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Growing evidence suggests that coordinated activity within specific functional brain networks supports
cognitive ability, and that abnormalities in brain connectivity may underlie cognitive deficits observed in
neuropsychiatric diseases, such as schizophrenia. Two functional networks, the fronto-parietal network
(FPN) and cingulo-opercular network (CON), are hypothesized to support top-down control of executive
functioning, and have therefore emerged as potential drivers of cognitive impairment in disease-states.
Graph theoretic analyses of functional connectivity data can characterize network topology, allowing the
relationships between cognitive ability and network integrity to be examined. In the current study we
applied graph analysis to pseudo-resting state data in 54 healthy subjects and 46 schizophrenia patients,
and measured overall cognitive ability as the shared variance in performance from tasks of episodic
memory, verbal memory, processing speed, goal maintenance, and visual integration. We found that,
across all participants, cognitive ability was significantly positively associated with the local and global
efficiency of the whole brain, FPN, and CON, but not with the efficiency of a comparison network, the
auditory network. Additionally, the participation coefficient of the right anterior insula, a major hub
within the CON, significantly predicted cognition, and this relationship was independent of CON global
efficiency. Surprisingly, we did not observe strong evidence for group differences in any of our network
metrics. These data suggest that functionally efficient task control networks support better cognitive
ability in both health and schizophrenia, and that the right anterior insula may be a particularly im-
portant hub for successful cognitive performance across both health and disease.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Functional magnetic resonance imaging (fMRI) research has
provided evidence of stable, intrinsic functional networks in the
human brain (Fox et al., 2005). These functional networks are
detectable both during the performance of cognitive tasks
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(Dosenbach et al., 2006) and while an individual is at rest (Power
et al., 2011). These networks appear to support an array of cog-
nitive functions, such as executive functioning, sensory perception,
and motor control, and therefore represent important targets for
understanding how healthy cognition occurs, and how abnormal
cognition can lead to the symptoms observed in clinical popula-
tions. One pervasive aspect of mental illness is cognitive deficits
(Green et al., 2004). Individuals diagnosed with schizophrenia,
bipolar disorder, and major depression all display impairments in a
multitude of higher-order cognitive domains, including memory,
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processing speed, and cognitive control (Heinrichs and Zakzanis,
1998; Martinez-Aran et al., 2004; Snyder, 2013). Of all these psy-
chopathologies, patients with schizophrenia consistently exhibit,
on average, the most severe cognitive deficits (Hill et al., 2013).
These deficits, and the variance shared among them, are asso-
ciated with impairments in everyday functioning (Sheffield et al.,
2014), contributing to the disabling nature of the disorder (Bowie
et al., 2008). While researchers have historically attempted to find
differential cognitive deficits in schizophrenia, it is increasingly
clear that patients are impaired relative to controls on the majority
of neuropsychological tasks. This finding has led some to hy-
pothesize that schizophrenia is characterized by a generalized
cognitive deficit thought to reflect common psychological or
neurobiological mechanisms contributing to performance across
cognitive domains (Dickinson and Harvey, 2009). The generalized
cognitive deficit makes schizophrenia an ideal population for
studying a wide range of individual differences in overall cognitive
ability, and this conceptualization of the generalized deficit can be
operationalized as the shared variance across tasks that assess
different domains of cognition, which we will refer to as global or
overall cognition.

Importantly, two functional networks, the fronto-parietal net-
work (FPN) and the cingulo-opercular network (CON), display in-
creased activity during the performance of many complex cogni-
tive tasks (Dosenbach et al., 2006), and the strength of their
within-network connectivity predicts cognitive performance
(Kelly et al., 2008; Rypma et al., 2006; Seeley et al., 2007; Song
et al., 2008), implicating them as part of “task-positive” or “task
control” systems that may underlie global cognition. In fact, these
networks are hypothesized to represent a dual-system of top-
down control that supports cognitive ability, given their pattern of
activation and connectivity during task performance (Dosenbach
et al., 2008). More specifically, the FPN is thought to be involved in
trial-by-trial control during task, facilitating the selective attention
of trial-specific information, while the CON is thought to facilitate
the maintenance of task-relevant goals and the incorporation of
error information to adjust behavior (Cocchi et al., 2013). There-
fore, together, these two large-scale networks are globally relevant
to wide range of cognitive functions, making them excellent can-
didates for better understanding individual differences in overall
cognitive ability.

Research also suggests that specific brain regions within the
FPN and CON play especially important roles in the coordination of
information transfer between networks (Dosenbach et al., 2007).
In particular, the anterior insula (AI) and dorsal anterior cingulate
cortex (DACC) are hypothesized to serve as core hubs within the
CON, and the dorsolateral prefrontal cortex (DLPFC) represents a
hub within the FPN. Each hub is thought to serve different func-
tions within each network, to support cognitive performance. Gi-
ven the current conceptualization that multiple brain networks
are necessary for higher-order cognition (Cocchi et al., 2013), hub-
ness may be an especially important metric for understanding
how communication between networks supports cognitive ability.
Previous work suggests that the DACC facilitates outcome-mon-
itoring by evaluating the result of an individual's actions, and fa-
cilitating the resolution of conflict during task (i.e. conflict-mon-
itoring) (Botvinick et al., 2004). The AI marks information as sali-
ent for additional processing and is thought to communicate with
multiple large-scale networks to facilitate the utilization of salient
information for attention and working memory processes (Menon
and Uddin, 2010). The DLPFC maintains task representations and
may bias information in line with task-related goals (Miller and
Cohen, 2001). Therefore, the putative role of each hub suggests
that, together with other regions within the FPN and CON, these
hubs facilitate top-down control to support function across many
cognitive domains.
Given this conceptualized role of the FPN and CON in global
cognition, it has been argued that abnormalities in the control
provided by these networks contributes to mental illness (Cole
et al., 2014). One piece of evidence supporting this notion is ab-
normal connectivity within and between these networks in schi-
zophrenia. Studies have found reduced connectivity between the
FPN and CON (Repovs et al., 2011) and between the CON and the
striatum in patients (Tu et al., 2012), as well as reduced con-
nectivity within the FPN (Woodward et al., 2011). In addition,
connectivity between major hubs within these networks is re-
duced (Meyer-Lindenberg et al., 2001; White et al., 2010). These
findings, taken together with the deficits in overall cognition in
schizophrenia, make this an excellent population in which to
elucidate the relationship between functional networks and global
cognition. Therefore, the current study aims to test the hypothesis
that FPN and CON abnormalities are associated with shared task
variance across many cognitive domains (i.e., global cognition),
implicating them as a hypothesized source of the generalized
cognitive deficit in schizophrenia.

