Uccio, P. Perna and D. Maccariello, Adv Mater 24 (29), 3952-3957 (2012).

49. J. Gazquez, M. Stengel, R. Mishra, M. Scigaj, M. Varela, M. A. Roldan, J. Fontcuberta, F. Sánchez and G. Herranz, Physical Review Letters **119** (10), 106102 (2017).

Figure 1 (a) Atomic structure of α , β , and ε -Ga₂O₃ along the preferred lattice orientation on a hexagonal substrate. Green and red atoms represent Ga and O, respectively. The yellow plane represents the growth plane. (b) Strain energetics on a hexagonal (001) substrate and cubic (111) substrate. The shaded box highlights the region where the epitaxial strain on ε -Ga₂O₃ along [100] direction is under 3% and ε -Ga₂O₃ is more stable than the two other polymorphs.

Figure 2. The activation energy and spontaneous polarization along the transition path of ε -Ga₂O₃. The figures on the right show the atomic structure of the polar states with opposite direction of the dipole moment and the intermediate non-polar phase.

This manuscript was accepted by Appl. Phys. Lett. Click here to see the version of record.

Figure 3 Band alignment at the ε -Ga₂O₃(001)/CaCO₃(0001) interface. Below the critical thickness of ε -Ga₂O₃, which is 2.7nm (a) mobile 2DEG are expected to form with $P_{\text{PE}} - P_{\text{SP}}$, but not for (b) $P_{\text{PE}} + P_{\text{SP}}$. (c) Above the critical thickness, mobile 2DEG will form even for $P_{\text{PE}} + P_{\text{SP}}$.