To date, literature relating cognition and network-specific
functional connectivity has largely quantified ‘abnormalities’ as
significant differences in the magnitude of average correlation
coefficients within and between networks. Recent application of
graph theory analysis to functional connectivity data allows for
more sophisticated measurement of brain networks, including
global and local efficiency of information processing, and the role
of hubs (Bullmore and Sporns, 2012; Rubinov and Sporns, 2010).
These metrics can be correlated with psychological measures to
assess relationships between brain and behavior. In fact, a pre-
vious study revealed a significant negative correlation between
the characteristic path length of the whole brain network and IQ in
a small group of healthy individuals (van den Heuvel et al., 2009),
suggesting that more strongly integrated whole brain networks
support better cognitive functioning. Efficiency metrics (both
global and local) are calculated by taking the inverse of path
length between nodes within a network, and therefore quantify
how strongly (or efficiently) information can be transferred
throughout the network. Given this conceptualization of efficiency
metrics, as well as previous findings of a relationship between
path length and cognitive ability, these metrics were selected as
putatively important for understanding individual differences in
overall cognitive functioning in both health and disease. Similarly,
the degree to which hub nodes communicate with other networks
not only influences the efficiency of a network, but is also a
meaningful factor in cognitive functioning, leading us to utilize a
metric of hub-ness known as the participation coefficient to
quantify the integrity of our a priori hubs. Finally, while several
studies have reported abnormal graph metrics in schizophrenia
(Alexander-Bloch et al., 2010; Liu et al., 2008; Lynall et al., 2010;
Rubinov et al., 2009), very few have assessed how the observed
abnormalities are related to behavior. Therefore, the current study
aims to assess network topology in healthy controls and in-
dividuals with schizophrenia, and measure the relationship be-
tween functional network metrics and global cognitive ability.

Finally, much of the graph theory literature focuses almost
exclusively on the whole-brain. Thus, we extend this research by
constructing graphs of specific functional networks: the FPN, the
CON, and the auditory network (AUD), which serves as a com-
parison network hypothesized not to be related to the current
measures of cognition. We hypothesized that patients with schi-
zophrenia would show reduced efficiency of the FPN, CON, and
whole brain relative to healthy controls. Given our hypothesis that
network integrity underlies performance across many cognitive
domains, we quantified shared variance from five different cog-
nitive tasks to use as our measure of global cognition. We expected
that efficiency of the whole brain, FPN, and CON, but not the AUD,
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would be associated with global cognition across all subjects. Fi-
nally, we aimed to examine the role of functional hubs within
these networks, focusing our analyses on the DACC, AI, and the
DLPFC, given their conceptualization as key hubs within the FPN
and CON, based on priori research (Dosenbach et al., 2007). We
hypothesized that cognition would be associated with the extent
to which these regions participate with other networks in the
brain.
2. Methods and materials

2.1. Subjects and procedure

120 Subjects (60 schizophrenia; 60 healthy controls) were re-
cruited as part of the Cognitive Neuroscience Test Reliability and
Clinical Applications for Schizophrenia (CNTRACS) initiative (Gold,
2012). Subjects were run through identical protocol across five
study sites: Washington University in St Louis, Rutgers University,
University of California – Davis, University of Minnesota – Twin
Cities, and the Maryland Psychiatric Research Center at the Uni-
versity of Maryland. All subjects signed written informed consent
before participating in the study. Exclusion criteria for all subjects
included endorsement of serious head injury, neurological disease,
intellectual disability, or pervasive developmental disorder. Sub-
jects were excluded if they indicated substance dependence in the
past 6 months and/or substance abuse in the past month, or if they
failed a drug and alcohol screen administered on the day of test-
ing. All subjects were native English speakers and scored at least a
six on the Wechsler Test of Adult Reading (WTAR), a measure of
premorbid IQ (Weschler, 2001).

All subjects completed the Structured Clinical Interview of the
DSM-IV (SCID; (First et al., 1995)). Controls were excluded if they
had a history of serious mental illness (e.g. bipolar disorder or any
psychotic disorder), were currently experiencing an episode of
major depression, or were currently taking psychotropic or cog-
nition-enhancing medications. Patients were included if they met
criteria for schizophrenia or schizoaffective disorder, were not
currently experiencing an episode of major depression, did not
anticipate any medication changes within a month, and had stable
outpatient or partial hospital status. Of our schizophrenia patients,
85% were taking an atypical antipsychotic, 4% were taking a typical
antipsychotic, 7% were taking both an atypical and a typical anti-
psychotic, and complete medication information was not available
for 4% (two patients).

A total of 16 subjects (13 schizophrenia, 3 healthy controls)
were excluded from our study, either due to incomplete or unu-
sable data. Of these 16 subjects, 7 schizophrenia patients and
2 healthy controls had excessive movement (motion parameters
outlined in more detail in Section 2.4), 2 schizophrenia subjects
moved out of imaging field-of-view to an excessive degree during
the scan session, 1 schizophrenia subject was removed due to
being an outlier (43 SD) in the relationship between fMRI and
behavioral data (po0.001 in multivariate Mahalanobis distance
relative to other subjects), 2 schizophrenia subjects were excluded
after Eprime crashed and data collection could not be completed,
1 schizophrenia subject was excluded after failing the drug test
during session two, and 1 healthy control was excluded for not
completing all tasks within the scanner.

2.2. Procedure

All subjects included in the final analysis completed two cog-
nitive tasks outside of the scanner (verbal learning and processing
speed) and three cognitive tasks inside the scanner (episodic
memory, visual integration, and goal maintenance). Outside of the
fMRI scanner, all subjects completed two cognitive tasks: the
Hopkins Verbal Learning Task (HVLT; (Brandt, 1991)) and the
Symbol-Coding task from the Brief Assessment of Cognition in
Schizophrenia (BACSsc; (Keefe et al., 2004)). While in the MRI
scanner, all subjects performed three additional cognitive tasks,
the behavioral data from which is used in the current study.
Subjects performed the Dot-Probe Expectancy Task (DPX; (Hen-
derson et al., 2012)), the Relational and Item-Specific Encoding
Task (RISE; (Ragland et al., 2012)), and the Jittered Orientation
Visual Integration Task (JOVI; (Silverstein et al., 2012)), all of which
have been validated in schizophrenia as part of the CNTRACS in-
itiative. Each of these tasks is described in more detail below. We
detected two outliers in our healthy control group through box-
plots, one for the DPX task (score¼�5.42; group mean¼0.39;
standard deviation¼1.37) and the other for the RISE
(score¼�0.19; group mean¼2.42; standard deviation¼0.72). In
addition, a single subject in our schizophrenia group did not
complete the HVLT. Therefore, any analyses that include measures
of overall cognition include only 100 subjects (46 schizophrenia;
54 controls).

2.3. Cognitive tasks

The HVLT is a test of verbal learning and memory that mea-
sures one's ability to recall a list of 12 orally presented words, both
immediately and after a 20–25 min delay. The BACSsc is a measure
of processing speed that requires subjects to map the numbers 1–9
onto corresponding symbols as quickly as possible for 90 s. Both
tasks have been validated and reveal large effect sizes for deficits
in schizophrenia (Dickinson et al., 2007; Kern et al., 2011). The DPX
is a task of goal maintenance during which subjects observe se-
quentially presented symbols, and must indicate ‘target’ if they see
a target-cue (‘A’) followed by a target-probe (‘X’). Performance on
the DPX indexes the hit-rate for ‘AX’ pairs relative to the false-
alarm rate for ‘BX’ pairs, during which the pre-potent response to
‘X’ must be inhibited. The RISE is a measure of episodic and rela-
tional memory with three outcome measures: recognition for
items following item-specific encoding (IRIE), item recognition for
items following relational encoding (IRRE) and associative re-
cognition for item pairs from the relational encoding condition
(AR). For all three sub-tasks in the RISE, d'prime was taken as the
outcome variable. Finally, the JOVI is a measure of visual integra-
tion that requires subjects to indicate the direction in which an
egg-shaped stimulus is pointing. The stimulus is comprised of a
closed contour containing Gabor elements that is embedded
within randomly oriented Gabors. Manipulation of visual in-
tegration requirements is achieved by adding orientational jitter to
the contour elements, such that 0° jitter forms a smooth shape
and þ/�15–16° jitter is very difficult to discern. Accuracy for
þ/�9–10° jitter is presented here, as it yielded the largest effect
size between groups. Our measure of global cognition in the cur-
rent study was calculated using a principal axis factor analysis that
included performance across all of these cognitive tasks, under the
assumption that shared task variance reflects a common neuro-
biological process.

2.4. Fmri data acquisition, pre-processing and motion-correction

Imaging data was collected in a single session, using a con-
sistent imaging protocol across sites. fMRI scans were collected
with gradient-echo BOLD acquisitions using echo-planar imaging
(TR¼2000 ms, TE¼30 ms, 77° flip angle, FOV¼220�220 mm2,
3.43 mm in-plane voxels, 32 axial-oblique slices approximately
parallel with the anterior/posterior commissure, 4 mm thickness
with no gap). There were 4 runs of the DPX (each 180 frames),
4 runs of the RISE (IRIE: 1 run, 237 frames; IRAE: 2 runs, each 252
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frames; AR: 1 run, 171 frames), and 3 runs of the JOVI (each 239
frames). The order of the tasks was counterbalanced across sub-
jects. Additionally, each session included a 3D T1-weighted scan
(MPRAGE: TR¼2300 ms, TE�3.0 ms, TI¼900 ms, 9° flip angle,
FOV¼256�240 mm2, 1.0 mm in-plane voxels, 176 slices, 1.0 mm
slice thickness, GRAPPA/SENSE factor¼2, 5:17 min acquisition),
and a T2-weighted scan. Three sites used a Siemens 3T TimTrio
magnet, with a 12-channel head coil; one site used a Siemens 3T
Allegra magnet with a circularly polarized (CP) transmit/receive
coil; one site used a Philips 3 T Achieva magnet with an 8-channel
head coil.

To address hardware differences across sites, we used AGAR
phantom data collected at each scan session, as recommended by
fBIRN, to perform quality assurance of scanners across sites
Friedman et al. (2006). We examined signal-to-fluctuation-noise
ration (SFNR), static spatial signal-to-noise ratio (SNR), percent
fluctuation, drift and smoothness (FWHM in the X, Y and Z di-
rections), as defined by Friedman et al. (2006). For all metrics, we
saw main effects of site (all p's o0.001), but no main effects of
group (all p's40.20) and no interactions between group and site
(all p's 40.2). Principal components analysis on these QA metrics
revealed two main components that accounted for 94% of the
variance: one that reflected SNR, SFNR and smoothness, and one
that reflected fluctuation and drift. When included as predictors in
our regression analyses (as described in Sections 3.4–3.6), all re-
lationships remained significant (and in some cases even more
significant), suggesting that these scanner differences were not
driving our main findings.

Imaging data was processed similar to methods used in pre-
vious work (Mamah et al., 2013) (Anticevic et al., 2014). Processing
steps were completed using MatLab code and included: (1) slice
timing correction, (2) removal of the first five images from each
run to allow data to reach a steady state, (3) rigid body motion
correction, (4) normalization of data to a whole brain mode value
of 1000, (5) registration of structural (T1) image to Talairach
(Washington University 711-2b atlas) coordinate space using a 12-
parameter affine transform, and (6) co-registration of functional
volumes to the atlas space structural image using 3 mm cubic
resampling. A finite impulse response (FIR) was used to model the
hemodynamic response function.

To improve signal-to-noise ratio, remove possible sources of
spurious correlations and task activation induced correlation, ad-
ditional preprocessing steps were applied to functional images
before functional connectivity analyses: (1) spatial smoothing
using a Gaussian kernel of 6 mm FWHM, (2) high-pass and low-
pass filtering with 0.009–0.08 Hz cut-off frequencies, (3) removal
of nuisance variables, global signal and task response using mul-
tiple regression with the following predictors: (a) six rigid body
motion correction parameters, (b) ventricle, (c) white matter,
(d) whole brain signals and their first derivatives, and (e) task
appropriate event regressors using unassumed, delta-function
modeling of task response across 9 functional frames. All re-
gressors were applied in a single regression step across con-
catenated runs of the same task; all further steps and analyses
were conducted on the residual signal. The resulting, largely task-
independent timeseries from all the tasks were then combined
into one ‘pseudo-resting state’ timeseries spanning approximately
60 min of data. Importantly, task data was regressed out of the
timeseries in order to provide an approximation of resting state
data, given our interest in the stable, intrinsic functional networks
often observed using resting state data. In light of a recent study
validating this approach by showing strong similarities in network
identification and stability between task and resting-state fMRI
data (Cole et al., 2014), we believe this method provides a rea-
sonable approximation of resting-state BOLD signal, allowing us to
observe intrinsic functional networks. We applied the motion-
correction procedures suggested by Power et al. (2012) in which
bad frames were identified and excluded based on movement (if
the sum of the displacement across all six rigid body movement
correction parameters exceeded 0.2 mm) and movement-related
intensity changes (if the root mean square (RMS) of difference in
intensity between the current and preceding frame normalized by
overall image intensity was more than 1.6 of the median across the
run). Frames marked as bad were interpolated before temporal
filtering, and excluded from nuisance signal regression and com-
putation of correlation matrices.

2.5. Graph analysis

Network nodes were determined using the atlas of 264-ROIs
published by Power et al. (2011). Using convergence from meta-
analytic data and functional connectivity mapping, Power and
colleagues identified 264 putative functional areas spanning the
cerebral cortex, cerebellum, and subcortical structures. Each node
was assigned membership to its most likely functional network,
based on 13 networks commonly discussed in the literature (vi-
sual, auditory, dorsal attention, ventral attention, sensory/soma-
tomotor hand, sensory/somatomotor mouth, default mode, fronto-
parietal, cingulo-opercular, memory retrieval, salience, subcortical,
and cerebellar). Node assignments for the FPN, CON, and AUD
networks were used to construct our network graphs. ROIs for
each node were 6 mm spheres in 711-2b space.

To ensure that only gray matter signal was included in analysis,
the a priori defined 264 ROIs were masked with each individual's
gray matter mask derived from a high resolution T1 structural
image using FreeSurfer tissue segmentation. Nine of the 264 ROIs
(leaving N¼255) were dropped from our analyses due to lack of
overlap with the gray matter mask in some of the subjects. Of the
nodes that were dropped, two had “uncertain” network assign-
ments (according to Power et al., 2011), one from the auditory
network, three from the default mode network, one from the vi-
sual network, and one from the memory retrieval network.

BOLD timecourses for each node were computed by averaging
timeseries for all voxels within each node. These average time-
series were then correlated, resulting in a 255�255 whole brain
correlation matrix. We then thresholded the whole brain graph by
identifying the top 10%–2% highest correlation coefficients (in 1%
increments), resulting in nine graphs per subject in which weak or
negative correlations were replaced by zeros. All other correlation
values were maintained, resulting in a weighted, undirected graph.
Thresholding is a standard method in the functional connectivity
graph theory literature (Bassett et al., 2009; Bullmore and Sporns,
2009; Lynall et al., 2010; Power et al., 2011, 2013) as it serves
several methodological purposes (Power et al., 2010): (1) it elim-
inates negative correlations which currently have unclear meaning
in graph analysis of functional network topology, (2) it is thought
to eliminate small correlation coefficients that likely represent
noise, resulting in graphs with only the strongest relationships,
leading to more robust functional networks, (3) unlike absolute
thresholding (e.g. only including correlation coefficients 40.30), it
allows for comparison of graphs across groups that may have
different distributions of correlation magnitude, a common finding
in the schizophrenia literature (Fornito et al., 2011). All analyses in
this report use the average of graph metrics calculated across 10%–
5% thresholds; in other words, graph metrics were first calculated
from individual graphs at each threshold value (e.g. global effi-
ciency when maintaining 5% of the edges), and the resulting graph
metrics from each threshold were then averaged to yield a single
metric of interest. This range of thresholds was chosen based on
the stability of our metrics across this range (as can be seen in
Fig. 1). The 5% threshold corresponded to a minimum r-value of
0.19 in both the schizophrenia and healthy control groups, while



Fig. 1. Average graph metrics plotted at each threshold, from 10% to 2%. Dashed lines indicate schizophrenia subjects and solid lines indicate healthy controls. Particularly for
the metrics of local and global efficiency, average efficiency appears to be the most stable in the 10%–5% range. Given that there is no “correct” threshold, this stability, in
addition to the number of modules detected in this range (Fig. 2), led to our decision to include only those thresholds in the presented Results. SZ¼schizophrenia;
HC¼healthy controls; WB¼whole brain; FPN¼ fronto-parietal network; CON¼cingulo-opercular network; AUD¼auditory network; dACC¼dorsal anterior cingulate cortex;
rAI¼right anterior insula; lAI¼ left anterior insula; rdlPFC¼right dorsolateral prefrontal cortex; ldlPFC¼ left dorsolateral prefrontal cortex.
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the 10% threshold corresponded to a minimum r-value of 0.12 in
both groups. Additionally, when using the thresholded whole-
brain graphs in the community detection algorithm (described in
Section 2.6), we found the greatest similarity in the number of
communities to our a priori networks for graphs across this range
(Fig. 2).

From the thresholded whole brain graph, we extracted nodes
Fig. 2. Average number of communities, as calculated by Louvain’s modularity al-
gorithm, plotted for each group, for each threshold (10%–2%). Given that (Power
et al., 2011) estimated 13 functional networks, we wanted to select a range of
thresholds that provided a similar community structure. The lowest threshold
(10%) yielded approximately 8 communities, which is 5 communities less than
Power’s. Therefore, if this range is used as our deviation from 13, then the upper
limit of communities should be approximately 18, which corresponds to a
threshold of 5%. This, along with the data provided in Fig. 1, led to our decision to
include only threshold 10%–5% in our presented Results.
from our a priori networks to create network-specific graphs for
the FPN (25�25), the CON (14�14) and the AUD (13�13) for
each subject. The auditory network was included as a negative
experimental control network, as we did not believe that effi-
ciency of the AUD should influence cognitive performance. Due to
this conceptual consideration, as well as the similarity in the size
of the graph with the CON, the AUD was chosen as our control.
Graph metrics were then calculated separately for each graph.

2.6. Graph metrics

On each of our four graphs, we calculated the metrics of global
efficiency and local efficiency (Bullmore and Sporns, 2009; Power
et al., 2013). Nodes comprising specific networks (e.g. the FPN)
were isolated from the whole brain graph prior to computation of
global and local efficiency. We chose to isolate these networks
before calculating efficiency, as opposed to calculating the effi-
ciency for all nodes in the whole brain and then isolating nodes
from specific networks, for two main reason: (1) conceptually, we
were interested in how efficient nodes within a network were
with one another, not taking into account relationships with the
rest of the brain that could influence a network's efficiency, and
(2) practically, in the Brain Connectivity Toolbox, global efficiency
is a single metric calculated for the whole network, and therefore
we could not calculate the global efficiency of a single network
without running the algorithm on nodes only in that network.
Participation coefficient was calculated using the whole brain
graph, as it is a measure of between-network connectivity.

Conceptually, both local and global efficiency are metrics of
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functional integration that are dependent on an estimate of path
length. In anatomical networks, path length represents the phy-
sical distance between nodes, with shorter paths leading to more
efficient information transfer. In functional networks, path length
is dependent on the strength of correlation between nodes, such
that stronger statistical dependency indicates a shorter path (Ru-
binov and Sporns, 2010). Therefore, both local and global efficiency
represent the potential for a network to integrate information
across nodes; however “efficiency” in functional networks is not a
reflection of speed or physical distance, but rather a statistical
association that serves as an estimate of a network's potential for
information transfer. Global efficiency provides a single metric for
the entire network. This metric is the inverse average shortest
path length of all pairs of nodes in the network, such that the
shorter the average path length between all nodes in a network,
the higher the global efficiency. Global efficiency is thought to
represent integration of network-wide communication. In con-
trast, local efficiency is computed using information about the
path length between the neighbors of a single node. Local effi-
ciency is measured on a nodal basis, such that every node has its
own measure representing the inverse average path length be-
tween neighbors of a node, with stronger nodal connections
contributing more to the local efficiency. Therefore local efficiency
is averaged across all the nodes in a network to obtain a single
measure, which represents the potential for local information
transfer (Bullmore and Sporns, 2009, 2012).

In addition to efficiency, we also measured the participation
coefficient for our five a priori hub nodes: DACC, right DLPFC, left
DLPFC, right AI, and left AI. Participation coefficient is a measure of
how many communities, within an individual subject, that a node
is functionally connected to, and is thought to be a more accurate
representation of “hub-ness” than degree-based measures (Power
et al., 2013). Nodes with high participation are often referred to as
“hubs”. In order to obtain a node's participation coefficient we first
calculated the modularity of the whole brain network using Lou-
vain's community-detection algorithm. In this case, a ‘community’
is a mathematically-determined network of nodes that are
strongly inter-connected, and the algorithm works to maximizes
within-community connectivity and minimizes between-commu-
nity connectivity to determine the community structure of the
whole brain. This algorithmwas applied to each individual's whole
brain graph, to take into account individual differences in com-
munity structure. Module (i.e. community) assignments were then
run through a participation algorithm that determined the parti-
cipation coefficient of each node (for full details on algorithms and
Table 1
Subject demographics and clinical characteristics of patients with schizophrenia and he

Demographics mean (Standard deviation) Healthy controls n¼54

Age (years) 35.3 (12.0)
Gender (male/female) 39/15
Ethnicity (%Caucasian/ %African American) 59%/31%
Subject Education (years)a 15.4 (2.6)
Subject SESb 38.3 (10.3)
Pre-morbid IQ (WTAR) 38.3 (10.3)
Father education (years) 14.5 (3.1)
Mother education (years) 13.7 (3.3)
Positive symptoms –

Negative symptoms
Disorganized symptoms
Depressive symptoms
Manic symptoms

SES¼socio-economic status, measured using the Hollingshead Index as updated using o
1958); WTAR¼Wechsler Test of Adult Reading; Symptom scores within the schizophre
npo0.05.

a po0.01.
b po0.001.
Matlab functions, see (Rubinov and Sporns, 2010)).

2.7. Data analysis

All graph metrics were computed using the Brain Connectivity
Toolbox version 2013_12_25 (Rubinov and Sporns, 2010). Statis-
tical analyses were performed using SPSS version 20. Tests of
group differences in demographics and task performance were
computed using one-way Analysis of Variance (ANOVA), and group
differences in average graph metrics were analyzed using three
separate MANOVAs. To test the relationship between graph me-
trics and cognition, separate linear regressions were performed
with group, graph metric, and group�metric interactions as
predictor variables, each including two steps: in step 1 we entered
the variables for group and the graph metric, and in step 2 we
entered the group�metric interaction. This method allowed us to
model the relationship between graph metrics and cognition
while controlling for group membership. Regressions all predicted
a variable representing the shared variance across the following
task performance measures: BACSsc, HVLT-R, DPX, JOVI Jitter 9,
and RISE IRRE. To obtain this measure of shared variance, we
performed a principal axis factor analysis for all subjects including
these five variables and saved the scores from the first factor (the
only factor with an eigenvalue 41). Only a single RISE outcome
measure was included, as the RISE measures are highly inter-cor-
related and we did not want to bias our factor structure. To correct
for multiple comparisons, we used Bonferroni Correction on our a
priori hypotheses. For global and local efficiency, significance was
set at po0.017 (.05/3; AUD was our negative control network so
we did not include it in the correction), and for participation
coefficient significance was considered at po0.01 (0.05/5; given
that there were five a priori hubs). We also performed mediation
in SPSS using macros provided by Preacher and Hayes (2004).
Post-hoc analyses of differences in strength of correlation coeffi-
cients was computed using methods from Meng et al. (1992).
3. Results

3.1. Demographics

Patients with schizophrenia had significantly lower personal
education (F(1,101)¼6.8, p¼0.01) and significantly lower Socio-
Economic Status (SES; F(1,101)¼32.1, po0.001) than healthy
controls (Table 1). Groups did not differ on age, gender, ethnicity,
althy controls.

Schizophrenia n¼46 Statistics

34.1 (11.5) F(1,98)¼0.6, p¼0.45
37/9 X2¼0.9, p¼0.34
59%/28% X2¼5.7, p¼0.22
14.1 (2.3) F(1,98)¼1.7, p¼0.01
24.5 (5.8) F(1,98)¼29.9, po0.001
35.9 (9.5) F(1,98)¼0.07, p¼0.24
14.3 (3.2) F(1,89)¼0.001, p¼0.77
14.0 (2.4) F(1,97)¼3.0, p¼0.74
10.1 (5.4)
7.5 (2.3)
5.1 (1.8)
7.7 (3.6)
4.8 (1.5)

ccupational prestige ratings based on the 1989 general social survey (Hollingshead,
nia group were calculated using the Brief Psychiatric Rating Scale (BPRS).



Fig. 3. Cohen’s d effect size of differences in cognitive performance between pa-
tients with schizophrenia and healthy control subjects. Negative effect sizes re-
present worse performance in the patient group, compared to controls. BACSsc¼
Brief Assessment of Cognition in Schizophrenia Symbol Coding; HVLT-R¼Hamilton
Verbal Learning Test–Revised; IRIE¼ Item Recognition for Item Encoding from the
RISE; IRRE¼ Item Recognition for Relational Encoding from the RISE;
AR¼Associative Recognition from the RISE; DPXDP¼Dot Probe Expectancy Task
d’prime; JOVI Jit9¼ Jittered Orientation Visual Integration at a jitter of 9°
nnn po0.001, nn po0.01.
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parental education (as a proxy for developmental SES), or pre-
morbid IQ (all p's40.21).

3.2. Behavioral data

Schizophrenia participants displayed significant deficits on all
cognitive tasks (all F's47.12, all p'so0.01; Fig. 3). Principal axis
factor analysis revealed only one factor with an eigenvalue 41
that explained 40% of the variance across tasks, with schizophrenia
participants having significantly lower factor scores than healthy
controls (F(1,98)¼34.34, po0.001). This factor score reflected the
variance associated with performance on tasks from different
cognitive domains (verbal memory, episodic memory, processing
speed, goal maintenance, and visual integration), and therefore
Fig. 4. Group differences in graph metrics. (A) Trend towards a main effect of group in
significant main effect of group for participation coefficients. FPN¼ fronto-parietal ne
anterior cingulate cortex ; rAI¼right anterior insula; lAI¼ left anterior insula; rdlPFC¼r
served as a measure of individual differences in global cognitive
ability.

3.3. Group differences in graph metrics

Across the four sets of graphs (whole brain, FPN, CON, and
AUD), we observed a significant main effect of group for local ef-
ficiency (F(4,98)¼3.00, p¼0.02; partial η2¼0.11) and a trend level
group difference in global efficiency (F(4,98)¼2.37, p¼0.06; par-
tial η2¼0.09). Examination of the efficiency for each graph re-
vealed that group differences in local efficiency were driven by
lower metrics in the FPN, CON, and AUD in patients with schizo-
phrenia relative to controls, and group differences in global effi-
ciency were being driven by lower metrics in the FPN and AUD in
patients with schizophrenia, though none of the individual uni-
variate between-subjects effects were significant (p's4 .10; Fig. 4).
This finding indicated an overall trend for patients to have lower
local and global efficiency relative to controls. No main effect of
group was observed for participation coefficients across the five a
priori nodes (F(5,97)¼1.65, p¼0.15; partial η2¼0.08).

3.4. Global efficiency predicting cognition

Whole brain global efficiency significantly predicted global
cognition across both groups, as evidenced by a significant main
effect of whole brain global efficiency (β¼16.91, t(97)¼3.15,
p¼0.002) but no significant group� efficiency interaction
(p¼0.94). Looking at individual networks, global efficiency of the
FPN (β¼3.39, t(97)¼2.69, p¼0.008) and the CON (β¼2.42, t(97)¼
2.87, p¼0.005) each significantly predicted global cognition
(Fig. 5; Fig. A1) even after correcting for multiple comparisons, but
again we observed no significant group� efficiency interactions
(FPN: p¼0.51; CON: p¼0.63), suggesting a similar relationship
between global efficiency and cognitive ability across groups. In
contrast, global efficiency of the AUD showed no significant
global efficiency and (B) Significant main effect of group for local efficiency. (C) No
twork; CON¼cingulo-opercular network; AUD¼auditory network; dACC¼dorsal
ight dorsolateral prefrontal cortex; ldlPFC¼ left dorsolateral prefrontal cortex.



Fig. 5. Relationship between cognition and global efficiency of a priori networks for all subjects, visualized using residual values after controlling for group. Cognitive ability
was significantly positively associated with global efficiency of the (A) whole brain, (B) fronto-parietal network, and (C) cingulo-opercular network, but not (D) the auditory
network. Trend lines indicate the linear regression line of the relationship between that network’s global efficiency and cognition for all subjects.

Fig. 6. Relationship between cognition and local efficiency of a priori networks for all subjects, visualized using residual values after controlling for group. Cognitive ability
was significantly positively associated with local efficiency of the (A) whole brain and (B) fronto-parietal network, but did not reach significance for (C) cingulo-opercular
network or (D) the auditory network. Trend lines indicate the linear regression line of the relationship between that network’s local efficiency and cognition for all subjects.
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Fig. 7. Relationship between cognition and the participation coefficient of the right
anterior insula, visualized using residual values after controlling for group. Right
anterior insula participation significantly predicted cognition across all subjects.
Trend line indicates the linear regression line for all subjects.
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relationship with cognition (β¼1.01, t(2,97)¼1.20, p¼0.23) and no
significant interaction with group (p¼0.78). Although FPN and
CON global efficiency significantly predicted cognition and AUD
global efficiency did not, follow-up analyses revealed that the
magnitude of the relationship between FPN global efficiency and
cognition was not significantly greater than the relationship be-
tween AUD global efficiency and cognition (t(2,98)¼1.44, p¼0.15).
The same was true for the CON (t(2,98)¼1.48, p¼0.14).

3.5. Local efficiency predicting cognition

Local efficiency of the whole brain network significantly pre-
dicted cognition across both groups (β¼4.75, t(97)¼2.75,
p¼0.007), with no significant group� efficiency interaction
(p¼0.97). For the FPN, local efficiency nominally reached our
corrected level of significance (correction method explained in
section 2.7; β¼2.50, t(97)¼2.43, p¼0.017), but CON local effi-
ciency did not significantly predict cognition (β¼1.51, t(97)¼1.78,
p¼0.08). Local efficiency of the AUD did not significantly predict
cognition (β¼1.37, t(97)¼1.63, p¼0.11; Fig. 6; Fig. A2), and the
magnitude of the relationship between FPN local efficiency and
cognition was not significantly greater than for AUD local effi-
ciency (t(2,98)¼0.77, p¼0.44). Again, no significant interactions
with group were observed for local efficiency, pointing to a similar
relationship between network metrics and cognition for patients
and controls (for relationships between graph metrics and cogni-
tion separated by group, see Table 2).

3.6. Participation coefficient predicting cognition

Participation of the right anterior insula significantly predicted
cognition (β¼1.08, t(97)¼2.50, p¼0.01), meeting significance
after correcting for multiple comparisons (Fig. 7; Fig. A3). There
was no significant interaction with group (p¼0.37). Participation
of the other a priori nodes were not significant predictors of cog-
nition (all p's40.24).

3.7. Graph Metrics predicting specific task performance

Although the aim of this study was to assess relationships be-
tween graph metrics and global cognition, we also analyzed re-
lationships between graph metrics and performance on specific
cognitive tasks, using the same methods as described above. We
found that processing speed performance was significantly pre-
dicted by whole brain global efficiency (p¼0.005) and local effi-
ciency (p¼0.002), FPN global efficiency (p¼0.01) and local effi-
ciency (p¼0.012), and CON global efficiency (p¼0.01). Verbal
learning was significantly predicted by right AI participation
(p¼0.006), whole brain global efficiency (p¼0.006) and local
Table 2
Correlation (Pearson’s r) between cognition and graph metrics for each group.

Controls Schizophrenia

Whole brain global efficiency 0.31a 0.30a

FPN global efficiency 0.31a 0.24
CON global efficiency 0.23 0.32a

Whole brain local efficiency 0.28a 0.26
FPN local efficiency 0.25 0.23
Right anterior insula participation coefficient 0.18 0.32a

We performed bivariate correlations between our cognition variable (variance
shared across tasks, i.e. the first factor), separately for our control group and our
schizophrenia group. We observed small to medium effect sizes for the relationship
between cognitive ability and each graph metric, within each group. All effect sizes
were positive, suggesting that across both groups, higher efficiency and a higher
participation coefficient are associated with better cognitive ability.

a po0.05.
efficiency (p¼0.03), and CON global efficiency (p¼0.002). Finally,
visual integration was significantly predicted by whole brain glo-
bal efficiency (p¼0.017) and local efficiency (p¼0.001), FPN global
efficiency (p¼0.008), and CON global efficiency (p¼0.002) and
local efficiency (po0.001). No other significant relationships were
observed between graph metrics and performance on specific in-
dividual tasks.

3.8. Mediation of graph metrics in predicting cognition

All graph metrics are calculated from each individual's whole
brain correlation matrix, meaning that they may be inter-depen-
dent. For instance, the participation of a single hub could greatly
affect the efficiency of a network, if that network's characteristic
path length is largely dependent on a specific node. Therefore
shared variance between metrics may help reveal important net-
work features that would elucidate their relationship with cogni-
tive ability. Given our findings that both global efficiency of the
CON and participation of the rAI (a hub within the CON) sig-
nificantly predict cognition, we ran a mediation analysis to ex-
amine whether these relationships were independent.

Using formal mediation analysis, with group included as a
covariate, we assessed whether the participation coefficient of the
rAI mediated the relationship between CON global efficiency and
cognition. This analysis revealed that the rAI did not significantly
mediate the relationship between CON global efficiency and cog-
nition (95% CI[�0.43, 0.51]). In this model, the effect of rAI par-
ticipation on cognition (t¼2.51, p¼0.01) and the direct effect of
CON global efficiency on cognition (t¼2.35, p¼0.005) both re-
mained significant, suggesting that the degree to which the rAI
communicates with other networks, and the efficiency of in-
formation transfer within the CON, make independent contribu-
tions to global cognition.

3.9. Motion analysis

We assessed group differences in motion, as well as relation-
ships between motion, cognition, and functional network topol-
ogy, in order to determine whether motion was impacting our
results – a common concern for functional connectivity data,
particularly with clinical populations. Our measure of motion took
into account both the number of frames removed for being above a
frame displacement of 0.2 mm and the normalized displacement
between voxels from one frame to the next (above 1.6), for each
subject. These motion metrics were used to determine when
frames should be eliminated, and when more than 50% of frames
were flagged to be eliminated, a subject was excluded from the
study.

We found that schizophrenia patients trended towards moving
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more than controls (t(101)¼1.86, p¼ .07), in that there was a trend
for more frames to be excluded based on our motion criteria.
Motion was not significantly related to overall cognition in either
group (schizophrenia: r¼�0.23, p¼0.11; controls: r¼�0.22,
p¼0.11), however when the groups were combined, this re-
lationship reached significance (r¼�0.28, po0.01). In schizo-
phrenia patients, we found that motion was significantly asso-
ciated with rAI participation (r¼�0.35, p¼0.01), and when sub-
jects were included together, we observed a significant relation-
ship between motion and FPN global efficiency (r¼�0.21,
p¼0.04). However when motion was included in the regression
analysis of rAI participation predicting overall cognition and FPN
global efficiency predicting overall cognition, relationships be-
tween cognition and graph metrics remained significant (rAI: t
(99)¼2.24, p¼0.03; FPN global efficiency: t(99)¼2.31, p¼0.02).
4. Discussion

The current study utilized novel graph theory analysis of spe-
cific functional networks to assess the relationship between effi-
ciency of control networks, participation of hubs within those
networks, and cognitive ability in healthy individuals and patients
with schizophrenia. This represents one of the first studies to not
only measure network topology of a priori functional networks,
but also to assess the relationship between those metrics and a
complex behavioral measure of cognitive ability. This approach
was used to better understand how network integrity relates to
cognition in both health and disease-states, in order to gain insight
into a broad range of individual differences in global cognitive
ability. Given the conceptualization of the FPN and CON as top-
down control networks that affect multiple domains of cognition,
our measure of cognition reflected shared variance in performance
across five tasks that assessed different domains of cognitive
function.

4.1. Network efficiency and cognition

Our findings suggest that both the local and global efficiency of
specific functional networks contribute to cognitive ability in both
healthy individuals and people with schizophrenia. In line with
our hypothesis, efficiency of the whole brain, FPN, and CON sig-
nificantly positively predicted cognition, suggesting that the
strength of functional integration within the whole brain and
these higher-order cognitive networks are crucial for supporting
better cognitive functioning. Importantly, global and local effi-
ciency of our “comparison” network – the auditory network – did
not significantly predict cognitive ability, providing some specifi-
city to our findings regarding task-positive graphs.

Brain network efficiency is hypothesized by Bullmore and
Sporns (2012) to reflect an economic trade-off betweenwiring cost
and an adaptive topology that facilitates connectivity between
multiple neuronal populations; the resulting topology appears to
balance short and long-distance connections to maximize in-
formation integration. Therefore, the observed positive relation-
ship between cognition and efficiency of central executive net-
works suggests that more robust information transfer within these
networks supports better global cognitive ability. These findings
replicate previous research showing a negative relationship be-
tween characteristic path length and IQ in healthy individuals (van
den Heuvel et al., 2009), and extend these findings by revealing
that greater efficiency of specific central executive networks is
associated with better cognitive functioning. These findings also
support the practical and conceptual use of efficiency of individual
functional networks in the understanding of cognitive perfor-
mance and impairments, in both health and disease-states.
4.2. Participation and cognition

In addition to characterizing the efficiency of networks, graph
analysis allows for a better understanding of the role of specific
functional areas that are particularly important for integrating
information across the whole-brain, called hubs. The participation
coefficient is one way of quantifying this role, as it measures the
number of communities a node shares a functional edge with,
outside of that node's main community. Our a priori hypothesis
was that participation of the AI, DACC, and DLPFC would all be
associated with cognition, given their putative role as core hubs
within the CON and FPN. However, we only observed a significant
relationship between cognition and the extent to which the rAI
communicated with other communities. Previous work has sug-
gested that the AI aids in domain-free attentional control, based in
part on meta-analysis of 10 task-based imaging studies that re-
vealed reliable start-cue and error-related activity in bilateral AI, as
well as sustained activation throughout most tasks (Dosenbach
et al., 2006). Some researchers have therefore argued that the AI is
responsible for basic computational processes related to task-level
control and focal attention that are applied to most goal-oriented
behaviors (Nelson et al., 2010), implicating this region in the
successful performance of a multitude of cognitive functions. Our
findings support this interpretation of AI function, given that our
measure of cognition reflected shared variance across many dif-
ferent cognitive tasks. Interestingly, participation of the rAI did not
significantly mediate the relationship between cognition and CON
global efficiency, and both CON efficiency and rAI participation
significantly predicted cognition in the same model, indicating
independent effects of participation and global efficiency on cog-
nition. This finding points to an interesting relationship between
within-network and between-network properties in supporting
cognitive ability, such that both methods of functional commu-
nication may be independently necessary for cognitive perfor-
mance across many goal-directed tasks.

4.3. The role of network integrity in schizophrenia

Previous research has found that patients with schizophrenia
show reduced activation of regions within the FPN and CON dur-
ing many different tasks (Meyer-Lindenberg et al., 2001; White
et al., 2010), and have reduced connectivity both within and be-
tween these networks when measured at rest (Repovs et al., 2011).
These networks are considered crucial players in top-down task
control across different cognitive domains (Dosenbach et al.,
2006), and top-down control is hypothesized to serve a funda-
mental role in mental health (for review, see (Cole et al., 2014)).
Several graph theory studies in schizophrenia have revealed re-
duced small-worldness and reduced clustering in schizophrenia
compared to controls (Liu et al., 2008; Rubinov et al., 2009). In
addition a meta-analysis suggested that the right insula has re-
duced activation in schizophrenia patients during a variety of ex-
ecutive function tasks (Minzenberg et al., 2009). In fact, a recent
study using Granger analysis and confirmatory Structural Equation
Modeling found that the rAI had disrupted functional connectivity
with the central executive and default mode networks in schizo-
phrenia (Moran et al., 2013), while another study using Granger
analysis of resting state in schizophrenia revealed a failure of the
insula to influence the DLPFC – a region within the FPN (Pala-
niyappan et al., 2013).

Given this background, we were surprised to observe a lack of
robust group differences in network metrics, though there were
trends for reduced local and global efficiency of the FPN, CON, and
AUD in schizophrenia. This is particularly surprising given the
worse behavioral performance on all tasks in the schizophrenia
group and the relationships between graph metrics and cognition.
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One possible explanation for the differences in our results and
those of previous studies is differing methodologies. Given that
graph analysis of functional connectivity data is still a relatively
young field, methodological choices can vary widely between
studies, and it is not yet fully clear how specific methodological
choices influence patterns of group differences. For example, Ly-
nall et al. (2010) found significantly reduced small-worldness and
clustering in schizophrenia, but they analyzed only 72 brain re-
gions, thousands fewer connections in their whole brain matrix
than in the current study, which used 255 regions validated from
Power et al. (2011). It is possible that we would have found more
evidence for overall reduced global or local efficiency had we used
a smaller number of regions, but we felt that the choice to use a
published and validated parcellation system was an important
one. Additionally, choices about methods for motion correction
can greatly influence results. The current dataset utilized a much
more stringent motion correction protocol than is common in the
schizophrenia literature. Individual differences in motion did not
impact our observed relationships between network metrics and
cognition. However, motion was significantly negatively correlated
with our FPN global efficiency, rAI participation, and trended to-
wards being significantly greater in the schizophrenia group.
Therefore, previous studies using less stringent motion correction
may have found greater evidence for reduced clustering or other
metrics in part because of confounds associated with movement.
Our sample was also comprised of relatively high functioning
patients with schizophrenia, who could tolerate over an hour in an
MRI scanner while completing multiple cognitive tasks. This
characteristic of our sample may have reduced our power to detect
more robust group differences, which might be observable in
schizophrenia patients who are more impaired. Further, the ex-
isting literature is not completely homogenous, as some studies
have not found group differences in FPN and CON connectivity
(Fornito et al., 2011), and Lynall et al. (2010) found slightly in-
creased global efficiency in schizophrenia, as compared to
controls.

Undoubtedly much more work must be done to determine best
practices in graph theory analysis of functional connectivity.
Nonetheless, our data clearly support the hypothesis that effi-
ciency of specific functional networks and the participation of the
rAI are important for understanding cognitive ability across the
spectrum of health and disease, but also suggest that the gen-
eralized cognitive deficit in schizophrenia cannot be fully under-
stood through this lens of network efficiency and node
participation.

4.4. Limitations

One potential limitation of our study was the use of pseudo-
resting state data. One concern is that this approach may not
sufficiently approximate resting state data and could be influenced
by task performance. However, this concern is mitigated by the
aggregation of data across three different tasks, making it more
likely that the residual correlational structure (i.e. functional
connectivity) is reflecting signal that is common across all tasks.
This concern is further mitigated by recent work showing strong
similarities in the patterns of functional connectivity generated by
resting state and task data residuals (Cole et al., 2014). That said,
the possibility remains that our pseudo-resting state data was a
noisier or less precise estimate of intrinsic neural fluctuation than
is ‘pure’ resting state data, which may have reduced our power to
detect group differences in graph metrics in our study. An addi-
tional limitation is that our schizophrenia patients were all taking
antipsychotic medications, though previous studies do not suggest
that such cognitive deficits are due to antipsychotic medications
(Goldberg and Weinberger, 1996; Keefe et al., 2007). Studies
showing reductions in graph metrics in schizophrenia have also
included patients taking antipsychotic medications (Lynall et al.,
2010; Bassett et al., 2009), suggesting that antipsychotics cannot
explain our lack of group differences, although there is some evi-
dence that resting state functional connectivity is altered following
six weeks of antipsychotic treatment in formerly drug naive pa-
tients (Lui et al., 2010).
5. Conclusions

This study demonstrates that efficiency of the whole brain, FPN
and CON are significantly positively associated with cognitive
ability in both health and schizophrenia, corroborating and ex-
tending prior research on the importance of these functional
networks in supporting cognitive performance. In addition, our
finding of a relationship between participation of the rAI and
cognition points to this region's critical role in coordinating in-
formation transfer throughout the whole brain.
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